
RacerPro User’s Guide

Version 2.0

Racer Systems GmbH & Co. KG
http://www.racer-systems.com

October 24, 2012

http://www.racer-systems.com

Contents

1 Introduction 1

1.1 System Overview . 2

1.1.1 Design Principles . 2

1.1.2 Description and Query Languages . 4

1.1.3 Interfaces . 5

1.2 Different views on RacerPro . 5

1.2.1 RacerPro as a Semantic Web Reasoning System and Information Repository 5

1.2.2 RacerPro as a Knowledge Representation and Reasoning System 6

1.3 Application Areas . 8

2 Using RacerPro and its Interfaces 11

2.1 Sample Session . 11

2.1.1 Using RacerPro with RacerPorter . 13

2.1.2 Using RacerPro from the Command Line . 16

2.2 The RacerPro Server . 18

2.2.1 The File Interface . 18

2.2.2 TCP Interfaces . 20

2.2.3 Options for RacerPro Server . 35

2.2.4 How to Send Bug Reports . 37

2.2.5 Online Reference Manual . 38

2.3 RacerPorter in Details . 41

2.3.1 Distribution of GUI elements . 41

2.3.2 Preferences . 44

2.3.3 RacerEditor . 45

2.3.4 Tabs in RacerPorter . 47

2.3.5 Known Problems . 55

2.4 Other Graphical Client Interfaces . 55

2.4.1 Protégé . 55

2.4.2 Using Protégé and RacerPorter in Combination 58

3 Modeling Languages and Basic Reasoning Services 61

3.1 Naming Conventions . 61

i

ii CONTENTS

3.2 Concept Language . 62

3.3 Concept Axioms . 64

3.4 Role Axioms . 65

3.5 Concrete Domains . 66

3.6 Individual Assertions and A-boxes . 69

3.7 Specifying Rules . 71

3.8 Hints on Modeling and Reasoning with RacerPro . 74

3.8.1 Representing Data with Description Logics (?) 74

3.8.2 Nominals or Concrete Domains? . 75

3.8.3 Open-World Assumption . 77

3.8.4 Closed-World Assumption . 77

3.8.5 Unique Name Assumption . 78

3.9 Evaluating RacerPro and Configuring Reasoning Modes 78

4 The New RacerPro Query Language - nRQL 81

4.1 The nRQL Language . 85

4.1.1 Query Atoms, Objects, Individuals, and Variables 85

4.1.2 Query Head Projection Operators to Retrieve Told Values 101

4.1.3 Complex Queries . 108

4.1.4 Defined Queries . 120

4.1.5 ABox Augmentation with Simple Rules . 125

4.1.6 Complex TBox Queries . 129

4.1.7 Hybrid Representations with the Substrate Representation Layer 133

4.1.8 Functional Lambda Expressions . 146

4.1.9 Formal Syntax of nRQL . 150

4.2 The nRQL Query Processing Engine . 157

4.2.1 The Query Processing Modes of nRQL . 157

4.2.2 The Life Cycle of a Query . 160

4.2.3 The Life Cycle of a Rule . 161

4.2.4 How to Implement Your Own Rule Application Strategy 161

4.2.5 Configuring the Degree of nRQL Completeness 164

4.2.6 Automatic Deadlock Prevention . 168

4.2.7 Reasoning with Queries . 171

4.2.8 The Query Repository - The QBox . 177

4.2.9 The Query Realizer . 180

4.2.10 The nRQL Persistency Facility . 181

5 Additional Facilities 185

5.1 Retraction and Incremental Additions . 185

5.2 Rule Formalism Extended to Support Abduction . 185

5.3 Reasoning with Triples in Secondary Memory . 188

CONTENTS iii

5.4 The Publish-Subscribe Mechanism . 193

5.4.1 An Application Example . 193

5.4.2 Using JRacer for Publish and Subscribe . 198

5.5 OWL Interface . 199

5.6 Explanation . 201

5.7 Non-standard Inferences . 202

5.8 Event Recognition . 203

A Editions and Licenses 205

A.1 Editions . 205

A.2 Licenses . 206

B Acknowledgments 209

Index 217

Chapter 1

Introduction

RacerPro (Renamed ABox and Concept Expression Reasoner Professional) is a server system for
building knowledge-based applications based on ontologies. The backbone of RacerPro is a descrip-
tion logic reasoning engine. It provides inference services for descriptions of terminological knowl-
edge as well as for knowledge about individuals. Based on a plethora of optimization techniques
developed in the research field of description logics throughout the years, a mature architecture op-
timized for typical-case application scenarios involving expressive description languages is provided.
The system has been used in hundreds of research projects and industrial contexts throughout the
last twelve years. W3C standards as well as detailed feedback reports from numerous users have
influenced the design of the system architecture in general, and have also shaped the RacerPro
knowledge representation and interface languages in particular.

Description logics provide the foundation for international approaches to standardize conceptual
modeling languages in the context of the so-called semantic web, RacerPro can be used as a system
for managing semantic web ontologies based on syntaxes provided by the web ontology language
OWL. It can be used as a reasoning engine for ontology editors such as Protégé. In addition,
RacerPro can also be seen as a semantic web information repository with an optimized retrieval
engine. It can handle large sets of data descriptions (e.g., defined using the standardized resource
description format RDF). Last but not least, the system can also be used as a satisfiability tester
for modal logics such as Km (with axioms).

The RacerPro User’s Guide is intended for different audiences, i.e., students of computer science
who participate in research efforts about semantic technologies, or for developers of semantic web
applications with interests in description logic reasoning, interoperability of the RacerPro reasoner
with current semantic web standards as well as APIs for programming semantic web applications.
Given the diversity of the semantic web research field, this document is not intended as an in-
troductory first-level source of information. Some chapters might require additional background
knowledge. We suggest to follow the provided references in case some terms are new to the reader,
and encourage the reader to also use the virtually endless number of online resources provided by
the semantic web community. As a beginner you should probably start with the examples provided
in Chapter 2. As a Protégé user there is also excellent material available from the project’s web
site. You might also want to follow the Protégé examples explained in Section 2.4.

Before you try to run any of the examples explained in this document, please make sure that your
RacerPro system is properly installed and the server is running. For more information about the
available software editions and various licenses please read the Appendix A of this document and
check the ReadMe-file that comes with the software, or check our web site for further information.

You should also have the interactive GUI for RacerPro, RacerPorter, installed properly. While
generic knowledge editing environments such as Protégé have their merits, a reasoner-specific GUI
gives you more control. RacerPorter is in a sense unique as it is the only reasoner-specific graphical
user interface for ontology-based software development that supports debugging in the context of

1

2 CHAPTER 1. INTRODUCTION

reasoning applied to large knowledge bases. When developing your knowledge bases you should use
RacerPorter to inspect them in order to better understand the structure and implications of your
data descriptions. RacerPorter’s visualization, browsing and edition tools are quite useful not only
for editing and displaying concepts, taxonomies, axioms and so forth. RacerPorter is also helpful
for managing multiple RacerPro servers.

Software developers who want to use RacerPro as a reasoning back-end will want to have a closer
look into Section 2.2 for more information about possible application scenarios and for further
information about how to integrate RacerPro into software system design.

This document contains various hyperlinks useful to navigate through the user guide, they are
distinguished by their colors. Green is used for citations, pink for URLs and red for all other
references within the user guide, e.g., contents, images, tables, etc.

In case you encounter difficulties you can contact support@racer-systems.com and submit bug

reports. We are highly interested into your feedback, and your comments are highly appreciated!
However, Racer Systems cannot provide free assistance about how to solve a specific problem or
about how to configure a specialized system. Professional support can be provided on-line or on-site
on a contractual basis. Please refer to http://www.racer-systems.com/services or contact us
for more information how to use our knowledge and experience for your projects.

1.1 System Overview

RacerPro is available for all major operating systems in 32bit and 64bit modes (Linux, Mac OS X,
Solaris 2, Windows). For larger knowledge bases in industrial projects we recommend at least 1 GB
of main memory and a 1GHz processor. For large ontologies (> 100000 concept and role names)
we recommend 64bit computer architectures.

The RacerPro system can be obtained from the following web site:

http://www.racer-systems.com/products/download/index.phtml

A documentation for the RacerPro installation process is included in the installer file that you can
download from your personal download page. The URL for your personal download page is sent to
you via email.

1.1.1 Design Principles

RacerPro is available as a server version (RacerPro Server) with APIs e.g. for Java or Common Lisp.
RacerPro communicates with client programs via various interfaces, either RacerPro-specific ones
(maximum expressivity) or standardized ones (maximum portability). A graphical interface, called
RacerPorter, is provided for interacting with the server as well as for submitting server extensions
and queries. See Figure 1.1 for an overview on the system architecture. It should be noted that
RacerPro can be extended using a simple plugin mechanism. For the users’ convenience, parts of
the RacerPro code are open source, and can be used to extend the RacerPro reasoning server.

In an ontology-based application, usually multiple representation languages are used for different
purposes. The backbone is a a description logic language for defining the terminological or in-
tensional part of a knowledge base, which is often extended with other logical languages for the
extensional part, such as, for instance, logic programming rules, the region connection calculus
for aspects of spatial reasoning, or Allen’s interval algebra for aspects of temporal reasoning, just
to name a few [64]. While terminological reasoning (T-box reasoning) is supported with many
optimizations, the RacerPro system is tailored to applications which build on the exploitation of
assertional reasoning (A-box reasoning). The main idea is that A-boxes are not static parts of the
ontology, but are efficiently generated on the fly (referring to a shared T-box which is “processed”
only once). T-boxes (ontologies) and A-boxes are maintained using the RacerPro server system,

http://www.racer-systems.com/services/support.phtml
http://www.racer-systems.com/services/support.phtml
http://www.racer-systems.com/services
http://www.racer-systems.com/products/download/index.phtml

1.1. SYSTEM OVERVIEW 3

which communicates with remote application programs using well-defined axiom manipulation lan-
guages as well as query languages that refer to the semantics of the axioms. In addition, a rule
language (based on SWRL syntax) is used to conveniently extend the A-boxes stored by the rea-
soning server, i.e., rules that are transferred to the server can be used to extend the expressivity
w.r.t. assertional reasoning and/or make implicit information explicit. Server-side A-boxes can be
remotely cloned and easily extended such that variants of assertional knowledge can be conveniently
managed as lightweight objects while the T-box part they refer to is shared.1 Besides this approach
of “lightweight A-boxes”, the RacerPro architecture nevertheless also supports large A-boxes stored
in a triple store database (see Section 5.3). One of the main design principles of RacerPro is to
automatically select applicable optimizations based on an analysis of the language of the input
knowledge bases and the queries being processed.

There are various usage scenarios of DL systems for which RacerPro is optimized. In one scenario,
T-boxes are usually rather large, and A-boxes are small (< 100 individuals), but many (variants of)
A-boxes need to be handled. In the other scenario, T-boxes are rather small, and one large A-box
(100.000 individuals) is referred to in queries. RacerPorter provides default configurations to best
support these scenarios from a GUI point of view.

O
W
L
-D
L

R
a
c
e
r
P
r
o

L
R
a
c
e
r

J
R
a
c
e
r

RacerPro

nR
Q

L

S
W

R
L

S
PA

R
Q

L
O

W
L-

D
L

-

OWL API

adap
tor

h
tt

p
/X

M
LT

C
P

/IP

TC
P/IP

TCP/IP

O
W

L-
Li

te

R
D
F-

SR
D
F

C
o
n
n
e
ct

iv
ity

 fo
r e

xt
ernal software (Prot g , RacerP

orte
r, cu

s
to

m
)

Race
r E

xt
en

si
o
n
s

OWLlink (DIG)

tr
an

sl
at

ed

tr
an

sl
at

ed

A
lle

g
ro

G
ra

p
h

tr
ip

le
 s

to
re

Plugins

S
P
A

R
Q

L

Figure 1.1: RacerPro System Architecture

1The T-box, an A-box refers to, can also be changed, but obviously, this requires complete reprocessing of the
assertions in the A-box.

4 CHAPTER 1. INTRODUCTION

1.1.2 Description and Query Languages

Ontologies are based on fragments of first-order logic for describing a shared conceptualization of
a domain using concept and role descriptions (called classes and properties in OWL, respectively).
The initial representation language of RacerPro was ALCNHR+(D)− [23], and RacerPro was the
first system which efficiently supported concrete domains for T-box and A-box reasoning [31, 32].
RacerPro was then extended to also support inverse roles and qualitative number restrictions [36]
as part of the description logic (DL) SHIQ [44], a practically relevant subset of OWL. Role axioms
(SRIQ [40]) are another language construct that has been integrated into RacerPro.

Since RacerPro supports concrete domains effectively, it was found that nominals (SHOIQ [41])
were not of utmost importance for RacerPro users [35]. Since multiple A-boxes should refer to a
single T-box (preprocessed and indexed offline before A-box query answering), A-box assertions
should not introduce implicit subsumption relationships, a design principle that is, in general,
broken if nominals are supported. RacerPro does support nominals from a syntactical point of
view in terms of the OWL language, and it maps nominals to atomic concepts (the standard
approximation of nominals [12]). While interesting optimization techniques for “true” nominals
have been developed [58], reasoning with nominals is known as hard not only from a theoretical
[41] but also from a practical point of view (i.e., hard also for typical-case input). RacerPro might
be extended with nominals, once optimization techniques for reasoning with nominals get mature
enough such that RacerPro applications can effectively exploit this feature (see, e.g., [18, 19]).

Inference services for concept subsumption and the taxonomy of a T-box have been part of de-
scription logic reasoning systems right from the beginning in the eighties (T-box classification).
Classification is supported in RacerPro with specific optimization techniques [24, 25, 28, 71, 70]
that are based on or are integrated with results obtained in other projects [20, 21] as well as tech-
niques implemented in mature predecessor DL systems such as KRIS [6, 5] and FaCT [38, 39, 61].
Still, T-box classification is a very fruitful research area, and new techniques are being integrated
into RacerPro. Interestingly, for dealing with a non-cyclic ELH [3] version of the Snomed/CT
knowledge base, a very old structural subsumption technique being integrated into RacerPro pro-
vided for classification in the range of minutes for this very large T-box [30], with the additional
advantage that (small) parts of the T-box can indeed use more expressive language fragments.

Inference services for A-boxes are influenced by many earlier DL systems, for instance, CLASSIC
[11, 12]. In these systems, the query language for finding individuals is based on concept descriptions,
and, thus, rather limited (see [9, 10]). In addition, in order to effective answer queries, in CLASSIC
the most-specific concept names of which individuals are instances are computed in advance (A-box
realization). In contrast, RacerPro was designed in such a way that the user can decide whether
to compute index structures in advance or on the fly [29]. Research on RacerPro has focused
on concept-based instance retrieval [26] as well as on a more expressive form of queries, namely
grounded conjunctive queries [34, 35].

The new Racer Query Language (nRQL, pronounced “niracle” and to be heard as “miracle”) was
one of the first expressive query languages for DL systems (see Section 4 for a description of nRQL)
providing conjunctive queries [16] with variables ranging over named domain objects, negation as
failure, a projection operator, as well as group-by and aggregation operators. The formal semantics
of nRQL was described in [67, 68]. Interestingly, much later, a query language semantics based on
a different viewpoint was described in [14]. However, nRQL is nowadays seen as an implementation
of the approach proposed in [14]. It should be emphasized that RacerPro supports query answering
with the pull mode (clients send queries and retrieve result sets incrementally from the server) or
with the push mode (clients subscribe conjunctive queries and receive notifications about elements
in the result set incrementally) [27].

