
RacerPro Reference Manual

Version 1.9

Racer Systems GmbH & Co. KG

October 12, 2010

http://www.sts.tu-harburg.de/~r.f.moeller/racer

Contents

1 Knowledge Base Management Functions 1

1.1 TBox Management . 10

1.2 ABox Management . 19

2 Knowledge Base Declarations 29

2.1 Built-in Concepts . 29

2.2 Concept Axioms . 30

2.3 Role Declarations . 33

2.4 Concrete Domain Attribute Declaration . 43

2.5 Assertions . 44

2.6 Concrete Domain Assertions . 52

3 Reasoning Modes 57

4 Evaluation Functions and Queries 61

4.1 Queries for Concept Terms . 61

4.2 Role Queries . 66

4.3 TBox Evaluation Functions . 74

4.4 ABox Evaluation Functions . 81

4.5 ABox Queries . 84

5 Retrieval 91

5.1 TBox Retrieval . 91

5.2 ABox Retrieval . 102

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

ii CONTENTS

6 The API of the nRQL Query Processing Engine 115

6.1 Basic Commands . 117

6.2 Query / Rule Management . 120

6.3 Query / Rule Life Cycle . 125

6.4 Execution Control . 137

6.5 ABox Queries . 144

6.6 TBox Queries . 147

6.7 Getting Answers . 149

6.8 Defined Queries . 156

6.9 Rules . 160

6.10 Configuring the Querying Modes of nRQL 164

6.11 Query Inference . 179

6.12 Query Repository . 183

6.13 The Substrate Representation Layer . 187

6.14 The nRQL Persistency Facility . 195

7 Publish and Subscribe Functions 197

8 The Racer Persistency Services 201

Index 205

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 1

Knowledge Base Management
Functions

A knowledge base is just a tuple consisting of a TBox and an associated ABox. Note that
a TBox and its associated ABox may have the same name. This section documents the
functions for managing TBoxes and ABoxes and for specifying queries.

Racer provides a default knowledge base with a TBox called default and an associated
ABox with the same name.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

in-knowledge-base macro

Description: This form is an abbreviation for the sequence:
(in-tbox TBN)
(in-abox ABN TBN). See the appropriate documentation for these

functions.

Syntax: Two forms are possible:
(in-knowledge-base TBN &optional ABN) or
(in-knowledge-base TBN &key (init t))

Arguments: TBN - TBox name

ABN - ABox name

init - t or nil

Remarks: If no ABox is specified an ABox with the same name as the TBox is created
(or initialized if already present). The ABox is associated with the TBox.
If the keyword :init is specified with value nil no new knowledge base is
created but just the current TBox and ABox is set. If :init is specified, no
ABox name may be given.

Examples: (in-knowledge-base peanuts peanuts-characters)
(in-knowledge-base peanuts)
(in-knowledge-base peanuts :init nil)

racer-read-file function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-file pathname)

Arguments: pathname - is the pathname of a file

Examples: (racer-read-file "kbs/test.lisp")

See also: Function include-kb

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

3

racer-read-document function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded.

Syntax: (racer-read-document URL)

Arguments: URL - is the URL of a text document with RACER statements.

Remarks: The URL can also be a file URL. In this case, racer-read-file is used on the
pathname of the URL.

Examples: (racer-read-document "http://www.fh-wedel.de/mo/test.lisp")
(racer-read-document "file:///home/mo/kbs/test.lisp")

See also: Function racer-read-file

include-kb function

Description: A file in RACER format (as described in this document) containing TBox
and/or ABox declarations is loaded. The function include is used for parti-
tioning a TBox or ABox into several files.

Syntax: (include-kb pathname)

Arguments: pathname - is the pathname of a file

Examples: (include-kb "project:onto-kb;my-knowledge-base.lisp")

See also: Function racer-read-file

import-kb macro

Description: Macro equivalent of racer-read-file, Page 2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

daml-read-file function

Description: A file in DAML format (e.g., produced OilEd) is loaded and represented as
a TBox and an ABox with appropriate declarations.

Syntax: (daml-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
file specified in the pathname argument (without file type).

Examples: (daml-read-file "oiled:ontologies;madcows.daml") reads the file
"oiled:ontologies;madcows.daml" and creates a TBox madcows and an
associated ABox madcows.

daml-read-document function

Description: A text document in DAML format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (daml-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (daml-read-document "http://www.fh-wedel.de/mo/madcows.daml")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (daml-read-document "file://mo/madcows.daml")

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5

owl-read-file function

Description: A file in OWL format (e.g., produced OilEd) is loaded and represented as a
TBox and an ABox with appropriate declarations.

Syntax: (owl-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

file specified in the pathname argument (without file type).

Examples: (owl-read-file "oiled:ontologies;madcows.owl") reads the file
"oiled:ontologies;madcows.owl" and creates a TBox madcows and an
associated ABox madcows.

owl-read-document function

Description: A text document in OWL format (e.g., produced OilEd) is loaded from
a web server and represented as a TBox and an ABox with appropriate
declarations.

Syntax: (owl-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

document name specified in the URL argument (without file type).

Examples: (owl-read-document "http://www.fh-wedel.de/mo/madcows.owl")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (owl-read-document "file://mo/madcows.owl")

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

mirror function

Description: If you are offline, importing OWL or DAML ontologies may cause problems.
However, editing documents and inserting local URLs for ontologies is in-
convenient. Therefore, Racer provides a facility to declare local mirror URLs
for ontology URLs

Syntax: (mirror URL mirror −URL)

Arguments: URL - a URL used to refer to an ontology in a DAML-OIL or OWL doc-
ument

mirror −URL - a URL that refers to the same ontology. Possibly, a file URL
may be supplied.

clear-mirror-table function

Description: Delete all mirror entries

Syntax: (clear-mirror-table)

Arguments:

dig-read-file function

Description: A file in dig format (e.g., produced OilEd) is loaded and represented as a
TBox and an ABox with appropriate declarations.

Syntax: (dig-read-file pathname &key (init t) (verbose nil) (kb-name
nil)))

Arguments: pathname - is the pathname of a file
init - specifies whether the kb is initialized or extended (the default is to

(re-)initialize the kb.
verbose - specifies whether ignored triples are indicated (the default is to just

suppress any warning).
kb-name - specifies the name of the kb (TBox and ABox). The default is the

file specified in the pathname argument (without file type).

Examples: (dig-read-file "oiled:ontologies;madcows.dig") reads the file
"oiled:ontologies;madcows.dig" and creates a TBox madcows and an
associated ABox madcows.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

7

dig-read-document function

Description: A text document in dig format (e.g., produced OilEd) is loaded from a web
server and represented as a TBox and an ABox with appropriate declara-
tions.

Syntax: (dig-read-document URL &key (init t) (verbose nil) (kb-name
nil)))

Arguments: URL - is the URL of a text document

init - specifies whether the kb is initialized or extended (the default is to
(re-)initialize the kb.

verbose - specifies whether ignored triples are indicated (the default is to just
suppress any warning).

kb-name - specifies the name of the kb (TBox and ABox). The default is the
document name specified in the URL argument (without file type).

Examples: (dig-read-document "http://www.fh-wedel.de/mo/madcows.dig")
reads the specified text document from the corresponding web server and
creates a TBox madcows and an associated ABox madcows. A file URL may
also be specified (dig-read-document "file://mo/madcows.dig")

kb-ontologies function

Description: A document in DAML+OIL or OWL format can import other ontologies.
With this function one can retrieve all ontologies that were imported into
the specified knowledge base

Syntax: (kb-ontologies KBN)

Arguments: KBN - is the name of the knowledge base.

get-namespace-prefix function

Description: Returns the prefix of the default namespace of a TBox loaded from an OWL
resource.

Syntax: (get-namespace-prefix TBN)

Arguments: TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

8 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

9

save-kb function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-kb pathname-or-stream
&key (tbox (current-tbox)) (abox (current-abox))
(syntax :krss) (if -exists :supersede)
(if -does-not-exist :create)
(uri "")
(ns0 ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream
tbox - TBox name or TBox object
abox - ABox name or ABox object
syntax - indicates the syntax of the KB to be generated. Possible values for

the syntax argument are :krss (the default), :xml, or :daml. Note
that concerning KRSS only a KRSS-like syntax is supported by
RACER. Therefore, instead of :krss it is also possible to specify
:racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

uri - The keyword :uri specifies the URI prefix for names. It is only
available if syntax :daml is specified. This argument is useful in
combination with OilEd. See the OilEd documentation.

ns0 - The keyword :uri is also provided for generating DAML files to
be processed with OilEd. The keyword :ns0 specifies the name of
the OilEd namespace 0. This keyword is important for the ABox
part. If the value of :uri is /home/user/test#, the value of :ns0
should probably be /home/user/. Some experimentation might be
necessary to find the correct values for :uri and :ns0 to be used
with OilEd.

Examples: (save-kb "project:onto-kb;my-knowledge-base.krss"
:syntax :krss
:tbox ’family
:abox ’smith-family)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

10 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

(save-kb "family.daml" :syntax :daml

:tbox ’family
:abox ’smith-family
:uri "http://www.fh-wedel.de/family.daml")
:ns0 "http://www.fh-wedel.de/")

1.1 TBox Management

If RACER is started, there exists a TBox named DEFAULT, which is set to the current
TBox.

in-tbox macro

Description: The TBox with the specified name is taken or a new TBox with that name
is generated.

Syntax: (in-tbox TBN &key (init t))

Arguments: TBN - is the name of the TBox.

init - boolean indicating if the TBox should be initialized.

Values: TBox object named TBN

Remarks: Usually this macro is used at top of a file containing a TBox. This macro
can also be used to create new TBoxes.

The specified TBox is the (current-tbox) until in-tbox is called again.

Examples: (in-tbox peanuts)
(implies Piano-Player Character)

...

See also: Macro signature on page 12.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 11

init-tbox function

Description: Generates a new TBox or initializes an existing TBox. During the initializa-
tion all user-defined concept axioms and role declarations are deleted, only
the concepts *top* and *bottom* remain in the TBox.

Syntax: (init-tbox tbox)

Arguments: tbox - TBox object

Values: tbox

Remarks: This is the way to create a new TBox object.

signature macro

Description: Defines the signature for a knowledge base.

If any keyword except individuals or objects is used, the (current-tbox) is
initialized and the signature is defined for it.

If the keyword individuals or objects is used, the (current-abox) is initial-
ized. If all keywords are used, the (current-abox) and its TBox are both
initialized.

Syntax: (signature &key (atomic-concepts nil) (roles nil)
(transitive-roles nil) (features nil) (attributes nil)
(individuals nil) (objects nil))

Arguments: atomic-concepts - is a list of all the concept names, specifying C.

roles - is a list of role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

individuals - is a list of individual names.

objects - is a list of object names.

Remarks: Usually this macro is used at top of a file directly after the macro
in-knowledge-base, in-tbox or in-abox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

12 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

Actually it is not necessary in RACER to specify the signature, but it helps
to avoid errors due to typos.

Examples: Signature for a TBox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight)))

Signature for an ABox:
(signature

:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

Signature for a TBox and an ABox:
(signature

:atomic-concepts (Character Baseball-Player...)
:roles ((has-pet)
(has-dog :parents (has-pet) :domain human :range dog)
(has-coach :feature t))

:attributes ((integer has-age) (real has-weight))
:individuals (Charlie-Brown Snoopy ...)
:objects (age-of-snoopy ...))

See also: For role definitions see define-primitive-role, on page 35, for feature
definitions see define-primitive-attribute, on page 36, for attribute def-
initions see define-concrete-domain-attribute, on page 44.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 13

ensure-tbox-signature function

Description: Defines the signature for a TBox and initializes the TBox.

Syntax: (ensure-tbox-signature tbox &key (atomic-concepts nil)
(roles nil) (transitive-roles nil) (features nil) (attributes nil))

Arguments: tbox - is a TBox name or a TBox object.

atomic-concepts - is a list of all the concept names.

roles - is a list of all role declarations.

transitive-roles - is a list of transitive role declarations.

features - is a list of feature declarations.

attributes - is a list of attributes declarations.

See also: Definition of macro signature.

get-tbox-signature function

Description: Gets the signature for a TBox.

Syntax: (get-tbox-signature &optional tbox)

Arguments: tbox - is a TBox name or a TBox object.

current-tbox function

Description: The function returns a TBox name.

Syntax: (current-tbox)

Arguments:

set-current-tbox function

Description: The function sets the current TBox.

Syntax: (set-current-tbox tbox)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

14 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

get-tbox-version Function

Description: Gets a version indicator for a TBox.

Syntax: (get-tbox-version tbox)

Arguments: tbox - is a TBox name or a TBox object.

save-tbox function

Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-tbox pathname-or-stream &optional (tbox (current-tbox))
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create)
(uri ""))

Arguments: pathname-or -stream - is the pathname of a file or is an output stream
tbox - TBox object
syntax - indicates the syntax of the KB to be generated. Possible values for

the syntax argument are :krss (the default), :xml, or :daml. Note
that only a KRSS-like syntax is supported by RACER. Therefore,
instead of :krss it is also possible to specify :racer.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: TBox object

Remarks: A file may contain several TBoxes.
The usual way to load a TBox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-tbox "project:TBoxes;tbox-one.lisp")
(save-tbox "project:TBoxes;final-tbox.lisp"

(find-tbox ’tbox-one) :if-exists :error)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 15

forget-tbox function

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (forget-tbox tbox)

Arguments: tbox - is a TBox object or TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: All ABoxes referencing the specified TBox are also deleted.

Examples: (forget-tbox ’smith-family)

delete-tbox macro

Description: Delete the specified TBox from the list of all TBoxes. Usually this enables
the garbage collector to recycle the memory used by this TBox.

Syntax: (delete-tbox TBN)

Arguments: TBN - is a TBox name.

Values: List containing the name of the removed TBox and a list of names of option-
ally removed ABoxes

Remarks: Calls forget-tbox

Examples: (delete-tbox smith-family)

delete-all-tboxes function

Description: Delete all known TBoxes except the default TBox called default. Usu-
ally this enables the garbage collector to recycle the memory used by these
TBoxes.

Syntax: (delete-all-tboxes)

Values: List containing the names of the removed TBoxes and a list of names of
optionally removed ABoxes

Remarks: All ABoxes are also deleted.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

16 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

create-tbox-clone function

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (create-tbox-clone tbox &key (new-name nil) (overwrite nil))

Arguments: tbox - is a TBox name or a TBox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Examples: (create-tbox-clone ’my-TBox)
(create-tbox-clone ’my-TBox :new-name ’my-clone :overwrite t)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.1. TBOX MANAGEMENT 17

clone-tbox macro

Description: Returns a new TBox object which is a clone of the given TBox. The clone
keeps all declarations from its original but it is otherwise fresh, i.e., new
declarations can be added. This function allows one to create new TBox
versions without the need to reload the already known declarations.

Syntax: (clone-tbox TBN &key (new-name nil) (overwrite nil))

Arguments: TBN - is a TBox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of tbox is generated otherwise.

overwrite - if bound to t an existing TBox with the name given by new -
name is overwritten. If bound to nil an error is signaled if a TBox
with the name given by new -name is found.

Values: TBox object

Remarks: The function create-tbox-clone is called.

Examples: (clone-tbox my-TBox)
(clone-tbox my-TBox :new-name my-clone :overwrite t)

See also: Function create-tbox-clone on page 16.

find-tbox function

Description: Returns a TBox object with the given name among all TBoxes.

Syntax: (find-tbox TBN &optional (errorp t))

Arguments: TBN - is the name of the TBox to be found.

errorp - if bound to t an error is signaled if the TBox is not found.

Values: TBox object

Remarks: This function can also be used to get rid of TBoxes or to rename TBoxes as
shown in the examples.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

18 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-find-tbox function

Description: Changes the name of an TBox.

Syntax: (set-find-tbox tbox − name − 1 tbox − name − 2)

Arguments: tbox − name − 1 - is the old name of the TBox.

tbox − name − 2 - is the new name of the TBox. This argument may be nil

Values: TBox

Remarks: This function can also be used to delete TBoxes or rename TBoxes as shown
in the examples.

Examples: Get rid of an TBox, i.e. make the TBox garbage collectible:
(set-find-tbox ’tbox1 nil)

Renaming an TBox tbox1 to tbox2:
(set-find-tbox tbox1 ’tbox2)

clear-default-tbox function

Description: This function initializes the default TBox.

Syntax: (clear-default-tbox)

Arguments:

associated-aboxes function

Description: Returns a list of ABoxes or ABox names which are defined wrt. the TBox
specified as a parameter.

Syntax: (associated-aboxes TBN)

Arguments: TBN - is the name of a TBox.

Values: List of ABox objects

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 19

xml-read-tbox-file function

Description: A file in XML format containing TBox declarations is parsed and the result-
ing TBox is returned.

Syntax: (xml-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: Only XML descriptions which correspond the so-called FaCT DTD are
parsed, everything else is ignored.

Examples: (xml-read-tbox-file "project:TBoxes;tbox-one.xml")

rdfs-read-tbox-file function

Description: A file in RDFS format containing TBox declarations is parsed and the re-
sulting TBox is returned. The name of the TBox is the filename without file
type.

Syntax: (rdfs-read-tbox-file pathname)

Arguments: pathname - is the pathname of a file

Values: TBox object

Remarks: If the file to be read also contains RDF descriptions, use the function
daml-read-file instead. The RDF descriptions are represented using ap-
propriate ABox assertions. The function rdfs-read-tbox-file is supported
for backward compatibility.

Examples: (rdfs-read-tbox-file "project:TBoxes;tbox-one.rdfs")

1.2 ABox Management

If RACER is started, there exists a ABox named DEFAULT, which is set to the current
ABox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

20 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

in-abox macro

Description: The ABox with this name is taken or generated. If a TBox is specified, the
ABox is also initialized.

Syntax: (in-abox ABN &optional (TBN (current-tbox)))

Arguments: ABN - ABox name

TBN - name of the TBox to be associated with the ABox.

Values: ABox object named ABN

Remarks: If the specified TBox does not exist, an error is signaled.

Usually this macro is used at top of a file containing an ABox. This macro
can also be used to create new ABoxes. If the ABox is to be continued in
another file, the TBox must not be specified again.

The specified ABox is the current abox until in-abox is called again. The
TBox of the ABox is made the (current-tbox).

Examples: (in-abox peanuts-characters peanuts)
(instance Schroeder Piano-Player)

...

See also: Macro signature on page 12.

init-abox function

Description: Initializes an existing ABox or generates a new ABox. During the initializa-
tion all assertions and the link to the referenced TBox are deleted.

Syntax: (init-abox abox &optional (tbox (current-tbox)))

Arguments: abox - ABox object to initialize

tbox - TBox object associated with the ABox

Values: abox

Remarks: The tbox has to already exist before it can be referred to by init-abox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 21

ensure-abox-signature function

Description: Defines the signature for an ABox and initializes the ABox.

Syntax: (ensure-abox-signature abox &key (individuals nil) (objects nil))

Arguments: abox - ABox object

individuals - is a list of individual names.

objects - is a list of concrete domain object names.

See also: Macro signature on page 12 is the macro counterpart. It allows to specify
a signature for an ABox and a TBox with one call.

get-abox-signature function

Description: Gets the signature for an ABox.

Syntax: (get-abox-signature &optional ABN)

Arguments: ABN - is an ABox name

get-kb-signature function

Description: Gets the signature for a knowledge base.

Syntax: (get-kb-signature &optional KBN)

Arguments: KBN - is a name for a knowledge base.

current-abox function

Description: Returns the current ABox.

Syntax: (current-abox)

Arguments:

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

22 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-current-abox function

Description: The function sets the current ABox.

Syntax: (set-current-abox abox)

Arguments:

get-abox-version Function

Description: Gets a version indicator for a ABox.

Syntax: (get-abox-version abox)

Arguments: abox - is a ABox name.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 23

save-abox function

Description: If a pathname is specified, an ABox is saved to a file. In case a stream is
specified, the ABox is written to the stream (the stream must already be
open) and the keywords if -exists and if -does-not -exist are ignored.

Syntax: (save-abox pathname-or-stream &optional (abox (current-abox))
&key (syntax :krss) (transformed nil) (if -exists :supersede)
(if -does-not-exist :create))

Arguments: pathname-or -stream - is the name of the file or an output stream.

abox - ABox object

syntax - indicates the syntax of the TBox. Possible value for the syntax
argument are :krss (the default), :xml, or :daml.

transformed - if bound to t the ABox is saved in the format it has after
preprocessing by RACER.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.

if -does-not -exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: ABox object

Remarks: A file may contain several ABoxes.
The usual way to load an ABox file is to use the Lisp function load.
If the server version is used, it must have been started with the option -u in
order to have this function available.

Examples: (save-abox "project:ABoxes;abox-one.lisp")
(save-abox "project:ABoxes;final-abox.lisp"

(find-abox ’abox-one) :if-exists :error)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

24 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

forget-abox function

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (forget-abox abox)

Arguments: abox - is a ABox object or ABox name.

Values: The name of the removed ABox

Examples: (forget-abox ’family)

delete-abox macro

Description: Delete the specified ABox from the list of all ABoxes. Usually this enables
the garbage collector to recycle the memory used by this ABox.

Syntax: (delete-abox ABN)

Arguments: ABN - is a ABox name.

Values: The name of the removed ABox

Remarks: Calls forget-abox

Examples: (delete-abox family)

delete-all-aboxes function

Description: Delete all known ABoxes. Usually this enables the garbage collector to recycle
the memory used by these ABoxes.

Syntax: (delete-all-aboxes)

Values: List containing the names of the removed ABoxes

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 25

create-abox-clone function

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (create-abox-clone abox &key (new-name nil) (overwrite nil))

Arguments: abox - is an ABox name or an ABox object.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The current ABox is set to the result of this function.

Examples: (create-abox-clone ’my-ABox)
(create-abox-clone ’my-ABox :new-name ’abox-clone :overwrite t)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

26 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

clone-abox macro

Description: Returns a new ABox object which is a clone of the given ABox. The clone
keeps the assertions and the state from its original but new declarations can
be added without modifying the original ABox. This function allows one to
create new ABox versions without the need to reload (and reprocess) the
already known assertions.

Syntax: (clone-abox ABN &key (new-name nil) (overwrite nil))

Arguments: ABN - is an ABox name.

new -name - if bound to a symbol, this specifies the name of the clone. A new
unique name based on the name of abox is generated otherwise.

overwrite - if bound to t an existing ABox with the name given by new -name
is overwritten. If bound to nil an error is signaled if an ABox with
the name given by new -name is found.

Values: ABox object

Remarks: The function create-abox-clone is called.

Examples: (clone-abox my-ABox)
(clone-abox my-ABox :new-name abox-clone :overwrite t)

See also: Function create-abox-clone on page 25.

find-abox function

Description: Finds an ABox object with a given name among all ABoxes.

Syntax: (find-abox ABN &optional (errorp t))

Arguments: ABN - is the name of the ABox to be found.

errorp - if bound to t an error is signaled if the ABox is not found.

Values: ABox object

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

1.2. ABOX MANAGEMENT 27

set-find-abox function

Description: Changes the name of an ABox.

Syntax: (set-find-abox abox − name − 1 abox − name − 2)

Arguments: abox − name − 1 - is the old name of the ABox.

abox − name − 2 - is the new name of the ABox. This argument may be nil

Values: ABox

Remarks: This function can also be used to delete ABoxes or rename ABoxes as shown
in the examples.

Examples: Get rid of an ABox, i.e. make the ABox garbage collectible:
(set-find-abox ’abox1 nil)

Renaming an ABox abox1 to abox2:
(set-find-abox ’abox1 ’abox2)

tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the Lisp version only.

associated-tbox function

Description: Gets the associated TBox for an ABox.

Syntax: (associated-tbox abox)

Arguments: abox - ABox object

Values: TBox object

Remarks: This function is provided in the server version only.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

28 CHAPTER 1. KNOWLEDGE BASE MANAGEMENT FUNCTIONS

set-associated-tbox function

Description: Sets the associated TBox for an ABox.

Syntax: (set-associated-tbox ABN TBN)

Arguments: ABN - ABox name

TBN - TBox name

Values: TBox object

Remarks: This function is provided in the server version only.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 2

Knowledge Base Declarations

Knowledge base declarations include concept axioms and role declarations for the TBox and
the assertions for the ABox. The TBox object and the ABox object must exist before the
functions for knowledge base declarations can be used. The order of axioms and assertions
does not matter because forward references can be handled by RACER.