1.2. DIFFERENT VIEWS ON RACERPRO 5

1.1.3 Interfaces

RacerPro can be used as a server application in a network-wide context (see Section 2.2). In
addition to raw TCP communication interfaces with APIs for Java (JRacer, OWLAPI), Common
Lisp (LRacer), and also C, RacerPro supports the OWLlink communication interface [53, 56] (a
successor of DIG [8]). RacerPro supports various OWL 2 syntaxes, namely RDF/XML as well as
OWL functional syntax. See again Figure 1.1 for an overview of the RacerPro system architecture.
A standardized query language for RacerPro is SPARQL. RacerPro also supports many extensions
in a KRSS-like syntax (e.g., the nRQL query language, publish/subscribe interface etc.). RacerPro
implements the OWLAPI [37] for Java, and, additionally, a plugin for Protégé 4 is available [55].

Ontologies can be read from files, or can be retrieved from the web as well as from an RDF triple
store managed by the built-in AllegroGraph system (version 3) from Franz Inc. [1]. AllegroGraph
can be used to store materialized inferences and also provides for a powerful query language based
on SPARQL syntax [1]. AllegroGraph can store very large A-boxes for which users need nRQL
query answering.

The RacerPro inference server can be programmed in a functional language called miniLisp. For
instance, query results can be postprocessed by the miniLisp interpreter running functional pro-
grams being sent to the server such that query results can be sent in application-specific XML
formats to client programs via the built-in RacerPro web server. The language miniLisp is designed
in such a way that termination of miniLisp programs is guaranteed, and miniLisp can be used
to specify rather complex queries and server extensions while the reasoning server is running. The
functional language miniLisp can be extended by application programs (e.g., in the same sense that
application programs can generate Javascript program on the fly and send them to the browser).
In combination with a miniLisp for manipulating query results on the server, nRQL queries en-
sure that it is not necessary to transfer large sets of A-box assertions from the inference server to
application programs.

For more complex extensions, RacerPro supports a plugin interface. Thus, compiled programs can
encode arbitrary algorithms on the RacerPro server. Plug-ins have been used, for instance, for
developing non-standard inference algorithms [62]. Using the open source library OntoLisp2, large
parts of the RacerPro code for syntactically processing ontologies are publicly available. Ontolisp
can be used for developing new reasoners as well (various Common Lisp systems are supported).

The graphical interface RacerPorter [69] can be used to explore axioms and terminologies. It pro-
vides a read-eval-print loop (shell) for interactively extending and querying one or more RacerPro
servers, or for inspecting, for instance, explanation results for certain inferences. For the user’s con-
venience, a complete Emacs-style text editor is provided to edit nRQL queries or miniLisp function
definitions. Query results (bindings for variables) can be interactively inspected and A-boxes can
interactively explored in the A-box inspector showing told and inferred assertions.

1.2 Different views on RacerPro

1.2.1 RacerPro as a Semantic Web Reasoning System and Information Repos-
itory

The semantic web is aimed at providing new “machine-understandable” web resources or by aug-
menting existing resources with “machine-understandable” meta data. An important aspect of fu-
ture systems exploiting these resources is the ability to process OWL documents (OWL ontologies).
Ontologies may be taken off the shelf or may be extended for domain-specific purposes (domain-
specific ontologies extending core ontologies). For doing this, a reasoning system is required as
part of the ontology editing system. RacerPro can process OWL Lite, OWL DL as well as OWL

2See http://sourceforge.net/projects/ontolisp/.

http://sourceforge.net/projects/ontolisp/

6 CHAPTER 1. INTRODUCTION

2 ontologies (knowledge bases). OWL ontologies are processed with approximations for individuals
mentioned in class expressions. User-defined XML datatypes are not yet supported.

An implementation of the semantic web rule language (SWRL) is provided with RacerPro 2.0 such
that rules may be specified as part of an OWL document in SWRL syntax (syntax restrictions
apply see below, see also below for a description of the semantics of rules).

The following services are provided for OWL ontologies and RDF data descriptions:

• Load ontologies specified in OWL 2 format. An HTTP client for retrieving ontology resources
from the web is integrated. Multiple resources can be imported into one ontology.

• Check the consistency of an OWL ontology and a set of data descriptions.

• Find implicit subclass relationships induced by the axioms of the ontology.

• Find synonyms for properties (roles), classes (concepts) or instances (individuals).

• Query extensional information collected from OWL/RDF documents (OWL instances and
their interrelationships) using a SPARQL query processing system or, for more expressive
queries, using the Racer-specific query language nRQL.

• Incremental query answering for information retrieval tasks (retrieve the next n results of
a query). With this feature, RacerPro supports the adaptive use of computational resource:
Answers which require few computational resources are delivered first, and user applications
can decide whether computing all answers is worth the effort.

• Support for specific locales and external formats (e.g., for Asian character sets)

1.2.2 RacerPro as a Knowledge Representation and Reasoning System

RacerPro is a knowledge representation and reasoning system that implements a highly optimized
tableau calculus for a very expressive description logic. It offers reasoning services for multiple T-
boxes and for multiple A-boxes as well. The system implements the description logic SRIQ (see
[40]). This is the basic logic ALC augmented with qualifying number restrictions, inverse roles, and
acyclic role axioms (for specifying, e.g., role hierarchies, symmetric, relexive, and transitive roles,
etc.). In addition to these basic features, RacerPro also provides facilities for algebraic reasoning
using so-called concrete domains for dealing with:

• min/max restrictions over the integers,

• linear polynomial (in-)equations over the reals or cardinals with order relations,

• equalities and inequalities of strings.

Given a T-box, various kinds of queries can be answered. Based on the logical semantics of the rep-
resentation language, different kinds of queries are defined as inference problems (hence, answering
a query is called providing inference service). As a summary, we list only the most important ones
here:

• Concept consistency w.r.t. a T-box: Is the set of objects described by a concept empty?

• Concept subsumption w.r.t. a T-box: Is there a subset relationship between the set of objects
described by two concepts?

• Find all inconsistent concept names mentioned in a T-box. Inconsistent concept names result
from T-box axioms, and it is very likely that they are the result of modeling errors.

1.2. DIFFERENT VIEWS ON RACERPRO 7

• Determine the parents and children of a concept w.r.t. a T-box: The parents of a concept
are the most specific concept names mentioned in a T-box which subsume the concept. The
children of a concept are the most general concept names mentioned in a T-box that the
concept subsumes. Considering all concept names in a T-box the parent (or children) relation
defines a graph structure which is often referred to as taxonomy. Note that some authors use
the name taxonomy as a synonym for ontology.

• Determine the least common subsumer (LCS) of a set of concepts w.r.t. a T-box: The LCS
is the most specific concept that subsumes a set of concepts, in other words, the concept
description that represents the properties that all the elements of the set have in common.

Note that whenever a concept is needed as an argument for a query, not only predefined names are
possible, instead concept expressions allow for adaptive formulation of queries that have not been
anticipated at system construction time.

If also an A-box is given, among others, the following types of queries are possible:

• Check the consistency of an A-box w.r.t. a T-box: Are the restrictions given in an A-box
w.r.t. a T-box too strong, i.e., do they contradict each other? Other queries are only possible
w.r.t. consistent A-boxes.

• Instance testing w.r.t. an A-box and a T-box: Is the object for which an individual stands a
member of the set of objects described by a specified concept? The individual is then called
an instance of the concept.

• Instance retrieval w.r.t. an A-box and a T-box: Find all individuals from an A-box such that
the objects they stand for can be proven to be a member of a set of objects described by a
certain query concept.

• Retrieval of tuples of individuals (instances) that satisfy certain conditions w.r.t. an A-box
and a T-box.

• Computation of the direct types of an individual w.r.t. an A-box and a T-box: Find the most
specific concept names from a T-box of which a given individual is an instance.

• Computation of the fillers of a role with reference to an individual w.r.t. an A-box and a
T-box.

• Check if certain concrete domain constraints are entailed by an A-box and a T-box.

• Computation of the least concept description of an individual defined in an A-box. A service
which is also called most specific concept (MSC-k), where k defines a nesting level of existential
restrictions.

RacerPro provides another semantically well-defined query language (nRQL, new Racer Query
Language), which also supports negation as failure, numeric constraints w.r.t. attribute values of
different individuals, substring properties between string attributes, etc. In order to support special
OWL features such as annotation and datatype properties, special OWL querying facilities have
been incorporated into nRQL. RacerPro supports loading triples from secondary memory (e.g., as
provided by the AllegroGraph triple-store http://www.franz.com).

http://www.franz.com

8 CHAPTER 1. INTRODUCTION

1.3 Application Areas

For all software systems, and in particular for a knowledge representation and reasoning engine, it
holds that the system architecture is influenced by typical application areas for which it should be
most-effective. This is true also for the RacerPro system, a practical software system for building
knowledge-based systems for demanding application scenarios ranging from autonomous agents on
the semantic web to knowledge-based software engineering.

Description logic systems are no databases. Although one can use RacerPro for storing data using
A-boxes, probably, databases provide better support with respect to persistency and transactions.
However, databases can hardly be used when indefinite information is to be handled in an applica-
tion (e.g., “John was seen playing with a ball, but I cannot remember, it was soccer or basket ball,
so he must be a soccer player or a basket-ball player”). Thus, rather dealing with data, description
logics systems deal with data descriptions, which might possibly involve indefinite knowledge about
particular domain objects.

Being able to deal with indefinite information of this kind is important when information about data
comes in from various sources, and in situations where sources are, for instance, used to exclude
certain cases that are possible given the information at hand. Description logics are also important
if data descriptions are to be queried with respect to varying T-boxes (or ontologies). Note that this
is a common scenario in modern information technology infrastructure. Due to the rapid pace in
technology evolution, also the vocabulary used to access data descriptions changes quite frequently.
New concepts are introduced, and can be set into relation to older terminology using description
logics (or semantic web ontologies).

There are numerous papers describing how description logic in general (and RacerPro in partic-
ular) can be used to solve application problems. Without completeness one can summarize that
applications come from the following areas:

• Semantic Web, Semantic Grid (ontology representation and logic-based information retrieval)

• Electronic Business (e.g, reason about services descriptions)

• Medicine/Bioinformatics (e.g., represent and manage biomedical ontologies)

• Natural Language Processing and Knowledge-Based Vision (e.g., exploit and combine multiple
clues coming from low-level vision processes in a semantically meaningful way)

• Process Engineering (e.g., represent service descriptions)

• Knowledge Engineering (e.g., represent ontologies)

• Software Engineering (e.g., represent the semantics of UML class diagrams)

• Event recognition (e.g., given a set of temporal propositions about basic events coming from
low-level image sequence analysis processes, and exploiting relational algebras based on so-
called event-rules, RacerPro can detect whether a temporal high-level event can be instanti-
ated)

Various features of RacerPro have been used in the research community to support these application
areas, for example, the explanation facility of RacerPro has been used to support the development
of the OWL translator for the SUMO ontology [57]. Explanation features for inconsistent concepts
are available for knowledge bases as large as Snomed CT (the RacerPro explanation facility uses
built-in data structures of the tableau reasoner). It should be noted that A-box reasoning services
can be used for problem solving. For instance, in [63], an application of A-box realization for

1.3. APPLICATION AREAS 9

computing solutions to Sudoku problems is presented (note that nominals are not required for this
purpose [60]).

In [59] nRQL has been used to represent integrity constraints as queries which must return an
empty result set. This early use case also has shaped the functionalities provided by nRQL. Rob
Lemmens has used Racer for investigating the semantic interoperability of distributed geo-services
[52].

A-box reasoning (consistency, direct types, etc.) has been used to formalize scene interpretation
problems [51]. In particular, it was shown that complete reasoning is necessary for efficiently in-
tegrating different “clues” obtained from sensors into a coherent whole. Furthermore, in [51], de-
duction proved useful to really find interesting object classifications as well as interesting events
for making decisions. In the industrial context, RacerPro was used for driver assistance [50], e.g.,
knowledge-based intersection assistance [49], and visual information fusion [22].

Event recognition was also explored in the BOEMIE project [54, 15, 17] as well as in the Con-
textWatcher project [66, 65]. In the former approach, RacerPro was extended with CLP(R)-like
techniques for dealing with quantitative information where in the latter approach the expressivity
of nRQL is explored for qualitative event recognition. Another very interesting approach in this
context is the use of nRQL as a target language for compiling linear temporal logic (LTL) event
descriptions, and using assertional reasoning provided by RacerPro for solving the actual event
recognition problem [2].

Stream-based processing of data descriptions based on incremental interpretation using abduction
operators based on decription logics and logic programming was investigated with RacerPro in the
CASAM project for multimedia annotation (see http://www.casam-project.eu).

http://www.casam-project.eu

10 CHAPTER 1. INTRODUCTION

Chapter 2

Using RacerPro and its Interfaces

In this section we present a first example for the use of RacerPro. We use the so-called KRSS-based
interface rather than the XML (or OWL/RDF) interface in order to directly present the declaration
and results of queries in a brief and human-readable form. Note, however, that all examples can be
processed in a similar way with XML-based interfaces provided by RacerPro.

2.1 Sample Session

There are various ways to interact with RacerPro, through GUIs such as RacerPorter and Protégé,
through the command line interface(shell), or by storing a set of commands in a batch file. In this
section, we will show first how to use RacerPro in combination with the RacerPorter interface and
afterwards with how to interact with the command line.

Before starting the sample session, localize the files containing the knowledge base that we will
be using. These files are the "family.racer" which contains the T-box and A-box parts and the
"family-queries.racer" which contains queries. Both files can be found in the folder named
“.../examples/native” of the RacerPro distribution.

The following code is found in the file "family.racer":

;;; initialize the knowledge base

;;; with a T-box name "family" and an A-box name "smith-family"

(in-knowledge-base family smith-family)

;;; Supply the signature for this knowledge base

(signature

:atomic-concepts (person human female male woman man parent mother

father grandmother aunt uncle sister brother)

:roles ((has-child :parent has-descendant)

(has-descendant :transitive t)

(has-sibling)

(has-sister :parent has-sibling)

(has-brother :parent has-sibling)

(has-gender :feature t))

:individuals (alice betty charles doris eve))

;;; Domain & range restrictions for roles

(implies *top* (all has-child person))

11

12 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

(implies (some has-child *top*) parent)

(implies (some has-sibling *top*) (or sister brother))

(implies *top* (all has-sibling (or sister brother)))

(implies *top* (all has-sister (some has-gender female)))

(implies *top* (all has-brother (some has-gender male)))

;;; Axioms for relating concept names

(implies person (and human (some has-gender (or female male))))

(disjoint female male)

(implies woman (and person (some has-gender female)))

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))

(equivalent mother (and woman parent))

(equivalent father (and man parent))

(equivalent grandmother (and mother (some has-child (some has-child person))))

(equivalent aunt (and woman (some has-sibling parent)))

(equivalent uncle (and man (some has-sibling parent)))

(equivalent brother (and man (some has-sibling person)))

(equivalent sister (and woman (some has-sibling person)))

(instance alice mother)

(related alice betty has-child)

(related alice charles has-child)

(instance betty mother)

(related betty doris has-child)

(related betty eve has-child)

(instance charles brother)

(related charles betty has-sibling)

(instance charles (at-most 1 has-sibling))

(related doris eve has-sister)

(related eve doris has-sister)

The following code is found in the file "family-queries.racer":

(concept-ancestors mother)

(concept-descendants man)

(all-transitive-roles)

(individual-instance? doris woman)

(individual-types eve)

(individual-fillers alice has-descendant)

(individual-direct-types eve)

(concept-instances sister)

2.1. SAMPLE SESSION 13

Figure 2.1: The RacerPorter interface for RacerPro.

2.1.1 Using RacerPro with RacerPorter

Start RacerPorter by double-clicking the program icon. When RacerPorter is opened, it will locate
the RacerPro executable and automatically start it and connect to it. To locate the RacerPro
executable, the RacerPorter looks within the installation path of RacerPorter or looks if there has
been an environment variable set to RacerPro. However if you are interested in executing a specific
RacerPro executable, you can configure this within RacerPorter as follows.