The macros for knowledge base declarations add the concept axioms and role declarations
to the (current-tbox) and the assertions to the (current-abox).

2.1 Built-in Concepts

top, top concept

Description: The name of most general concept of each TBox, the top concept (>).

Syntax: *top*

Remarks: The concepts *top* and top are synonyms. These concepts are elements of
every TBox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

30 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

bottom, bottom concept

Description: The name of the incoherent concept, the bottom concept (⊥).

Syntax: *bottom*

Remarks: The concepts *bottom* and bottom are synonyms. These concepts are ele-
ments of every TBox.

2.2 Concept Axioms

This section documents the macros and functions for specifying concept axioms.

Please note that the concept axioms define-primitive-concept, define-concept and
define-disjoint-primitive-concept have the semantics given in the KRSS specification
only if they are the only concept axiom defining the concept CN in the terminology. This
is not checked by the RACER system.

implies macro

Description: Defines a GCI between C1 and C2.

Syntax: (implies C1 C2)

Arguments: C1, C2 - concept term

Remarks: C1 states necessary conditions for C2. This kind of facility is an addendum
to the KRSS specification.

Examples: (implies Grandmother (and Mother Female))
(implies

(and (some has-sibling Sister) (some has-sibling Twin)
(exactly 1 has-sibling))

(and Twin (all has-sibling Twin-sister)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.2. CONCEPT AXIOMS 31

equivalent macro

Description: States the equality between two concept terms.

Syntax: (equivalent C1 C2)

Arguments: C1, C2 - concept term

Remarks: This kind of concept axiom is an addendum to the KRSS specification.

Examples: (equivalent Grandmother
(and Mother (some has-child Parent)))

(equivalent
(and polygon (exactly 4 has-angle))
(and polygon (exactly 4 has-edges)))

disjoint macro

Description: This axiom states the disjointness of a set of concepts.

Syntax: (disjoint CN 1 ...CN n)

Arguments: CN 1,. . . , CN n - concept names

Examples: (disjoint Yellow Red Blue)
(disjoint January February ...November December))

define-primitive-concept KRSS macro

Description: Defines a primitive concept.

Syntax: (define-primitive-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: C states the necessary conditions for CN .

Examples: (define-primitive-concept Grandmother (and Mother Female))
(define-primitive-concept Father Parent)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

32 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-concept KRSS macro

Description: Defines a concept.

Syntax: (define-concept CN C)

Arguments: CN - concept name

C - concept term

Remarks: Please note that in RACER, definitions of a concept do not have to be unique.
Several definitions may be given for the same concept.

Examples: (define-concept Grandmother
(and Mother (some has-child Parent)))

define-disjoint-primitive-concept KRSS macro

Description: This axiom states the disjointness of a group of concepts.

Syntax: (define-disjoint-primitive-concept CN GNL C)

Arguments: CN - concept name

GNL - group name list, which lists all groups to which CN belongs to
(among other concepts). All elements of each group are declared to
be disjoint.

C - concept term, that is implied by CN .

Remarks: This function is just supplied to be compatible with the KRSS.

Examples: (define-disjoint-primitive-concept January
(Month) (exactly 31 has-days))

(define-disjoint-primitive-concept February
(Month) (and (at-least 28 has-days) (at-most 29 has-days)))

...

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 33

add-concept-axiom function

Description: This function adds a concept axiom to a TBox.

Syntax: (add-concept-axiom tbox C1 C2 &key (inclusion-p nil))

Arguments: tbox - TBox object

C1, C2 - concept term

inclusion-p - boolean indicating if the concept axiom is an inclusion axiom
(GCI) or an equality axiom. The default is to state an inclusion.

Values: tbox

Remarks: RACER imposes no constraints on the sequence of concept axiom declara-
tions with add-concept-axiom, i.e. forward references to atomic concepts
for which other concept axioms are added later are supported in RACER.

add-disjointness-axiom function

Description: This function adds a disjointness concept axiom to a TBox.

Syntax: (add-disjointness-axiom tbox CN GN)

Arguments: tbox - TBox object

CN - concept name

GN - group name

Values: tbox

2.3 Role Declarations

Roles can be declared with the following statements.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

34 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-primitive-role KRSS macro (with changes)

Description: Defines a role.

Syntax: (define-primitive-role RN &key (transitive nil) (feature nil)
(symmetric nil) (reflexive nil) (inverse nil) (domain nil)
(range nil) (parents nil))

Arguments: RN - role name

transitive - if bound to t declares that the new role is transitive.

feature - if bound to t declares that the new role is a feature.

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that the new role is reflexive (currently only
supported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN . This is equivalent to
(inv RN). The inverse role of RN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role RN . This is
equivalent to adding the axiom (implies (at-least 1 RN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role RN . This is
equivalent to adding the axiom (implies *top* (all RN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role RN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see the examples.

Remarks: This function combines several KRSS functions for defining properties of a
role. For example the conjunction of roles can be expressed as shown in the
first example below.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 35

A role that is declared to be a feature cannot be transitive. A role with a
feature as a parent has to be a feature itself. A role with transitive subroles
may not be used in number restrictions.

Examples: (define-primitive-role conjunctive-role :parents (R-1 ...R-n))
(define-primitive-role has-descendant :transitive t

:inverse descendant-of :parent has-child)
(define-primitive-role has-children :inverse has-parents

:domain parent :range children))

See also: Macro signature on page 12.

define-primitive-attribute KRSS macro (with changes)

Description: Defines an attribute.

Syntax: (define-primitive-attribute AN &key (symmetric nil)
(inverse nil) (domain nil) (range nil) (parents nil))

Arguments: AN - attribute name

symmetric - if bound to t declares that the new role is a symmetric. This is
equivalent to declaring that the new role’s inverse is the role itself.

inverse - provides a name for the inverse role of AN . This is equivalent to
(inv AN). The inverse role of AN has no user-defined name, if
inverse is bound to nil.

domain - provides a concept term defining the domain of role AN . This is
equivalent to adding the axiom (implies (at-least 1 AN) C)
if domain is bound to the concept term C . No domain is declared
if domain is bound to nil.

range - provides a concept term defining the range of role AN . This is
equivalent to adding the axiom (implies *top* (all AN D)) if
range is bound to the concept term D . No range is declared if range
is bound to nil.

parents - provides a list of superroles for the new role. The role AN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see examples.

Remarks: This macro is supplied to be compatible with the KRSS specification. It is re-
dundant since the macro define-primitive-role can be used with :feature
t. This function combines several KRSS functions for defining properties of
an attribute.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

36 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

An attribute cannot be transitive. A role with a feature as a parent has to
be a feature itself.

Examples: (define-primitive-attribute has-mother
:domain child :range mother :parents (has-parents))

(define-primitive-attribute has-best-friend
:inverse best-friend-of :parent has-friends)

See also: Macro signature on page 12.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 37

add-role-axioms function

Description: Adds a role to a TBox.

Syntax: (add-role-axioms tbox RN &key (cd-attribute nil) (transitive nil)
(feature nil) (symmetric nil) (reflexive nil) (inverse nil)
(domain nil) (range nil) (parents nil))

Arguments: tbox - TBox object to which the role is added.

RN - role name

cd -attribute - may be either integer or real.

transitive - if bound to t declares that RN is transitive.

feature - if bound to t declares that RN is a feature.

symmetric - if bound to t declares that RN is a symmetric. This is equivalent
to declaring that the new role’s inverse is the role itself.

reflexive - if bound to t declares that RN is reflexive (currently only sup-
ported for ALCH). If feature is bound to t, the value of reflexive
is ignored.

inverse - provides a name for the inverse role of RN (is equivalent to (inv
RN)). The inverse role of RN has no user-defined name, if inverse
is bound to nil.

domain - provides a concept term defining the domain of role RN (equivalent
to adding the axiom (implies (at-least 1 RN) C) if domain
is bound to the concept term C . No domain is declared if domain
is bound to nil.

range - provides a concept term defining the range of role RN (equivalent
to adding the axiom (implies *top* (all RN D)) if range is
bound to the concept term D . No range is declared if range is
bound to nil.

parents - providing a single role or a list of superroles for the new role. The
role RN has no superroles, if parents is bound to nil.

Values: tbox

Remarks: For each role RN there may be only one call to add-role-axioms per TBox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

38 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

functional macro

Description: States that a role is to be interpreted as functional.

Syntax: (functional RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

Remarks: States that a role is to be interpreted as functional.

role-is-functional function

Description: States that a role is to be interpreted as functional.

Syntax: (role-is-functional RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

transitive macro

Description: States that a role is to be interpreted as transitive.

Syntax: (transitive RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

role-is-transitive function

Description: States that a role is to be interpreted as transitive.

Syntax: (role-is-transitive RN
&optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 39

role-is-used-as-datatype-property function

Description: States that a role is to be interpreted as a datatype property role.

Syntax: (role-is-used-as-datatype-property RN TBN)

Arguments: RN - role name

TBN - TBox name

role-is-used-as-annotation-property function

Description: States that a role is to be interpreted as an annotation property role.

Syntax: (role-is-used-as-annotation-property RN TBN)

Arguments: RN - role name

TBN - TBox name

inverse macro

Description: Defines a name for the inverse of a role.

Syntax: (inverse RN inverse − role
&optional (TBN (current-tbox)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

inverse-of-role function

Description: Defines a name for the inverse of a role.

Syntax: (inverse-of-role RN inverse − role
&optional (TBN (current-tbox)))

Arguments: RN - role name

inverse − role - inverse role of the Form (inv RN)

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

40 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

roles-equivalent macro

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent RN1 RN1 TBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

roles-equivalent-1 function

Description: Declares two roles to be equivalent.

Syntax: (roles-equivalent-1 RN1 RN2 TBN)

Arguments: RN1 - role name

RN2 - role name

TBN - TBox name

domain macro

Description: Declares the domain of a role.

Syntax: (domain RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.3. ROLE DECLARATIONS 41

role-has-domain function

Description: Declares the domain of a role.

Syntax: (role-has-domain RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

attribute-has-domain function

Description: Declares the domain of an attribute.

Syntax: (attribute-has-domain AN C
&optional (TBN (current-tbox)))

Arguments: AN - attribute name

C - concept

TBN - TBox name

range macro

Description: Declares the range of a role.

Syntax: (range RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

42 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

role-has-range function

Description: Declares the range of a role.

Syntax: (role-has-range RN C
&optional (TBN (current-tbox)))

Arguments: RN - role name

C - concept

TBN - TBox name

datatype-role-has-range function

Description: Declares the range of a datatype property role.

Syntax: (datatype-role-has-range RN type TBN)

Arguments: RN - role name

type - either cardinal, integer, real, complex, or string

TBN - TBox name

attribute-has-range function

Description: Declares the range of an attribute.

Syntax: (attribute-has-range AN D
&optional (TBN (current-tbox)))

Arguments: AN - attribute name

C - concept

D - either cardinal, integer, real, complex, or string

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.4. CONCRETE DOMAIN ATTRIBUTE DECLARATION 43

implies-role macro

Description: Defines a parent of a role.

Syntax: (implies-role RN1 RN2

&optional (TBN (current-tbox)))

Arguments: RN1 - role name
RN2 - parent role name
TBN - TBox name

role-has-parent function

Description: Defines a parent of a role.

Syntax: (role-has-parent RN1 RN2

&optional (TBN (current-tbox)))

Arguments: RN1 - role name
RN2 - parent role name
TBN - TBox name

2.4 Concrete Domain Attribute Declaration

define-concrete-domain-attribute macro

Description: Defines a concrete domain attribute.

Syntax: (define-concrete-domain-attribute AN &key type domain)

Arguments: AN - attribute name
type - can be either bound to cardinal, integer, real, complex, or

string. The type must be supplied.
domain - a concept describing the domain of the attribute.

Remarks: Calls add-role-axioms

Examples: (define-concrete-domain-attribute has-age :type integer)
(define-concrete-domain-attribute has-weight :type real)

See also: Macro signature on page 12 and Section 2.4.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

44 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

define-datatype-property macro

Description: Defines a role with range from a specified concrete domain. The name is
reminiscent of the OWL language which calls these roles datatype properties.

Syntax: (define-datatype-property RN &key (feature nil)
(domain nil) (range nil) (parents nil))

Arguments: RN - attribute name

range - can be either bound to cardinal, integer, real, complex, or
string. The type must be supplied.

domain - a concept describing the domain of the attribute.

parents - a list of roles for the parents.

Remarks: Calls add-role-axioms

Examples: (define-datatype-property room-number :range integer)

add-datatype-property Function

Description: Functional equivalent of define-datatype-property, Page 44.

2.5 Assertions

instance KRSS macro

Description: Builds a concept assertion, asserts that an individual is an instance of a
concept.

Syntax: (instance IN C)

Arguments: IN - individual name

C - concept term

Examples: (instance Lucy Person)
(instance Snoopy (and Dog Cartoon-Character))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 45

add-concept-assertion function

Description: Builds an assertion and adds it to an ABox.

Syntax: (add-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Examples: (add-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(add-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

forget-concept-assertion function

Description: Retracts a concept assertion from an ABox.

Syntax: (forget-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(forget-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

46 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

related KRSS macro

Description: Builds a role assertion, asserts that two individuals are related via a role (or
feature).

Syntax: (related IN 1 IN 2 R)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - a role term or a feature term.

Examples: (related Charlie-Brown Snoopy has-pet)
(related Linus Lucy (inv has-brother))

add-role-assertion function

Description: Adds a role assertion to an ABox.

Syntax: (add-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Examples: (add-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(add-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 47

forget-role-assertion function

Description: Retracts a role assertion from an ABox.

Syntax: (forget-role-assertion abox IN 1 IN 2 R)

Arguments: abox - ABox object

IN 1 - individual name of the predecessor

IN 2 - individual name of the filler

R - role term

Values: abox

Remarks: For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

Examples: (forget-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(forget-role-assertion (find-abox ’peanuts-characters)
’Linus ’Lucy ’(inv has-brother))

forget-disjointness-axiom function

Description: This function is used to forget declarations with
define-disjoint-primitive-concept.

Syntax: (forget-disjointness-axiom tbox CN group − name)

Arguments: tbox - TBox object

CN - concept-name

group − name - name of the disjointness group

forget-disjointness-axiom-statement function

Description: This function is used to forget statements of the form (disjoint a b c)

Syntax: (forget-disjointness-axiom-statement tbox &rest concepts)

Arguments: tbox - TBox object

concepts - List of concepts

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

48 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

forget-constrained-assertion function

Description: Forget assertions with the form constrained.

Syntax: (forget-constrained-assertion abox IN ON attributeterm)

Arguments: abox - ABox

IN - individual name

ON - object name

attributeterm - attribute term

forget-constraint function

Description: Forget assertions with the form constraint

Syntax: (forget-constraint abox constraint)

Arguments: abox - ABox

constraint - constraint term

define-distinct-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-distinct-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Introduces IN as a name for an individual which as made distinct from all
other individuals automatically.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 49

define-individual KRSS macro

Description: This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-individual IN)

Arguments: IN - name of the individual

Values: IN

Remarks: Introduces IN as a name for an individual not necessarily distinct from other
individuals.

same-as Macro

Description: This form declares two individuals to refer to the same domain object.

Syntax: (same-as IN1 IN2)

Arguments: IN1 - an individual name

IN2 - an individual name

same-individual-as Function

Description: Synonym to same-as, Page 49.

add-same-individual-as-assertion Function

Description: This form declares two individuals to refer to the same domain object.

Syntax: (add-same-individual-as-assertion ABox IN1 IN2)

Arguments: ABox - ABox name

IN1 - an individual name

IN2 - an individual name

Remarks: Functional equivalent of same-as.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

50 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

different-from Macro

Description: This form declares two individuals NOT to refer to the same domain object.

Syntax: (different-from IN1 IN2)

Arguments: IN1 - an individual name

IN2 - an individual name

add-different-from-assertion Function

Description: This form declares two individuals NOT to refer to the same domain object.

Syntax: (add-different-from-assertion ABox IN1 IN2)

Arguments: ABox - ABox name

IN1 - an individual name

IN2 - an individual name

Remarks: Functional equivalent of different-from.

all-different Macro

Description: This form declares the argument individuals NOT to refer to the same do-
main object.

Syntax: (all-different &rest individuals)

Arguments: individuals - individual names

add-all-different-assertion Macro

Description: This form declares the argument individuals NOT to refer to the same do-
main object.

Syntax: (all-different ABox &rest individuals)

Arguments: ABox - ABox name

individuals - individual names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.5. ASSERTIONS 51

state KRSS macro

Description: This macro asserts a set of ABox statements.

Syntax: (state &body forms)

Arguments: forms - is a sequence of instance or related assertions.

Remarks: This macro is supplied to be compatible with the KRSS specification. It
realizes an implicit progn for assertions.

forget macro

Description: This macro retracts a set of TBox/ABox statements. Note that statement to
be forgotten must be literally identical to the ones previously asserted, i.e.,
only explicitly given information can be forgotten.

Syntax: (forget (&key (tbox (current-tbox)) (abox (current-abox)))
&body forms)

Arguments: forms - is a sequence of assertions.

Remarks: For answering subsequent queries the index structures for the TBox/ABox
will probably be recomputed, i.e. some queries might take some time (e.g.
those queries that require the reclassification of the TBox or realization of
the ABox).

Examples: (forget (:tbox family) (implies c d) (implies a b))
(forget (:abox smith-family) (instance i d))

forget-statement function

Description: Functional interface for the macro forget

Syntax: (forget-statement tbox abox &rest statements)

Arguments: tbox - TBox

tbox - ABox

statements - statement previously asserted

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

52 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

2.6 Concrete Domain Assertions

add-constraint-assertion function

Description: Builds a concrete domain predicate assertion and adds it to an ABox.

Syntax: (add-constraint-assertion abox constraint)

Arguments: abox - ABox object

constraint - constraint form

Examples: (add-constraint-assertion (find-abox ’family)
’(= temp-eve 102.56))

constraints macro

Description: This macro asserts a set of concrete domain predicates for concrete domain
objects.

Syntax: (constraints &body forms)

Arguments: forms - is a sequence of concrete domain predicate assertions.

Remarks: Calls add-constraint-assertion.

Examples: (constraints
(= temp-eve 102.56)
(= temp-doris 38.5)
(> temp-eve temp-doris))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. CONCRETE DOMAIN ASSERTIONS 53

add-attribute-assertion function

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (add-attribute-assertion abox IN ON AN)

Arguments: abox - ABox object

IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Examples: (add-attribute-assertion (find-abox ’family)
’eve ’temp-eve ’temperature-fahrenheit))

constrained macro

Description: Adds a concrete domain attribute assertion to an ABox. Asserts that an
individual is related with a concrete domain object via an attribute.

Syntax: (constrained IN ON AN)

Arguments: IN - individual name

ON - concrete domain object name as the filler

AN - attribute name

Remarks: Calls add-attribute-assertion

Examples: (constrained eve temp-eve temperature-fahrenheit)

set-attribute-filler Function

Description: Set the filler of an attribute w.r.t. an individual.

Syntax: (set-attribute-filler ABox IN value AN)

Arguments: IN - individual name

ABox - ABox

value - value

AN - Attribute name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

54 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

attribute-filler Macro

Description: Set the filler of an attribute w.r.t. an individual.

Syntax: (attribute-filler IN value AN)

Arguments: IN - individual name

value - value

AN - Attribute name

add-datatype-role-filler Function

Description: Adds a filler for a datatype role w.r.t. an individual.

Syntax: (add-datatype-role-filler ABox IN value RN)

Arguments: IN - individual name

ABox - ABox

value - value

RN - datatype property role name

datatype-role-filler Macro

Description: Adds a filler of a datatype role w.r.t. an individual.

Syntax: (attribute-filler IN value RN)

Arguments: IN - individual name

value - value

RN - datatype property role name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

2.6. CONCRETE DOMAIN ASSERTIONS 55

add-annotation-role-assertion function

Description: Adds an annotation role assertion to an ABox. Asserts that an individual is
related with a concrete domain object via an annotation role.

Syntax: (add-annotation-role-assertion abox IN value AN)

Arguments: abox - ABox object

IN - individual name

value - concrete domain value

AN - attribute name

add-annotation-concept-assertion function

Description: Adds an annotation concept assertion to an ABox.

Syntax: (add-annotation-concept-assertion abox IN C)

Arguments: abox - ABox object

IN - individual name

C - concept

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

56 CHAPTER 2. KNOWLEDGE BASE DECLARATIONS

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 3

Reasoning Modes

get-racer-version Function

Description: Returns a string which describe the version of the Racer system.

Syntax: (get-racer-version)

Arguments:

Values: string

time Macro

Description: This macro prints some timing information

Syntax: (time form)

Arguments: form - is a Racer expression.

Values: The value is the result of processing form.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

58 CHAPTER 3. REASONING MODES

set-unique-name-assumption Function

Description: This form globally instructs Racer to make the unique name assumption if
t is specified as the argument. If nil is specified, Racer will not make the
unique name assumption (the default).

Syntax: (set-unique-name-assumption boolean)

Arguments: boolean - boolean

set-server-timeout Function

Description: Set a timeout for query answering (in seconds). If nil is provided as an argu-
ment, no timeout will be used (the default).

Syntax: (set-server-timeout seconds)

Arguments: seconds - integer or nil

get-server-timeout Function

Description: Returns the timeout for query answering

Syntax: (get-server-timeout)

Arguments:

Values: Integer (seconds) or nil (for no timeout)

parse-expression Function

Description: Parses a Racer expression as returns the TBox or the ABox that the expres-
sion refers plus a characterization

Syntax: (parse-expression expression)

Arguments: expression - a Racer expression

The following function provide a way for you to collect the statements sent to the RACER
server.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

59

logging-on macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-on filename)

Arguments: filename - filename

Values: None.

Remarks: RACER must have been started in unsafe mode (option -u) to use this
facility. Logging is only available in the RACER server version.

logging-off macro

Description: Start logging of expressions to the Racer server.

Syntax: (logging-off)

Arguments:

Values: None.

Remarks: Logging is only available in the RACER server version.

compute-index-for-instance-retrieval function

Description: Let RACER create an index for subsequent instance retrieval queries wrt.
the specified ABox.

Syntax: (compute-index-for-instance-retrieval &optional (ABN
(current-abox))))

Arguments: ABN - ABox object

Remarks: Computing an index requires the associated TBox be classified and the input
ABox be realized. Thus, it may take some time for this function to complete.
Use the function abox-realized-p to check whether index-based instance
retrieval is enabled.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

60 CHAPTER 3. REASONING MODES

ensure-subsumption-based-query-answering function

Description: Instruct RACER to use caching strategies and to exploit query subsumption
for answering instance retrieval queries.

Syntax: (ensure-subsumption-based-query-answering &optional (ABN
(current-abox))))

Arguments: ABN - ABox object

Remarks: Subsumption-based query answering requires the associated TBox to be clas-
sified. Thus, the function might require computational resources that are not
negligible. Instructing RACER to perform reasoning in this mode pays back
if one and the same instance retrieval query might be posed several times
or if the concepts in subsequent instance retrieval queries subsumes each
other (in other words: if queries are more and more refined). Use the func-
tion tbox-classified-p to check whether index-based instance retrieval is
enabled.

ensure-small-tboxes function

Description: Instructs Racer to try to save space by throwing away internal information.
This might help if for large TBoxes memory requirements cannot be met.

Syntax: (ensure-small-tboxes)

Arguments:

Remarks: Use with caution. Some query functions are no longer defined on TBoxes if
this option is set.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 4

Evaluation Functions and Queries

4.1 Queries for Concept Terms

concept-satisfiable? macro

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable? C &optional (tbox (current-tbox)))

Arguments: C - concept term.

tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

62 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

concept-satisfiable-p function

Description: Checks if a concept term is satisfiable.

Syntax: (concept-satisfiable-p C tbox)

Arguments: C - concept term.
tbox - TBox object

Values: Returns t if C is satisfiable and nil otherwise.

Remarks: For testing whether a concept term is satisfiable with respect to a TBox tbox .
If satisfiability is to be tested without reference to a TBox, nil can be used.

concept-subsumes? KRSS macro

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1 - concept term of the subsumer
C2 - concept term of the subsumee
tbox - TBox object

Values: Returns t if C1 subsumes C 2 and nil otherwise.

concept-subsumes-p function

Description: Checks if two concept terms subsume each other.