Click the “Edit Profile...” button in order to configure RacerPorter. Once the “Profile Editor” dialog
is opened, edit the “RacerPro Executable” field by providing the required path, e.g., “C:/Program
Files/RacerPro-20-Preview/RacerPro.exe”, then press “OK & Save Profile”. By saving the profile,
RacerPorter will be able to localize the RacerPro executable you specified every time RacerPorter
is started. The configuration is saved in a file called “racereditor-config.racereditor” found in the
same path of the RacerPro executable. Profiles are stored in the User Home directory under the
file called “profiles.racerporter”. To know more about the profiles see Section 2.3.4.

If the RacerPorter was able to localized the RacerPro server then the connection to RacerPro is set
automatically as shown in Figure 2.1. After a successful connection the RacerPorter will become
“alive” and the functionality provided by the different tabs can be accessed. The button “Connect”
can be used to connect or disconnect to the RacerPro server. For example, to connect to a freshly
started server. Note that it is possible to connect to a local, as well as to a remote RacerPro server,
even if it is used by another GUI such as Protégé.

Once the RacerPro server is executed you should see a shell showing the following lines:

14 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

;; Welcome to RacerPro Version 2.0 2010-10-02!

;;; Racer: Renamed A-box and Concept Expression Reasoner

;;; Supported description logic: ALCQHIr+(D)-

;;; Supported ontology web language: subset of OWL DL (no so-called nominals)

;;; Copyright (C) 2004-2009 by Racer Systems GmbH & Co. KG

;;; All rights reserved. See license terms for permitted usage.

;;; Racer and RacerPro are trademarks of Racer Systems GmbH & Co. KG

;;; For more information see: http://www.racer-systems.com

;;; RacerPro comes with ABSOLUTELY NO WARRANTY; use at your own risk.

;;; RacerPro is based on:

;;; International Allegro CL Enterprise Edition 8.2 [Windows] (Oct 2, 2010 12:27)

;;; Copyright (C) 1985-2010, Franz Inc., Oakland, CA, USA. All Rights Reserved.

;;; The XML/RDF/RDFS/OWL parser is implemented with Wilbur developed

;;; by Ora Lassila. For more information on Wilbur see

;;; http://wilbur-rdf.sourceforge.net/.

;;; ===

;;; Found license file

;;; C:\Program Files\RacerPro-20-Preview\license.racerlicense

;;; This copy of RacerPro is licensed to:

;;;

;;; Juan Perez

;;; Technische Universitaet Hamburg-Harburg

;;; Harburger Schlossstrasse 20

;;; 21073, Hamburg

;;; DE

;;;

;;; Initial license generated on November 03 2010, 10:22 for 1.9.0.

;;; Desktop, Educational, for X86 Win32.

;;; This license is valid up to version 2.0.999.

;;; This license is valid until April 30 2011, 23:59.

;;;

;;; ===

HTTP service enabled for: http://localhost:8080/

TCP service enabled for: http//localhost:8088/

If you do not have a valid license, you are allowed to use RacerPro but some restrictions apply (see
the RacerPro web site for details). If you have a valid license, your own name will be mentioned in
the output.

To edit knowledge bases (or ontologies and data descriptions), you can either use the “Load...”
button in the “Profiles” tab (or by selecting “Load. . . ” in the menu “File” on Mac OS X), or you
can also work with the built-in editor. The following file types / syntaxes for KBs are recognized
and supported: OWL RDF (*.owl, *.rdf), KRSS / native RacerPro syntax (*.racer, *.lisp), and
OWL 2 functional (*.funct). For this sample session we will use the built-in editor.

Press the button ‘‘Open in Editor” (or select “Open in Editor” in the “File” menu on Mac OS

2.1. SAMPLE SESSION 15

X) and double-click the file "family.racer". If you have the file "family.racer" displayed in
the editor (see Figure 2.2), you can send the statements to RacerPro by selecting “Evaluate Racer
Expression” in the “Buffer” menu (make sure the window RacerEditor is the active window).

RacerPro supports the standard Emacs commands and key bindings, e.g., change buffer is bound
to c-x b. Press tab to see a list of possible completions.

After having loaded the file "family.racer" into RacerPro, you can use RacerPorter to inspect
the knowledge base. For instance, you might be interested in the hierarchy of concept names or
roles using the tabs “Taxonomy” and “Role Hierarchy”, respectively. You can switch between the
shell, the taxonomy, and the role hierarchy by selecting the corresponding tabs in the RacerPorter
window.

Next we will use RacerPorter to specify some queries and inspect the answers, for this, you can use
the “Shell” tab to execute queries as we have done in Figure 2.3. You can use the queries of the
"family-queries.racer" file specified above. Information about commands and key abbreviations
is printed into the shell window. With meta-p (or alt-p) and meta-n (or alt-n) you can get the
previous and next command of the command history, respectively. By using the tab key you can
complete a partially typed command. A command is executed once it is syntactically complete.

RacerPorter allows you to inspect data descriptions in an A-box, for this select the “A-box Graph”

Figure 2.2: The RacerEditor interface for RacerPro.

16 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.3: The Shell tab of RacerPorter used for executing queries.

tab. In the “A-box Graph” tab (see Figure 2.4) adjust the display options to all individuals (All
Inds.) and select a depth, for example depth 3. The graph can show told and implicit assertions.

2.1.2 Using RacerPro from the Command Line

To run the example, just start RacerPro by double clicking the program icon or, alternatively, type
RacerPro as a command in a shell window.1

Type RacerPro -f examples/native/family.racer -q examples/native/family-queries.ra-

cer into a shell window in order to see the results (under Windows type RacerPro -- -f

examples/native/family.racer -q examples/native/family-queries.racer), see Figure 2.5.
The following section describes more details on how to use RacerPro from the command line.

1We assume that RacerPro is on the search path of your operating system.

2.1. SAMPLE SESSION 17

Figure 2.4: The A-box Graph tab shows the explicit relations for A-box individuals.

Figure 2.5: Console of RacerPro.

18 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

2.2 The RacerPro Server

The RacerPro server is an executable file available for Linux, Mac OS X, Solaris 2, and Windows.
It can be started implicitly using RacerPorter or explicitly from a shell or by double-clicking the
corresponding program icon in a graphics-based environment. For instance, the Windows version
is shown in Figure 2.6.

Figure 2.6: A screenshot of the RacerPro server started under Windows.

Depending on the arguments provided at startup, the RacerPro executable supports different modes
of operation. It offers a file-based interface, a socket-based TCP stream interface, and a HTTP-based
stream interface.

2.2.1 The File Interface

If your knowledge bases and queries are available as files use the file interface of RacerPro, i.e.
start RacerPro with the option -f. In the following, we assume that you have RacerPro on your
search path and that you are providing the correct search path for the .racer files. According to the
distributions the files used in the following examples are found under examples/native/. In your
favorite shell on Unix-based systems type:

2.2. THE RACERPRO SERVER 19

$ RacerPro -f family.racer -q family-queries.racer

Under Windows, you want to suppress the display of the RacerPro window. The command is slightly
different:

$ RacerPro +c -- -f family.racer -q family-queries.racer

The option -- separates window management options from RacerPro options. A window option
we use here is +c which suppress the display of the RacerPro window, which is not useful in batch
mode. For debugging under Windows, the window option +p is useful.

$ RacerPro +p -- -f family.racer -q family-queries.racer

If an error occurs you can read the error message in the shell window. The option -h prints some
information about the usage of the program RacerPro (see Figure 2.7).

$ RacerPro +p -- -h

Figure 2.7: The shell window of RacerPro showed when using the option -h.

The -f RacerPro option has the following meaning. The input file is family.racer and the queries
file is family-queries.racer. The output of RacerPro is printed into the shell. If output is to be
printed into a file, specify the file with the option -o as in the following example:

$ RacerPro -f family.racer -q family-queries.racer -o ouput.text

Or use the following under Windows as explained above:

$ RacerPro +c -- -f family.racer -q family-queries.racer -o ouput.text

The syntax for processing input files is determined by RacerPro using the file type (file extension).
If .lisp, .krss, or .racer is specified, a KRSS-based syntax is used. Other possibilities are .rdfs,
.owl, .owllink, and .dig. If the input file has one of these extensions, the respective syntax for
the input is assumed. The syntax can be enforced with corresponding options instead of -f, -rdfs,
-owl, and -dig.

Let us assume an OWLlink knowledge base is given in the file kb.owllink. In order to submit a
query to RacerPro just create a file q.racer with queries in KRSS syntax and start RacerPro as
follows:

$ RacerPro -owllink kb.owllink -q q.racer

20 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Note the use of the option -owllink for specifying that the input knowledge base is in OWLlink
syntax. If you would like to use OWLlink syntax for queries as well, just create q.racer with
contents (owllink-read-file "queries.owllink")

Under Windows, you might want to suppress the shell window:

$ RacerPro +c -- -owllink kb.owllink -q q.racer

For any performance evaluation please refer to Section 3.9 in order to properly measure system
runtimes for reasoning subtasks.

2.2.2 TCP Interfaces

There are two APIs based on TCP sockets, namely for the programming languages Common Lisp
and Java. The socket interface of the RacerPro server can be used from application programs or
graphical interfaces. Bindings for C++ and Prolog dialects have been developed as well.

If the option -f is not provided, the socket interface is automatically enabled. Just execute the
following.

$ RacerPro

The default TCP communication port used by RacerPro is 8088. In order to change the port
number, the RacerPro server should be started with the option -p. For instance:

$ RacerPro -p 8000 (or $ RacerPro -- -p 8000 under Windows).

In this document the TCP socket is also called the raw TCP interface. The functionality offered
by the TCP socket interface is documented in the next sections.

JRacer

JRacer is the client library to access the services of a RacerPro server from Java client programs.
In addition to the jar archive for the class files, the JRacer interface is provided with source code in
your RacerPro distribution directory. See http://www.racer-systems.com/products/download for
the latest JRacer version. JRacer uses the socket interface to communicate with the RacerPro
server. The main idea of the socket interface is to open a socket stream, submit declarations and
queries using strings and to parse the answer strings provided by RacerPro such that the results
can be used in the Java program. The following very simple code fragment explains how to send
messages to a RacerPro server running on 127.0.0.1 (localhost) under port 8088. The file used
in the code is provided in the RacerPro distribution directory. You might need to adapt the string
according to your installation directory for RacerPro.

package test;

import com.racersystems.jracer.*;

public class Test {

public static void main(String[] argv) {

String ip = "127.0.0.1";

int port = 8088;

String filename="\"/Applications/RacerPro 2.0 preview/examples/owl/people-pets.owl\"";

RacerClient racer = new RacerClient(ip,port);

try {

racer.openConnection();

System.out.println(racer.sendRaw("(owl-read-file " + filename + ")"));

System.out.println(racer.sendRaw("(all-atomic-concepts)"));

http://www.racer-systems.com/products/download

2.2. THE RACERPRO SERVER 21

racer.closeConnection();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

Figure 2.8: Create a project with Eclispe.

We demonstrate how to run the test program from within Eclipse (here the Juno release of Eclipse is
used). We use workspace-racer-users-guide as a workspace name, and a corresponding directory
is assumed to exist in the standard workspace path for Eclipse. For running the test program,
create a new project in Eclipse (see Figures 2.8 and 2.9). For demonstration purposes, we have
used test1. In the workspace directory, a project directory will be created automatically. In the
project directory test1 you should create a directory lib into which you copy the file “jracer.jar”
(in test1 you should already find the directories src and bin). After returning to Eclipse you
refresh the display to show the lib directory (see Figure 2.10). Then, select “jracer.jar” in the
lib subdirectory, do a right-click, and add the file to the project’s build path (menu item Add to
Build Path, see Figure 2.11). With a right-click on the src directory, create a new package test

(see Figures 2.12 and 2.13). Then, right-clicking on the package test you create a new file with
name “Test.java” (Figure 2.14). Double-click this file and copy the code of the example into the
window (see Figure 2.15). If necessary, change the value of the variable filename according to your
installation.

Then, start RacerPro, for instance using RacerPorter, such that RacerPro runs on the local host
and provides its services using port 8088 (the default, see Figures 2.16 and 2.17). If RacerPorter
is connected to RacerPro, press the button “Disconnect” (see Figure 2.16) in order to allow you

22 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.9: Select a name for the project.

client application to connect to the RacerPro server. You can then run the project test1 (see
Figure 2.18). The output is printed to the Eclipse Console window (Figure 2.19).

2.2. THE RACERPRO SERVER 23

Figure 2.10: Refresh the project display after having created a directory lib into which you copied
“jracer.jar”.

Figure 2.11: Select “jracer.jar” in the lib directory, do a right-click, and add the file to the project’s
build path.

24 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.12: Create a new package.

Figure 2.13: Call the package test.

2.2. THE RACERPRO SERVER 25

Figure 2.14: Create a file “Test.java”.

Figure 2.15: Source code for the example inserted

26 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.16: RacerPorter.

Figure 2.17: RacerPro with output.

2.2. THE RACERPRO SERVER 27

Figure 2.18: Run the project.

Figure 2.19: The output is printed to the Console window.

28 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Sending raw strings to the RacerPro server is simple, but rather cumbersome from a software
engineering point of view. Therefore, as part of JRacer, RacerPro provides a simple API with Java
classes and methods for creating and manipulating axioms in ontologies, and for invoking inference
services. An example is given below.

package test;

import com.racersystems.jracer.*;

public class Test2 {

public static void main(String[] argv) {

String ip = "127.0.0.1";

int port = 8088;

RacerClient racer = new RacerClient(ip,port);

try {

racer.openConnection();

racer.fullReset();

racer.owlapiNewReasoner("test");

racer.owlapiNewOntology("test");

racer.owlapiAutoAddAxiomsTo("test");

racer.owlapiGetOWLClassAssertionAxiom("d","j");

racer.owlapiGetOWLObjectPropertyAssertionAxiom("j", "r", "k");

racer.owlapiLoadOntology("test");

System.out.println(racer.tboxCoherentP("test"));

System.out.println(racer.aboxConsistentP("test"));

racer.closeConnection();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

Javadoc is provided for all JRacer methods (Figure 2.20).

2.2. THE RACERPRO SERVER 29

Figure 2.20: JRacer documentation using Javadoc.

30 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

In Eclipse the example can be run in a similar way as explained above. In Figure 2.21 the output
of the above program is shown in the Console window.

Figure 2.21: Second example with output printed to the Console window.

In the following example we demonstrate how to access the result(s) returned from RacerPro. For
instance, a list of binding lists is returned as an answer to a conjunctive query. A binding is a list
consisting of a variable name and an individual name (both of which are symbols). The example
shows how to iterate over RacerPro result data structures from within Java programs. As you can
see in the code, the method racerAnswerQuery has a $ as a suffix in the second call. In case the
suffix $ is used, a data structure is returned rather than only a string (which can be easily printed,
as shown in the first call, but otherwise have to be parsed by the user to access the results for
subsequent computations). The Figure 2.22 for the output.

package test;

import com.racersystems.jracer.*;

public class Test3 {

public static void main(String[] args) {

String filename=

"/Applications/RacerPro 2.0 preview/examples/owl/people-pets.owl";

String ip = "localhost";

int port = 8088;

RacerClient racer = new RacerClient(ip,port);

try {

racer.openConnection();

2.2. THE RACERPRO SERVER 31

racer.fullReset();

racer.owlReadFile("\""+filename+"\"");

System.out.println(racer.racerAnswerQuery

("(?x ?y)",

"(and (?x #!:person) (?x ?y #!:has_pet))"));

@SuppressWarnings("unchecked")

RacerList<RacerList<RacerList<RacerSymbol>>>

res2 = (RacerList<RacerList<RacerList<RacerSymbol>>>)

racer.racerAnswerQuery$("(?x ?y)",

"(and (?x #!:person) (?x ?y #!:has_pet))");

for (RacerList<RacerList<RacerSymbol>> bindings : res2) {

for (RacerList<RacerSymbol> binding : bindings) {

for (RacerSymbol varval : binding) {

System.out.println(varval);

}

}

}

} catch (Exception e) {

e.printStackTrace();

}

}

}

32 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.22: Third example with output printed to the Console window.