Syntax: (concept-subsumes-p C1 C2 tbox)

Arguments: C1 - concept term of the subsumer
C2 - concept term of the subsumee
tbox - TBox object

Values: Returns t if C1 subsumes C 2 and nil otherwise.

Remarks: For testing whether a concept term subsumes the other with respect to a
TBox tbox . If the subsumption relation is to be tested without reference to
a TBox, nil can be used.

See also: Function concept-equivalent-p, on page 63, and function atomic-
concept-synonyms, on page 93.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.1. QUERIES FOR CONCEPT TERMS 63

concept-equivalent? macro

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox .

See also: Function atomic-concept-synonyms, on page 93, and function
concept-subsumes-p, on page 63.

concept-equivalent-p function

Description: Checks if the two concepts are equivalent in the given TBox.

Syntax: (concept-equivalent-p C1 C2 tbox)

Arguments: C1, C2 - concept terms

tbox - TBox object

Values: Returns t if C1 and C2 are equivalent concepts in tbox and nil otherwise.

Remarks: For testing whether two concept terms are equivalent with respect to a TBox
tbox . If the equality is to be tested without reference to a TBox, nil can be
used.

See also: Function atomic-concept-synonyms, on page 93, and function
concept-subsumes-p, on page 63.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

64 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

concept-disjoint? macro

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint? C1 C2 &optional (tbox (current-tbox)))

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-disjoint-p function

Description: Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

Syntax: (concept-disjoint-p C1 C2 tbox)

Arguments: C1, C2 - concept term

tbox - TBox object

Values: Returns t if C1 and C2 are disjoint with respect to tbox and nil otherwise.

Remarks: For testing whether two concept terms are disjoint with respect to a TBox
tbox . If the disjointness is to be tested without reference to a TBox, nil can
be used.

concept-p function

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept-p CN &optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known concept and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.1. QUERIES FOR CONCEPT TERMS 65

concept? macro

Description: Checks if CN is a concept name for a concept in the specified TBox.

Syntax: (concept? CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known concept and nil otherwise.

concept-is-primitive-p function

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

concept-is-primitive? macro

Description: Checks if CN is a concept name of a so-called primitive concept in the
specified TBox.

Syntax: (concept-is-primitive-p CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: Returns t if CN is a name of a known primitive concept and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

66 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

alc-concept-coherent function

Description: Tests the satisfiability of a K(m), K4(m) or S4(m) formula encoded as an ALC
concept.

Syntax: (alc-concept-coherent C &key (logic :K))

Arguments: C - concept term

logic - specifies the logic to be used.

:K - modal K(m),

:K4 - modal K4(m) all roles are transitive,

:S4 - modal S4(m) all roles are transitive and reflexive.

If no logic is specified, the logic :K is chosen.

Remarks: This function can only be used forALC concept terms, so number restrictions
are not allowed.

4.2 Role Queries

role-subsumes? KRSS macro

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes? R1 R2

&optional (TBN (current-tbox)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is a parent role of R2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 67

role-subsumes-p function

Description: Checks if two roles are subsuming each other.

Syntax: (role-subsumes-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is a parent role of R2.

role-equivalent? KRSS macro

Description: Checks if two roles are equivalent.

Syntax: (role-equivalent? R1 R2

&optional (TBN (current-tbox)))

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

TBN - TBox name

Values: Returns t if R1 is an equivalent of R2.

role-equivalent-p function

Description: Checks if two roles are equivalent.

Syntax: (role-equivalent-p R1 R2 tbox)

Arguments: R1 - role term of the subsuming role

R2 - role term of the subsumed role

tbox - TBox object

Values: Returns t if R1 is an equivalent of R2.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

68 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

role-p function

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role-p R &optional (tbox (current-tbox)))

Arguments: R - role term
tbox - TBox object

Values: Returns t if R is a known role term and nil otherwise.

role? macro

Description: Checks if R is a role term for a role in the specified TBox.

Syntax: (role? R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Returns t if R is a known role term and nil otherwise.

transitive-p function

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive-p R &optional (tbox (current-tbox)))

Arguments: R - role term
tbox - TBox object

Values: Returns t if the role R is transitive in tbox and nil otherwise.

transitive? macro

Description: Checks if R is a transitive role in the specified TBox.

Syntax: (transitive? R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Returns t if the role R is transitive in TBN and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 69

feature-p function

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is a feature in tbox and nil otherwise.

feature? macro

Description: Checks if R is a feature in the specified TBox.

Syntax: (feature? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is a feature in TBN and nil otherwise.

cd-attribute-p function

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute-p AN &optional (tbox (current-tbox)))

Arguments: AN - attribute name

tbox - TBox object

Values: Returns t if AN is a concrete domain attribute in tbox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

70 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

cd-attribute? macro

Description: Checks if AN is a concrete domain attribute in the specified TBox.

Syntax: (cd-attribute? AN &optional
(TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

Values: Returns t if the role AN is a concrete domain attribute in TBN and nil
otherwise.

symmetric-p function

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is symmetric in tbox and nil otherwise.

symmetric? macro

Description: Checks if R is symmetric in the specified TBox.

Syntax: (symmetric? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is symmetric in TBN and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 71

reflexive-p function

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive-p R &optional (tbox (current-tbox)))

Arguments: R - role term

tbox - TBox object

Values: Returns t if the role R is reflexive in tbox and nil otherwise.

reflexive? macro

Description: Checks if R is reflexive in the specified TBox.

Syntax: (reflexive? R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: Returns t if the role R is reflexive in TBN and nil otherwise.

atomic-role-inverse function

Description: Returns the inverse role of role term R.

Syntax: (atomic-role-inverse R tbox)

Arguments: R - role term

tbox - TBox object

Values: Role name or term for the inverse role of R.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

72 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

role-inverse macro

Description: Returns the inverse role of role term R.

Syntax: (role-inverse R &optional (TBN (current-tbox)))

Arguments: R - role term
TBN - TBox name

Values: Role name or term for the inverse role of R.

Remarks: This macro uses atomic-role-inverse.

role-domain macro

Description: Returns the domain of role name RN .

Syntax: (role-domain RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

Remarks: This macro uses atomic-role-domain.

atomic-role-domain function

Description: Returns the domain of role name RN .

Syntax: (atomic-role-domain RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

role-range macro

Description: Returns the range of role name RN .

Syntax: (role-range RN &optional (TBN (current-tbox)))

Arguments: RN - role name
TBN - TBox name

Remarks: This macro uses atomic-role-range.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.2. ROLE QUERIES 73

atomic-role-range function

Description: Returns the range of role name RN .

Syntax: (atomic-role-range RN &optional (TBN (current-tbox)))

Arguments: RN - role name

TBN - TBox name

datatype-role-range function

Description: Returns the range of datatype property role name RN .

Syntax: (datatype-role-range RN TBN)

Arguments: RN - role name

TBN - TBox name

role-used-as-datatype-property-p function

Description: Returns t if the role is declared as a datatype property or nil otherwise.

Syntax: (role-used-as-datatype-property-p RN TBN)

Arguments: RN - role name

TBN - TBox name

role-used-as-annotation-property-p function

Description: Returns t if the role is declared as an annotation property or nil otherwise.

Syntax: (role-used-as-annotation-property-p RN TBN)

Arguments: RN - role name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

74 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

attribute-domain macro

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain AN &optional (TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

attribute-domain-1 function

Description: Returns the domain of attribute name AN .

Syntax: (attribute-domain-1 AN &optional (TBN (current-tbox)))

Arguments: AN - attribute name

TBN - TBox name

4.3 TBox Evaluation Functions

classify-tbox function

Description: Classifies the whole TBox.

Syntax: (classify-tbox &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Remarks: This function needs to be executed before queries can be posed.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 75

check-tbox-coherence function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (check-tbox-coherence &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns a list of all atomic concepts in tbox that are not satisfiable, i.e. an
empty list (NIL) indicates that there is no additional synonym to bottom.

Remarks: This function does not compute the concept hierarchy. It is much faster
than classify-tbox, so whenever it is sufficient for your application use
check-tbox-coherence. This function is supplied in order to check whether
an atomic concept is satisfiable during the development phase of a TBox.
There is no need to call the function check-tbox-coherence if, for instance,
a certain ABox is to be checked for consistency (with abox-consistent-p).

tbox-classified-p function

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

tbox-classified? macro

Description: It is checked if the specified TBox has already been classified.

Syntax: (tbox-classified? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been classified, otherwise it returns nil.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

76 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

tbox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the axioms of the TBox.

tbox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied TBox.

Syntax: (tbox-prepared? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if the specified TBox has been processed (to some extent), other-
wise it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the axioms of the TBox.

tbox-cyclic-p function

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 77

tbox-cyclic? macro

Description: It is checked if cyclic GCIs are present in a TBox

Syntax: (tbox-cyclic? &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns t if the specified TBox contains cyclic GCIs otherwise it returns
nil.

Remarks: Cyclic GCIs can be given either directly as a GCI or can implicitly result
from processing, for instance, disjointness axioms.

tbox-coherent-p function

Description: This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

Syntax: (tbox-coherent-p &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: Returns nil if there is an inconsistent atomic concept, otherwise it returns
t.

Remarks: This function calls check-tbox-coherence if necessary.

tbox-coherent? macro

Description: Checks if there are any unsatisfiable atomic concepts in the current or spec-
ified TBox.

Syntax: (tbox-coherent? &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: Returns t if there is an inconsistent atomic concept, otherwise it returns nil.

Remarks: This macro uses tbox-coherent-p.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

78 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

get-tbox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given TBox.

Syntax: (get-tbox-language &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

get-meta-constraint function

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that pro-
cessing promises to be faster. In particular, the idea is to transform GCIs into
(primitive) concept definitions. Since it is not always possible to “absorb”
GCIs completely, a so-called meta constraint might remain. The functions
get-meta-constraint returns the remaining constraint as a concept.

Syntax: (get-meta-constraint &optional (TBN (current-tbox)))

Arguments: TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-meta-constraint.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.3. TBOX EVALUATION FUNCTIONS 79

get-concept-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform GCIs
into (primitive) concept definitions. For a given concept name the function
get-concept-definition returns the definition compiled by RACER dur-
ing the absorption phase.

Syntax: (get-concept-definition CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Values: A concept term.

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-definition. Note that
it might be useful to test whether the definition is primitive. See the function
concept-primitive-p. RACER does not introduce new concept names for
primitive definitions.

get-concept-definition-1 function

Description: Functional interface for get-concept-definition

Syntax: (get-concept-definition-1 CN &optional (TBN (current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Remarks: The absorption process uses heuristics. Changes to a TBox might have dra-
matic effects on the value returned by get-concept-negated-definition.
Note that it might be useful to test whether the definition is primitive. See
the function concept-primitive-p. RACER does not introduce new con-
cept names for primitive definitions.

Examples: Assume the following TBox:

(in-tbox test)
(implies top (or a b c))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

80 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

Then, (get-concept-negated-definition c) returns (OR A B). Thus,
RACER has transformed the GCI into the form (implies (not C) (OR
A B)) which can be handled more effectively be lazy unfolding. Note that
the absorption process is heuristic. RACER could also transform the GCI
into (implies (not B) (OR A C)) or something similar depending on the
current version and strategy.

get-concept-negated-definition macro

Description: Optimized DL systems perform a static analysis of given terminological ax-
ioms. The axioms of a TBox are usually transformed in such a way that
processing promises to be faster. In particular, the idea is to transform
GCIs into (primitive) concept definitions. For a given concept name the
function get-concept-negated-definition returns the definition of the
negated concept compiled by RACER during the absorption phase.

Syntax: (get-concept-negated-definition CN &optional (TBN
(current-tbox)))

Arguments: CN - concept name

TBN - TBox name

get-concept-negated-definition-1 function

Description: Functional interface for get-concept-negated-definition.

Syntax: (get-concept-negated-definition-1 CN &optional (TBN
(current-tbox)))

Arguments: CN - concept name

TBN - TBox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.4. ABOX EVALUATION FUNCTIONS 81

get-concept-pmodel function

Description: Returns a so-called pseudo model for a concept.

Syntax: (get-concept-pmodel concept &optional (TBN (current-tbox)))

Arguments: concept - concept term

TBN - TBox name

Values: Returns a list (name positive-literals negative-literals exists restricts at-
tributes ensured-attributes unique-p).

Examples: (in-knowledge-base test)
(implies a (and e (some r c)))
(implies b (and (not f) (all r d)))
(equivalent c (and a b))
(get-concept-pmodel ’(and a b) ’test)
returns (C (C A B E) (F) (R) (R) NIL NIL T)

4.4 ABox Evaluation Functions

realize-abox function

Description: This function checks the consistency of the ABox and computes the most-
specific concepts for each individual in the ABox.

Syntax: (realize-abox &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: abox

Remarks: This Function needs to be executed before queries can be posed. If the TBox
has changed and is classified again the ABox has to be realized, too.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

82 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

abox-realized-p function

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox has been realized and nil otherwise.

abox-realized? macro

Description: Returns t if the specified ABox object has been realized.

Syntax: (abox-realized? &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: Returns t if ABN has been realized and nil otherwise.

prepare-abox function

Description: Compute internal data structures for processing abox assertions.

Syntax: (prepare-abox &optional (abox (current-abox)))

Arguments: abox - abox object

Remarks: This function is useful for benchmarks. You can explicitly measure the so-
called preparation time (encoding of concept terms etc. in ABox assertions).

prepare-racer-engine function

Description: Compute internal data structures for instance retrieval.

Syntax: (prepare-racer-engine &key (abox (current-abox))
(classify-tbox-p nil))

Arguments: abox - abox object

classify − tbox − p - t or nil

Remarks: This function is useful for benchmarks. You can explicitly measure the time
for computing index structures for answering nRQL queries.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.4. ABOX EVALUATION FUNCTIONS 83

abox-prepared-p function

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared-p &optional (abox (current-abox)))

Arguments: abox - abox object

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The function is used to determine whether Racer has spent some effort in
processing the assertions of the abox.

abox-prepared? macro

Description: It is checked if internal index structures are already computed for the speci-
fied abox.

Syntax: (abox-prepared? &optional (TBN (current-abox)))

Arguments: ABN - abox name

Values: Returns t if the specified abox has been processed (to some extent), otherwise
it returns nil.

Remarks: The form is used to determine whether Racer has spent some effort in pro-
cessing the assertions of the abox.

compute-all-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers. After computing
these fillers, the function all-role-assertions returns also the implicit role
fillers.

Syntax: (compute-all-implicit-role-fillers &optional (ABN
(current-abox))))

Arguments: ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

84 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

compute-implicit-role-fillers function

Description: Instruct RACER to use compute all implicit role fillers for the individual
specified. After computing these fillers, the function all-role-assertions re-
turns also the implicit role fillers for the individual specified.

Syntax: (compute-implicit-role-fillers individual &optional (ABN
(current-abox))))

Arguments: individual - individual name
ABN - ABox name

get-abox-language function

Description: Returns a specifier indicating the description logic language used in the ax-
ioms of a given ABox.

Syntax: (get-abox-language &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: The language is indicated with the quasi-standard scheme using letters. Note
that the language is identified for selecting optimization techniques. Since
RACER does not exploit optimization techniques for sublanguages of ALC,
the language indicator starts always with ALC. Then f indicates whether
features are used, Q indicates qualified number restrictions, N indicates simple
number restrictions, H stands for a role hierarchy, I indicates inverse roles, r+
indicates transitive roles, the suffix -D indicates the use of concrete domain
language constructs.

4.5 ABox Queries

abox-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction.

Syntax: (abox-consistent-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox is consistent and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 85

abox-consistent? macro

Description: Checks if the ABox is consistent.

Syntax: (abox-consistent? &optional (ABN (current-abox)))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent and nil otherwise.

Remarks: This macro uses abox-consistent-p.

abox-una-consistent-p function

Description: Checks if the ABox is consistent, e.g. it does not contain a contradiction if
the unique name assumption is imposed.

Syntax: (abox-una-consistent-p &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: Returns t if abox is consistent w.r.t. the unique name assumption and nil
otherwise.

abox-una-consistent? macro

Description: Checks if the ABox is consistent if the unique name assumption is imposed.

Syntax: (abox-una-consistent? &optional (ABN (current-abox))))

Arguments: ABN - ABox name

Values: Returns t if the ABox ABN is consistent w.r.t. the unique name assumption
and nil otherwise.

Remarks: This macro uses abox-una-consistent-p.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

86 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

check-abox-coherence function

Description: Checks if the ABox is consistent. If there is a contradiction, this function
prints information about the culprits.

Syntax: (check-abox-coherence &optional (abox (current-abox))
(stream *standard-output*)

Arguments: abox - ABox object

stream - Stream object

Values: Returns t if abox is consistent and nil otherwise.

individual-instance? KRSS macro

Description: Checks if an individual is an instance of a given concept with respect to the
(current-abox) and its TBox.

Syntax: (individual-instance? IN C
&optional (abox (current-abox)))

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

individual-instance-p function

Description: Checks if an individual is an instance of a given concept with respect to an
ABox and its TBox.

Syntax: (individual-instance-p IN C abox)

Arguments: IN - individual name

C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C in abox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 87

constraint-entailed? macro

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed? constraint &optional (abox
(current-abox)))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

constraint-entailed-p function

Description: Checks a specified constraint is entailed by an ABox (and its associated
TBox).

Syntax: (constraint-entailed-p constraint &optional (abox
(current-abox)))

Arguments: constraint - A constraint

abox - ABox object

Values: Returns t if abox the constraint and nil otherwise.

individuals-related? macro

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related? IN 1 IN 2 R
&optional (abox (current-abox)))

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

88 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

individuals-related-p function

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related-p IN 1 IN 2 R abox)

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

R - role term

abox - ABox object

Values: Returns t if IN 1 is related to IN 2 via R in abox and nil otherwise.

See also: Function retrieve-individual-filled-roles, on page 109,
Function retrieve-related-individuals, on page 108.

individuals-equal? KRSS macro

Description: Checks if two individual names refer to the same domain object.

Syntax: (individuals-equal? IN 1 IN 2 &optional (abox (current-abox)))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns nil for individuals with different names. This macro is just supplied
to be compatible with the KRSS.

individuals-equal-p function

Description: Functional equivalent to individuals-equal?, Page 88.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

4.5. ABOX QUERIES 89

individuals-not-equal? KRSS macro

Description: Checks if two individual names do not refer to the same domain object.

Syntax: (individuals-not-equal? IN 1 IN 2

&optional (abox (current-abox)))

Arguments: IN 1, IN 2 - individual name

abox - abox object

Remarks: Because the unique name assumption holds in RACER this macro always
returns t for individuals with different names. This macro is just supplied to
be compatible with the KRSS.

individuals-not-equal-p function

Description: Functional equivalent to individuals-not-equal?, Page 89.

individual-p function

Description: Checks if IN is a name of an individual mentioned in an ABox abox .

Syntax: (individual-p IN &optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: Returns t if IN is a name of an individual and nil otherwise.

individual? macro

Description: Checks if IN is a name of an individual mentioned in an ABox ABN .

Syntax: (individual? IN &optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: Returns t if IN is a name of an individual and nil otherwise.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

90 CHAPTER 4. EVALUATION FUNCTIONS AND QUERIES

cd-object-p function

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
abox .

Syntax: (cd-object-p ON &optional (abox (current-abox)))

Arguments: ON - concrete domain object name
abox - ABox object

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

cd-object? macro

Description: Checks if ON is a name of a concrete domain object mentioned in an ABox
ABN .

Syntax: (cd-object? ON &optional (ABN (current-abox)))

Arguments: ON - concrete domain object name
ABN - ABox name

Values: Returns t if ON is a name of a concrete domain object and nil otherwise.

get-individual-pmodel function

Description: Returns a so-called pseudo model for an individual.

Syntax: (get-individual-pmodel IN &optional (TBN (current-tbox)))

Arguments: IN - individual name
TBN - TBox name

Values: Returns a list (name positive-literals negative-literals exists restricts at-
tributes ensured-attributes unique-p).

Examples: (in-knowledge-base test)
(implies a (and e (some r c)))
(implies b (and (not f) (all r d)))
(equivalent c (and a b))
(get-individual-pmodel ’(and a b) ’test)
returns ((I) (E B A C) (F) (R S) (R) NIL NIL T)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 5

Retrieval

If the retrieval refers to concept names, RACER always returns a set of names for each
concept name. A so called name set contains all synonyms of an atomic concept in the
TBox.

5.1 TBox Retrieval

taxonomy function

Description: Returns the whole taxonomy for the specified TBox.

Syntax: (taxonomy &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: A list of triples, each of it consisting of:

a name set - the atomic concept CN and its synonyms

list of concept-parents name sets - each entry being a list of a concept parent
of CN and its synonyms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

92 CHAPTER 5. RETRIEVAL

list of concept-children name sets - each entry being a list of a concept child
of CN and its synonyms.

Examples: (taxonomy my-TBox)
may yield:
(((*top*) () ((quadrangle tetragon)))

((quadrangle tetragon) ((*top*)) ((rectangle) (diamond)))
((rectangle) ((quadrangle tetragon)) ((*bottom*)))
((diamond) ((quadrangle tetragon)) ((*bottom*)))
((*bottom*) ((rectangle) (diamond)) ()))

See also: Function atomic-concept-parents,
function atomic-concept-children on page 95.

concept-synonyms macro

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (concept-synonyms CN
&optional (tbox (current-tbox)))

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is not included in the result.

See also: Function concept-equivalent-p, on page 63.

atomic-concept-synonyms function

Description: Returns equivalent concepts for the specified concept in the given TBox.

Syntax: (atomic-concept-synonyms CN tbox)

Arguments: CN - concept name

tbox - TBox object

Values: List of concept names

Remarks: The name CN is included in the result.

See also: Function concept-equivalent-p, on page 63.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 93

concept-descendants KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (concept-descendants C
&optional (TBN (current-tbox)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-children.

atomic-concept-descendants function

Description: Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

Syntax: (atomic-concept-descendants C tbox)

Arguments: C - concept term
tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-children.

concept-ancestors KRSS macro

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (concept-ancestors C
&optional (TBN (current-tbox)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

Remarks: This macro return the transitive closure of the macro concept-parents.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

94 CHAPTER 5. RETRIEVAL

atomic-concept-ancestors function

Description: Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

Syntax: (atomic-concept-ancestors C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Remarks: Returns the transitive closure from the call of atomic-concept-parents.

concept-children KRSS macro

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (concept-children C
&optional (TBN (current-tbox)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

Remarks: Is the equivalent macro for the KRSS macro concept-offspring, which is
also supplied in RACER.

atomic-concept-children function

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (atomic-concept-children C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 95

concept-parents KRSS macro

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (concept-parents C
&optional (TBN (current-tbox)))

Arguments: C - concept term

TBN - TBox name

Values: List of name sets

atomic-concept-parents function

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (atomic-concept-parents C tbox)

Arguments: C - concept term

tbox - TBox object

Values: List of name sets

role-descendants KRSS macro

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (role-descendants R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This macro is the transitive closure of the macro role-children.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

96 CHAPTER 5. RETRIEVAL

atomic-role-descendants function

Description: Gets all roles from the TBox, that the given role subsumes.

Syntax: (atomic-role-descendants R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Remarks: This function is the transitive closure of the function
atomic-role-descendants.

role-ancestors KRSS macro

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (role-ancestors R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-ancestors function

Description: Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

Syntax: (atomic-role-ancestors R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 97

role-children macro

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (role-children R
&optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Remarks: This is the equivalent macro to the KRSS macro role-offspring, which is
also supplied by the RACER system.

atomic-role-children function

Description: Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

Syntax: (atomic-role-children R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-parents KRSS macro

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (role-parents R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

98 CHAPTER 5. RETRIEVAL

atomic-role-parents function

Description: Gets the roles from the TBox that directly subsume the given role in the role
hierarchy.

Syntax: (atomic-role-parents R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

role-synonyms KRSS macro

Description: Gets the synonyms of a role including the role itself.

Syntax: (role-synonyms R &optional (TBN (current-tbox)))

Arguments: R - role term

TBN - TBox name

Values: List of role terms

atomic-role-synonyms function

Description: Gets the synonyms of a role including the role itself.