2.2. THE RACERPRO SERVER 33

Java OWLAPI Interface

The Manchester OWLAPI is also supported by RacerPro. You can download the respecitve jar files
from http://www.racer-systems.com/products/download. As shown in Figure 2.23 you can set up
the project as described for JRacer, and you need to put “owlapi-bin.jar” and “racer.jar” (NB: not
“jracer.jar” but “racer.jar”) onto the build path of the project.2

package test;

import com.racersystems.racer.*;

import org.semanticweb.owlapi.apibinding.*;

import org.semanticweb.owlapi.model.*;

import org.semanticweb.owlapi.reasoner.*;

import java.util.Set;

public class example {

public static void main(String[] args) {

String DOCUMENT_IRI =

"file:///Applications/RacerPro%202.0/examples/owl/people-pets.owl";

try {

OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

IRI docIRI = IRI.create(DOCUMENT_IRI);

OWLOntology ont = manager.loadOntologyFromOntologyDocument(docIRI);

OWLReasonerFactory reasonerFactory = new ReasonerFactory();

ConsoleProgressMonitor progressMonitor = new ConsoleProgressMonitor();

OWLReasonerConfiguration config =

new SimpleConfiguration(progressMonitor);

OWLReasoner reasoner = reasonerFactory.createReasoner(ont, config);

boolean consistent = reasoner.isConsistent();

System.out.println("Consistent: " + consistent);

System.out.println("\n");

Node<OWLClass> bottomNode = reasoner.getUnsatisfiableClasses();

Set<OWLClass> unsatisfiable = bottomNode.getEntitiesMinusBottom();

if (!unsatisfiable.isEmpty()) {

System.out.println("The following classes are unsatisfiable: ");

for (OWLClass cls : unsatisfiable) {

System.out.println(" " + cls);

}

} else {

System.out.println("There are no unsatisfiable classes");

}

System.out.println("\n");

reasoner.dispose();

}

catch (Exception e) {

e.printStackTrace();

}

}

}

2The packages in the code are not hierarchical although the names suggest this. You need three imports for the
OWLAPI.

http://www.racer-systems.com/products/download

34 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.23: An Eclipse project for using RacerPro with the Manchester OWLAPI.

LRacer

LRacer is the API for Common Lisp to access all services of RacerPro in a convenient way.
LRacer is provided with source code. You can download the latest version from http://www.racer-
systems.com/products/download. LRacer provides all functions (and macros) described in the Rac-
erPro user’s guide and reference manual directly from Common Lisp. Thus, from Common Lisp,
you do not send strings to the server directly, but use stub functions (or macros) which internally
communicate with the RacerPro server, interpret the results and provide them as Common Lisp
data structures. In this sense, LRacer is not more powerful than JRacer but a little bit more conve-
nient. Note the difference between LRacer and RacerMaster. Although LRacer provides the same
functionality, all functions calls are sent to a RacerPro server via the TCP socket interface, whereas
for RacerMaster there is no such overhead. The advantage of LRacer is that you can run RacerPro
on a powerful server machine and develop your application on a less expensive portable computer.

Let us assume the LRacer directory is stored under ~/Lracer/. Start your favorite Com-
mon Lisp system, and evaluate (load "~/Lracer/lracer-sysdcl.lisp"). Then, evaluate
(compile-load-racer "~/Lracer/") to compile and load LRacer. You have to use the pathname
that corresponds to your LRacer distribution directory, of course. Afterwards, you can import the
package RACER into your own package or access RacerPro directly from the Common Lisp User
package and the Lisp listener.

The variable *default-racer-host* can be set to a string denoting the host on which the RacerPro
server run (the default is "localhost"). You can set the tcp port for the RacerPro server by setting
the variable *default-racer-tcp-port* (default value is 8080).

You can explicitly open a server connection with the function open-server-connection. In order
to close the server connection, use the function close-server-connection. See also the macro
with-server-connection. However, explicitly opening a server is not necessary, it just reduces
the network overhead for multiple server calls.

http://www.racer-systems.com/products/download
http://www.racer-systems.com/products/download

2.2. THE RACERPRO SERVER 35

OWLlink Interface

In a similar way as the direct TCP socket interfaces, the RacerPro HTTP interfaces can be
used from application programs (and graphical interfaces) in order to communicate with the
RacerPro reasoner. OWLlink is a W3C member submission (http://www.w3.org/Submission/
owllink-httpxml-binding/) for an HTTP-based communication protocol. RacerPro implements
OWLlink directly and does not need an adapter as others reasoners (see http://owllink-owlapi.
sourceforge.net for a more detailed introduction).

$ RacerPro -- -protocol owllink

Instructs RacerPro to use the OWLlink protocol using the default HTTP port (8088). The default
OWLlink syntax is XML. In order to use the functional syntax start RacerPro as follows.

$ RacerPro -- -protocol owllink -owllink-input-syntax functional

You can also use

$ RacerPro -- -protocol owllink -owllink-input-syntax sexpr

if you prefer the sexpr syntax. The option -owllink-output-syntax with the obvious semantics
is also available.

2.2.3 Options for RacerPro Server

Various options allow you to control the behavior of RacerPro. Under Windows we have to distin-
guish between RacerPro options and window manager options (see below). Under Windows, you
have to use the separator -- before specifying options even if there are no window manager options
used.

• Use the option -h to get the list of possible options and a short explanation. Use this option
in combination with the window manager option +p (see below).

• As indicated above, the options -f <filename> can be used for reading knowledge bases from
a file. The extension of <filename> is used to discriminate the syntax to be used (possible
extensions for corresponding syntaxes are: .racer, .owl, .owllink, .rdfs, .rdfs. In all
other cases, Racer syntax is expected. If the extension of your input file does not have an
appropriate extension, you can specify the syntax with the options -owl, -dig, .owllink,
-rdfs instead of -f.

• With -o <filename> RacerPro can be instructed to write output to filename rather than
to the console.

• Use the option -q <filename> to specify a file with queries (extension .racer only).

• -p <port-number> specifies the port for TCP connections (e.g., for LRacer and JRacer, see
above).

• -http <port-number> specifies the port for HTTP connections (e.g., for the DIG interface,
see above).

• -socket-retries <n> specifies the number of retries that RacerPro uses for starting com-
munication sockets if they are still in use.

• -httplogdir <directory> specifies the logging directory (see above).

• -nohttpconsolelog disables console logging for HTTP connections (see above).

• -ef <external-format> defines the external format the RacerPro server uses for socket
communication (e.g., @utf8 is a possible value).

http://www.w3.org/Submission/owllink-httpxml-binding/
http://www.w3.org/Submission/owllink-httpxml-binding/
http://owllink-owlapi.sourceforge.net
http://owllink-owlapi.sourceforge.net

36 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

• -fef <external-format> defines the external format the RacerPro server uses for file input
(e.g., @utf8 is a possible value).

• With the option -profile <profile-name> the protocol for HTTP communication is spec-
ified (use, e.g., owllink for using the OWLlink protocol).

• You can use -owllink-input-syntax sexpr or -owllink-input-syntax functional to
specify the OWLlink syntax. Ditto for -owllink-output-syntax.

• Processing knowledge bases in a distributed system can cause security problems. The Rac-
erPro server executes statements as described in the sections below. Statements that might
cause security problems are save-tbox, save-abox, and save-kb. Files may be generated at
the server computer. By default these functions are not provided by the RacerPro server. If
you would like your RacerPro server to support these features, startup RacerPro with the
option -u (for unsafe). You also have to start RacerPro with the option -u if you would like
to display (or edit) OWL files with RacerEditor and use the facility Evaluate OWL File.

• If RacerPro is used in the server mode, the option -init <filename> defines an initial file
to be processed before the server starts up. For instance, an initial knowledge base can be
loaded into RacerPro before clients can connect.

• The option -n allows for removing the prefix of the default namespace as defined for OWL
files. See Chapter 5.5 for details.

• The option -t <seconds> allows for the specification of a timeout. This is particularly useful
if benchmark problems are to be solved using the file interface.

• The option -debug is useful for providing bug reports. If an internal error occurs when
RacerPro is started with -debug a stack backtrace is printed. See Section 2.2.4 about how to
send a bug report.

• Specify the option -m (or -x) to save some memory by instructing Racer that the KRSS
interface is not used for manipulating axioms. This is particularly useful if the OWLAPI is
used since axioms are maintained as part of the OWLAPI itself.

• With -una you can force RacerPro to apply the unique name assumption.

• Sometimes, for debugging purposes it is useful to inspect the commands your application
sends to RacerPro. Specify -log <filename> to print logging information into a file (see also
the command (logging-on) to switch logging on dynamically).

• Specify -temp <directory> if you would like to change the default directory for temporary
files (the default is /temp under Unix-based systems and the value of the environment
variable TEMP or TMP under Windows.

• Sometimes using the option -silent is useful if you want to suppress any diagnostic output.

• RacerPro supports the DIG protocol with some extensions. For instance, RacerPro interprets
the DIG specification generated by Protégé in such a way that DIG attributes are treated as
datatype properties in order to match the semantics of OWL. Thus, by default DIG attributes
do not imply at most one filler. If you have an application that relies on DIG-1.1 specify the
option -dig11 to instruct RacerPro to obey the original semantics of DIG attributes.

• In case you have problems with the license file license.racerlicense you can start
RacerPro with the option -license <license-file>. This prints information about the
file <license-file>. More detailed information is printed with -dump-license-info

[<filename>]. If no filename is supplied output is directed to stdout. In case only the li-
cense string is required, use dump-license-string instead (same arguments).

2.2. THE RACERPRO SERVER 37

• With -t <s> a timeout for queries can be specified (in seconds).

• With -c <s> a timeout for persistent connections can be specified (in seconds).

• With the option -alisp RacerPro is instructed not to be case sensitive (used for backward
compatibility only).

• -no-patches disables automatic loading of default patches from default patch directory

• -no-plugins disables automatic loading of default plugins from default plugin directory

• -patch-directory <directory> specifies the default patch directory (these patches are au-
tomatically loaded)

• -plugin-directory <directory> specifies the default plugin directory (these plugins are
automatically loaded)

• -patches <directory> loads all patches from the specified directory after the default patches
have been loaded (if any)

• -plugins <directory> loads all plugins from the specified directory after the default plugins
have been loaded (if any)

• -patch <filename> loads a single patch after the default patches and other patches have
been loaded (if any)

• -plugin <filename> loads a single plugin after the default plugins and other plugins have
been loaded (if any)

• -check4updates checks for online updates

• -update download and install online updates

• -update-from <URL> (default: http://www.racer-systems-com)

Note again that under Windows, RacerPro options have to be separated with -- from window
manager options (see the next section for an example). The following options are important to
control the behavior or the console window:

• The option +p make the console windows persistent, i.e., you have to explicitly close the
window. This is useful to read error messages.

• The option +c instructs RacerPro not to open the console window. This option is useful for
file-based operation of RacerPro (batch mode).

2.2.4 How to Send Bug Reports

Although RacerPro has been used in some application projects, it might be the case that you detect
a bug with respect to a particular knowledge base. In this case, please send us the knowledge base
together with the query as well as a description of the RacerPro version and operating system. It
would be helpful if the knowledge base were stripped down to the essential parts to reproduce that
bug. Before submitting a bug report please make sure to download the latest version of RacerPro.

Sometimes it might happen that answering times for queries do not correspond adequately to the
problem that is to be solved by RacerPro. If you expect faster behavior, please do not hesitate to
send us the application knowledge base and the query (or queries) that cause problems. In any
case, get the latest version of RacerPro first.

http://www.racer-systems-com

38 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

As a registered RacerPro user you may send your questions and bug reports to the following e-mail
address:

support@racer-systems.com

If you want to submit a bug report or a question about a certain behavior of RacerPro please attach
the logfile to your e-mail. Of course the logfile should cover the session in which the error occurred.

Logging (including a stack backtrace in case of an error) is enabled by starting the executable as
follows under Windows:

$ RacerPro.exe -- -log <filename> -debug

or under Unix:

$ RacerPro -log <filename> -debug

Please include at least this information in your correspondence:

• Your personal name and the name of your organization

• Your operating system

• Your contact data including telephone number

• The logfile (see above)

• The RacerPro build number

• Your transaction ID or the short license string

• A description of your problem and the environment where it occurred.

In case you have problems with the license file license.racerlicense you can start RacerPro with
the option -license <license-file>. This prints information about the file <license-file>.
More detailed information is printed with -dump-license-info [<filename>]. Please send also
this information.

We may need additional information about your setup or some of the data files you process to
simulate the reported error condition. You will greatly decrease our response time if you help us
by providing such information on request. Of course we will try to work on your issue as soon as
possible. However, due to the probably existing time lag between your location and ours or due
to the existing work load our response may take up to two business days. We will acknowledge
the receipt of your inquiry and in most cases give you further instructions or an estimate of the
processing time.

2.2.5 Online Reference Manual

The reference manual is now available online (see Figures 2.24 and 2.25). Make sure a
RacerPro server is started. Use you favorite web browser to view http://localhost:8080/

reference-toplevel.html. A collection of all functions provided by RacerPro is available un-
der http://localhost:8080/all-functions.html.

Help on function arguments is also provided by RacerPorter (see the example shown in Figure 2.26).

http://localhost:8080/reference-toplevel.html
http://localhost:8080/reference-toplevel.html
http://localhost:8080/all-functions.html

2.2. THE RACERPRO SERVER 39

Figure 2.24: RacerPro Reference Manual (specific sections)

40 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.25: RacerPro Reference Manual (alphabetical list)

Figure 2.26: Documentation of function arguments in RacerPorter.

2.3. RACERPORTER IN DETAILS 41

2.3 RacerPorter in Details

With RacerPorter you can interactively use RacerPro, load knowledge bases, visualize ontologies
(T-Boxes) and instances (A-Boxes), send queries and native commands to RacerPro.

The following items show a general overview of the features offered by RacerPorter:

• A powerful and convenient shell with shell history, completion facility, pretty-printing and
syntax coloring.

• An Emacs-compatible editor with buffer evaluation mechanism. Supports KRSS, OWL(2)
RDF, OWL2 Functional, SPARQL.

• The transmission of KBs or editor buffers to remote RacerPro servers.

• A-box, T-box and role hierarchy visualization facilities.

• Advanced focus and update control mechanisms.

• A clipboard mechanism for information interchange and focus control.

• Multiple session / multi-connection awareness (e.g., work with a different server while a
taxonomy graph is computed in the background).

• An asynchronous, multi-threaded, non-blocking GUI.

2.3.1 Distribution of GUI elements

Each tab has a uniform organization, which, we believe, makes the GUI consistent and comprehen-
sible. With the exceptions of the “Log” tab and the “About” tab, each tab has six areas. Figure
2.27 shows the “Taxonomy” tab, based on this tab, let us describe the six areas.

1. The tabs area. It shows the available tabs: Profiles, Shell, T-boxes, A-boxes, Concepts, Roles,
Individuals, Assertions, Taxonomy, Role Hierarchy, A-box Graph, Query IO, Queries + Rules, Def.
Queries, Log, and About tab.

2. The status display. There is a general notion of current / selected objects employed in Rac-
erPorter, e.g., current T-box, current A-box, current concept, current individual, and so on. These
current “objects” are shown in the corresponding fields in the status display. The current objects
can be referred to in the shell via the indicated *...* variables as arguments to shell commands
(e.g., enter “(describe-tbox *t*)” in the shell to get a description of the current T-box). The cur-
rent profile represents the current server connection as well as the current communication status.
The clipboard content is not shown, only the cardinality of the sets of selected objects (in the small
number fields). The selected objects are highlighted once an appropriate tab is selected.