Syntax: (atomic-role-synonyms R tbox)

Arguments: R - role term

tbox - TBox object

Values: List of role terms

all-tboxes function

Description: Returns the names of all known TBoxes.

Syntax: (all-tboxes)

Values: List of TBox names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 99

all-atomic-concepts function

Description: Returns all atomic concepts from the specified TBox.

Syntax: (all-atomic-concepts &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of concept names

all-equivalent-concepts function

Description: xx

Syntax: (all-equivalent-concepts &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of name sets

all-roles function

Description: Returns all roles and features from the specified TBox.

Syntax: (all-roles &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of role terms

Examples: (all-roles (find-tbox ’my-tbox))

all-features function

Description: Returns all features from the specified TBox.

Syntax: (all-features &optional (tbox (current-tbox)))

Arguments: tbox - TBox

Values: List of feature terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

100 CHAPTER 5. RETRIEVAL

all-attributes function

Description: Returns all attributes from the specified TBox.

Syntax: (all-attributes &optional (tbox (current-tbox)))

Arguments: tbox - TBox

Values: List of attributes names

attribute-type function

Description: Returns the attribute type declared for a given attribute name in a specified
TBox.

Syntax: (attribute-type AN &optional (tbox (current-tbox)))

Arguments: AN - attribute name

tbox - TBox

Values: Either cardinal, integer, real, or complex.

all-transitive-roles function

Description: Returns all transitive roles from the specified TBox.

Syntax: (all-transitive-roles &optional (tbox (current-tbox)))

Arguments: tbox - TBox object

Values: List of transitive role terms

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.1. TBOX RETRIEVAL 101

describe-tbox function

Description: Generates a description for the specified TBox.

Syntax: (describe-tbox &optional (tbox (current-tbox))
(stream *standard-output*))

Arguments: tbox - TBox object or TBox name
stream - open stream object

Values: tbox
The description is written to stream.

describe-concept function

Description: Generates a description for the specified concept used in the specified TBox
or in the ABox and its TBox.

Syntax: (describe-concept CN &optional (tbox-or-abox (current-tbox))
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object
CN - concept name
stream - open stream object

Values: tbox -or -abox
The description is written to stream.

describe-role function

Description: Generates a description for the specified role used in the specified TBox or
ABox.

Syntax: (describe-role R &optional (tbox-or-abox (current-tbox))
(stream *standard-output*))

Arguments: tbox -or -abox - TBox object or ABox object
R - role term (or feature term)
stream - open stream object

Values: tbox -or -abox
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

102 CHAPTER 5. RETRIEVAL

5.2 ABox Retrieval

individual-direct-types KRSS macro

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (individual-direct-types IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

most-specific-instantiators function

Description: Gets the most-specific atomic concepts of which an individual is an instance.

Syntax: (most-specific-instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

individual-types KRSS macro

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (individual-types IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of name sets

Remarks: This is the transitive closure of the KRSS macro individual-direct-types.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 103

instantiators function

Description: Gets all atomic concepts of which the individual is an instance.

Syntax: (instantiators IN abox)

Arguments: IN - individual name

abox - ABox object

Values: List of name sets

Remarks: This is the transitive closure of the function
most-specific-instantiators.

concept-instances KRSS macro

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (concept-instances C
&optional (ABN (current-abox)) (candidates)

Arguments: C - concept term

ABN - ABox name

candidates - a list of individual names

Values: List of individual names

retrieve-concept-instances function

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (retrieve-concept-instances C abox candidates)

Arguments: C - concept term

abox - ABox object

candidates - a list of individual names

Values: List of individual names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

104 CHAPTER 5. RETRIEVAL

individual-synonyms Macro

Description: Gets all individuals which can be proven to refer to the same domain object.

Syntax: (individual-synonyms IN &optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: List of individual names

retrieve-individual-synonyms function

Description: Gets all individuals which can be proven to refer to the same domain object.

Syntax: (retrieve-individual-fillers IN abox)

Arguments: IN - individual name

abox - ABox name

Values: List of individual names

individual-fillers KRSS macro

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (individual-fillers IN R
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

R - role term

ABN - ABox name

Values: List of individual names

Examples: (individual-fillers Charlie-Brown has-pet)
(individual-fillers Snoopy (inv has-pet))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 105

retrieve-individual-fillers function

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (retrieve-individual-fillers IN R abox)

Arguments: IN - individual name of the predecessor

R - role term

abox - ABox object

Values: List of individual names

Examples: (retrieve-individual-fillers ’Charlie-Brown ’has-pet
(find-abox ’peanuts-characters))

individual-attribute-fillers macro

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (individual-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

retrieve-individual-attribute-fillers function

Description: Gets all object names that are fillers of an attribute for a specified individual.

Syntax: (retrieve-individual-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

AN - attribute-name

ABN - ABox name

Values: List of object names

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

106 CHAPTER 5. RETRIEVAL

told-value function

Description: Returns an explicitly asserted value for an object that is declared as filler for
a certain attribute w.r.t. an individual.

Syntax: (told-value ON
&optional (ABN (current-abox)))

Arguments: ON - object name

ABN - ABox name

Values: Concrete domain value

individual-told-attribute-fillers macro

Description: Gets object names which are fillers for attributes.

Syntax: (individual-told-attribute-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of object names whose type is determined by the type of the attribute.

retrieve-individual-told-attribute-fillers Function

Description: Functional equivalent of individual-told-attribute-fillers, Page 106.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 107

individual-told-attribute-value macro

Description: Gets told values for attributes.

Syntax: (individual-told-attribute-value IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of values whose type is determined by the type of the attribute.

retrieve-individual-told-attribute-value Function

Description: Functional equivalent of individual-told-attribute-value, Page 107.

individual-told-datatype-fillers function

Description: Gets told values for datatype property roles.

Syntax: (individual-told-datatype-fillers IN RN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - datatype property role name

ABN - ABox name

Values: List of values whose type is determined by the range of the datatype property
role.

retrieve-individual-told-datatype-fillers Function

Description: Functional equivalent of individual-told-datatype-fillers, Page 107.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

108 CHAPTER 5. RETRIEVAL

retrieve-individual-annotation-property-fillers function

Description: Gets told values for attributes.

Syntax: (individual-annotation-property-fillers IN AN
&optional (ABN (current-abox)))

Arguments: IN - individual name of the predecessor

RN - attribute name

ABN - ABox name

Values: List of values whose type is determined by the type of the attribute.

related-individuals macro

Description: Gets all pairs of individuals that are related via the specified relation.

Syntax: (related-individuals R
&optional (ABN (current-abox)))

Arguments: R - role term

ABN - ABox name

Values: List of pairs of individual names

Examples: (retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))

may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

See also: Function individuals-related-p, on page 88.

retrieve-related-individuals function

Description: Functional equivalents of related-individuals.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 109

retrieve-individual-filled-roles function

Description: This function gets all roles that hold between the specified pair of individu-
als.

Syntax: (retrieve-individual-filled-roles IN 1 IN 2 abox).

Arguments: IN 1 - individual name of the predecessor

IN 2 - individual name of the role filler

abox - ABox object

Values: List of role terms

Examples: (retrieve-individual-filled-roles ’Charlie-Brown ’Snoopy
(find-abox ’peanuts-characters))

See also: Function individuals-related-p, on page 88.

individual-filled-roles macro

Description: Equivalent to retrieve-individual-filled-roles, Page 109.

retrieve-direct-predecessors function

Description: Gets all individuals that are predecessors of a role for a specified individual.

Syntax: (retrieve-direct-predecessors R IN abox)

Arguments: R - role term

IN - individual name of the role filler

abox - ABox object

Values: List of individual names

Examples: (retrieve-direct-predecessors ’has-pet ’Snoopy
(find-abox ’peanuts-characters))

direct-predecessors macro

Description: Equivalent to retrieve-direct-predecessors, Page 109.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

110 CHAPTER 5. RETRIEVAL

all-aboxes function

Description: Returns the names of all known ABoxes.

Syntax: (all-aboxes)

Values: List of ABox names

all-individuals function

Description: Returns all individuals from the specified ABox.

Syntax: (all-individuals &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of individual names

all-concept-assertions-for-individual function

Description: Returns all concept assertions for an individual from the specified ABox.

Syntax: (all-concept-assertions-for-individual IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of concept assertions

See also: Function all-concept-assertions on page 112.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 111

all-role-assertions-for-individual-in-domain function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is the role predecessor.

Syntax: (all-role-assertions-for-individual-in-domain IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of role assertions

Remarks: Returns only the role assertions explicitly mentioned in the ABox, not the
inferred ones.

See also: Function all-role-assertions on page 112.

all-role-assertions-for-individual-in-range function

Description: Returns all role assertions for an individual from the specified ABox in which
the individual is a role successor.

Syntax: (all-role-assertions-for-individual-in-range IN
&optional (abox (current-abox)))

Arguments: IN - individual name

abox - ABox object

Values: List of assertions

See also: Function all-role-assertions on page 112.

all-concept-assertions function

Description: Returns all concept assertions from the specified ABox.

Syntax: (all-concept-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

112 CHAPTER 5. RETRIEVAL

all-annotation-concept-assertions function

Description: Returns all annotation concept assertions from the specified ABox.

Syntax: (all-annotation-concept-assertions &optional (abox
(current-abox)))

Arguments: abox - ABox object

Values: List of assertions

all-role-assertions function

Description: Returns all role assertions from the specified ABox.

Syntax: (all-role-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

See also: Function all-concept-assertions-for-individual on page 110.

all-annotation-role-assertions function

Description: Returns all annotation role assertions from the specified ABox.

Syntax: (all-annotation-role-assertions &optional (abox
(current-abox)))

Arguments: abox - ABox object

Values: List of assertions

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

5.2. ABOX RETRIEVAL 113

all-constraints function

Description: Returns all constraints from the specified ABox which refer to a list of object
names.

Syntax: (all-constraints &optional (abox (current-abox)) ONs)

Arguments: abox - ABox object

ONs - list of object names

Values: List of constraints

Remarks: If ONs is not specified, all constraints of the ABox are returned.

all-attribute-assertions function

Description: Returns all attribute assertions from the specified ABox.

Syntax: (all-attribute-assertions &optional (abox (current-abox)))

Arguments: abox - ABox object

Values: List of assertions

describe-abox function

Description: Generates a description for the specified ABox.

Syntax: (describe-abox &optional (abox (current-abox))
(stream *standard-output*))

Arguments: abox - ABox object

stream - open stream object

Values: abox
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

114 CHAPTER 5. RETRIEVAL

describe-individual function

Description: Generates a description for the individual from the specified ABox.

Syntax: (describe-individual IN &optional (abox (current-abox))
(stream *standard-output*))

Arguments: IN - individual name

abox - ABox object

stream - open stream object

Values: IN
The description is written to stream.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 6

The API of the nRQL Query
Processing Engine

In the following, each API function provided by nRQL is described. We differentiate between
functions and macros.

Users of Jracer, RacerPorter, RICE or any other graphical front end tool which allows to
post commands to the RacerPro server can completely ignore the difference.

However, if you are accessing the RacerPro server via the LRacer API which is imple-
mented in Lisp, or you are using RacerMaster and RacerPro is running in the same Lisp
environment, then you will need to know which arguments will be evaluated and which not.

In this case, if you want to call a function, then the Lisp environment will always evaluate
all arguments. However, if you use a macro call, then the macro can chose not to evaluate
certain arguments. Arguments which will not get evaluated by a macro are indicated with
an asterix (“*”).

You can always prevent the evaluation of an argument provided to a function by quoting the
argument with " ’ ". A quoted argument always evaluates to itself. For example, in the
function call (racer-answer-query ’(?x) ’(?x woman) :abox ’smith-family). Thus,
the expression ’(?x woman) is taken as a (complex) literal - a constant list (tree). Note
that the corresponding macro call looks as follows: (retrieve (?x) (?x woman) :abox
smith-family). In retrieve, Page 144 you will see that all arguments are marked with an
asterix, thus, (?x), (?x woman), and smith-family are taken as literals.

Let us explain the format used for describing the API. Suppose
the function test-function has the following syntax specification:

Syntax: (test a &optional (b 3) &key c (d 4)).

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

116 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

This function is named test-function, and has one required (mandatory) argument a. It
has 3 optional arguments: b, c, d . The arguments c and d are called keyword arguments.
If an optional (&optional or &key) parameter is specified like (b 3), then this means that
there is a default value specified for this optional argument. Thus, if b is not explicitly
specified in a call to test-function, it will take the specified default value, in this case 3.
In case no default value is specified, the value will be NIL. If a function has &optional as
well as &key parameters, and you want to pass it a keyword argument, then you will have
to supply values for all arguments listed between &optional and &key. This is the usual
Lisp way of handling optional and keyword arguments.

Thus, given the specification of test as above, the following calls are possible:

1. (test-function 1), parameters will be bound to: a=1, b=3, c=NIL, d=4

2. (test-function 2 2 :d 5), parameters will be bound to: a=2, b=2, c=NIL, d=5

3. (test-function 2 nil :d 5 :c 6), parameters will be bound to: a=2, b=NIL, c=6,
d=5

4. Note that you CANNOT make this call: (test-function 2 :d 5 :c 6), since a
correct value for b is missing (in fact, b is bound to the keyword symbol :d, but then
a formal parameter is missing for the subsequent value “5”).

Users of the LRacer API will find all functions and macros as described here.

Some API function might raise errors. However, under values we only describe the value
which is returned in case no error has been raised.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 117

6.1 Basic Commands

get-nrql-version Function

Description: Returns the current version number of nRQL.

Syntax: (get-nrql-version)

Arguments:

Values: The current nRQL version number.

enable-nrql-warnings Function

Description: Advises nRQL to print out warnings on STDOUT. More-
over, warning tokens will be delivered in some circum-
stances, see enable-kb-has-changed-warning-tokens, Page 167,
enable-phase-two-starts-warning-tokens, Page 167.

Syntax: (enable-nrql-warnings)

Arguments:

Values: :OKAY-WARNINGS-ENABLED

See also: disable-nrql-warnings, Page 117, enable-kb-has-changed-warning-tokens,
Page 167, enable-phase-two-starts-warning-tokens, Page 167

disable-nrql-warnings Function

Description: Inverse function of enable-nrql-warnings, Page 117.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

118 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

restore-standard-settings Function

Description: Resets nRQL into default query processing mode. Nothing is deleted.

Syntax: (restore-standard-settings)

Arguments:

Values: :OKAY-STANDARD-SETTINGS-RESTORED

Examples: > (restore-standard-settings)

:OKAY-STANDARD-SETTINGS-RESTORED

> (describe-query-processing-mode)

((:CREATING-SUBSTRATES-OF-TYPE :RACER-DUMMY-SUBSTRATE)
:CHECK-ABOX-CONSISTENCY :QUERY-OPTIMIZATION-ENABLED
:OPTIMIZER-USES-CARDINALITY-HEURISTICS
:AUTOMATICALLY-ADDING-RULE-CONSEQUENCES :WARNINGS
:COMPLETE-MODE :MODE-3 :SET-AT-A-TIME-MODE
:DELIVER-KB-HAS-CHANGED-WARNING-TOKENS)

See also: reset-nrql-engine, Page 119

reset-nrql-engine Function

Description: Aborts all currently active queries and rules. Resets the internal caches of the
nRQL engine and then calls restore-standard-settings, Page 118. If full -
reset -p T is used, nRQL will also delete all TBoxes and all ABoxes, delete all
queries, all rules, all substrates (as well as QBoxes) and all associated query
definitions.

Syntax: (reset-nrql-engine &key full-reset-p)

Arguments: full -reset -p - pass T if you really want to reset the nRQL engine fully - note
that this will delete everything from the RacerPro server.

Values: :OKAY-ENGINE-RESET

Remarks: It should not be necessary to call this function. If a TBox and/or ABox gets
changed, nRQL will be notified by RacerPro in order to invalidate its caches
automatically.

See also: restore-standard-settings, Page 118, reset-nrql-engine, Page 119

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.1. BASIC COMMANDS 119

full-reset Function

Description: Simply calls reset-nrql-engine, Page 119 with full -reset -p = T.

prepare-nrql-engine Function

Description: Prepares the internal index structures of the nRQL engine for query answer-
ing on the ABox abox . Usually, there is no need to call this function explicitly,
since nRQL will automatically prepare and compute its index structures from
a RacerPro ABox if needed.

If the nRQL engine is not explicitly prepared with this function for query
answering on ABox abox , then the first call to retrieve, Page 144 or
racer-answer-query, Page 145 will prepare the nRQL engine. This means
that answering the first query for an ABox takes usually considerably longer
than answering subsequent queries if the engine has not been prepared ex-
plicitly.

Syntax: (prepare-nrql-engine abox &rest args)

Arguments: abox - the name of the ABox for which the engine is prepared.

args - a list of optional keyword-value arguments, see
with-nrql-settings, Page 178 for a description of the valid
keyword arguments, with the exception of the abox argument
(since this is the mandatory first argument of this function).

Values: The name of the ABox.

See also: reset-nrql-engine, Page 119, prepare-racer-engine, Page 83

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

120 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.2 Query / Rule Management

all-queries Function

Description: Returns all queries, including queries which are ready to run (have been
prepared), which are currently running, or have already been processed (and
are thus terminated).

Syntax: (all-queries)

Arguments:

Values: A list of query IDs

Remarks: As long as a query is on this list, API (functions and macros) will “know”
the Id of that query. However, certain API functions (macros) can only be
applied if a query is in a certain state.

See also: all-rules, Page 120

all-rules Function

Description: Equivalent of all-queries, Page 120 for rules.

accurate-queries Function

Description: Returns all queries which are still accurate (see query-accurate-p, Page
154). A query is accurate iff the referenced ABox has not changed since the
parsing of the query.

Syntax: (accurate-queries)

Arguments:

Values: A list of query IDs

See also: accurate-rules, Page 121, inaccurate-rules, Page 121

inaccurate-queries Function

Description: See accurate-queries, Page 120.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. QUERY / RULE MANAGEMENT 121

accurate-rules Function

Description: Equivalent of accurate-queries, Page 120 for rules.

inaccurate-rules Function

Description: See accurate-rules, Page 121.

delete-query Function

Description: Deletes the query id , enabling the garbage collector to recycle some memory.

Syntax: (delete-query id)

Arguments: id - the ID of the query to be deleted, or :last.

Values: :OKAY-QUERY-DELETED or :NOT-FOUND

See also: delete-all-queries, Page 121

delete-rule Function

Description: Equivalent of delete-query, Page 121 for rules.

delete-all-queries Function

Description: Deletes all queries.

Syntax: (delete-all-queries)

Arguments:

Values: :OKAY-ALL-QUERIES-DELETED

See also: delete-all-rules, Page 122

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

122 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

delete-all-rules Function

Description: Equivalent of delete-all-queries, Page 121 for rules.

describe-query-status Function

Description: Describes the current status of the query id - whether the query is ready (to
run), running, waiting (sleeping), or terminated.

Syntax: (describe-query-status id)

Arguments: id - the ID of the query, or :last.

Values: A list of status symbols describing the current status of the
query. Returned status symbols are: :READY-TO-RUN, :RUNNING,
:WAITING-FOR-GET-NEXT-TUPLE, :PROCESSED, :ACCURATE,
:NOT-ACCURATE, :PHASE-ONE, :PHASE-TWO, :PROCESSED

See also: describe-all-queries, Page 124

describe-rule-status Function

Description: Equivalent of describe-query-status, Page 122 for rules.

query-head Function

Description: Retrieves the (possibly rewritten) head of a query.

Syntax: (query-head id)

Arguments: id - the ID of the query, or :last.

Values: The (possibly rewritten) head of the query.

Remarks: Usually, individuals in the original query head are replaced by representative
variables.

See also: original-query-head, Page 123

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.2. QUERY / RULE MANAGEMENT 123

rule-head Function

Description: Equivalent of query-head, Page 122 for rules.

original-query-head Function

Description: Like query-head, Page 122, but the original, non-rewritten head is returned.

original-rule-head Function

Description: Equivalent of original-query-head, Page 123 for rules.

query-body Function

Description: Retrieves the (possibly rewritten) body of a query.

Syntax: (query-body id)

Arguments: id - the ID of the query, or :last.

Values: The (potentially rewritten) body of the query.

Remarks: The original body is usually rewritten (optimized, brought into DNF, etc.)

See also: original-query-body, Page 123

rule-body Function

Description: Equivalent of query-body, Page 123 for rules.

original-query-body Function

Description: Like query-body, Page 123, but the original, non-rewritten body is returned.

original-rule-body Function

Description: Equivalent of original-query-body, Page 123 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

124 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

describe-query Function

Description: Returns a description of the query id .

Syntax: (describe-query id &optional (rewritten-p T))

Arguments: id - the ID of the query, or :last.

rewritten-p - if set to NIL (T is the default value), then the original query
will be returned, otherwise the internally rewritten query.

Values: The internally rewritten or original syntactic description of the query.

Remarks: This function uses describe-query-status, Page 122, query-head, Page
122 (or original-query-head, Page 123) as well as query-body, Page 123
(or original-query-body, Page 123).

See also: describe-rule, Page 124

describe-rule Function

Description: Equivalent of describe-query, Page 124 for rules.

describe-all-queries Function

Description: Returns a list of descriptions of all queries.

Syntax: (describe-all-queries &optional (rewritten-p T))

Arguments: rewritten-p - see describe-query, Page 124.

Values: A list of query descriptions.

Remarks: Simply “maps” describe-query, Page 124 over all-queries, Page 120.

See also: describe-query, Page 124, all-queries, Page 120

describe-all-rules Function

Description: Equivalent of describe-all-queries, Page 124 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 125

6.3 Query / Rule Life Cycle

query-ready-p Function

Description: Checks whether query id is ready for execution.

Syntax: (query-ready-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

Remarks: Use execute-query, Page 139 to run (start) the query.

See also: ready-queries, Page 130

rule-ready-p Function

Description: Equivalent of query-ready-p, Page 125 for rules.

query-prepared-p Function

Description: Equivalent to query-ready-p, Page 125

rule-prepared-p Function

Description: Equivalent of query-prepared-p, Page 125 for rules.

query-active-p Function

Description: Checks whether query id is active. A query is active iff a corresponding query
answering thread exists.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

126 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

If query id had been started in lazy incremental mode, then this thread will
be put to sleep after a new tuple has been computed until the next tuple is
requested (see query-waiting-p, Page 126).

Syntax: (query-active-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

See also: active-queries, Page 131

rule-active-p Function

Description: Equivalent of query-active-p, Page 126 for rules.

query-waiting-p Function

Description: Checks whether query id is waiting (sleeping). An active query is waiting
iff the corresponding query answering thread is currently sleeping (waiting)
until the next tuple is requested via get-next-tuple, Page 150.

Syntax: (query-waiting-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

Remarks: Only active queries can be waiting. Otherwise a query is prepared (ready)
or processed (terminated).

See also: waiting-queries, Page 134

rule-waiting-p Function

Description: Equivalent of query-waiting-p, Page 126 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 127

query-processed-p Function

Description: Checks whether query id has terminated. Thus, the query answering thread
of this query has died. This is the case if all tuples have been computed, if
the query has been aborted, or a timeout occurred, or if the maximal number
of requested tuples bound has been reached.

Syntax: (query-processed-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

See also: processed-queries, Page 135

rule-processed-p Function

Description: Equivalent of query-processed-p, Page 127 for rules.

query-inactive-p Function

Description: Equivalent of query-processed-p, Page 127.

rule-inactive-p Function

Description: Equivalent of query-inactive-p, Page 127 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

128 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

cheap-query-p Function

Description: Checks whether query id is still in phase one (see User Guide), thus still
producing “cheap tuples”.

Syntax: (cheap-query-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

Remarks: Not only active queries can be cheap. Also prepared (ready) queries
which have not yet been started will be cheap if two-phase processing
is enabled. In contrast, a query can only be expensive if it is active,
active-expensive-query-p, Page 128.

See also: cheap-queries, Page 129, active-cheap-queries, Page 131

cheap-rule-p Function

Description: Equivalent of cheap-query-p, Page 128 for rules.

active-expensive-query-p Function

Description: Checks whether query id is already in phase two (see User Guide), and thus
can no longer produce “cheap tuples”. The subsequently produced tuples are
therefore “expensive tuples”.

Syntax: (active-expensive-query-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL

Remarks: Note that a query can only be expensive if it is also active. See also
cheap-query-p, Page 128.