In general, the current / selected objects are employed for information flow and for focus control
(= “what to display / visualize”) in RacerPorter. For example, each T-box “contains” a set of
concept names. Thus, the content of the “Concepts” tab depends on the current T-box. RacerPro
API functions often require certain arguments. These arguments are supplied by the current and
selected objects (of the appropriate type).

A “postfix command mode pattern” is thus used as the main interaction pattern - first select
the arguments, then select and invoke the operation on the selected arguments. If an operation
requires only one argument, then the current object (of the required type) is used, e.g., the current
concept. If an operator requires more than one argument, also the selected objects are passed as

42 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.27: RacerPorter – The Taxonomy Tab

arguments to the operation. In general, an operator can be invoked in various ways (e.g., via a push
button or via the shell). Multiple arguments (and thus, multi-selection of objects) are currently
only supported for objects of type: concept, individual, role, and axiom. The number of selected
objects (of the corresponding type) is shown in the little numeric box after the current object (of
the corresponding type). Moreover, the selected objects are displayed in a highlighted style in the
corresponding item lists, e.g., the selected concepts are highlighted in the “Concepts” tab which
simply lists the concept names which are available in the current T-box.

3. The history navigator. For each interaction, a so-called history entry is created and main-
tained in a list, the so-called history. Previous views / states of the RacerPorter GUI can be
reestablished easily with the help of the navigator buttons. Thus, it is possible to go back to /
reawake a previous session state. Similar to a web browser, this navigation in interaction history
is supported with the help of navigator buttons (back and forth). The current history position
and length of the history is shown as well. The history entries can be deleted with the help of the
“Delete All” button. Note that this does not affect the RacerPro server.

Sometimes, in case of errors, the widgets of RacerPorter are disabled, even though RacerPorter
is still connected to a “living” RacerPro server which accepts requests. In order to recover Rac-
erPorter from such errors and “reawake” its GUI, please use the “Recover” button. This button
also invalidates the cache of RacerPorter. So, if you suspect that RacerPorter displays incorrect
information, please press this button as well (the cache may have become inaccurate if another
application has modified the state of the connected RacerPro server).

Next to the history navigator, two checkboxes are included, the “Simplify” and the “Arg. Comp.”
checkbox.

If the “Simplify” checkbox is enabled, then namespace prefixes in OWL URIs (and long filename di-

2.3. RACERPORTER IN DETAILS 43

rectory prefixes) are truncated and abbreviated with the “#!:”-prefix syntax. Please note that “#!:”
denotes the current namespace. You can define additional prefixes with the help of the shell and
the “define-prefix” command (e.g., “(define-prefix “racer” “http://www.racer-systems.com”)”). By
default, the items to be displayed in this area (e.g., in the “Concepts” tab) are sorted alphabetically.

If the “Arg. Comp.” (arguments completion) checkbox is enabled, then RacerPorter will collect
the results of executed RacerPro commands in order to present them as input arguments in shell
interactions. In general, it the tab key is pressed in the shell, a pop-up menu is presented, offer-
ing possible completions. This includes operator names as well as arguments (provided argument
completion was enabled).

4. The tab-specific area. This area changes according to the selected tab. We describe the
different tabs and their functionalities in Section 2.3.4. In general, there is a set of tab-specific
buttons below the tab-specific main area.

The “Taxonomy” and the “A-box Graph” tabs use graph panes for this area. With the exception
of the “Shell”, “Log” and “About” tab, the other tabs use list panes. List panes allow single or
multiple selections of items; selected items represent the selected objects (clipboard). The last
selected item specifies the current object. Some list panes display additional information on their
items in multiple columns; e.g., in case of the T-box pane, not only the T-box name is shown, but
also the number of concepts in that T-box, profile and DLS server information is shown in the
profiles list, etc.

5. The tab-specific buttons area. This area shows options and commands that are useful
for the related tab. Appropriate radio buttons are provided which control whether only told role
assertions, or also inferred role assertions shall be shown.

Many tabs offer the “Search & Select” field which is used to select objects (individuals, concepts,
roles, axioms) based on their names (or structured content in the case of axioms). Simply enter a
text string into the “Search & Select” field and the objects which contain the search string somehow
in their names (or in their structure, in the case of axioms) as a substring will become selected (note
that you need to press enter). Please note that “Search & Select” always adds additional selected
objects, but never deselects already selected objects (and thus works in an accumulating way). If
required, the set of selected objects should be cleared manually by pushing the appropriate “Clear
Sel. ...” button) before a fresh “Search & Select” is performed.

The graph panes are more complicated to handle since they allow to specify focus, layout as well as
update options. In the case of the “A-box Graph” pane, one can determine which individuals and
which edges are displayed. Thus, for both individuals and roles, the focus can be set to the current
objects, to the selected objects, or to all objects. Selected objects are highlighted. Selected items
will appear on the top of the list if the “Sel. First” checkbox is enabled (e.g., selected concepts are
listed before the other concepts in the “Concepts” tab). Sometimes, one wants to focus only on the
selected objects. This is the purpose of the “Sel. Concepts”, “Sel. Roles” or “Sel. Inds.” checkbox.

Additional buttons allow to specify whether the graph display shall be updated automatically if
the focus or layout options changes, or whether the user determines when an update is performed.
In the latter case, the user first uses the button “Request Graph” to acquire the information from
RacerPro (phase 1). Once the graph is available, the “Display Graph” button becomes enabled; if
pushed, the graph layout is computed and displayed (phase 2). Both phases can be canceled (and
different focus and layout options selected subsequently) if they should take too long3.

Some of the push buttons send commands to a connected RacerPro server (e.g., the “Concept
Query” button). These buttons are called command buttons. The titles of these command but-

3Although RacerPorter does not block in phase 1, unfortunately we have to block the GUI in phase 2 due to a
restriction of the GUI framework we are currently using.

44 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

tons are displayed somewhat highlighted (italic font on Windows and Linux and bold font on the
Macintosh).

Some of the RacerPro requests invoked by command buttons may take some time to compute.
These requests are executed in the same way as if they were invoked from the shell. So, commands
which take more than 3 seconds to finish also produce “:busy-backgrounding” messages.

In the profile editor, you can specify whether the commands produced by commands buttons will
be put into the shell command history or not.

Please note that many command buttons automatically select certain objects (i.e., concepts, in-
dividuals, roles). For example, the “Concept Query” button returns a (possibly empty) set of
individuals. The returned individuals become selected automatically.

6. The info display area. This area is similar to the shell; however, it only “echos” the shell
interaction or all user-invoked commands, thus it accepts no input (e.g., the result produced by
pushing the “Concept Query” button in the “Concepts” tab on a selected concept is shown there,
as well as in the shell, so it can be reused). This helps to avoid opaqueness, and as a side effect,
the user learns the correct KRSS syntax.

Please note that all this displayed information is session and thus profile specific (depends on the
active profile and thus changes if another profile / session is activated).

2.3.2 Preferences

Figure 2.28: The editor of preferences for RacerPro with the use of RacerPorter.

In order to specify preferences simply press the “Edit Profile. . . ” button in the “Profiles” pane (Mac:
choose “Preferences. . . ” item from the menu), specify the RacerPro host and port to connect to,
press “OK” and then “Connect” to that RacerPro server. See also Figure 2.28. Note that you can
manage different server settings with profiles. The file “profiles.racerporter” in your home directory

2.3. RACERPORTER IN DETAILS 45

is used to store your profiles. The default profile will be automatically used on startup. You will be
connected automatically if “auto connect” is specified in the default profile. If you are successfully
connected you can use the tabs to access the functionality of RacerPro.

The six text fields at the top of the application are called the state display of RacerPorter. They
indicate the current “state” of RacerPorter, NOT of RacerPro. Selecting, for example, a T-box from
the T-boxes list panel, updates the T-box field in the state display. The same applies to the other
fields of the state display. The state is used to indicate the current object which is to be inspected
or queried with RacerPorter - for example, the “Individuals” tab will always show the individuals
of the A-box in the state display, the “Taxonomy” tab will always show the taxonomy of T-box in
the state display etc.

Note that selecting an A-box (T-box) from the A-boxes (T-boxes) pane does NOT change the
(current-abox) (resp. (current-tbox)) of RacerPro. Use the buttons “Set Server T-box” and
“Set Server A-box” for this purpose if you “really” want to change the state of the RacerPro server.
The (current-abox) and (current-tbox) of the RacerPro server is indicated in the T-boxes resp.
A-boxes tab by marking the T-boxes resp. A-boxes name like this: >>> DEFAULT <<<.

2.3.3 RacerEditor

RacerPorter also includes an Emacs-style text editor (called RacerEditor) which you can use to
view, edit and process your knowledge bases. To open the editor just press the button “Open in
Editor...” in the “Shell” or in the “Profiles” tab and select a text file that should be read into the
editor.

You can open virtually any file with the editor, from plain text to RDF/OWL files and those in
RacerPro syntax. The editor offers a simple syntax sensitive support by displaying text in different
colors and by indicating closing parenthesis.

At the bottom of the window, status lines are displayed that are typical to Emacs. They indicate a
keystroke combination and give other feedback to user interaction in its first line. The bottom line
shows more general information: the connected RacerPro server (if actively connected) is shown
first. As usual for Emacs-like editors, a modification indicator is shown next (---- means buffer
unmodified, -**- means buffer modified). Then, buffer-related information follows to the right:
name of the edited file, recognized syntax of the content (“XML” for RDF/OWL files, “Lisp” for
RacerPro files and “Fundamental” for all others) as well as the path of the imported file.

Please notice that the editor is similar to Emacs and therefore not behaving like typical Windows-
based text processor. For instance, browsing through the text with the help of the window scroll
bar may move the cursor too. Also you can not select the text by holding down the shift key and
move the cursor with the arrow keys. Rather, highlight the text by clicking and shift-dragging the
mouse over the interesting passages: then right-click the mouse to select if you want to copy or
cut the text from the window. Remember that the control key, especially the control-C keystroke
combination has a different meaning in Emacs and analogously in RacerEditor. The editor uses
standard Emacs-compatible key bindings (e.g., Ctrl-x Ctrl-w saves a file, Ctrl-x Ctrl-f loads a file,
etc.). The “GNU Emacs Reference Card” is a good reference to get to know the usual key bindings.

In the following we list the most important key bindings.

• Return or Enter: fresh line or send command

• Tab: Completion key

• Ctrl-a: Beginning of line

• Ctrl-e: End of line

46 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

• Ctrl-k: Kill line

• Ctrl-left: Matching starting ”(”

• Ctrl-right: Matching ending ”)”

• Ctrl-d / Del: Delete

• Backspace: Backspace

• Ctrl-Space: Set Mark

• Meta-w: Copy

• Ctrl-y: Paste

• Ctrl-w: Cut

• Meta-p / Alt-p: Previous Command

• Meta-n / Alt-n: Next Command

The editor has three modes:

1. Racer mode. This mode is useful for editing RacerPro KBs in RacerPro native syntax. You
can incrementally evaluate expressions using Ctrl-Shift-e, or send a whole buffer to a RacerPro
server using Ctrl-Shift-h (see also the “Buffer” Menu). Note that Ctrl-Shift-e also puts the
evaluated command into the shell and in the shell command history, unlike Ctrl-Shift-h.

2. OWL RDF (XML) mode. In this mode Ctrl-Shift-y can be used to evaluate an OWL buffer.
The OWL buffer evaluation will only work if the connected RacerPro server is running in
unsafe mode (consult the “Profiles” tab for this information) since buffer evaluation requires
creation of a temporary file on the machine on which RacerPro is running.

3. OWL Function mode. In this mode Ctrl-Shift-f can be used.

If you want to evaluate SPARQL queries in native syntax, then it is important to note that SPARQL
queries are enclosed between blank lines (one before and one after the query), since otherwise start
and end of the SPARQL query cannot be detected. To evaluate a single SPARQL query, put the
cursor on the query and press Ctrl-Shift-s.

In case you are working with OWL, you often want to work with an axiomatic, auxiliary represen-
tation of your OWL KB. RacerPro can create so-called OWL axiom objects from the content of
an OWL file. The created axioms can then be inspected end edited conveniently with the axioms
editor provided in the “Axioms” tab.

OWL axiom objects can also be created automatically if an OWL buffer is evaluated (Ctrl-Shift-
y, Ctrl-Shift-f) from the editor. It is determined by the active profile whether an OWL buffer
evaluation request creates auxiliary OWL axioms (see checkbox “Create Axioms by Default”).
Note that reasoning will also work without these auxiliary OWL axioms. However, the presence of
the OWL axioms is required if the OWL KB (or OWL file) shall be edited in the “Axioms” tab on
an axiomatic level. Please note that axiom objects may require a lot of memory if the OWL KB is
big (and thus contains a lot of axioms).

2.3. RACERPORTER IN DETAILS 47

2.3.4 Tabs in RacerPorter

The Profiles tab. Communication with (possibly different) RacerPro servers is managed using
so-called profiles. A profile has a name and specifies at least the parameters of the connection
(TCP/IP address and port) to a RacerPro server (see “Profile Specific Connection Options” in the
“Edit Profile...” dialog) so that RacerPorter knows how to connect to that server.

Profiles are managed with the “Profiles” tab. Simply select a profile from the list of profiles in the
“Profiles” tab to activate it. There is always one active profile at a time. The name of the active
profile is always shown in the status display (field “Active Profile”).

There is one default profile. The default profile is the one which is automatically activated during
startup of RacerPorter. If auto connect is enabled for this profile, the connection to the specified
RacerPro server is automatically established.

Moreover, a profile can also specify parameters required for starting up a RacerPro server on the
local machine (see “Profile Specific Server Startup Options” in the “Edit Profile...” dialog). For the
default profile, it is possible to startup a fresh RacerPro server during startup of RacerPorter, with
parameters specified in the default profile. For non-default profiles, the “Start RacerPro” button
can be used to startup a fresh RacerPro server. In any case, in order to enable RacerPorter to start
RacerPro servers, you’ll have to specify the “RacerPro Executable‘” in the “Edit Profile...” dialog.
Additional server command line arguments can be specified. Note that these additional arguments
will apply to freshly started RacerPro servers only and will not affect already running RacerPro
servers.

A profile contains more information than meets the eye - information which cannot be edited with
the profile editor. A profile also contains the session context (e.g., the current shell content, the
shell history and the navigator history), as well as the state of the RacerPorter GUI (e.g., the status
of the check boxes and other GUI-gadgets controlling visualization options). This session-specific
information is used to revert the state of the RacerPorter GUI to a previous state if a previously
used profile is reactivated again. Note that, all though the session-specific information is not made
persistent (when the profile is saved from the profiles editor), the visualization options specified
in a profile are in fact made persistent. This is how the four default profiles differ - they provide
different default settings for various visualization options, depending on the size of the A-boxes /
T-boxes under consideration.

The “Connect” button is used to connect / disconnect to / from the RacerPro server specified in
the (currently active) profile. The whole set of profiles shown in the “Profiles” tab. The profiles can
be saved into a profiles file (made persistent) from the profile editor with the “OK & Save Profile”
button in the “Edit Profile...” dialog. On startup, RacerPorter automatically looks for the profiles
file “C:/Users/Juan/profiles.racerporter” and loads it if it exists.

Once you have established a connection to a RacerPro server, the functionality provided in the
other tabs becomes available. RacerPorter can manage multiple connections to possibly different
RacerPro servers at a time. For example, you may send a time consuming request to one server.
While that server is busy, simply switch to a different profile to work with a different RacerPro
server. Once the time consuming request has been processed, you will be notified and RacerPorter
can automatically switch back to the original session (and profile). You can switch between different
profiles (and thus, servers and corresponding sessions) at any time.

The “Profiles” tab offers some auxiliary functionality via command buttons. It is possible to store
/ restore an image of a RacerPro server. This image contains the complete state (data structures)
of the server in binary form. Since the server state contains the results of inferences (which might
have took a long time to be reached, e.g., a taxonomy computation can easily last an hour or more
on complex OWL KBs), a server state may be very valuable and it should thus be possible to store
and restore it quickly. This is the purpose of the “Store Image...” and “Restore Image...” buttons.
The “Full Reset” not only sends the “(full-reset)” command to RacerPro (which then disposes all

48 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

its A-boxes, T-boxes, Queries, Rules, OWL Ontologies, etc.), but also resets the RacerPorter GUI
(clears the histories and session context, etc.). However, “Full Reset” only affects the active profile
and its corresponding server.

A very important button is the “Load...” button. The load function can even transmit a file to
a remote RacerPro server (which does not have access to the file system on which RacerPorter
is running). However, this will only work if this remote server is running in the so-called “unsafe
mode”. You can see from the profiles list whether the connected server is running in unsafe mode. If
the server has been started by RacerPorter, then you can specify in the profile editor whether this
server should be started in unsafe mode (see checkbox “Start RacerPro in Unsafe Mode”). Load
accepts files with the following extensions: *.owl, *.rdf, *.funct, *.racer, *.krss, *.lisp. For OWL
files, you will be asked whether a set of auxiliary OWL axioms shall be created from the OWL file.
Answer with “Yes” if you wish to edit or browser the axioms with the help of the “Axioms” tab.
However, axiom objects need some additional memory.

The Shell tab. This tab offers textual, command-based interaction with RacerPro for advanced
users. The syntax of the native RacerPro commands to be entered into the shell is documented in
the RacerPro Reference Manual. The shell tab offers the following facilities:

• Completion. This facility provides automatic completion for commands, arguments and file
names, thus it can be used to learn about the available commands and required arguments for
each command. For command completion simply press the tab key and all available commands
are presented in a pop-up list. If you have written a partial command name (e.g., start typing
“(describe-con” into the shell and press tab) you can complete the command with the use of
the tab key, in case there is more than one possible completion, a popup menu appears with
the possible choices (use enter to confirm and escape to exit the menu). Argument completion
can be executed by using also the tab key once a command has been written or chosen from
the pop-up list. The list of acceptable arguments - the so-called function lambda list is shown
in the line below the shell. For file name completion - try “(owl-read-file” and press tab key.
Finally, you can get rid of these popup menus by using Esc.

• Command history. The shell maintains a command history in order to make it easy to re-
execute commands (not to be mistaken with the navigation history). To use this, simply
use Alt-p or Ctrl-p to get the previous command, and use Alt-n or Ctrl-n to get the next
command in the command history. It is also possible to position the cursor in a previously
entered command expression and simply press enter. The command is then reexecuted. More-
over, commands in the command history are numbered. To reexecute command with number
<n>, simply enter <n> and press enter.

Syntax requirements
Now consider the following syntax requirements when writing on the shell tab.

The shell is tailored for KRSS commands in Lisp-syntax, therefore commands always start with
“(”. When entering a complex command spanning multiple lines, you can simply press enter to
start a fresh line. RacerPorter will not send the command to RacerPro until the last closing “)”
parenthesis has been entered.We provide parenthesis matching, convenient multi-line input as well
as pretty printing.

The shell also recognizes SPARQL queries which have a different syntax. For entering SPARQL
queries spanning multiple lines, use Ctrl-Enter. When the SPARQL query is complete, press Enter.
The “∼” (needed for the specification of pathnames on Linux or Mac) is on Alt-z (Apple-z).

The current RacerPorter T-box, A-box, concept, etc., as indicated in the status display, are available
as bindings of special variables: use *t*, *a*, *c*, etc., as documented in the status display. For

2.3. RACERPORTER IN DETAILS 49

example, use “(describe-tbox *t*)” to supply the current RacerPorter T-box as an argument to the
“describe-tbox” function.

Furthermore, the results of the last three RacerPro commands executed via the shell are available as
bindings of the three special variables *, ** and ***. For example, if you have executed “(current-
tbox)” and RacerPro has returned “default”, then * is bound to “default”. Thus, you can use
“(describe-tbox *)” instead of “(describe-tbox default)”.

If you are working with OWL, then concepts, roles, individuals will have so-called namespace pre-
fixes, e.g. “http://www.owl-ontologies.com/unnamed.owl#” is the namespace prefix of the concept
“http://www.owl-ontologies.com/unnamed.owl#cat”.

It is often awkward of having to type these rather long names. An abbreviated syntax is thus offered.
The same abbreviation syntax which is used for display if the “Simplify” checkbox is enabled is
also accepted for input, e.g., “#!:cat” refers to the default namespace. The default namespace is
shown in the status display. You can define additional prefixes with the help of the shell and the
“define-prefix” command (e.g., “(define-prefix “racer” “http://www.racer-systems.com”)”). There
is also the #!: prefix which is used for nRQL (mirror) data substrate queries (see Section 4 for
more details). Thus, “#!:cat” expands into “*http://www.owl-ontologies.com/unnamed.owl#cat”
(please note the * at the beginning).

As explained, certain special variables are bound to the current objects, e.g., *t* is bound to the
current T-box. The reverse direction of data flow regarding the current objects is also supported,
since it is possible to set the current or selected objects to a result or result set returned by some shell
command. This is the purpose of the “Selected ...” buttons, i.e., “Sel. Concepts := Last Result”,
“Sel. Roles := Last Result”, and “Sel. Individuals := Last Result”. For example, one possibility to
select the concept instances of the concept “C” is to enter “(concept-instances C)” and push the
“Sel. Individuals := Last Result” button. The returned individuals will the become the selected
individuals. The selection can be cleared using the appropriate “Clear Sel.” button.

In some cases, the result of a RacerPro command can be very big (e.g., the result of “(all-
individuals)” with a KB containing thousands of individuals). In such cases there is the option
to put an abbreviated result into the shell instead of the whole result (a popup confirmer will ask
you).

RacerPro may need some time to execute a command. Whenever a command is send, RacerPorter
waits 3 seconds for its result from RacerPro. If the result is still not available after 3 seconds, the
execution of the command is performed as a background request (in a background task). Thus, the
shell returns with a notification “:busy-backgrounding”, and the RacerPorter GUI becomes available
again. Thus, it is not blocking further user requests and “appears alive”. However, it will accept
no more commands for this session (RacerPro server), and thus, RacerPorter disables its widgets
(they will be reactivated as soon as the request has been satisfied and the answer is available).
However, RacerPorter is still alive and you can indeed continue working - you can either connect
to another RacerPro server using a different profile, continue editing with RacerEditor, or switch
to the Log tab to see what’s going on, etc. If you haven’t changed the active profile, RacerPorter
automatically switches back to the original tab when then result is available. If you have continued
working with a different profile, RacerPorter notifies you that the background request issued by
the other sessions has now returned a result and asks whether it should switch back to the original
session (profile) and tab to inspect the result.

The shell offers automatic pretty printing and reindentation of user input. However, if the “Don’t
modify user input” is enabled in the the active profile (see profile editor), then user input is not
pretty printed, since users might feel as being patronized. By default, pretty printing of user input
is disabled.

The current communication with RacerPro is also visualized in the request and response status
fields; appropriate colors are used to visualize the different stages of such a communication (first

50 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

the request is send, then RacerPro is busy, then the result is received over the socket, finally the
result is parsed, etc.; note that errors can occur at any time in such a processing chain).

The T-boxes tab. This tab lists the available T-boxes on the RacerPro server (specified by
the active profile) and provides some general information about each T-box: the name of the T-
box, whether the T-box is classified, the number of role and concept names present in the T-box,
whether the T-box has cyclic definitions, whether it has a so-called “Meta Constraint” (indicating
that reasoning with the T-box may be hard), the employed description logic, the number of roles,
and the names of the A-boxes which reference this T-box.

The current T-box is highlighted in the list (returned by “(current-tbox)”) and is shown between
“>>> ... <<<” markers. In general, the content of the T-box-specific tabs (i.e., the concepts tab,
the roles tab, the taxonomy tab, and the role hierarchy tab) depend on the RacerPorter T-box,
and NOT on the current RacerPro T-box. Thus, it is NOT necessary to change the current T-box
(and thus the state) of the RacerPro server in order to inspect another T-box. Just select (click
on) another T-box in the “T-boxes” tab. Use the main (left) mouse button to select the current
RacerPorter T-box.

T-box-specific commands invoked by RacerPorter (e.g., via command buttons such as “Describe”)
are always applied to the current RacerPorter T-box, not to the current RacerPro T-box. If you
really want to change the current RacerPro T-box, use the “Set Server T-box” button. But in
general, this will not be necessary if you work with RacerPorter since the current RacerPorter
T-box (as shown in the status display) will always be supplied as an argument to all T-box-specific
commands invoked by RacerPorter.

The A-boxes tab. This tab lists the available A-boxes on the connected RacerPro server and
provides some general information about each A-box, such as the name of the A-box, whether it is
consistent and/or realized, which associated T-box it has, the number of individuals, the utilized
description logic, the number of concept and role assertions, etc.

The “A-boxes” tab works analogous to the “T-boxes” tab. Note that RacerPro also has a current
A-box (result of “(current-abox)”). The situation regarding the differences between the current
RacerPorter A-box (shown in the status display) and the current RacerPro A-box is analogous to
the “T-boxes” tab (see above).

Some A-box-specific commands can be invoked with command buttons.

The Concepts tab. This tab lists the available concept names (also called OWL classes, atomic
concepts) in the current RacerPorter T-box. The concepts are sorted alphabetically. The tab can
show either all, show only the defined, show only the primitive, or show only the unsatisfiable
concepts in the T-box. Selected concepts are shown highlighted (the concepts in the “clipboard”).
If the “Sel. First‘” checkbox is turned on, then the selected concepts are at the top of the list. If
“Sel. Only” is on, then only the selected concepts are shown (note that this might result in an
empty list if no concepts are selected).

Concepts can be selected and deselected as usual (use the main / left mouse button). Multi-
selection is supported. The last selected concept always becomes the current concept - note how
the “Concept” field in the status display changes when you (de)select concepts. The small number
behind the current concept in the status display shows the total number of selected concepts (the
cardinality of the set of selected concepts). Concepts can be selected with the help of the “Search
& Select” field as well. The selection can be cleared with the “Clear Sel. Concepts” button.

Some concept-specific commands can be invoked by command buttons and either apply to the
current RacerPorter concept (e.g., “Concept Query”), or to the selected concepts (e.g., “Select
Parents”). Note that the “Concept Query” button allows you to retrieve the instances of the current

2.3. RACERPORTER IN DETAILS 51

concept. The retrieved instances will automatically become selected individuals (see “Individuals”
tab).

The Roles tab. This tab lists the roles in the current RacerPorter T-box (and their corresponding
inverses). It works analogous to the “Concepts” tab. The list either shows all roles, shows only the
transitive roles, shows only the functional roles, etc., depending on the selection of the provided
radio buttons. Multi-selection of roles is supported. The last selected role becomes the current role,
and selected roles are highlighted.

The Individuals tab. This tab lists the individuals in the current RacerPorter A-box and works
analogous to the “Concepts” tab. Multi-selection is supported. The last selected individual becomes
the current individual, and selected individuals are highlighted as usual.

The Assertions tab. This tab presents the A-box assertions contained in the current Racer-
Porter A-box. Depending on the selection of the radio buttons, different kinds of assertions are
shown (concept assertions, role assertions, attribute assertions, constraint assertions, annotation
concept assertions and annotation role assertion in case of OWL A-boxes).

Assertions can be selected and deselected as usual. Multi-selection is supported. However, there is
no current assertion, but only a set of selected assertions. The selected assertions can be deleted
with the “Delete Selected” button. However, in general this kind of editing should be performed
with the “Axioms” tab (in case an OWL KB is edited).

The Axioms tab. This tab offers a convenient and powerful interactive graphical OWL2 axiom
browsing, axiom inspection, and axiom editing.

OWL2 axioms for OWL KBs can be either created by hand with the “New Axiom...” button, or au-
tomatically during load of an OWL file (see “Load...” button). The RacerPro-internal OWL parser is
invoked by “Load...”. The function “owl-read-file” (e.g., “(owl-read-file <file.owl> :maintain-owlapi-
axioms t)”)), can create OWL axioms automatically during the parsing of an OWL document or
created during the evaluation of an OWL buffer with the RacerEditor.

An OWL axiom object is simply a record-like data structure (an object) which has an ID, a type,
and various axiom type-specific attributes. With the axiom type selector (on the left side) the types
of axioms to be displayed (in the list on the right side) is determined. Note that axiom types are
organized in a class hierarchy. Some axiom types are abstract. Axioms of abstract axiom classes
cannot be created.

Axioms are contained in an ontology container. Each ontology container contains a set of axioms.
Moreover, an ontology container is contained in a so-called reasoner container. Each reasoner con-
tainer corresponds to a RacerPro KB - a T-box/A-box pair (with same name). An axiom in an
ontology container can either be loaded or unloaded. A loaded axiom is considered for reasoning
with the T-box/A-box which corresponds to the reasoner container. There is one default reasoner
container which is called the OWLAPI-KB reasoner. Please note that there is also a corresponding
T-box/A-box with that name. The reasoner and ontology containers can be selected from the combo
boxes showing the current reasoner and current ontology container. The content of the ontology
combo box depends on the current reasoner container.

The axioms tab always shows the axioms which are contained in the current reasoner container.
Single axioms can be selected and deselected. The last selected axiom becomes the current axiom.
All other selected axioms are shown highlighted. Command buttons are provided for loading and
unloading of axioms, etc. They all apply to the current ontology (in the current reasoner). Please
note that such a reasoner container is NOT identical with a RacerPro server. Each single RacerPro

52 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

server instance can host an arbitrary number of these reasoner containers. Reasoner Containers are
simply OWLAPI-conformant notions of KBs.

Attributes of axioms can be edited. In order to edit an attribute you’ll have to select the appropriate
row of that axiom. The selected attribute of that axiom can then be edited by pressing the “Edit
Axiom...” button.

In case you want to create a new axiom, make sure to select a non-abstract axiom type from the
axiom-type selector on the left. Select the axiom type from the type selector until the word “NEW
AXIOM” appears behind it, and the “New Axiom...” button will get enabled. If you push it, an
interactive graphical axiom editor will pop up. Basically, you’ll have to supply an attribute value for
each attribute of an axiom. You can either enter expressions by hand using the supplied editor fields,
or select “building blocks” for interactive expression composition from the presented combo boxes.
An item which is selected from such a combo box list will be inserted in the editor at the current
cursor position. In case PLURAL is used for the attribute description (e.g., DESCRIPTIONS
instead of DESCRIPTION), more than one valid (concept / description) expression may be entered
into the corresponding editor field. Simply separate the different expression by some whitespace
(e.g., space or newline).

Sometimes, only the axioms which mention a certain concept (role, individual) shall be selected.
For example, suppose you are looking for all individual-specific axioms which mention a certain
individual. Or suppose you are looking for all class axioms referring to a certain class. The current /
selected objects (concepts, roles, individual, ...) can be exploited for this purpose. This is what the
button “Select Axioms using *c*, *i*, *r*” does. E.g., suppose you are interested in the SubClass
axioms which mention the concept #!:cat. First, ensure that #!:cat is a current / selected concept.
This can be achieved, for example, with the help of the “Concepts” (or “Taxonomy”) tab. First
press the button “Clear Sel. Concepts” (and “Clear Sel. Roles” as well). Then, select the #!:cat
concept (it becomes the current concept). Switch back to the “Axioms” tab. Deselect all axiom
types in the axiom type selector and select only the “SubClassAxiom” type. Next, push the button
“Select Axioms using *c*, *i*, *r*”. If you turn on the “Sel. First” checkbox, then only the SubClass
axioms which mention the #!:cat class are displayed.