See also: expensive-queries, Page 129

active-expensive-rule-p Function

Description: Equivalent of active-expensive-query-p, Page 128 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 129

cheap-queries Function

Description: Returns the list of all cheap queries.

Syntax: (cheap-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies cheap-query-p, Page 128. Note that these
queries are either prepared (ready) or active.

See also: cheap-query-p, Page 128

cheap-rules Function

Description: Equivalent of cheap-queries, Page 129 for rules.

expensive-queries Function

Description: Returns the list of all expensive queries.

Syntax: (expensive-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies active-expensive-query-p, Page 128. Only
active queries can be expensive.

See also: active-expensive-query-p, Page 128

expensive-rules Function

Description: Equivalent of expensive-queries, Page 129 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

130 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

ready-queries Function

Description: Returns the list of all ready (prepared) queries (“ready to run”).

Syntax: (ready-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-ready-p, Page 125.

See also: query-ready-p, Page 125

ready-rules Function

Description: Equivalent of ready-queries, Page 130 for rules.

prepared-queries Function

Description: Equivalent of ready-queries, Page 130

prepared-rules Function

Description: Equivalent of prepared-queries, Page 130 for rules.

active-queries Function

Description: Returns the list of all active queries.

Syntax: (active-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-active-p, Page 126. Note that this
list is further partitioned into running and waiting (sleeping) queries,
running-queries, Page 132, waiting-queries, Page 134.

See also: query-active-p, Page 126

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 131

active-rules Function

Description: Equivalent of active-queries, Page 131 for rules.

active-cheap-queries Function

Description: Returns the list of all cheap active queries.

Syntax: (active-cheap-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-active-p, Page 126 and
cheap-query-p, Page 128. Note that also ready (prepared) queries
can be cheap. Thus, this function returns a sublist of the queries returned
by cheap-queries, Page 129.

See also: query-active-p, Page 126, cheap-query-p, Page 128, cheap-queries,
Page 129

active-cheap-rules Function

Description: Equivalent of active-cheap-queries, Page 131 for rules.

active-expensive-queries Function

Description: Returns the list of all expensive active queries.

Syntax: (active-expensive-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies active-expensive-query-p, Page 128. Note
that only active queries can be expensive.

See also: query-active-p, Page 126, active-expensive-query-p, Page 128

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

132 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

active-expensive-rules Function

Description: Equivalent of active-expensive-queries, Page 132 for rules.

running-queries Function

Description: Returns the list of all running queries.

Syntax: (running-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-active-p, Page 126 and does NOT
satisfy query-waiting-p, Page 126. Note that this is a sublist of the queries
returned by active-queries, Page 131. You can get the running queries
with waiting-queries, Page 134.

See also: query-active-p, Page 126, query-waiting-p, Page 126

running-rules Function

Description: Equivalent of running-queries, Page 132 for rules.

running-cheap-queries Function

Description: Returns the list of all cheap running queries.

Syntax: (running-cheap-queries)

Arguments:

Values: A list of query IDs.

Remarks: Only the running-queries, Page 132 are returned which satisfy
cheap-query-p, Page 128. Note that no sleeping queries are returned!

See also: running-queries, Page 132, cheap-query-p, Page 128

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 133

running-cheap-rules Function

Description: Equivalent of running-cheap-queries, Page 133 for rules.

running-expensive-queries Function

Description: Returns the list of all expensive running queries.

Syntax: (running-expensive-queries)

Arguments:

Values: A list of query IDs.

Remarks: Only the running-queries, Page 132 are returned which satisfy
cheap-query-p, Page 128. Note that no sleeping queries are returned!

See also: running-queries, Page 132, active-expensive-query-p, Page 128

running-expensive-rules Function

Description: Equivalent of running-expensive-queries, Page 133 for rules.

waiting-queries Function

Description: Returns the list of all waiting (sleeping) queries.

Syntax: (waiting-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-waiting-p, Page 126 (and thus
query-active-p, Page 126). Note that this is a sublist of the queries re-
turned by active-queries, Page 131. You can get the running queries with
running-queries, Page 132.

See also: query-waiting-p, Page 126

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

134 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

waiting-rules Function

Description: Equivalent of waiting-queries, Page 134 for rules.

waiting-cheap-queries Function

Description: Returns the list of all cheap waiting queries.

Syntax: (waiting-cheap-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-waiting-p, Page 126 and
cheap-query-p, Page 128. Note that this is a sublist of the queries re-
turned by waiting-queries, Page 134, and of the list of queries returned
by cheap-queries, Page 129.

See also: query-waiting-p, Page 126, cheap-query-p, Page 128

waiting-cheap-rules Function

Description: Equivalent of waiting-cheap-queries, Page 134 for rules.

waiting-expensive-queries Function

Description: Returns the list of all expensive waiting queries.

Syntax: (waiting-expensive-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-waiting-p, Page 126 and
active-expensive-query-p, Page 128. Note that this is a sublist of the
queries returned by waiting-queries, Page 134, and of the list of queries
returned by active-expensive-queries, Page 132.

See also: query-waiting-p, Page 126, active-expensive-query-p, Page 128

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.3. QUERY / RULE LIFE CYCLE 135

waiting-expensive-rules Function

Description: Equivalent of waiting-expensive-queries, Page 135 for rules.

processed-queries Function

Description: Returns the list of queries which have been processed (are terminated).

Syntax: (processed-queries)

Arguments:

Values: A list of query IDs.

Remarks: Each of these queries satisfies query-processed-p, Page 127. Each query
whose query answering thread has died (for whatever reason) is put on
this list. Note that this must not be the end of the life cycle of a query
- queries can be reprepared and reexecuted, reprepare-query, Page 141,
reexecute-query, Page 142.

See also: query-processed-p, Page 127

processed-rules Function

Description: Equivalent of processed-queries, Page 135 for rules.

inactive-queries Function

Description: Equivalent to processed-queries, Page 135

inactive-rules Function

Description: Equivalent of inactive-queries, Page 135 for rules.

terminated-queries Function

Description: Equivalent to processed-queries, Page 135

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

136 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

terminated-rules Function

Description: Equivalent of terminated-queries, Page 135 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. EXECUTION CONTROL 137

6.4 Execution Control

wait-for-queries-to-terminate Function

Description: This function is useful if a bunch of queries had been started in parallel,
but the application program wants to block the execution until all queries
have been answered (processed). Thus, this function does not return until
all queries have terminated.

Syntax: (wait-for-queries-to-terminate)

Arguments:

Values: :OKAY or :DENIED-DUE-TO-DEADLOCK-PREVENTION

Remarks: Note that, if queries have been started in lazy incremental mode, they will
not terminate automatically. Thus, in order to prevent a deadlock, nRQL
will not allow you to call this function if such a query is found on the list of
active-queries, Page 131. You will get a warning such as

*** NRQL WARNING: DENIED DUE TO DEADLOCK PREVENTION! THE
FOLLOWING QUERIES WILL NOT TERMINATE AUTOMATICALLY, SINCE THEY
HAVE BEEN STARTED IN LAZY INCREMENTAL MODE: (QUERY-1).

on STDOUT as well as the return value

:DENIED-DUE-TO-DEADLOCK-PREVENTION.

See also: active-queries, Page 131, execute-query, Page 139, abort-query, Page
138

wait-for-rules-to-terminate Function

Description: Analog to wait-for-queries-to-terminate, Page 137, but for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

138 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

abort-query Function

Description: Aborts (terminates) the query id ; thus, the query answering thread is killed.

Syntax: (abort-query id)

Arguments: id - the ID of the query, or :last.

Values: :OKAY-QUERY-ABORTED or :NOT-FOUND

Remarks: Note that you can only abort queries which satisfy query-active-p, Page
126 - :NOT-FOUND will be returned instead. A query which has been aborted
is put on the list of processed-queries, Page 135.

See also: abort-all-queries, Page 138, processed-queries, Page 135

abort-rule Function

Description: Equivalent of abort-query, Page 138 for rules.

abort-all-queries Function

Description: Simply maps abort-query, Page 138 over active-queries, Page 131.

Syntax: (abort-all-queries)

Arguments:

Values: :OKAY-ALL-QUERIES-ABORTED

See also: active-queries, Page 131, abort-query, Page 138

abort-all-rules Function

Description: Equivalent of abort-all-queries, Page 138 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. EXECUTION CONTROL 139

execute-query Function

Description: Sets up and starts a query answering thread for the query id . The query has
to be ready before it can be executed, see query-ready-p, Page 125.

Syntax: (execute-query id)

Arguments: id - the ID of the query, or :last.

Values: Either :NOT-FOUND (in this case the query was not found on ready-queries,
Page 130), or, if nRQL is in set at a time mode, then the answer
to this query is returned. Otherwise, if nRQL is in tuple at a time
mode, then you will get an answers such as (:QUERY-32 :RUNNING), de-
scribing the current status of the query. Other possible return values
are (:QUERY-32 :DENIED-DUE-TO-DEADLOCK-PREVENTION), or (:QUERY-32
:ACQUIRE-PROCESS-FAILED-POOL-SIZE-EXCEEDED).

Remarks: The query id is also put on the list of active-queries, Page 131. To put
queries on ready-queries, Page 130, use prepare-abox-query, Page 146
and related functions.

Examples: > (process-tuple-at-a-time)

:OKAY-PROCESSING-TUPLE-AT-A-TIME

> (prepare-abox-query (?x) (?x woman))

(:QUERY-32 :READY-TO-RUN)

> (execute-query :last)

(:QUERY-32 :RUNNING)

See also: ready-queries, Page 130, abort-query, Page 138

execute-rule Function

Description: Equivalent of execute-query, Page 139 for rules. Note that rules can be used
in set at a time as well as in tuple at a time mode. In set at a time mode, un-
like execute-query, Page 139 which returns a query answer, execute-rule
returns a list of lists of ABox assertions (statements) which are added to
(executed on) the ABox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

140 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

execute-all-queries Function

Description: Simply maps execute-query, Page 139 over ready-queries, Page 130.

Syntax: (execute-all-queries)

Arguments:

Values: The list containing the values returned by execute-query, Page 139 for the
individual queries on ready-queries, Page 130.

Examples: > (process-set-at-a-time)

:OKAY-PROCESSING-SET-AT-A-TIME

> (prepare-abox-query (?x) (?x man))

(:QUERY-25 :READY-TO-RUN)

> (prepare-abox-query (?x) (?x woman))

(:QUERY-26 :READY-TO-RUN)

> (execute-all-queries)

((((?X ALICE))) (((?X JAMES))))

See also: ready-queries, Page 130, execute-query, Page 139

execute-all-rules Function

Description: Equivalent of execute-all-queries, Page 140 for rules.

run-all-queries Function

Description: Equivalent to execute-all-queries, Page 140

run-all-rules Function

Description: Equivalent of run-all-queries, Page 140 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. EXECUTION CONTROL 141

reexecute-all-queries Function

Description: Simply maps reexecute-query, Page 142 over processed-queries, Page
135.

Syntax: (reexecute-all-queries)

Arguments:

Values: See execute-all-queries, Page 140.

Remarks: Note that only the queries on processed-queries, Page 135 will be reexe-
cuted.

See also: reexecute-all-rules, Page 141

reexecute-all-rules Function

Description: Equivalent of reexecute-all-queries, Page 141 for rules.

reprepare-query Function

Description: Puts a query which has already been processed, thus being on the list of
processed-queries, Page 135, back onto the list of ready-queries, Page
130. Thus, the query can be executed again, see execute-query, Page 139.
This is especially useful for rules, see reprepare-rule, Page 142.

Syntax: (reprepare-query id)

Arguments: id - the ID of the query, or :last.

Values: A tuple like (:QUERY-32 :READY-TO-RUN), describing the current status of
the query (prepare-abox-query, Page 146), or :NOT-FOUND in case the query
was not found on the list of processed-queries, Page 135.

Remarks: The query id is again put on the list of ready-queries, Page 130. Instead
of using repreapare-query and execute-query, Page 139, you can also use
the shortcut reexecute-query, Page 142.

See also: reprepare-rule, Page 142

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

142 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

reprepare-rule Function

Description: Equivalent of reprepare-query, Page 141 for rules. This is how you can
“fire” (apply) a rule more than once! See also execute-rule, Page 139.

reexecute-query Function

Description: First applies reprepare-query, Page 141 to a query and than calls
execute-query, Page 139 on that query.

Syntax: (reexecute-query id)

Arguments: id - the ID of the query, or :last.

Values: See execute-query, Page 139.

See also: reexecute-rule, Page 142

reexecute-rule Function

Description: Equivalent of reexecute-query, Page 142 for rules.

rule-applicable-p Function

Description: Checks whether rule id is applicable, i.e. its antecedence is true. Thus, its
consequence might produce new ABox assertions (or delete existing ABox
assertions).

Syntax: (rule-applicable-p id)

Arguments: id - the ID of the rule, or :last.

Values: T, NIL or :NOT-FOUND

Remarks: Note that a rule can only be applicable if it is found on (ready-rules, Page
130) or processed-rules, Page 135. Rules which are already on the list of
active-rules, Page 131 are not applicable.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.4. EXECUTION CONTROL 143

As a side effect, if a rule on processed-rules, Page 135 is recognized as
applicable, then it is also reprepared, see reprepare-rule, Page 142 and
thus put back onto ready-rules, Page 130. It can then be fired again, see
execute-rule, Page 139.

See also: execute-applicable-rules, Page 143

applicable-rules Function

Description: Returns all ready-rules, Page 130 and processed-rules, Page 135 that
satisfy rule-applicable-p, Page 143 and are thus “ready to fire”. Sim-
ply maps rule-applicable-p, Page 143 over ready-rules, Page 130 and
processed-rules, Page 135.

Syntax: (applicable-rules)

Arguments:

Values: A list of IDs of applicable rules.

Remarks: As a side effect of checking rule applicability with rule-applicable-p, Page
143, the applicable rules on processed-rules, Page 135 are put back onto
the list of ready-rules, Page 130.

See also: rule-applicable-p, Page 143, unapplicable-rules, Page 143

unapplicable-rules Function

Description: Returns all rules from all-rules, Page 120 which DO NOT satisfy
rule-applicable-p, Page 143, see also applicable-rules, Page 143.

execute-applicable-rules Function

Description: Simply maps execute-rule, Page 139 over applicable-rules, Page 143.

Syntax: (execute-applicable-rules)

Arguments:

Values: A list containing the values returned by execute-rule, Page 139 for the
individual rules on applicable-rules, Page 143.

See also: rule-applicable-p, Page 143

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

144 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.5 ABox Queries

retrieve Macro

Description: Prepares and starts a nRQL ABox query.

Syntax: (retrieve head body &key (abox (current-abox)) id ...)

Arguments: head (*) - the head of the query, see <query-head>, Section 6.1.8 in the User
Guide.

body (*) - the body of the query, see <query-body>, Section 6.1.8 in the User
Guide.

abox (∗) - the ABox to be queried - optional keyword argument. Default value
is the (current-abox).

id (*) - the ID of the query - optional keyword argument. In case a query
with the given id already exists, an error is raised. If not specified,
nRQL will create a query ID such as :QUERY-2.

. . . - see with-nrql-settings, Page 178 for even more arguments!

Values: In set at a time mode: The answer to this query – a list of tuples, or NIL or
T, or :INCONSISTENT (see report-inconsistent-queries, Page 179).

In tuple at a time mode: A tuple like (:QUERY-466 :RUNNING), where
:QUERY-466 is the ID of the query used for referencing the query,
:RUNNING indicating that the query answering thread has been started. You
might also get (:QUERY-466 :DENIED-DUE-TO-DEADLOCK-PREVENTION), or
(:QUERY-466 :ACQUIRE-PROCESS-FAILED-POOL-SIZE-EXCEEDED).

Remarks: Conceptually, retrieve first calls prepare-abox-query, Page 146, and then
execute-query, Page 139. Thus, the result of execute-query, Page 139 is
returned. However, in case the query is not executed (for example, if it has
been recognized as inconsistent), then the result of prepare-abox-query,
Page 146 will be returned.

Examples: (retrieve (?x) (and (?x woman) (?x ?y has-child)))

(retrieve (?x) (and (?x woman) (?x ?y has-child)) :abox
smith-family :how-many 2)

See also: racer-answer-query, Page 145, with-nrql-settings, Page 178

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.5. ABOX QUERIES 145

racer-answer-query Function

Description: Functional equivalent of retrieve, Page 144.

retrieve-under-premise Macro

Description: Like retrieve, Page 144, but a query premise is added to the queried ABox
prior to query execution.

Syntax: (retrieve-under-premise premise head body &key ...)

Arguments: premise (*) - the premise of the query, see <query-premise>, Section 6.1.8
in the User Guide. This is simply a list of ordinary RacerPro ABox
assertions.

head (*), body (*) - see retrieve, Page 144.

. . . - see retrieve, Page 144.

Values: See retrieve, Page 144.

Remarks: The premise is only added temporarily to the ABox. The ABox will only
temporarily be modified. However, the ABox must be changed for that, and
will thus be exclusively locked for the time of execution of this query. Other
queries cannot access the ABox until the query is processed and the lock
released.

Examples: (retrieve-under-premise ((instance betty mother) (related
betty doris has-child)) (?x) (and (?x mother) (?x ?y
has-child)))

See also: racer-answer-query-under-premise, Page 145

racer-answer-query-under-premise Function

Description: Functional equivalent of retrieve-under-premise, Page 145.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

146 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

prepare-abox-query Macro

Description: Prepares but does not start a nRQL ABox query.

Syntax: (prepare-abox-query ...)

Arguments: See retrieve, Page 144.

Values: A list like (:QUERY-466 :READY-TO-RUN), where :QUERY-466 is the query
ID and :READY-TO-RUN indicates the current status of the query.

Remarks: To start the query, use execute-query, Page 139.

Examples: (prepare-abox-query (?x) (and (?x woman) (?x ?y has-child)))

See also: racer-prepare-query, Page 146

racer-prepare-query Function

Description: Functional equivalent of prepare-abox-query, Page 146.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.6. TBOX QUERIES 147

6.6 TBox Queries

tbox-retrieve Macro

Description: Prepares and starts a nRQL TBox query.

Syntax: (tbox-retrieve head body &key (tbox (current-tbox)) id ...)

Arguments: head (*) - the head of the query, see <query-head>, Section 6.1.8 in the User
Guide, and retrieve, Page 144.

Projection operators are not meaningful.

body (*) - the body of the query, see <query-body>, Section 6.1.8 in the User
Guide, and retrieve, Page 144.

Constraint query atoms are not meaningful. Only the concept
names from tbox as well as the roles has-child, has-parent,
has-ancestor, has-descendant are meaningful.

tbox (*) - the TBox to be queried - optional keyword argument. Default value
is the (current-abox).

id (*) - see retrieve, Page 144.

. . . - see also with-nrql-settings, Page 178 for even more arguments.

Values: See retrieve, Page 144.

Remarks: Conceptually, tbox-retrieve first calls prepare-tbox-query, Page 148,
and then execute-query, Page 139.

Examples: (tbox-retrieve (?x ?y) (and (top ?x) (?x ?y has-child)))

(tbox-retrieve (?x ?y) (and (?x woman) (?x ?y has-descendant))
:tbox family-1)

See also: racer-answer-tbox-query, Page 147

racer-answer-tbox-query Function

Description: Functional equivalent of tbox-retrieve, Page 147.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

148 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

prepare-tbox-query Macro

Description: Prepares but does not start a nRQL TBox query.

Syntax: (prepare-tbox-query ...)

Arguments: See tbox-retrieve, Page 147.

Values: A tuple like (:QUERY-466 :READY-TO-RUN), where :QUERY-466 is the iden-
tifier used for referencing the query, :READY-TO-RUN indicating the current
status of the query.

Remarks: To start the query, use execute-query, Page 139.

Examples: (prepare-tbox-query (?x) (and (?x woman) (?x ?y has-child)))

See also: racer-prepare-tbox-query, Page 148

racer-prepare-tbox-query Function

Description: Functional equivalent of prepare-tbox-query, Page 148.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. GETTING ANSWERS 149

6.7 Getting Answers

next-tuple-available-p Function

Description: Checks for the availability of yet another tuple from query id .

Syntax: (next-tuple-available-p id)

Arguments: id - the ID of the query, or :last.

Values: T, NIL, or :NOT-FOUND.

Remarks: If this function returns T, then the next tuple of this query can be retrieved
without further delay using get-next-tuple, Page 150. The tuple is already
available. This function is useful if query id is running in eager tuple at a
time mode, and the client wants to know whether get-next-tuple, Page
150 can be called without blocking the nRQL API.

See also: get-next-tuple, Page 150

next-set-of-rule-consequences-available-p Function

Description: Equivalent of next-tuple-available-p, Page 149, but for rules.

get-next-tuple Function

Description: Gets the next tuples from query id . The query must be on the list of
active-queries, Page 131 or processed-queries, Page 135.

Syntax: (get-next-tuple id)

Arguments: id - the ID of the query, or :last.

Values: The tuple, or :INCONSISTENT (see report-inconsistent-queries, Page
179), or :WARNING-KB-HAS-CHANGED if the referenced KB has been changed
in the meantime, or :EXHAUSTED in case there are no more tuples left, or
:WARNING-EXPENSIVE-PHASE-TWO-STARTS in case the query has been started
in two-phase query processing mode and phase one is over, or :NOT-FOUND
in case the query is not on the list of active or terminated queries.

Remarks: If the query had been started in lazy tuple at a time mode, then computation
of the next tuple might eventually take some time.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

150 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

If the query had been started in eager mode, then there is a chance that the
next tuple (and probably some future tuples) have already been computed,
and are thus already available. See next-tuple-available-p, Page 149 to
check for the availability of such tuples.

Note that, even if the query thread has already terminated and thus the
query is found on the list of processed-queries, Page 135, still there might
be still some tuples available which have not been requested by the user yet.
This happens in the eager tuple at a time mode.

See also: next-tuple-available-p, Page 149

get-current-tuple Function

Description: Returns the result of the previous call to (get-next-tuple id), see
get-next-tuple, Page 150.

Syntax: (get-current-tuple id)

Arguments: id - the ID of the query, or :last.

Values: See get-next-tuple, Page 150. Moreover, NIL is returned if there was no
previous call (get-next-tuple id), and :NOT-FOUND in case the query is
not on the list of active or processed queries, as usual.

See also: get-current-set-of-rule-consequences, Page 151

get-next-set-of-rule-consequences Function

Description: If the rule named id has been started in (incremental) tuple at a time query
processing mode, then this function gets you the “next” set of rule conse-
quences that this rule has produced. Note that only the LAZY incremental
mode is available for rules! nRQL will automatically use the lazy mode if
rules are fired in tuple at a time mode. Moreover, the rule named id must
be on the list of active or processed (terminated) rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. GETTING ANSWERS 151

The set of rule consequences is a set of ABox assertions which has been
derived from the rule consequence in which the variables have been replaced
by their current bindings. Applications can look at this current set of rule
consequences and decide whether to add these assertions to the ABox or
not. See choose-current-set-of-rule-consequences, Page 163. This is
how you can implement you own rule application strategy.

Syntax: (get-next-set-of-rule-consequences id)

Arguments: id - the ID of the rule, or :last.

Values: A set of ABox assertions (and statements), or :INCONSISTENT (see
report-inconsistent-queries, Page 179), or :WARNING-KB-HAS-CHANGED
if the referenced KB had been changed in the meantime, or
:EXHAUSTED in case there are no more binding possibilities left, or
:WARNING-EXPENSIVE-PHASE-TWO-STARTS in case the rule had been started
in two-phase query processing mode and phase one is over, or :NOT-FOUND
in case the rule is not on the list of active or terminated rules.

Remarks: This function is the equivalent of get-next-tuple, Page 150, but for rules.
Please also refer to get-next-tuple, Page 150!

If the rule had been started in lazy incremental mode, then computation of
the next set of rule consequences might eventually take some time.

If the rule had been started in eager mode, then there is a chance
that the next set of ABox assertions (and probably some future
sets) have already been computed, and are thus already available. See
next-set-of-rule-consequences-available-p, Page 149 to check for the
availability of such sets.

See also: next-set-of-rule-consequences-available-p, Page 149

get-current-set-of-rule-consequences Function

Description: Equivalent of get-current-tuple, Page 150 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

152 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-next-n-remaining-tuples Function

Description: Gets the next n tuples from the query id (or all tuples if n is not specified).