Some other axiom-, ontology container-, and reasoner container-specific commands are provided by
command buttons. Note that “Dispose Axioms” disposes (unloads and then deletes) all selected
axioms.

The Taxonomy tab. This tab presents a graph display of the so-called concept subsumption
hierarchy (the so-called taxonomy).

What is described in the following also applies to the other graph displays in RacerPorter, e.g.,
“Role Hierarchy” and the “A-box Graph” tabs.

All graph displays can be configured to either update their content automatically or manually.
Automatic updates are performed if the “Auto Update” checkbox is enabled. In case the checkbox is
disabled, updates must be performed by hand. For this purpose use the “Request Graph”, “Display
Graph” and “Reset Graph” buttons.

The display of a graph is a two-step process. First, the information to be displayed has to be
acquired from RacerPro. If the “Request Graph” button is pushed, a background job is started
which acquires the graph information. This job can be canceled with the “Abort Request” button.
Once the graph is available, the “Display Graph” button can be used - this is the second step. A
layout has to be computed for the graph. Please note that this can even take more time than the
first phase. Unfortunately, the RacerPorter GUI is not available during layout computation (this
job can’t be processed in the background); thus, the GUI blocks and disables its widgets. However,
in the Linux and Windows version of RacerPorter, the layout computation can be canceled if it
takes too long. Unfortunately, this is not the case for the Macintosh version of RacerPorter.

2.3. RACERPORTER IN DETAILS 53

In general, “Auto Update” can be problematic for big graphs. In case graph computation or graph
layout takes too long, you may cancel the operation, and retry with some other layout and/or focus
options, e.g., by focusing only on the current or selected concepts and by specifying a max graph
depth cut-off limit. This depth limit can be specified in the little combo box; default is “0”, for
this reason select always a depth in order to see the graph. In some cases, also the tree display
visualization option results in unacceptable performance, due to a combinatorial explosion.

A node in the taxonomy graph represents a set of synonym concept (OWL class) names, and an
edge between two nodes represents a (direct) subsumption relationship between the concepts (OWL
classes) represented by these nodes. Selected concepts will be shown in blue, and the current concept
will be highlighted.

Either the top concept is taken as the root of the taxonomy graph, or the current concept, or
each selected concept is taken as a root. This is controlled by the radio buttons labeled “All
Concepts”, “Cur. Concept” and “Sel. Concepts”. The layout of the graph can be horizontal or
vertical. Moreover, the graph can be drawn as a tree or a DAG (directed acyclic graph). The Top
and Bottom concepts can be omitted. In some cases (if the taxonomy is very big) it is helpful to
limit the maximum depth of the graph display. Use the depth-limit combo box for this. In the
taxonomy, select a “?” node in order to further expand this node. Obviously, these “?” nodes only
appear if max-depth is not set to “unbounded”.

As with the “Concepts” tab, nodes can be selected and deselected with the mouse. Multi-selection
is supported.

If “Freeze Graph” is turned on, then selection of a node and thus, changing the current concept,
does not automatically change the graph layout. Note that, if “Freeze Graph” is turned off, and
“Cur. Concept” display mode is used, then changing the current concept with a click of the left
mouse button sets the graph root to the current concept. This behavior is sometimes undesirable.

Some concept-specific commands can be applied with the present command buttons. Note that,
if “Auto Update” and “Selected Concepts” is turned on, and “Freeze Graph” is turned off, then
using the “Search & Select” field results in a very dynamic display.

Please note that the default profiles for “Big T-boxes” differ from the default profiles for “Small
T-boxes” only w.r.t. the default display options, e.g., the big T-boxes profile specifies a max depth,
whereas the small T-boxes profile specifies unbounded depth, etc. The same distinction applies to
the “Big A-boxes” vs. “Small A-boxes” profiles (w.r.t. A-box visualization options).

The Role Hierarchy tab. This tab works analogous to the “Taxonomy” tab and should not
require any further explanation. Nodes in the graph represent synonym role names, and edges
direct role subsumption relationships. Please note that, different to the “Taxonomy” tab, there
is no “Top” and “Bottom” role. Roles can be selected and deselected by clicking on the nodes.
Multi-selection is supported and works as expected.

The A-box Graph tab. This tab is slightly more complicated than the “Role Hierarchy” tab
and the “Taxonomy” tab, since it allows to focus on roles as well as on individuals. Thus, focus
options are present for roles as well as for individuals.

In the A-box graph, nodes represent individuals, and edges represent told and/or inferred (logi-
cally entailed) role assertions. So, an R-labeled edge between node “i” and “j” represents a role
assertion “R(i,j)” (or “(related i j R)” assertion in RacerPro syntax). Individuals can be selected
and deselected by clicking on the nodes. Multi-selection is supported and works as expected. Edges
cannot be selected (although it would make sense in order to select roles - this will be supported
in a future version of RacerPorter).

The display of inferred role assertions and the display of role assertions for transitive roles can be
enabled or disabled (checkboxes “Told Only” and “Trans. Roles”).

54 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Selected roles can be used to determine which role assertions to display. In this mode, a role assertion
is visualized if the corresponding role is selected. The set of selected individuals is exploited in the
obvious way.

Each individual supplies a graph root. Since the exploited graph layout algorithm currently cannot
display cyclic graphs, a tree unraveling of the graph, starting from the root individual, is used.
Cycles are indicated with the help of the “:back-to” annotation. Please note that the “Search &
Select” field can select individuals as well as roles by name here.

As expected, some individual-specific commands are present as command buttons (as in the “Indi-
viduals” tab).

The Query IO tab. This tab offers a tabular display for query results from which query results
can be selected. Whenever a nRQL or SPARQL query is entered into the shell (or editor using
Ctrl-Shift-e), its result set is shown in the list below the shell (which is duplicated here from the
“Shell” tab for convenient query input) in this tab. From this result list, items in answer tuples
(individuals or concept names) can be selected. Note that, in principle, a nRQL query can return
individuals or concept names (in case of tbox-retrieve). Multi-selection of result items (individuals
or concept names) is supported.

The Queries + Rules tab. This is a simple list display. Queries and rules are maintained as
objects (similar to T-boxes and A-boxes) by RacerPro. As such, queries and rules have a complex
life cycle and a state. This tab is used to manage queries and rules as well as their states. Queries
and rules are A-box-specific. The list shows basic information about the loaded queries for the
current (RacerPorter) A-box. Each query has an ID, a state, etc. Moreover, the list can be advised
to display only queries / rules in certain states. It is thus possible to focus exclusively on queries
/ rules which have terminated, which are currently running, which are prepared and thus ready to
run, etc.

The list supports only single selection. Thus, only one current query / rule can be selected (see
status field “Query / Rule” and variable *qor*).

Some query- / rule-specific commands are available via buttons. Note that the commands are
applied to the current query / rule, as indicated by the “Query / Rule” field in the status display.

The Defined Queries tab. A defined query is a simple macro for a complex nRQL query body.
Defined queries must by acyclic. This tab simply lists all query definitions. Defined queries are
T-box-specific. Some commands to maintain the definitions are provided as buttons as well.

The list supports only single selection. Thus, only one current definition can be selected (see status
display field “Request”).

The Log tab. This tab keeps all communication with RacerPro servers logged. It can be inspected
at any time in order to learn what the DLS is currently doing. Each request gets a unique ID and
can either be synchronous (S) or asynchronous (A). Moreover, it is indicated whether a request is
answered with a local cache lookup, whether a request is performed in the background, etc. This
log is cleared automatically every 10000 lines. Please note that RacerPorter can also maintain a
log file. This depends on the active profile. Please consult the profile editor for RacerPorter log file
specific settings.

Information-flow In the following a sequence of steps are described for you to follow as a manner
of exercise, such that you can get to know how the principle of information-flow allows to link
different interactions between the different tabs of RacerPorter.

2.4. OTHER GRAPHICAL CLIENT INTERFACES 55

In the “Taxonomy” tab, select a concept from the taxonomy, then use “Concept Query” to retrieve
the instances of the selected concept. Note that the “Concept” field of the state display always
shows the current concept. Adapt the depth of the tree as necessary. If you push “Sel. Concepts”
while in the Tree display mode, then only the subconcepts of the current concept will be shown.

Got to the Individuals tab and select an individual, press “Direct Types” or “All Types” and then
go back to the “Taxonomy” tab. It will highlight the types of the selected individual (note the
“Individual” field in the state display).

Select the “A-box Graph‘” tab afterwards in order to show the A-box structure focusing on the
selected individual. Adapt the tree depth accordingly and push “Sel. Inds.” You can always change
the focus individual by simply selecting it. The focus individual is shown in the “Individual” field
at the top. To display the complete A-box structure, simply push the “Clear Sel. Inds.” button.
You can also focus on a subset of the A-box edges - simply select the roles you are interested in
from the “Roles” tab and check out “Selected Roles” in the “A-box Graph” tab. Then, only the
edges labeled with “selected roles” are shown.

Note that the “Roles” tab is the only tab which allows multiple selection of items. The last selected
role is always the current role, as shown in the “Role” text field in the state display. The other list
panes only allow a single selection.

In the “Queries + Rules” tab, select a nRQL query from the list, then use the buttons to apply a
command on the selected query. Note that the current query or rule is shown in the Query or Rule
field in the state display at the top.

2.3.5 Known Problems

Note that the JPEG image shown in the About tab will only work on Linux if you
have /user/lib/libImlib.so installed (SuSE: ln -s /opt/gnome/lib/libImlib.so.1.9.14

/user/lib/libImlib.so).

2.4 Other Graphical Client Interfaces

In this section we present open-source Java-based graphical client interfaces for the RacerPro Server.
First, we will give a short presentation of the Protégé system with RacerPro as a backend reasoner
and then the coordinated use of Protégé and RacerPorter is sketched.

2.4.1 Protégé

Protégé may be used as another graphical interface for RacerPro. Protégé is available from
http://protege.stanford.edu and can be used to graphically construct T-boxes (or ontologies)
and A-boxes. This section describes the use of RacerPro with version 4.2 of Protégé. Thus, from
here on, when referring to Protégé we refer specifically to Protégé 4.2.

The first time you enter Protégé, you have to install the “RacerProTG Reasoner”, in order to use
RacerPro as the reasoner for Protégé. In order to install the plugin, use the “Check for plugins...”
option in the “File” menu, then select “RacerProTG Reasoner” (see Figure 2.29) and install it.
The next time you start Protégé, you are allowed to choose RacerPro as a reasoner, to do this, use
the “Reasoner” menu to select “RacerPro” and click on “Start Reasoner”.

The plug-in offers way to configure the connection to RacerPro, to do so, go to the “Preferences”
dialog window from the “File” menu and choose the tab of “RacerPro”. As can be seen in Figure
2.30, the plug-in allows to set the preference to connect to an external RacerPro executable or (by
default) to connect to the RacerPro that is integrated to Protégé through the plug-in. Usually, the

http://protege.stanford.edu

56 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.29: Installing RacerPro as the reasoner used by Protégé.

defaults (Local Port:8088) are ok. If you want to have a logging file provide the required path. Once
making the required changes press the “OK” button.

The example presented in Figure 2.31 shows a screenshot of Protégé with the Family knowledge
base. The knowledge base was exported from RacerPro using the OWL syntax (see the function
save-kb). OWL files can be manipulated with Protégé.

In Figure 2.31 the concept uncle is selected (concepts are called classes in Protégé). See the restric-
tions displayed in the asserted conditions window and compare the specification with the KRSS
syntax used above (see the axiom for uncle). Note that the class window displays both obvious
subclass relationships, as well as implicit class subsumption relationships (see “Class hierarchy (in-
ferred)” in Figure 2.31). The later are provided due to the reasoning services from RacerPro. By
using the reasoning services from RacerPro unsatisfiable concept names are marked (if there are
any) and implicit subsumption relationships between concept names are found. Figure 2.31 shows
implicit subsumption relationships, for instance, an uncle is also a brother, while from the tab

2.4. OTHER GRAPHICAL CLIENT INTERFACES 57

Figure 2.30: Setting the preferences to Protégé to connect to RacerPro.

Figure 2.31: Protégé displaying the Family knowledge base. The class uncle is selected, and in the
subwindow for inferred conditions are shown graphically.

“Class hierarchy” uncle is a subclass of man.

When selecting the different tabs in Protégé, it is possible to view the told and the inferred axioms
of the knowledge base by changing to the tab with the note “(inferred)”.

58 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

2.4.2 Using Protégé and RacerPorter in Combination

Protégé uses the DIG interface to connect to RacerPro. Therefore, one can use RacerPorter to
inspect details about knowledge bases that have been edited and verified with Protégé. In this
section we will show that it is possible for RacerPorter to manage and execute queries on knowledge
bases which have been previously edited and verified with Protégé.

Start by opening the “pizza.owl”4 file in Protégé, found in the RacerPro distribution in the folloow-
ing path: /examples/owl/. Once the “pizza.owl” is uploaded to Protégé, activate RacerPro as the
reasoner to be used by Protégé. From the “Reasoner” menu select “RacerPro” and click on “Start
Reasoner”. By activating RacerPro the ontology that is opened in Protégé will be automatically
classified. Classifying an ontology means that RacerPro will compute the inferred class hierarchy
and check the logical consistency of the ontology. As Figure 2.32 shows, during consistency check-
ing RacerPro localized inconsistencies which are friendly highlighted by Protégé under the class
“Nothing” withing the pane “Class hierarchy (inferred)”.

Figure 2.32: The pizza ontology loaded and classified by RacerPro within Protégé.

For demonstration purposes, the editors of the pizza ontology nicely documented the ontology to
understand the inconsistencies. As the annotations of the class CheesyVegetableTopping describes
(see Figure 2.32), the class is inconsistent due to a disjointness axiom between two of the parent
classes of the CheesyVegetableTopping class. On the lower pane the description of the selected class
is shown and the parent classes are specified, which are CheeseTopping and VegetableTopping.
Next, we will the disjointness axiom causing this inconsistency.

4The pizza ontology was taken from: http://www.co-ode.org/ontologies/pizza/2007/02/12/pizza.owl

2.4. OTHER GRAPHICAL CLIENT INTERFACES 59

Figure 2.33: Removing the disjointness axiom that causes inconsistencies to the class
CheeseVegetableTopping.

By selecting the class CheeseTopping (see Figure 2.33) view the field “Disjoint classes” in the
“Description” pane, then localize the VegetableTopping class and click on the symbol “x” to
remove the axiom. Finally, click on the option “Synchronize Reasoner” of the “Reasoner” menu. A
new inferred class hierarchy is computed and only the class IceCream is inconsistent. To remove the
inconsistency from the class IceCream. Remove the domain restriction to the property hasTopping.
Given that hasTopping has an inverse functional role called isToppingOf, the restrictions set on
its domain and range have to be deleted as well. Finally, synchronize the reasoner and all the
inconsistencies should have been removed from the ontology. Save the ontology and close Protégé.

Now we will open the “pizza.owl” ontology with RacerPorter. In Figure 2.34 a graph of the taxonomy
of the pizza ontology is presented.

With RacerPorter, for instance, queries can be answered. Figure 2.35 shows the result of the follow-
ing queries executed in pizza.owl: (all-individuals) and (retrieve (?x) (?x #!:Country)).
The symbol #!: is used to avoid writing the namespace. The field “Namespace” shown on the top
right part of Figure 2.35 provides two options to simplify the namespace, e.g., #!: and *n*.