Syntax: (get-next-n-remaining-tuples id &optional n)

Arguments: id - the ID of the query, or :last.

n - the number of requested tuples. Note that this parameter is op-
tional. Default value is NIL. If n = NIL, then all tuples are requested.

Values: A list of (maximal n) tuples, or :NOT-FOUND.

Remarks: This function repeatedly calls get-next-tuple, Page 150.

If nRQL is in two-phase query processing mode and deliv-
ery of the “phase two starts” warning token is enabled (see
enable-phase-two-starts-warning-tokens, Page 167), then the
:WARNING-EXPENSIVE-PHASE-TWO-STARTS token as delivered by
get-next-tuple, Page 150 does not appear in the list of tuples returned by
this function.

Instead, if :WARNING-EXPENSIVE-PHASE-TWO-STARTS is encountered,
get-next-n-remaining-tuples stops requesting additional tuples with
get-next-tuple, and returns the list of tuples accumulated so far
immediately.

Now, in order to get the remaining tuples (the tuples of phase 2), simply call
get-next-n-remaining-tuples, Page 152 again.

Note that this behavior can be changed either by not using the
two-phase query processing mode at all, or by instructing nRQL
not to deliver the :WARNING-EXPENSIVE-PHASE-TWO-STARTS token (see
enable-phase-two-starts-warning-tokens, Page 167).

See also: next-tuple-available-p, Page 149, get-next-tuple, Page 150,
get-all-remaining-tuples, Page 153

get-next-n-remaining-sets-of-rule-consequences Function

Description: Equivalent of get-next-n-remaining-tuples, Page 152 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. GETTING ANSWERS 153

get-all-remaining-tuples Function

Description: Similar to get-next-n-remaining-tuples, Page 152 if n = NIL
is specified. However, the function really returns all tuples. If the
:WARNING-EXPENSIVE-PHASE-TWO-STARTS token is encountered, then, unlike
get-next-n-remaining-tuples, Page 152, it does not stop.

Syntax: (get-all-remaining-tuple id)

Arguments: id - the ID of the query, or :last.

Values: The list of all remaining tuples, or :NOT-FOUND.

See also: get-next-n-remaining-tuples, Page 152, get-answer, Page 154,
get-all-remaining-sets-of-rule-consequences, Page 153

get-all-remaining-sets-of-rule-consequences Function

Description: The equivalent of get-all-remaining-tuples, Page 153 for rules.

get-answer Function

Description: Similar to get-all-remaining-tuples, Page 153. However, not only the
remaining tuples, but all tuples are returned. Thus, this function can
be called an arbitrary number of times on a query id , in contrast to
get-all-remaining-tuples, Page 153, which returns NIL if it is called the
2nd time. This function can also be used on rules. In this case, the set of sets
of rule consequences is returned.

Syntax: (get-answer id)

Arguments: id - the ID of the query or rule, or :last.

Values: A list of tuples, or T or NIL, or a list of list of ABox assertions (the list of
rule consequences). See retrieve, Page 144, firerule, Page 160.

Remarks: Can be called an arbitrary number of times on a query (rule) id . The answer
to a query is stored in the query object representing the query (rule) and is
thus not recomputed.

Note that the query or rule named id must be on the list of active or processed
queries (see active-queries, Page 131, processed-queries, Page 135).

See also: get-all-answers, Page 154

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

154 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-answer-size Function

Description: Counts the number of answer tuples that get-answer, Page 154 retrieves
for the specified query or rule id . Thus, this function can be used to find
out how many tuples a query has produced. If used on a rule, this function
returns the number of sets of rule consequences which have been produced
by firing this rule.

get-all-answers Function

Description: Simply maps get-answer, Page 154 over the list of active-queries,
Page 131, processed-queries, Page 135, active-rules, Page 131, and
processed-rules, Page 135.

Syntax: (get-all-answers)

Arguments:

Values: A list of tuples of the form (<id> <answer>), where <answer> is the answer
to query (or rule) <id>, see get-answer, Page 154.

See also: get-answer, Page 154, processed-queries, Page 135

query-accurate-p Function

Description: Determines whether a query is still accurate. A query is accurate iff the
referenced ABox has not changed since the parsing of this query. Thus, if
an answer set has been computed for the query, and the query is still ac-
curate, then reexecuting this query will still produce the same answer. See
reexecute-query, Page 142.

Syntax: (query-accurate-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL.

See also: rule-accurate-p, Page 155

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.7. GETTING ANSWERS 155

rule-accurate-p Function

Description: Equivalent of query-accurate-p, Page 154 for rules.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

156 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.8 Defined Queries

defquery Macro

Description: Associates a query head and body with a name which is the name of the
definition. This defined query can be reused by means of substitute query
atoms. The definitions are local to tbox .

Syntax: (defquery name head body &key (tbox (current-tbox)))

Arguments: name (*) - the name of the definition, see <query-name>, Section 6.1.8 in
the User Guide.

head (*) - the head of the query, see <def-query-head>, Section 6.1.8 in the
User Guide. Projection operators are not allowed as head entries.

body (*) - the body of the query, see <query-body>, Section 6.1.8 in the User
Guide.

tbox (*) - the TBox to which this definition is local.

Values: The name of the defined query.

Remarks: The query is neither answered nor prepared. Cyclic definitions are not pos-
sible, but body can reference other defined queries as well.

Examples: (defquery is-a-mother (?x) (and (?x woman) (?x ?y has-child)))

(retrieve (?a) (substitute (is-a-mother ?a)))

or

(retrieve (?a) (?x is-a-mother))

See also: define-query, Page 158

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.8. DEFINED QUERIES 157

undefquery Macro

Description: Deletes a local definition.

Syntax: (undefquery name &key (tbox (current-tbox)))

Arguments: name (*) - the name of the definition.

tbox (*) - the TBox to which this definition is local.

Values: The names of the remaining definitions (local to tbox).

Examples: (undefquery mother)

See also: undefine-query, Page 158

def-and-prep-query Macro

Description: Defines a query local to tbox and prepares it for execution.

Syntax: See defquery, Page 156.

Arguments: See defquery, Page 156 and prepare-abox-query, Page 146 for
optional arguments.

Values: See prepare-abox-query, Page 146.

Remarks: Conceptually, first the defined query is created (defquery, Page 156), and
then this defined query is prepared (prepare-abox-query, Page 146).

Examples: (def-and-prep-query is-a-mother (?x) (and (?x woman) (?x ?y
has-child)) :tbox family)

See also: define-and-prepare-query, Page 158

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

158 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

def-and-exec-query Macro

Description: Defines, prepares and executes a query.

Syntax: See defquery, Page 156.

Arguments: See defquery, Page 156, and prepare-abox-query, Page 146 and
execute-query, Page 139 for optional arguments.

Values: See retrieve, Page 144, execute-query, Page 139.

Remarks: Conceptually, the query is defined and prepared (def-and-prep-query, Page
157), and then executed (execute-query, Page 139).

Examples: (def-and-exec-query is-a-mother (?x) (and (?x woman) (?x ?y
has-child)) :tbox family)

See also: define-and-execute-query, Page 158

define-query Function

Description: Functional equivalent of defquery, Page 156.

undefine-query Function

Description: Functional equivalent of undefquery, Page 157

define-and-prepare-query Function

Description: Functional equivalent of def-and-prep-query, Page 157.

define-and-execute-query Function

Description: Functional equivalent of def-and-exec-query, Page 158.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.8. DEFINED QUERIES 159

describe-definition Function

Description: Describes the definition named name which is local to tbox .

Syntax: (describe-definition name &key (tbox (current-tbox)))

Arguments: name - the name of the definition.

tbox - the TBox to which this definition is local to.

Values: The definition named name.

Examples: (describe-definition ’mother :tbox ’family)

See also: describe-all-definitions, Page 159

describe-all-definitions Function

Description: Describes all definitions which are local to tbox .

Syntax: (describe-all-definitions &key (tbox (current-tbox)))

Arguments: tbox - the TBox to which the definitions are local.

Values: All definitions local to Tbox .

Examples: (describe-all-definitions)

(describe-all-definitions :tbox ’family)

See also: describe-definition, Page 159

delete-all-definitions Function

Description: Deletes all definitions local to tbox .

Syntax: (delete-all-definitions &key (tbox (current-tbox)))

Arguments: tbox - the TBox to which this definition is local.

Values: :OKAY-ALL-DEFINITIONS-DELETED

Examples: (delete-all-definitions)

See also: undefquery, Page 157

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

160 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.9 Rules

firerule Macro

Description: Prepares a rule and applies (fires) it to abox . firerule is the equivalent of
retrieve, Page 144 for rules.

Syntax: (firerule antecedence consequence &key (abox (current-abox))
premise ...))

Arguments: antecedence (*) - the antecedence of the rule, see <rule-antecedence>, Sec-
tion 6.1.8 in the User Guide.

consequence (*) - the consequence of the rule. This is a set of generalized
ABox assertions, see <rule-consequence>, Section 6.1.8 in the
User Guide.
Note that you can also put in forget statements into consequence.

abox (*) - the ABox to which the rule shall be applied - an optional keyword
argument whose default value is the (current-abox).

premise (*) - the premise of the rule, see <query-premise>, Section 6.1.8 in
the User Guide.

. . . - see also with-nrql-settings, Page 178 for even more arguments.

Values: In set at a time mode: The set of rule consequences (a set of ABox assertions
and possibly forget statements) the rule has created.

In tuple at a time mode: A rule status description.

See also retrieve, Page 144.

Remarks: There are no “TBox rules”.

Note that the produced ABox assertions may not be “new”, i.e. the generated
axioms are eventually already syntactically present in the ABox. However,
due to the presence of NAF, non-monotonic rules can be written!

See also: racer-apply-rule, Page 161

apply-abox-rule Macro

Description: Same as firerule, Page 160.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.9. RULES 161

racer-apply-rule Function

Description: Functional equivalent of firerule, Page 160.

prepare-abox-rule Macro

Description: Prepares but does not fire a nRQL rule. prepare-abox-rule is the equivalent
of prepare-abox-query, Page 146, but for rules.

Syntax: (prepare-abox-rule ...)

Arguments: See firerule, Page 160.

Values: A tuple like (:RULE-466 :READY-TO-RUN), where :RULE-466 is the identifier
used for referencing the rule, :READY-TO-RUN indicating the current status
of the rule. See also prepare-abox-query, Page 146.

Remarks: To fire the rule, use execute-rule, Page 139.

See also: racer-prepare-rule, Page 161

preprule Macro

Description: Same as prepare-abox-rule, Page 161.

racer-prepare-rule Function

Description: Functional equivalent of prepare-abox-rule, Page 161.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

162 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

add-rule-consequences-automatically Function

Description: Advises nRQL to add rule consequences produced (by rule firing) automati-
cally to the ABox. Usually, you don’t want this, but implement your own rule
application strategy. See choose-current-set-of-rule-consequences,
Page 163, add-chosen-sets-of-rule-consequences, Page 163.

Syntax: (add-rule-consequences-automatically)

Arguments:

Values: :OKAY-ADDING-RULE-CONSEQUENCES-AUTOMATICALLY

See also: dont-add-rule-consequences-automatically, Page 162

dont-add-rule-consequences-automatically Function

Description: Disables automatic addition of rule consequences, see
add-rule-consequences-automatically, Page 162.

choose-current-set-of-rule-consequences Function

Description: Rule consequences of a rule are never added to an ABox as long as the rule
that produces them is still running. The rule must terminate, only then can
the computed set of rule consequences be added to the ABox. If rules are fired
in the tuple at a time mode, then rule consequences are requested and com-
puted lazily one after the other via get-next-set-of-rule-consequences,
Page 151, in an incremental fashion. The current set of rule consequences,
get-current-set-of-rule-consequences, Page 151, can be memorized by
nRQL with a call to choose-current-set-of-rule-consequences such
that this chosen current set of rule consequences can later be added to the
ABox, after the rule has terminated.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.9. RULES 163

If RacerPro is in add-rule-consequences-automatically, Page 162 mode,
then the chosen sets of rule consequences will be added automatically.
However, if RacerPro is in dont-add-rule-consequences-automatically,
Page 162 mode, then the chosen sets of rule consequences will not
be added automatically, but instead the application (user) has to call
add-chosen-sets-of-rule-consequences, Page 163 explicitly.

Syntax: (choose-current-set-of-rule-consequences id)

Arguments: id - the ID of the rule, or :last.

Values: The chosen current set of rule consequences (if not NIL), or :NOT-FOUND.

Remarks: Note that id must be on the list of active-rules, Page 131 or
processed-rules, Page 135.

See also: firerule, Page 160, get-next-set-of-rule-consequences,
Page 151, get-current-set-of-rule-consequences, Page 151,
add-chosen-sets-of-rule-consequences, Page 163.

add-chosen-sets-of-rule-consequences Function

Description: Adds the sets of rule consequence which have been produced by rule id and
selected with calls to choose-current-set-of-rule-consequences, Page
163 to the ABox. Note that you can apply this function only once to a rule
(and only to a rule for which rule consequences have been chosen).

Syntax: (add-chosen-set-of-rule-consequences id)

Arguments: id - the ID of the rule, or :last.

Values: The added ABox assertions, or :NOT-FOUND.

Remarks: Note that id must be on the list of processed-rules, Page 135.

See also: firerule, Page 160, get-next-set-of-rule-consequences,
Page 151, get-current-set-of-rule-consequences, Page 151,
add-chosen-sets-of-rule-consequences, Page 163.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

164 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

6.10 Configuring the Querying Modes of nRQL

describe-query-processing-mode Function

Description: Returns a description of the current settings of the nRQL engine.

Syntax: (describe-query-processing-mode)

Arguments:

Values: A list of descriptive tokens and attribute-value pairs.

Examples: > (describe-query-processing-mode)

((:CREATING-SUBSTRATES-OF-TYPE :RACER-DUMMY-SUBSTRATE)
:CHECK-ABOX-CONSISTENCY :QUERY-OPTIMIZATION-ENABLED
:OPTIMIZER-USES-CARDINALITY-HEURISTICS
:AUTOMATICALLY-ADDING-RULE-CONSEQUENCES :WARNINGS
:COMPLETE-MODE :MODE-3 :SET-AT-A-TIME-MODE
:DELIVER-KB-HAS-CHANGED-WARNING-TOKENS)

See also: with-nrql-settings, Page 178, set-nrql-mode, Page 165

describe-current-substrate Function

Description: Returns a description of the current substrate used by the nRQL engine.

Syntax: (describe-current-substrate)

Arguments:

Values: A list of attribute-value pairs.

Examples: > (describe-current-substrate)

((:NAME SMITH-FAMILY) (:TYPE THEMATIC-SUBSTRATE::RACER-DUMMY-SUBSTRATE)
(:ASSOCIATED-ABOX SMITH-FAMILY) (:ASSOCIATED-TBOX FAMILY))

See also: with-nrql-settings, Page 178, set-nrql-mode, Page 165

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 165

set-nrql-mode Function

Description: Sets the level of completeness of nRQL query answering and determines
whether set at a time or tuple at a time processing will be used. See Section
6.2.5 in the User Guide. The modes are:

Mode 0: Incomplete, told information reasoning, no exploited TBox infor-
mation. No RacerPro ABox retrieval functions will be used.

Mode 1: Incomplete, told information reasoning, exploited

TBox information for atomic concept assertions in the ABox will be
exploited. No RacerPro ABox retrieval functions will be used. TBox
should be classified before using this mode.

Mode 2: Incomplete, told information reasoning, exploited TBox informa-
tion for all (also complex) concept membership assertions in the ABox.
No RacerPro ABox retrieval functions will be used.

Mode 3: Complete RacerPro + nRQL querying, Racer’s ABox retrieval
functions will be used. Can be expensive.

Mode 4: Complete RacerPro + nRQL querying, incremental tuple at a
time, lazy, two-phase query processing mode. Tuples from phase one
will be computed according to mode 1.

Mode 5: Like Mode 4, but tuples from phase one will be computed accord-
ing to mode 2.

Mode 6: Like Mode 3, but internally, a two-phase tuple computation will
be exploited. Compared to mode 3, this will probably result in a reduced
number of calls to Racer’s expensive ABox retrieval functions.

Syntax: (set-nrql-mode mode)

Arguments: mode - a cardinal number from 0 to 6.

Values: :OKAY-MODE-mode

See also: with-nrql-settings, Page 178, describe-query-processing-mode, Page
164

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

166 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

enable-query-optimization Function

Description: Enables the cost-based query optimizer.

Syntax: (enable-query-optimization)

Arguments:

Values: :OKAY-QUERY-OPTIMIZATION-ENABLED

See also: disable-query-optimization, Page 166, enable-query-realization,
Page 182

disable-query-optimization Function

Description: Disables the cost-based query optimizer. See enable-query-optimization,
Page 166.

optimizer-use-cardinality-heuristics Function

Description: Advises the optimizer to exploit statistical information about concept exten-
sion cardinalities from the ABox.

Syntax: (optimizer-use-cardinality-heuristics)

Arguments:

Values: :OKAY-USING-CARDINALITY-HEURISTICS or :IGNORED-OPTIMIZER-IS-DISABLED

Remarks: The optimizer must be enabled, see enable-query-optimization, Page 166.

See also: optimizer-dont-use-cardinality-heuristics, Page 166

optimizer-dont-use-cardinality-heuristics Function

Description: Advises the optimizer not to exploit cardinality heuristics. See
optimizer-use-cardinality-heuristics, Page 166.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 167

enable-phase-two-starts-warning-tokens Function

Description: Enables delivery of :WARNING-EXPENSIVE-PHASE-TWO-STARTS tokens in two-
phase query processing modes.

Syntax: (enable-phase-two-starts-warning-tokens)

Arguments:

Values: :IGNORED-NOT-IN-TWO-PHASE-PROCESSING-MODE or
:OKAY-PHASE-TWO-WARNING-TOKENS-ENABLED.

See also: set-nrql-mode, Page 165, disable-phase-two-starts-warning-tokens,
Page 167

disable-phase-two-starts-warning-tokens Function

Description: Disables delivery of :WARNING-EXPENSIVE-PHASE-TWO-STARTS tokens, see
enable-phase-two-starts-warning-tokens, Page 167

enable-kb-has-changed-warning-tokens Function

Description: Enables delivery of :WARNING-KB-HAS-CHANGED tokens in incremental query
processing modes.

Syntax: (enable-kb-has-changed-warning-tokens)

Arguments:

Values: :IGNORED-NOT-IN-TUPLE-AT-A-TIME-MODE or
:OKAY-KB-HAS-CHANGED-WARNING-TOKENS-ENABLED.

Remarks: This token is delivered if an ABox is changed while the query was still active.
Thus, the answer might be incomplete (or wrong). For these reasons, the
token is also included in the query answer.

See also: disable-kb-has-changed-warning-tokens, Page 167

disable-kb-has-changed-warning-tokens Function

Description: Disables delivery of :WARNING-KB-HAS-CHANGED tokens, see
enable-kb-has-changed-warning-tokens, Page 167.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

168 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

enable-eager-tuple-computation Function

Description: Configures nRQL to precompute tuples (when in tuple at a time mode), even
if these tuples have not yet been requested via calls to get-next-tuple, Page
150 (or related functions) yet. A query which is started in eager mode will
never appear on waiting-queries, Page 134.

Syntax: (enable-eager-tuple-computation)

Arguments:

Values: :IGNORED-NOT-IN-TUPLE-AT-A-TIME-MODE or
:OKAY-EAGER-MODE-ENABLED.

Remarks: The complement mode is called lazy tuple at a time mode.
Thus, there is no disable-eager-tuple-computation, only
enable-lazy-tuple-computation, Page 168.

See also: enable-lazy-tuple-computation, Page 168

enable-lazy-tuple-computation Function

Description: Configures nRQL NOT to precompute tuples in tuple at time mode. Thus,
the query answering process goes to sleep (see query-waiting-p, Page 126)
until the next tuple is requested via get-next-tuple, Page 150.

Syntax: (enable-lazy-tuple-computation)

Arguments:

Values: :IGNORED, if not in tuple-at-a-time query processing mode, otherwise
:OKAY-LAZY-MODE-ENABLED.

Remarks: The complement mode is called eager tuple-at-a-time mode.
Thus, there is no disable-lazy-tuple-computation, only
enable-eager-tuple-computation, Page 168.

See also: enable-eager-tuple-computation, Page 168

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 169

check-abox-consistency-before-querying Function

Description: Configures nRQL to always check the consistency of the ABox to be queried
before querying starts. Querying an inconsistent ABox is not meaningful,
but checking an ABox for consistency can be very expensive!

Syntax: (check-abox-consistency-before-querying)

Arguments:

Values: :OKAY-CHECKING-ABOX-CONSISTENCY-BEFORE-QUERYING

See also: dont-check-abox-consistency-before-querying, Page 169

dont-check-abox-consistency-before-querying Function

Description: Configures nRQL NOT to check the consistency of the
ABox to be queried before querying starts. See also
check-abox-consistency-before-querying, Page 169.

add-role-assertions-for-datatype-properties Function

Description: If an OWL file is read into RacerPro, then constraint query atoms refer-
ring OWL datatype properties can only be answered if some auxiliary ABox
assertions are added to the ABox resulting from reading in that OWL file.

Syntax: (add-role-assertions-for-datatype-properties)

Arguments:

Values: :OKAY-ADDING-ROLE-ASSERTIONS-FOR-DATATYPE-PROPERTIES

Remarks: You must call add-role-assertions-for-datatype-properties before
you pose the first nRQL query to the ABox (for that OWL file).

See also: dont-add-role-assertions-for-datatype-properties, Page 169

dont-add-role-assertions-for-datatype-properties Function

Description: Disables addition of auxiliary ABox assertions to ABoxes produced from
OWL files, see add-role-assertions-for-datatype-properties, Page
169.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

170 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-max-no-of-tuples-bound Function

Description: Gets the current maximal number of tuples bound. If this bound is non-NIL,
then query answer sets can not contain more tuples than specified by this
bound.

Syntax: (get-max-no-of-tuples-bound)

Arguments:

Values: The current bound (a cardinal), or NIL if no bound is active.

Remarks: Usually, you should not set a bound. Thus, NIL is the default value.

Examples: (get-max-no-of-tuples-bound)

See also: set-max-no-of-tuples-bound, Page 170

set-max-no-of-tuples-bound Function

Description: Sets the maximal number of tuples bound to n. Thus, query answers cannot
contain more than n tuples. Pass NIL to set to unbounded. Note that this
bound also affects the rules - thus, if set to n, nRQL will not produce more
than n sets of rule consequences.

Syntax: (set-max-no-of-tuples-bound &optional n)

Arguments: n - the bound, a cardinal.

Values: The n.

Remarks: Use NIL to set to unbounded (reset the bound).

Examples: (set-max-no-of-tuples-bound 1)

(set-max-no-of-tuples-bound)

See also: get-max-no-of-tuples-bound, Page 170

get-process-pool-size Function

Description: The nRQL query processing engine maintains a pool of threads (Lisp pro-
cesses). Instead of creating and starting a fresh thread for each new query,
nRQL tries to acquire a thread from a pool of available threads (Lisp pro-
cesses) in order to save some memory.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 171

This function returns the current number of available (free) threads in the
pool.

Syntax: (get-process-pool-size)

Arguments:

Values: The current number of available threads in the pool.

See also: get-maximum-size-of-process-pool, Page 171,
get-initial-size-of-process-pool, Page 172

get-maximum-size-of-process-pool Function

Description: This function returns the maximum number n of threads (Lisp processes)
which nRQL will acquire as entries for the pool. This means, there cannot
be more than n concurrently running queries. If NIL is returned, then there
is no bound on the number of threads which will be acquired.

If a query cannot acquire a free thread from that pool, then
a new thread will be created unless the bound as specified by
get-maximum-size-of-process-pool is reached. In this case
the :ACQUIRE-PROCESS-FAILED-POOL-SIZE-EXCEEDED token is
returned. Then you must increase the size of this pool via
set-maximum-size-of-process-pool, Page 173.

Syntax: (get-maximum-size-of-process-pool)

Arguments:

Values: The maximum number of processes in the pool, or NIL in case there is no
bound on the number of pool entries.

See also: set-maximum-size-of-process-pool, Page 173

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

172 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

get-initial-size-of-process-pool Function

Description: This function returns the initial available number of threads (Lisp processes)
which nRQL has acquired as entries for the pool.

Syntax: (get-initial-size-of-process-pool)

Arguments:

Values: The initial number of entries in the pool.

See also: set-initial-size-of-process-pool, Page 172

set-initial-size-of-process-pool Function

Description: Sets the initial number of threads (Lisp processes) in the pool. The pool is
also reinitialized.

Syntax: (set-initial-size-of-process-pool n)

Arguments: n - a cardinal, the number of initial processes in the process pool.

Values: The n.

Remarks: The pool will also be reinitialized; i.e., n fresh threads (Lisp processes) will
be created.

See also: get-initial-size-of-process-pool, Page 172

set-maximum-size-of-process-pool Function

Description: Sets the maximum number of threads (Lisp processes) for the pool.

If a query cannot acquire a free thread from the pool, then
a new thread will be created unless the bound as specified by
get-maximum-size-of-process-pool, Page 171 is reached. In this case the
:ACQUIRE-PROCESS-FAILED-POOL-SIZE-EXCEEDED token is returned. Then
you must increase the size of the pool using this function.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 173

If NIL is specified, then there is no bound on the number of threads.

Syntax: (set-maximum-size-of-process-pool n)

Arguments: n - a cardinal, or NIL (no bound).

Values: The n.

See also: get-maximum-size-of-process-pool, Page 171

process-set-at-a-time Function

Description: Switches nRQL into set at a time mode. This means, the answer to a
query will be delivered in one big bunch (the answer set). Functions such
as retrieve, Page 144 work synchronously then.

Syntax: (process-set-at-a-time)

Arguments:

Values: :OKAY-PROCESSING-SET-AT-A-TIME

Remarks: This is the default mode.

See also: process-tuple-at-a-time, Page 173, with-nrql-settings, Page 178,
set-nrql-mode, Page 165

process-tuple-at-a-time Function

Description: Configures nRQL to deliver the answer set in an incremental tuple after tuple
mode. Functions such as retrieve, Page 144 work asynchronously then.

Syntax: (process-tuple-at-a-time)

Arguments:

Values: :OKAY-PROCESSING-TUPLE-AT-A-TIME

Remarks: See get-next-tuple, Page 150 as well as related
functions: enable-lazy-tuple-computation, Page 168,
enable-eager-tuple-computation, Page 168, . . .

See also: process-set-at-a-time, Page 173

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

174 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

exclude-permutations Function

Description: Configures nRQL to filter out permutations from the answer set. Thus, if
the answer contains ((?x a) (?y b)), then it will not also contain ((?x b)
(?y a)).

Syntax: (exclude-permutations)

Arguments:

Values: :OKAY-EXCLUDING-PERMUTATIONS

Remarks: Filtering out permutations slows down the nRQL engine and consumes some
memory!

See also: include-permutations, Page 174

include-permutations Function

Description: Disables filtering of permutations; see exclude-permutations, Page 174.

enable-abox-mirroring Function

Description: Instructs nRQL to mirror the asserted content of an ABox (the ABox asser-
tions) into its internal data caches before querying starts.

Syntax: (enable-abox-mirroring)

Arguments:

Values: :OKAY-ABOX-MIRRORING-ENABLED

See also: disable-abox-mirroring, Page 174, enable-smart-abox-mirroring,
Page 175, enable-very-smart-abox-mirroring, Page 175

disable-abox-mirroring Function

Description: Instructs nRQL to disable its ABox mirroring facility, see
enable-abox-mirroring, Page 174.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 175

enable-smart-abox-mirroring Function

Description: Enables ABox mirroring, see enable-abox-mirroring, Page 174, but in a
smarter way: In case of a atomic concept assertion such as (instance i C),
so C is a concept name, not only C is added as told information for i to the
ABox mirror, but also the set of concept synonyms and concept ancestors is
computed and added to the mirror object for i as well. The same applies for
related role membership assertions in the presence of role hierarchies, etc.

Syntax: (enable-smart-abox-mirroring)

Arguments:

Values: :OKAY-SMART-ABOX-MIRRORING-ENABLED

See also: disable-abox-mirroring, Page 174, enable-abox-mirroring, Page 174,
enable-very-smart-abox-mirroring, Page 175

enable-very-smart-abox-mirroring Function

Description: Enables smart ABox mirroring (see enable-smart-abox-mirroring, Page
175, but in a smarter way: In this case, smart abox mirroring is also exploited
for non-atomic concepts in concept assertions (instance i C). Thus, also
for non-atomic concepts C the set of concept synonyms and concept ancestors
is computed and added to the mirror. The related axioms are mirrored as
if enable-smart-abox-mirroring, Page 175 were used.

Syntax: (enable-very.smart-abox-mirroring)

Arguments:

Values: :OKAY-VERY-SMART-ABOX-MIRRORING-ENABLED

See also: disable-abox-mirroring, Page 174, enable-abox-mirroring, Page 174,
enable-smart-abox-mirroring, Page 175

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

176 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

with-nrql-settings Macro

Description: Use this macro to change the settings of nRQL temporarily. This is the
preferred way to alter the settings of nRQL, since neither the global state of
RacerPro nor the global state of nRQL must be changed if you make your
nRQL API calls within the scope of this macro. Using this macro, you can
run different queries concurrently with different nRQL settings. Note that
default values are indicated like this: (mode 3); so 3 is the default for mode.

Syntax: (with-nrql-settings (&key

(mode 3) (warnings t)

(check-abox-consistency t)

abox-mirroring

(query-optimization t) (optimizer-use-cardinality-heuristics t)

how-many-tuples timeout

(add-rule-consequences-automatically t)

phase-two-starts-warning-tokens (kb-has-changed-warning-tokens t)

report-inconsistent-queries report-tautological-queries query-realization

query-repository

exclude-permutations

(abox (current-abox)) (tbox (current-tbox)))

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.10. CONFIGURING THE QUERYING MODES OF NRQL 177

&body body)

Arguments: (mode 3) -sets the nRQL query processing mode, see set-nrql-mode, Page
165. Default is 3.

abox -mirroring -enables ABox mirroring, see enable-abox-mirroring,
Page 174. Value can be NIL, :smart or
:very-smart. See disable-abox-mirroring, Page
174, enable-smart-abox-mirroring, Page 175,
enable-very-smart-abox-mirroring, Page 175.

(warnings t) - see enable-nrql-warnings, Page 117
report -inconsistent -queries - see report-inconsistent-queries, Page 179
report -tautological -queries - see report-tautological-queries, Page 180
query-realization - see enable-query-realization, Page 182
(add -rule-consequences-automatically t) - see

add-rule-consequences-automatically, Page 162
query-repository - see enable-query-repository, Page 183
(query-optimization t) - see enable-query-optimization, Page 166
(optimizer-use-cardinality-heuristics t) - see

optimizer-use-cardinality-heuristics, Page 166
how -many-tuples - see set-max-no-of-tuples-bound, Page 170
timeout - a timeout, specified in milliseconds
phase-two-starts-warning-tokens - see enable-phase-two-starts-warning-tokens,

Page 167
(kb-has-changed -warning-tokens t) - see enable-kb-has-changed-warning-tokens,

Page 167
exclude-permutations - see exclude-permutations, Page 174
(check -abox -consistency t) - see check-abox-consistency-before-querying,

Page 169. The default value is t, but only for the complete modes
(3,4,5,6). The incomplete modes will use default value NIL.

(abox (current-abox)) - the ABox to be queried. Note that the
(current-abox) of RacerPro will not be changed. However, the
query definition mechanism of nRQL is aware of this change and
correctly puts definitions which are made in the scope of the macro
into the specified ABox.

(tbox (current-tbox)) - the TBox to be queried, for TBox queries
&body body - the body of the macro

Remarks: For most of these keyword arguments a corresponding pair of API functions
called enable-.../ disable-... exists. See their documentations.

Examples: (with-nrql-settings (:mode 1 :abox ’smith-family)

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

178 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

(retrieve (?x) (?x woman))

(describe-query-processing-mode))

See also: describe-query-processing-mode, Page 164, set-nrql-mode, Page 165

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. QUERY INFERENCE 179

6.11 Query Inference

report-inconsistent-queries Function

Description: Advises nRQL to check newly prepared queries and rules automatically for
consistency and produce a warning if an inconsistent query or rule is en-
countered. A call of execute-query, Page 139 on such a query will return
:inconsistent .

Syntax: (report-inconsistent-queries)

Arguments:

Values: :OKAY-REPORTING-INCONSISTENT-QUERIES

Remarks: The consistency checker is incomplete. See Section 6.2.7 in the User Guide.
For rules, also the consequence of the rule is taken into account.

See also: report-tautological-queries, Page 180,
dont-report-inconsistent-queries, Page 179

dont-report-inconsistent-queries Function

Description: Advises nRQL no longer to report inconsistent queries, see
report-inconsistent-queries, Page 179.

report-tautological-queries Function

Description: Advises nRQL to check newly prepared queries and rules automatically for
being a tautology. If a tautological query or rule is encountered, a warning
will be printed on STDOUT.

Syntax: (report-tautological-queries)

Arguments:

Values: :OKAY-REPORTING-TAUTOLOGICAL-QUERIES

Remarks: The tautology checker is currently very incomplete. See Section 6.2.7 in the
User Guide for more info.

See also: report-inconsistent-queries, Page 179,
dont-report-tautological-queries, Page 180

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

180 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

dont-report-tautological-queries Function

Description: Advises nRQL no longer to report tautological queries, see
report-tautological-queries, Page 180.

query-consistent-p Function

Description: Checks the consistency of the query id .

Syntax: (query-consistent-p id)

Arguments: id - the ID of the query, or :last.

Values: T or NIL.

Remarks: Note that only NIL answers can be trusted. The answer T does not mean
consistent, but unknown.

See also: query-tautological-p, Page 180, query-inconsistent-p, Page 180,
query-entails-p, Page 181

query-inconsistent-p Function

Description: See query-consistent-p, Page 180. Note that only T answers can be
trusted. The answer NIL does not mean consistent, but unknown. See
also query-consistent-p, Page 180, query-tautological-p, Page 180,
query-entails-p, Page 181.

query-tautological-p Function

Description: See query-consistent-p, Page 180. Checks whether the query with spec-
ified ID is tautological. Note that also T can be trusted. The answer NIL
does not mean that the query is tautological, but means unknown. See
also query-consistent-p, Page 180, query-inconsistent-p, Page 180,
query-entails-p, Page 181.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.11. QUERY INFERENCE 181

query-entails-p Function

Description: Checks whether query id1 entails (is more specific than) query id2 .

Syntax: (query-entails-p id1 id2)

Arguments: id1 - the ID of the first query, or :last.

id2 - the ID of the second query, or :last.

Values: T or NIL.

Remarks: Note that T can be trusted, and NIL means unknown. See Section 6.2.7 in
the User Guide. We are working on more complete algorithms.

See also: query-consistent-p, Page 180, query-inconsistent-p, Page 180,
query-tautological-p, Page 180, query-equivalent-p, Page 181

query-equivalent-p Function

Description: Checks whether query id1 is equivalent to query id2 . Simply checks whether
(query-entails-p id1 id2) and (query-entails-p id2 id1) both return
T, see query-entails-p, Page 181.

enable-query-realization Function

Description: Configures nRQL to automatically add logically implied conjuncts to newly
prepared queries. The resulting query will be equivalent to the original one,
but “more informed”.

Syntax: (enable-query-realization)

Arguments:

Values: :OKAY-QUERY-REALIZATION-ENABLED

Remarks: This might be called a “semantic optimization” technique. See Section 6.2.9
in the User Guide. Adding logically implied conjuncts to a query enhances
the degree of informdness of the query answering search process. This is still
experimental, as the whole query reasoning API.

See also: disable-query-realization, Page 182

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

182 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

disable-query-realization Function

Description: Disables the addition of logically implied conjuncts to queries. See
enable-query-realization, Page 182.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERY REPOSITORY 183

6.12 Query Repository

enable-query-repository Function

Description: Configures nRQL to use the Query Repository, also called the QBox. See
Section 6.2.8 in the User Guide. Each new query is automatically classified
into the current QBox. The stored answer sets of the queries in the QBox
are used as caches to speed up query answer computations.

Syntax: (enable-query-repository)

Arguments:

Values: :OKAY-QUERY-REPOSITORY-ENABLED

Remarks: Automatically classifying each new query into the QBox is a potentially
expensive operation. Thus, currently it may not pay off to use the QBox. We
are working on more efficient algorithms.

See also: disable-query-repository, Page 183, show-current-qbox, Page 184

disable-query-repository Function

Description: Configures nRQL NOT to use the Query Repository, see
enable-query-repository, Page 183.

show-qbox-for-abox Function

Description: Prints the DAG of the QBox for the given ABox as a tree.

Syntax: (show-qbox-for-abox abox &optional show-definitions-p)

Arguments: abox - the ABox whose QBox shall be printed.

show -definitions-p - if T, not only the query IDs will be printed, but also
the bodies of the queries stored in the QBox.

Values: A graphical representation of the QBox for the ABox abox on STDOUT.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

184 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

This function either returns :see-output-on-stdout, or :NOT-FOUND.

Remarks: This function only returns :SEE-OUTPUT-ON-STDOUT or :NOT-FOUND as a re-
turn value. However, the graphical representation of the QBox is printed to
STDOUT. RacerPorter will display this output.

See also: get-dag-of-qbox-for-abox, Page 184, show-current-qbox, Page 184.

show-current-qbox Function

Description: Simply calls show-qbox-for-abox, Page 184 on (current-abox).

get-dag-of-qbox-for-abox Function

Description: Returns the DAG of the QBox for the given ABox as a list of triples in the
format “(<equivalent queries>, <query parents>, <query children>)”.

Syntax: (get-dag-of-qbox-for-abox abox)

Arguments: abox - the ABox whose QBox shall be returned.

Values: The DAG as a list of triples, or :NOT-FOUND.

See also: get-dag-of-current-qbox, Page 184, show-qbox-for-abox, Page 184.

get-dag-of-current-qbox Function

Description: Simply calls get-dag-of-qbox-for-abox, Page 184 on (current-abox).

get-abox-of-current-qbox Function

Description: Returns the ABox which is associated to the current QBox.

Syntax: (get-abox-of-current-qbox)

Arguments:

Values: The name of the ABox, or :NOT-FOUND in case there is not current QBox.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.12. QUERY REPOSITORY 185

get-nodes-in-qbox-for-abox Function

Description: Returns the IDs of the queries (nodes) in the QBox for the specified ABox
abox .

Syntax: (get-nodes-in-qbox-for-qbox abox)

Arguments: abox - the ABox specifying the QBox whose nodes (queries) shall be re-
turned.

Values: A list of query IDs in this QBox, or :NOT-FOUND in case there is no such
QBox.

get-nodes-in-current-qbox Function

Description: Simply calls get-nodes-in-qbox-for-abox, Page 185 on (current-abox).

query-parents Function

Description: Returns the IDs of the parent queries of the query id from the QBox. See
Section 6.2.8 in the User Guide.

Syntax: (query-parents id)

Arguments: id - the ID of the query, or :last.

Values: A list of query IDs – the parents of the query id .

Remarks: Works only if query repository is enabled. Otherwise, the query id was not
classified. See enable-query-repository, Page 183.

See also: query-ancestors, Page 186

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

186 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

query-children Function

Description: Returns the IDs of the child queries of the query id from the QBox. See
Section 6.2.8 in the User Guide.

Syntax: (query-children id)

Arguments: id - the ID of the query, or :last.

Values: A list of query IDs – the children of the query id .

Remarks: Works only if query repository is enabled. Otherwise, the query id was not
classified. See enable-query-repository, Page 183.

See also: query-descendants, Page 186

query-ancestors Function

Description: Returns the query ancestors. See query-parents, Page 185.

query-descendants Function

Description: Returns the query descendants. See query-children, Page 186.

query-equivalents Function

Description: Returns the IDs of the equivalent queries of the query id from the QBox.
See Section 6.2.8 in the User Guide.

Syntax: (query-equivalents id)

Arguments: id - the ID of the query, or :last

Values: A list of query IDs – the queries which are equivalent to query id .

Remarks: Works only if query repository is enabled. Otherwise, the query id was not
classified. See enable-query-repository, Page 183.

See also: query-parents, Page 185, query-children, Page 186

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. THE SUBSTRATE REPRESENTATION LAYER 187

6.13 The Substrate Representation Layer

create-data-node Function

Description: Creates a data substrate node with appropriate name, label, and optionally
also an associated ABox individual. See Section 6.1.7 in the User Guide.

Syntax: (create-data-node name &key abox type-of -substrate

descr

racer-descr)

Arguments: abox - the name of the associated ABox of the substrate in which the node
is to be created.

type-of -substrate - the type of the substrate which is associated with the ABox
abox .

descr - the label of the node. See <data-substrate-label>, Section 6.1.8
in the User Guide.

racer -descr - if supplied, a corresponding ABox individual is created in abox ,
and (instance name racer-descr) is asserted.

Values: The name of the node.

See also: data-node, Page 187

data-node Macro

Description: Corresponding macro for create-data-node, Page 187.

Syntax: (data-node name (*) &optional (descr nil) (*)

(racer-descr nil) (*)

abox (*) type-of -substrate (*))

Arguments: See create-data-node, Page 187.

Remarks: None of the arguments is evaluated.

See also: create-data-node, Page 187

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

188 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

delete-data-node Function

Description: Delete a data substrate node.

Syntax: (delete-data-node name &key abox type-of -substrate)

Arguments: name - the name of the node which shall be deleted.

abox - the name of the associated ABox of the substrate in which the node
shall be deleted.

type-of -substrate - the type of the substrate which is associated with the ABox
abox .

Values: :OKAY-DELETED or :NOT-FOUND

See also: del-data-node, Page 188

del-data-node Macro

Description: Corresponding macro for delete-data-node, Page 188.

Syntax: (del-data-node name (*) &optional abox (*) type-of -substrate (*))

Arguments: See delete-data-node, Page 188.

Remarks: None of the arguments is evaluated.

See also: delete-data-node, Page 188

create-data-edge Function

Description: Creates a labeled data substrate edge, and optionally also a corresponding
role membership assertion in the ABox .

Syntax: (create-data-edge from to &key abox type-of -substrate

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. THE SUBSTRATE REPRESENTATION LAYER 189

(racer-descr nil))

Arguments: from, to - the names of the two substrate nodes between which the edge is
to be created.

abox - the name of the associated ABox of the substrate in which the edge
is to be created.

type-of -substrate - the type of the substrate which is associated with the ABox
abox .

descr - the label of the edge, if supplied.
racer -descr - if supplied, the ABox assertion (related from to

racer-descr) is asserted to abox .

Values: The pair (from to).

See also: data-edge, Page 189

data-edge Macro

Description: Corresponding macro for create-data-edge, Page 189.

Syntax: (data-edge from (*) to (*) descr (*) &optional (racer-descr nil)

(*) abox (*) type-of -substrate (*))

Arguments: See create-data-edge, Page 189.

Remarks: None of the arguments is evaluated.

See also: create-data-edge, Page 189

delete-data-edge Function

Description: Deletes a data substrate edge.

Syntax: (delete-data-edge from to &key abox type-of -substrate)

Arguments: from, to - the names of the nodes between which the edge shall be deleted.
abox - the name of the associated ABox of the substrate in which the node

shall be deleted.
type-of -substrate - the type of the substrate which is associated with the ABox

abox .

Values: :OKAY-DELETED or :NOT-FOUND

See also: del-data-edge, Page 190

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

190 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

del-data-edge Macro

Description: Corresponding macro for delete-data-node, Page 188.

Syntax: (del-data-edge from (*) to (*) &optional abox (*)
type-of -substrate (*))

Arguments: See delete-data-edge, Page 190.

Remarks: None of the arguments is evaluated.

See also: delete-data-node, Page 188

get-data-node-label Function

Description: Gets the label of a data substrate node.

Syntax: (get-data-node-label name &key abox type-of -substrate)

Arguments: name - the name of the node

abox - the name of the associated ABox of the substrate

type-of -substrate - the type of the substrate which is associated with the ABox
abox .

Values: The label of the node, or :NOT-FOUND

See also: node-label, Page 190

node-label Macro

Description: Corresponding macro for get-data-node-label, Page 190.

Syntax: (node-label name (*) &optional abox (*) type-of -substrate (*))

Arguments: See get-data-node-label, Page 190

Remarks: None of the arguments is evaluated.

See also: get-data-node-label, Page 190

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. THE SUBSTRATE REPRESENTATION LAYER 191

get-data-edge-label Function

Description: Gets the label of a data substrate edge.

Syntax: (get-data-edge-label from to &key abox type-of -substrate)

Arguments: from, to - the names of the nodes of the edge

abox - the name of the associated ABox of the substrate

type-of -substrate - the type of the substrate which is associated with the ABox
abox .

Values: The label of the edge, or :NOT-FOUND

See also: edge-label, Page 191

edge-label Macro

Description: Corresponding macro for get-data-node-label, Page 190.

Syntax: (edge-label from (*) to (*) &optional abox (*) type-of -substrate
(*))

Arguments: See get-data-edge-label, Page 191

Remarks: None of the arguments is evaluated.

See also: get-data-edge-label, Page 191

in-data-box Macro

Description: Sets up a data substrate for an ABox.

Syntax: (in-data-box abox (*))

Arguments: abox (*) - the name of the associated ABox of the substrate

Values: The name of the substrate.

See also: in-mirror-data-box, Page 192, in-rcc-box, Page 193, data-node, Page
187, data-edge, Page 189, del-data-node, Page 188, del-data-edge, Page
190, edge-label, Page 191, node-label, Page 190

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

192 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

set-data-box Function

Description: Functional equivalent of in-data-box, Page 191.

in-mirror-data-box Macro

Description: Sets up a mirror data substrate for an ABox.

Syntax: (in-mirror-data-box abox (*))

Arguments: See in-data-box, Page 191

See also: in-data-box, Page 191, enable-abox-mirroring,
Page 174, enable-smart-abox-mirroring, Page 175,
enable-very-smart-abox-mirroring, Page 175

set-mirror-data-box Function

Description: Functional equivalent of in-mirror-data-box, Page 192.

enable-data-substrate-mirroring Macro

Description: Advises nRQL to create substrates of type mirror-data-substrate instead
of substrates of type racer-dummy-substrate for Racer ABoxes. Additional
retrieval facilities are then provided, e.g., for OWL files. Please refer to the
User Guide.

Syntax: (enable-data-substrate-mirroring)

Arguments:

Remarks: If you want to exploit the additional retrieval facilities offered by
the data substrate for OWL or Racer KBs, then you must call
enable-data-substrate-mirroring before the first nRQL query is made.

See also: disable-data-substrate-mirroring, Page 192

disable-data-substrate-mirroring Function

Description: See enable-data-substrate-mirroring, Page 192.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.13. THE SUBSTRATE REPRESENTATION LAYER 193

in-rcc-box Macro

Description: Sets up a RCC data substrate for an ABox.

Syntax: (in-rcc-box abox (*) &optional RCC -type (*))

Arguments: abox (*) - the name of the associated ABox of the substrate

RCC -type (*) - must be :RCC5 or :RCC8

See also: in-data-box, Page 191

set-rcc-box Function

Description: Functional equivalent of in-rcc-box, Page 193.

rcc-instance Macro

Description: Syntactic sugar - same as data-node, Page 187.

rcc-node Macro

Description: Syntactic sugar - same as data-node, Page 187.

create-rcc-node Function

Description: Syntactic sugar - same as create-data-node, Page 187.

rcc-related Macro

Description: Syntactic sugar - same as data-edge, Page 189.

rcc-edge Macro

Description: Syntactic sugar - same as data-edge, Page 189.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

194 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

create-rcc-edge Function

Description: Syntactic sugar - same as create-data-edge, Page 189.

rcc-node-label Macro

Description: Syntactic sugar - same as node-label, Page 190.

rcc-edge-label Macro

Description: Syntactic sugar - same as edge-label, Page 191.

del-rcc-node Macro

Description: Syntactic sugar - same as del-data-node, Page 188.

del-rcc-edge Macro

Description: Syntactic sugar - same as del-data-edge, Page 190.

rcc-consistent-p Function

Description: Checks the consistency of an RCC network.

Syntax: (rcc-consistent-p &optional abox type-of -substrate)

Arguments: abox - the name of the associated ABox of the RCC substrate
type-of -substrate - the type of the substrate which is associated with the ABox

abox

Values: T or NIL

rcc-consistent? Macro

Description: Corresponding macro for rcc-consistent-p, Page 194.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

6.14. THE NRQL PERSISTENCY FACILITY 195

6.14 The nRQL Persistency Facility

store-substrate-for-abox Function

Description: Stores a binary dump of the specified substrate into a file.

Syntax: (store-substrate-for-abox filename &optional (for-abox
(current-abox)) type-of -substrate)

Arguments: filename - the name of the file.

for -abox - the name of the associated ABox of the substrate which shall be
stored.

type-of -substrate - the type of the substrate in case there is
more than one substrate associated to this ABox. Must
be one of: racer-dummy-substrate, data-substrate,
mirror-data-substrate, rcc-substrate.

Values: The name of the substrate which has been stored, or :NOT-FOUND in case
nRQL cannot find a substrate with the specified name and/or type.

Remarks: Note that also the associated ABox, TBox, QBox, as well as defined queries
are stored into the dump.

See also: restore-substrate, Page 195

restore-substrate Function

Description: Restores a substrate from the specified file. Note that current-abox is set
to the restored ABox, as well as current-tbox to the associated TBox. An
eventually restored QBox and the definitions of the restored substrate are
made “current” as well.

Syntax: (restore-substrate filename)

Arguments: filename - the name of the file.

See also: store-substrate-for-abox, Page 195

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

196 CHAPTER 6. THE API OF THE NRQL QUERY PROCESSING ENGINE

store-substrate-for-current-abox Function

Description: Simply calls store-substrate-for-abox, Page 195 on the
(current-abox).

store-all-substrates Function

Description: Stores all available substrates into the specified file filename.

restore-all-substrates Function

Description: Restores all substrates form the specified file filename. Note that changes to
the state of RacerPro and nRQL are made.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 7

Publish and Subscribe Functions

In the following the functions offered by the publish-subscribe facility are explained in detail.

publish macro

Description: Publish an ABox individual.

Syntax: (publish IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

publish-1 macro

Description: Functional interface for publish.

Syntax: (publish-1 IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

198 CHAPTER 7. PUBLISH AND SUBSCRIBE FUNCTIONS

unpublish macro

Description: Withdraw a publish statement.

Syntax: (unpublish IN
&optional (ABN (current-abox)))

Arguments: IN - individual name

ABN - ABox name

unpublish-1 function

Description: Functional interface for unpublish.

Syntax: (unpublish-1 IN
&optional (ABN (abox-name (current-abox))))

Arguments: IN - individual name

ABN - ABox name

subscribe macro

Description: Subscribe to an instance retrieval query.

Syntax: (subscribe subscriber-name C
&optional (ABN (current-abox))
host port)

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

host - ip number of the host to which results are to be sent as a string

port - port number (integer)

Values: A list of tuples consisting of subscriber and individuals names.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

199

subscribe-1 function

Description: Functional interface for subscribe.

Syntax: (subscribe-1 subscriber-name C
&optional (ABN (current-abox))
host port)

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

host - ip number of the host to which results are to be sent as a string

port - port number (integer)

unsubscribe macro

Description: Retract a subscription.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (current-abox)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

unsubscribe-1 function

Description: Functional interface for unsubscribe.

Syntax: (unsubscribe subscriber-name
&optional C (ABN (current-abox)))

Arguments: subscriber-name - subscriber name

C - concept term

ABN - ABox name

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

200 CHAPTER 7. PUBLISH AND SUBSCRIBE FUNCTIONS

init-subscriptions macro

Description: Initialize the subscription database.

Syntax: (init-subscriptions &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-subscriptions-1 function

Description: Functional interface for init-subscriptions

Syntax: (init-subscriptions-1 &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-publications macro

Description: Initialize the set of published individuals.

Syntax: (init-publications &optional (ABN (current-abox)))

Arguments: ABN - ABox name

init-publications-1 function

Description: Functional interface for init-subscription.

Syntax: (init-publications-1 &optional (ABN (current-abox)))

Arguments: ABN - ABox name

check-subscriptions macro

Description: Explicitly check for new instance retrieval results w.r.t. the set of subscrip-
tions.

Syntax: (check-subscriptions ABN)

Arguments: ABN - ABox name

Values: A list of tuples consisting of subscriber and individuals names.

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Chapter 8

The Racer Persistency Services

The following functions define the Racer Persistency Services.

store-tbox-image function

Description: Store an image of a TBox.

Syntax: (store-tbox-image filename &optional (TBN (current-tbox))

Arguments: filename - filename
TBN - tbox name

store-tboxes-image function

Description: Store an image of a list of TBoxes.

Syntax: (store-tboxes-image tboxes filename)

Arguments: tboxes - a list of TBox names
filename - filename

restore-tbox-image function

Description: Restore an image of a TBox.

Syntax: (restore-tbox-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

202 CHAPTER 8. THE RACER PERSISTENCY SERVICES

restore-tboxes-image function

Description: Restore an image of a set of TBoxes.

Syntax: (restore-tboxes-image filename)

Arguments: filename - filename

store-abox-image function

Description: Store an image of an Abox.

Syntax: (store-abox-image filename &optional (ABN (current-abox)))

Arguments: filename - filename

ABN - abox name

store-aboxes-image function

Description: Store an image of a list of Aboxes.

Syntax: (store-aboxes-image aboxes filename)

Arguments: aboxes - a list of abox names

filename - filename

restore-abox-image function

Description: Restore an image of an Abox.

Syntax: (restore-abox-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

203

restore-aboxes-image function

Description: Restore an image of a set of aboxes.

Syntax: (restore-aboxes-image filename)

Arguments: filename - filename

store-kb-image function

Description: Store an image of an kb.

Syntax: (store-kb-image filename &optional (KBN (current-tbox)))

Arguments: filename - filename
KBN - kb name

store-kbs-image function

Description: Store an image of a list of kbs.

Syntax: (store-kbs-image kbs filename)

Arguments: kbs - a list of knowledge base names
filename - filename

restore-kb-image function

Description: Restore an image of an kb.

Syntax: (restore-kb-image filename)

Arguments: filename - filename

restore-kbs-image function

Description: Restore an image of a set of kbs.

Syntax: (restore-kbs-image filename)

Arguments: filename - filename

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

204 CHAPTER 8. THE RACER PERSISTENCY SERVICES

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

Index

bottom, 30
top, 29

abort-all-queries, 138
abort-all-rules, 138
abort-query, 138
abort-rule, 138
abox-consistent-p, 84
abox-consistent?, 85
abox-prepared-p, 83
abox-prepared?, 83
abox-realized-p, 82
abox-realized?, 82
abox-una-consistent-p, 85
abox-una-consistent?, 85
accurate-queries, 120
accurate-rules, 121
active-cheap-queries, 131
active-cheap-rules, 131
active-expensive-queries, 131
active-expensive-query-p, 128
active-expensive-rule-p, 128
active-expensive-rules, 132
active-queries, 130
active-rules, 131
add-all-different-assertion, 50
add-annotation-concept-assertion, 55
add-annotation-role-assertion, 55
add-attribute-assertion, 53
add-chosen-sets-of-rule-consequences, 163
add-concept-assertion, 45
add-concept-axiom, 33

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

206 INDEX

add-constraint-assertion, 52
add-datatype-property, 44
add-datatype-role-filler, 54
add-different-from-assertion, 50
add-disjointness-axiom, 33
add-role-assertion, 46
add-role-assertions-for-datatype-properties, 169
add-role-axioms, 37
add-rule-consequences-automatically, 162
add-same-individual-as-assertion, 49
alc-concept-coherent, 66
all-aboxes, 110
all-annotation-concept-assertions, 112
all-annotation-role-assertions, 112
all-atomic-concepts, 99
all-attribute-assertions, 113
all-attributes, 100
all-concept-assertions, 111
all-concept-assertions-for-individual, 110
all-constraints, 113
all-different, 50
all-equivalent-concepts, 99
all-features, 99
all-individuals, 110
all-queries, 120
all-role-assertions, 112
all-role-assertions-for-individual-in-domain, 111
all-role-assertions-for-individual-in-range, 111
all-roles, 99
all-rules, 120
all-tboxes, 98
all-transitive-roles, 100
applicable-rules, 143
apply-abox-rule, 160
associated ABoxes, 18
associated-aboxes, 18
associated-tbox, 27
atomic-concept-ancestors, 94
atomic-concept-children, 94
atomic-concept-descendants, 93
atomic-concept-parents, 95
atomic-concept-synonyms, 92

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 207

atomic-role-ancestors, 96
atomic-role-children, 97
atomic-role-descendants, 96
atomic-role-domain, 72
atomic-role-inverse, 71
atomic-role-parents, 98
atomic-role-range, 73
atomic-role-synonyms, 98
attribute, 44
attribute-domain, 74
attribute-domain-1, 74
attribute-filler, 54
attribute-has-domain, 41
attribute-has-range, 42
attribute-type, 100

bottom, 30

cd-attribute-p, 69
cd-attribute?, 70
cd-object-p, 90
cd-object?, 90
cheap-queries, 129
cheap-query-p, 128
cheap-rule-p, 128
cheap-rules, 129
check-abox-coherence, 86
check-abox-consistency-before-querying, 169
check-subscriptions, 200
check-tbox-coherence, 75
choose-current-set-of-rule-consequences, 162
classify-tbox, 74
clear-default-tbox, 18
clear-mirror-table, 6
clone ABox, 25, 26
clone TBox, 16, 17
clone-abox, 26
clone-tbox, 17
compute-all-implicit-role-fillers, 83
compute-implicit-role-fillers, 84
compute-index-for-instance-retrieval, 59
concept-ancestors, 93

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

208 INDEX

concept-children, 94
concept-descendants, 93
concept-disjoint-p, 64
concept-disjoint?, 64
concept-equivalent-p, 63
concept-equivalent?, 63
concept-instances, 103
concept-is-primitive-p, 65
concept-is-primitive?, 65
concept-offspring, 94
concept-p, 64
concept-parents, 95
concept-satisfiable-p, 62
concept-satisfiable?, 61
concept-subsumes-p, 62
concept-subsumes?, 62
concept-synonyms, 92
concept?, 65
concrete domain attribute, 44
constrained, 53
constraint-entailed-p, 87
constraint-entailed?, 87
constraints, 52
copy ABox, 25, 26
copy TBox, 16, 17
create-abox-clone, 25
create-data-edge, 188
create-data-node, 187
create-rcc-edge, 194
create-rcc-node, 193
create-tbox-clone, 16
current-abox, 21
current-tbox, 13

daml-read-document, 4
daml-read-file, 4
data-edge, 189
data-node, 187
datatype property, 44
datatype-role-filler, 54
datatype-role-has-range, 42
datatype-role-range, 73

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 209

def-and-exec-query, 158
def-and-prep-query, 157
define-and-execute-query, 158
define-and-prepare-query, 158
define-concept, 32
define-concrete-domain-attribute, 43
define-datatype-property, 44
define-disjoint-primitive-concept, 32
define-distinct-individual, 48
define-individual, 49
define-primitive-attribute, 35
define-primitive-concept, 31
define-primitive-role, 34
define-query, 158
defquery, 156
del-data-edge, 190
del-data-node, 188
del-rcc-edge, 194
del-rcc-node, 194
delete ABox, 24, 27
delete ABoxes, 24
delete TBox, 15, 18
delete TBoxes, 16
delete-abox, 24
delete-all-aboxes, 24
delete-all-definitions, 159
delete-all-queries, 121
delete-all-rules, 122
delete-all-tboxes, 15
delete-data-edge, 189
delete-data-node, 188
delete-query, 121
delete-rule, 121
delete-tbox, 15
describe-abox, 113
describe-all-definitions, 159
describe-all-queries, 124
describe-all-rules, 124
describe-concept, 101
describe-current-substrate, 164
describe-definition, 159
describe-individual, 114

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

210 INDEX

describe-query, 124
describe-query-processing-mode, 164
describe-query-status, 122
describe-role, 101
describe-rule, 124
describe-rule-status, 122
describe-tbox, 101
different-from, 50
dig-read-document, 7
dig-read-file, 6
direct-predecessors, 109
disable-abox-mirroring, 174
disable-data-substrate-mirroring, 192
disable-kb-has-changed-warning-tokens, 167
disable-nrql-warnings, 117
disable-phase-two-starts-warning-tokens, 167
disable-query-optimization, 166
disable-query-realization, 182
disable-query-repository, 183
disjoint, 31
disjoint concepts, 31, 32
domain, 40
dont-add-role-assertions-for-datatype-properties, 169
dont-add-rule-consequences-automatically, 162
dont-check-abox-consistency-before-querying, 169
dont-report-inconsistent-queries, 179
dont-report-tautological-queries, 180

edge-label, 191
enable-abox-mirroring, 174
enable-data-substrate-mirroring, 192
enable-eager-tuple-computation, 168
enable-kb-has-changed-warning-tokens, 167
enable-lazy-tuple-computation, 168
enable-nrql-warnings, 117
enable-phase-two-starts-warning-tokens, 167
enable-query-optimization, 166
enable-query-realization, 181
enable-query-repository, 183
enable-smart-abox-mirroring, 175
enable-very-smart-abox-mirroring, 175
ensure-abox-signature, 21

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 211

ensure-small-tboxes, 60
ensure-subsumption-based-query-answering, 60
ensure-tbox-signature, 13
equivalent, 31
exclude-permutations, 174
execute-all-queries, 140
execute-all-rules, 140
execute-applicable-rules, 143
execute-query, 139
execute-rule, 139
expensive-queries, 129
expensive-rules, 129

feature, 35, 36
feature-p, 69
feature?, 69
find-abox, 26
find-tbox, 17
firerule, 160
forget, 51
forget-abox, 24
forget-concept-assertion, 45
forget-constrained-assertion, 48
forget-constraint, 48
forget-disjointness-axiom, 47
forget-disjointness-axiom-statement, 47
forget-role-assertion, 47
forget-statement, 51
forget-tbox, 15
full-reset, 119
functional, 38

GCI, 30
get-abox-language, 84
get-abox-of-current-qbox, 184
get-abox-signature, 21
get-abox-version, 22
get-all-answers, 154
get-all-remaining-sets-of-rule-consequences, 153
get-all-remaining-tuples, 153
get-answer, 153
get-answer-size, 154

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

212 INDEX

get-concept-definition, 79
get-concept-definition-1, 79
get-concept-negated-definition, 80
get-concept-negated-definition-1, 80
get-concept-pmodel, 81
get-current-set-of-rule-consequences, 151
get-current-tuple, 150
get-dag-of-current-qbox, 184
get-dag-of-qbox-for-abox, 184
get-data-edge-label, 191
get-data-node-label, 190
get-individual-pmodel, 90
get-initial-size-of-process-pool, 172
get-kb-signature, 21
get-max-no-of-tuples-bound, 170
get-maximum-size-of-process-pool, 171
get-meta-constraint, 78
get-namespace-prefix, 7
get-next-n-remaining-sets-of-rule-consequences, 152
get-next-n-remaining-tuples, 152
get-next-set-of-rule-consequences, 150
get-next-tuple, 149
get-nodes-in-current-qbox, 185
get-nodes-in-qbox-for-abox, 185
get-nrql-version, 117
get-process-pool-size, 170
get-racer-version, 57
get-server-timeout, 58
get-tbox-language, 78
get-tbox-signature, 13
get-tbox-version, 14

implies, 30
implies-role, 43
import-kb, 3
in-abox, 20
in-data-box, 191
in-knowledge-base, 2
in-mirror-data-box, 192
in-rcc-box, 193
in-tbox, 10
inaccurate-queries, 120

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 213

inaccurate-rules, 121
inactive-queries, 135
inactive-rules, 135
include file, 3
include-kb, 3
include-permutations, 174
individual-attribute-fillers, 105
individual-direct-types, 102
individual-filled-roles, 109
individual-fillers, 104
individual-instance-p, 86
individual-instance?, 86
individual-p, 89
individual-synonyms, 104
individual-told-attribute-fillers, 106
individual-told-attribute-value, 107
individual-told-datatype-fillers, 107
individual-types, 102
individual?, 89
individuals-equal-p, 88
individuals-equal?, 88
individuals-not-equal-p, 89
individuals-not-equal?, 89
individuals-related-p, 88
individuals-related?, 87
init-abox, 20
init-publications, 200
init-publications-1, 200
init-subscriptions, 200
init-subscriptions-1, 200
init-tbox, 11
instance, 44
instantiators, 103
inverse, 39
inverse-of-role, 39

kb-ontologies, 7
knowledge base ontologies, 7

load ABox, 23
logging-off, 59
logging-on, 59

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

214 INDEX

mirror, 6
most-specific-instantiators, 102

name set, 91
namespace prefix, 8
next-set-of-rule-consequences-available-p, 149
next-tuple-available-p, 149
node-label, 190

offline access to ontologies, 6
optimizer-dont-use-cardinality-heuristics, 166
optimizer-use-cardinality-heuristics, 166
original-query-body, 123
original-query-head, 123
original-rule-body, 123
original-rule-head, 123
owl-read-document, 5
owl-read-file, 5

parse-expression, 58
prepare-abox, 82
prepare-abox-query, 146
prepare-abox-rule, 161
prepare-nrql-engine, 119
prepare-racer-engine, 82
prepare-tbox-query, 148
prepared-queries, 130
prepared-rules, 130
preprule, 161
process-set-at-a-time, 173
process-tuple-at-a-time, 173
processed-queries, 135
processed-rules, 135
publish, 197
publish-1, 197

query-accurate-p, 154
query-active-p, 125
query-ancestors, 186
query-body, 123
query-children, 186
query-consistent-p, 180
query-descendants, 186

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 215

query-entails-p, 181
query-equivalent-p, 181
query-equivalents, 186
query-head, 122
query-inactive-p, 127
query-inconsistent-p, 180
query-parents, 185
query-prepared-p, 125
query-processed-p, 127
query-ready-p, 125
query-tautological-p, 180
query-waiting-p, 126

racer-answer-query, 145
racer-answer-query-under-premise, 145
racer-answer-tbox-query, 147
racer-apply-rule, 161
racer-prepare-query, 146
racer-prepare-rule, 161
racer-prepare-tbox-query, 148
racer-read-document, 3
racer-read-file, 2
range, 41
rcc-consistent-p, 194
rcc-consistent?, 194
rcc-edge, 193
rcc-edge-label, 194
rcc-instance, 193
rcc-node, 193
rcc-node-label, 194
rcc-related, 193
RDFS, 19
rdfs-read-tbox-file, 19
read DAML document, 5
read DAML file, 4
read dig document, 7
read dig file, 7
read OWL document, 6
read OWL file, 5
read RACER document, 3
read RACER file, 2
read RDFS TBox file, 19

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

216 INDEX

read XML TBox file, 19
ready-queries, 130
ready-rules, 130
realize-abox, 81
reexecute-all-queries, 141
reexecute-all-rules, 141
reexecute-query, 142
reexecute-rule, 142
reflexive-p, 71
reflexive?, 71
related, 46
related-individuals, 108
rename ABox, 27
rename TBox, 18
report-inconsistent-queries, 179
report-tautological-queries, 179
reprepare-query, 141
reprepare-rule, 142
reset-nrql-engine, 118
restore-abox-image, 202
restore-aboxes-image, 203
restore-all-substrates, 196
restore-kb-image, 203
restore-kbs-image, 203
restore-standard-settings, 118
restore-substrate, 195
restore-tbox-image, 201
restore-tboxes-image, 202
retrieve, 144
retrieve-concept-instances, 103
retrieve-direct-predecessors, 109
retrieve-individual-annotation-property-fillers, 108
retrieve-individual-attribute-fillers, 105
retrieve-individual-filled-roles, 109
retrieve-individual-fillers, 105
retrieve-individual-synonyms, 104
retrieve-individual-told-attribute-fillers, 106
retrieve-individual-told-attribute-value, 107
retrieve-individual-told-datatype-fillers, 107
retrieve-related-individuals, 108
retrieve-under-premise, 145
role-ancestors, 96

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 217

role-children, 97
role-descendants, 95
role-domain, 72
role-equivalent-p, 67
role-equivalent?, 67
role-has-domain, 41
role-has-parent, 43
role-has-range, 42
role-inverse, 72
role-is-functional, 38
role-is-transitive, 38
role-is-used-as-annotation-property, 39
role-is-used-as-datatype-property, 39
role-offspring, 97
role-p, 68
role-parents, 97
role-range, 72
role-subsumes-p, 67
role-subsumes?, 66
role-synonyms, 98
role-used-as-annotation-property-p, 73
role-used-as-datatype-property-p, 73
role?, 68
roles-equivalent, 40
roles-equivalent-1, 40
rule-accurate-p, 155
rule-active-p, 126
rule-applicable-p, 142
rule-body, 123
rule-head, 123
rule-inactive-p, 127
rule-prepared-p, 125
rule-processed-p, 127
rule-ready-p, 125
rule-waiting-p, 126
run-all-queries, 140
run-all-rules, 140
running-cheap-queries, 132
running-cheap-rules, 133
running-expensive-queries, 133
running-expensive-rules, 133
running-queries, 132

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

218 INDEX

running-rules, 132

same-as, 49
same-individual-as, 49
save knowledge base, 10
save TBox, 15
save-abox, 23
save-kb, 9
save-tbox, 14
set-associated-tbox, 28
set-attribute-filler, 53
set-current-abox, 22
set-current-tbox, 13
set-data-box, 192
set-find-abox, 27
set-find-tbox, 18
set-initial-size-of-process-pool, 172
set-max-no-of-tuples-bound, 170
set-maximum-size-of-process-pool, 172
set-mirror-data-box, 192
set-nrql-mode, 165
set-rcc-box, 193
set-server-timeout, 58
set-unique-name-assumption, 58
show-current-qbox, 184
show-qbox-for-abox, 183
signature, 11
state, 51
store-abox-image, 202
store-aboxes-image, 202
store-all-substrates, 196
store-kb-image, 203
store-kbs-image, 203
store-substrate-for-abox, 195
store-substrate-for-current-abox, 196
store-tbox-image, 201
store-tboxes-image, 201
subrole, 35, 36
subscribe, 198
subscribe-1, 199
superrole, 35, 36
symmetric-p, 70

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

INDEX 219

symmetric?, 70

taxonomy, 91
tbox, 27
tbox-classified-p, 75
tbox-classified?, 75
tbox-coherent-p, 77
tbox-coherent?, 77
tbox-cyclic-p, 76
tbox-cyclic?, 77
tbox-prepared-p, 76
tbox-prepared?, 76
tbox-retrieve, 147
terminated-queries, 135
terminated-rules, 136
time, 57
told-value, 106
top, 29
transitive, 38
transitive role, 35
transitive-p, 68
transitive?, 68

unapplicable-rules, 143
undefine-query, 158
undefquery, 157
unpublish, 198
unpublish-1, 198
unsubscribe, 199
unsubscribe-1, 199

wait-for-queries-to-terminate, 137
wait-for-rules-to-terminate, 137
waiting-cheap-queries, 134
waiting-cheap-rules, 134
waiting-expensive-queries, 134
waiting-expensive-rules, 135
waiting-queries, 133
waiting-rules, 134
with-nrql-settings, 176

XML, 19
xml-read-tbox-file, 19

Racer Systems GmbH & Co. KG — http://www.racer-systems.com

	Knowledge Base Management Functions
	TBox Management
	ABox Management

	Knowledge Base Declarations
	Built-in Concepts
	Concept Axioms
	Role Declarations
	Concrete Domain Attribute Declaration
	Assertions
	Concrete Domain Assertions

	Reasoning Modes
	Evaluation Functions and Queries
	Queries for Concept Terms
	Role Queries
	TBox Evaluation Functions
	ABox Evaluation Functions
	ABox Queries

	Retrieval
	TBox Retrieval
	ABox Retrieval

	The API of the nRQL Query Processing Engine
	Basic Commands
	Query / Rule Management
	Query / Rule Life Cycle
	Execution Control
	ABox Queries
	TBox Queries
	Getting Answers
	Defined Queries
	Rules
	Configuring the Querying Modes of nRQL
	Query Inference
	Query Repository
	The Substrate Representation Layer
	The nRQL Persistency Facility

	Publish and Subscribe Functions
	The Racer Persistency Services
	Index