Queries can be inspected also using the tab “Queries + Rules” in RacerPorter. To try this, click
on the “Queries + Rules” tab and reexecute the query by selecting the :query-1 and click on the
“Re-Execute” button. In this way, using RacerPorter, queries can be inspected as objects.

60 CHAPTER 2. USING RACERPRO AND ITS INTERFACES

Figure 2.34: RacerPorter used to inspect an ontology edited with Protégé.

Figure 2.35: RacerPorter used to query an ontology edited with Protégé.

Chapter 3

Modeling Languages and Basic
Reasoning Services

In description logic systems a knowledge base is consisting of a T-box and an A-box. The conceptual
knowledge is represented in the T-box and the knowledge about the instances of a domain is
represented in the A-box. For more information about the description logic SHIQ supported by
RacerPro see [43]. The extension of expressive description logics with concrete domains is discussed
in [33]. In this section, the constructs that RacerPro supports for building knowledge bases are
described, as well as the inference modes that are supported. But before, the naming conventions
used in this document are provided.

3.1 Naming Conventions

Throughout this document we use the following abbreviations, possibly subscripted.

C Concept term
CN Concept name
IN Individual name

ON Object name
R Role term

RN Role name
AN Attribute name

ABN A-box name
TBN T-box name
KBN knowledge base name

name Name of any sort
S List of Assertions

GNL List of group names
LCN List of concept names
Abox A-box object
Tbox T-box object

n A natural number
real A real number

integer An integer number
string A string

The API is designed to the following conventions. 1 For most of the services offered by Racer-
Pro, macro interfaces and function interfaces are provided. For macro forms, the T-box or A-
box arguments are optional. If no T-box or A-box is specified, the value of (current-tbox) or
(current-abox) is taken, respectively. However, for the functional counterpart of a macro the T-
box or A-box argument is not optional. For functions which do not have macro counterparts the
T-box or A-box argument may or may not be optional. Furthermore, if an argument T − box or
A− box is specified in this documentation, a name (a symbol) can be used as well.

Functions and macros are only distinguished in the Lisp version. Macros do not evaluate their
arguments. If you use the RacerPro server, you can use functions just like macros. Arguments are
never evaluated.

1For RacerMaster or LRacer users: All names are Lisp symbols, the concepts are symbols or lists. Please note that
for macros in contrast to functions the arguments should not be quoted.

61

62 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

C −→ CN |
top |
bottom |
(not C) |
(and C1 ...Cn) |
(or C1 ...Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
(a AN) |
(an AN) |
(no AN) |
CDC

R −→ RN |
(inv RN)

Figure 3.1: RacerPro concept and role terms.

3.2 Concept Language

The content of RacerPro T-boxes includes the conceptual modeling of concepts and roles as well.
The modeling is based on the signature, which consists of two disjoint sets: the set of concept names
C, also called the atomic concepts, and the set R containing the role names2.

Starting from the set C complex concept terms can be build using several operators. An overview
over all concept- and role-building operators is given in Figure 3.1.

Boolean terms build concepts by using the boolean operators.

DL notation RacerPro syntax

Negation ¬ C (not C)

Conjunction C1 u . . .u Cn (and C1 ...Cn)

Disjunction C1 t . . .t Cn (or C1 ...Cn)

Qualified restrictions state that role fillers have to be of a certain concept. Value restrictions
assure that the type of all role fillers is of the specified concept, while exist restrictions require that
there be a filler of that role which is an instance of the specified concept.

DL notation RacerPro syntax

Exists restriction ∃ R.C (some R C)

Value restriction ∀ R.C (all R C)

2The signature does not have to be specified explicitly in RacerPro knowledge bases - the system can compute it
from the all the used names in the knowledge base - but specifying a signature may help avoiding errors caused by
typos!

3.2. CONCEPT LANGUAGE 63

CDC −→ (min AN integer) |
(max AN integer) |
(equal AN integer) |
(equal AN AN) |
(divisible AN cardinal) |
(not-divisible AN cardinal) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(<> aexpr aexpr) |
(= aexpr aexpr) |
(string= AN string) |
(string<> AN string) |
(string= AN AN) |
(string<> AN AN)

string −→ " letter∗ "

aexpr −→ AN | AN must be of type real
real |
(+ aexpr1 aexpr1 ∗) |
aexpr1

Figure 3.2: RacerPro concrete domain concepts and attribute expressions.

aexpr1 −→ aexpr2
| aexpr3

aexpr2 −→ real
| AN (AN of type real or complex)
| (* real AN) (AN of type real)

aexpr3 −→ integer
| AN (AN of type cardinal)
| (* integer AN) (AN of type cardinal)

Figure 3.3: Specific expressions for predicates.

Number restrictions can specify a lower bound, an upper bound or an exact number for the
amount of role fillers each instance of this concept has for a certain role. Only roles that are not
transitive and do not have any transitive subroles are allowed in number restrictions [43].

DL notation RacerPro syntax

At-most restriction ≤ n R (at-most n R)

At-least restriction ≥ n R (at-least n R)

Exactly restriction = n R (exactly n R)

Qualified at-most restriction ≤ n R.C (at-most n R C)

Qualified at-least restriction ≥ n R.C (at-least n R C)

Qualified exactly restriction = n R.C (exactly n R C)

Actually, the exactly restriction (exactly n R) is an abbreviation for the concept term (and

(at-least n R) (at-most n R)) and (exactly n R C) is an abbreviation for the concept
term (and (at-least n R C) (at-most n R C))

64 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

There are two concepts implicitly declared in every T-box: the concept “top” (>) denotes the top-
most concept in the hierarchy and the concept “bottom” (⊥) denotes the inconsistent concept,
which is a subconcept to all other concepts. Note that > (⊥) can also be expressed as C t ¬C
(C u ¬C). In RacerPro > is denoted as *top* and ⊥ is denoted as *bottom*3.

Concrete domain concepts state concrete predicate restrictions for attribute fillers (see Fig-
ure 3.2). RacerPro currently supports three unary predicates for integer attributes (min, max,
equal), six nary predicates for real attributes (>, >=, <, <=, =, <>), a unary existential predicate with
two syntactical variants (a or an), and a special predicate restriction disallowing a concrete domain
filler (no). The restrictions for attributes of type real have to be in the form of linear inequa-
tions (with order relations) where the attribute names play the role of variables. If an expression is
built with the rule for aexpr4 (see Figure 3.2), a so-called nonlinear constraint is specified. In this
case, only equations and inequations (=, <>), but no order constraints (>, >=, <, <=) are allowed,
and the attributes must be of type complex. If an expression is built with the rule for aexpr5
(see Figure 3.2) a so-called cardinal linear constraint is specified, i.e., attributes are constrained to
be a natural number (including zero). RacerPro also supports a concrete domain for representing
equations about strings with predicates string= and string<>. The use of concepts with concrete
domain expressions is illustrated with examples in Section 3.5. For the declaration of types for
attributes, see also Section 3.5.

DL notation RacerPro syntax

Concrete filler exists restriction ∃A.>D (a A) or (an A)

No concrete filler restriction ∀A.⊥D (no A)

Integer predicate exists restriction ∃A.minz (min A z)
with z ∈ Z ∃A.max z (max A z)

∃A.=z (equal A z)
Real predicate exists restriction ∃A1, . . . , An.P (P aexpr aexpr)

with P ∈ {>,>=, <,<=,=}

An all restriction of the form ∀A1, . . . , An.P is currently not directly supported. However, it can
be expressed as a disjunction: ∀A1.⊥D t · · · t ∀An.⊥D t ∃A1, . . . , An.P .

3.3 Concept Axioms

RacerPro supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two concept terms.

DL notation: C1 v C2

RacerPro syntax: (implies C1 C2)

Concept equations state the equivalence between two concept terms.
DL notation: C1

.
= C2

RacerPro syntax: (equivalent C1 C2)

Concept disjointness axioms state pairwise disjointness between several concepts. Disjoint con-
cepts do not have instances in common.
DL notation: C1 v ¬(C2 t C3 t · · · u Cn)

C2 v ¬(C3 t · · · u Cn)
. . .

3For KRSS compatibility reasons RacerPro also supports the synonym concepts top and bottom.

3.4. ROLE AXIOMS 65

Cn−1 v ¬Cn

RacerPro syntax: (disjoint C1 ...Cn)

Actually, a concept equation C1
.
= C2 can be expressed by the two GCIs: C1 v C2 and C2 v C1.

The disjointness of the concepts C1 . . . Cn can also be expressed by GCIs.

There are also separate forms for concept axioms with just concept names on their left-hand sides.
These concept axioms implement special kinds of GCIs and concept equations. But concept names
are only a special kind of concept terms, so these forms are just syntactic sugar. They are added to
the RacerPro system for historical reasons and for compatibility with KRSS. These concept axioms
are:

Primitive concept axioms state the subsumption relation between a concept name and a con-
cept term.
DL notation: (CN v C)
RacerPro syntax: (define-primitive-concept CN C)

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN

.
= C)

RacerPro syntax: (define-concept CN C)

Concept axioms may be cyclic in RacerPro. There may also be forward references to concepts which
will be “introduced” with define-concept or define-primitive-concept in subsequent axioms.
The terminology of a RacerPro T-box may also contain several axioms for a single concept. So if a
second axiom about the same concept is given, it is added and does not overwrite the first axiom.

3.4 Role Axioms

In contrast to concept axioms, role declarations are unique in RacerPro. There exists just one
declaration per role name in a knowledge base. If a second declaration for a role is given, an error
is signaled. If no signature is specified, undeclared roles are assumed to be neither a feature nor a
transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles (R+). The
sets F and R+ are disjoint. All roles in a T-box may also be arranged in a role hierarchy. The
inverse of a role name RN can be either explicitly declared via the keyword :inverse (e.g. see the
description of define-primitive-role) or referred to as (inv RN).

Features (also called attributes) restrict a role to be a functional role, e.g. each individual can
only have up to one filler for this role.

Transitive Roles are transitively closed roles. If two pairs of individuals IN 1 and IN 2 and IN 2

and IN 3 are related via a transitive role R, then IN 1 and IN 3 are also related via R.

Role Hierarchies define super- and subrole-relationships between roles. If R1 is a superrole of
R2, then for all pairs of individuals between which R2 holds, R1 must hold too.

The properties of a declared role induced by its superrole are shown in Figure 3.4. The table should
be read as follows: For example if a role RN 1 is declared as a simple role and it has a feature RN 2

as a superrole, then RN 1 will be a feature itself.

The combination of a feature having a transitive superrole is not allowed and features cannot be
transitive. Note that transitive roles and roles with transitive subroles may not be used in number
restrictions.

66 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

Superrole RN 2 ∈
R R+ F

Subrole RN 1 R R R F
declared as R+ R+ R+ -
element of: F F F F

Figure 3.4: Conflicting declared and inherited role properties.

RacerPro does not support role terms as specified in the KRSS. However, a role being the conjunc-
tion of other roles can as well be expressed by using the role hierarchy (cf. [13]). The KRSS-like
declaration of the role (define-primitive-role RN (and RN 1 RN 2)) can be approximated in
RacerPro by: (define-primitive-role RN :parents (RN 1 RN 2)).

KRSS DL notation

(define-primitive-role RN (domain C)) (∃ RN.>) v C
(define-primitive-role RN (range D)) > v (∀ RN.D)

RacerPro Syntax DL notation

(define-primitive-role RN :domain C) (∃ RN.>) v C
(define-primitive-role RN :range D) > v (∀ RN.D)

(implies-role RN1 RN2) RN1 v RN2

(implies-role (RN1 ...RNn) RNn+1) RN1 ◦ . . . ◦ RNn v RNn+1

Figure 3.5: Domain or range restrictions and role axioms expressed via GCIs.

RacerPro offers the declaration of domain and range restrictions for roles. These restrictions for
primitive roles can be either expressed with GCIs, see the examples in Figure 3.5 (cf. [13]) or
declared via the keywords :domain and :range. For role axioms the standard acyclicity condition
applies [40].

Other role axiom declaration forms are:

• (symmetric RN)

• (asymmetric RN)

• (transitive RN)

• (reflexive RN)

• (irreflexive RN)

• (functional RN)

• (inverse RN1 RN2)

3.5 Concrete Domains

RacerPro supports reasoning over natural numbers (N), integers (Z), reals (R), complex numbers
(C), and strings. For different sets, different kinds of predicates are supported.

N linear inequations with order constraints and integer coefficients
Z interval constraints
R linear inequations with order constraints and rational coefficients

Strings equality and inequality

3.5. CONCRETE DOMAINS 67

For the users convenience, rational coefficients can be specified in floating point notation. They are
automatically transformed into their rational equivalents (e.g., 0.75 is transformed into 3/4). In
the following we will use the names on the left-hand side of the table to refer to the corresponding
concrete domains.

Names for values from concrete domains are called objects. The set of all objects is referred to as O.
Individuals can be associated with objects via so-called attributes names (or attributes for short).
Note that the set A of all attributes must be disjoint to the set of roles (and the set of features).
Attributes can be declared in the signature of a T-box (see below).

The following example is an extension of the family T-box introduced above. In the example, the
concrete domains Z and R are used.

...

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes ((integer age)))

...

(equivalent teenager (and human (min age 16)))

(equivalent old-teenager (and human (min age 18)))

...

Asking for the children of teenager reveals that old-teenager is a teenager. A further extensions
demonstrates the usage of reals as concrete domain.

...

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes ((integer age)

(real temperature-celsius)

(real temperature-fahrenheit)))

...

(equivalent teenager (and human (min age 16)))

(equivalent old-teenager (and human (min age 18)))

(equivalent human-with-fever (and human (>= temperature-celsius 38.5))

(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))

...

Obviously, RacerPro determines that the concept seriously-ill-human is subsumed by
human-with-fever. For the reals, RacerPro supports linear equations and inequations. Thus, we
could add the following statement to the knowledge base in order to make sure the relations between
the two attributes temperature-fahrenheit and temperature-celsius is properly represented.

(implies top (= temperature-fahrenheit

(+ (* 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1

(and human (>= temperature-fahrenheit 107.6)))

68 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

RacerPro recognizes the subsumption relationship with human-with-fever and the synonym rela-
tionship with seriously-ill-human.

In an A-box, it is possible to set up constraints between individuals. This is illustrated with the
following extended A-box.

...

(signature

:atomic-concepts (... teenager)

:roles (...)

:attributes (...)

:individuals (eve doris)

:objects (temp-eve temp-doris))

...

(constrained eve temp-eve temperature-fahrenheit)

(constrained doris temp-doris temperature-celsius)

(constraints

(= temp-eve 102.56)

(= temp-doris 39.5))

For instance, this states that eve is related via the attribute temperature-fahrenheit to the
object temp-eve. The initial constraint (= temp-eve 102.56) specifies that the object temp-eve

is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both individuals are instances of
human-with-fever. In the following A-box there is an inconsistency since the temperature of
102.56 Fahrenheit is identical with 39.5 Celsius.

(constrained eve temp-eve temperature-fahrenheit)

(constrained doris temp-doris temperature-celsius)

(constraints

(= temp-eve 102.56)

(= temp-doris 39.5)

(> temp-eve temp-doris))

We present another example that might be important for many applications: dealing with dates. The
following declarations can be processed with Racer. The predicates divisible and not-divisible

are defined for natural numbers and are reduced to linear inequations internally.

(define-concrete-domain-attribute year :type cardinal)

(define-concrete-domain-attribute days-in-month :type cardinal)

(implies Month (and (>= days-in-month 28) (<= days-in-month 31)))

(equivalent month-inleapyear

(and Month

(divisible year 4)

(or (not-divisible year 100)

(divisible year 400))))

(equivalent February

(and Month

(<= days-in-month 29)

3.6. INDIVIDUAL ASSERTIONS AND A-BOXES 69

(or (not month-inleapyear)

(= days-in-month 29))

(or month-inleapyear

(= days-in-month 28))))

Next, we assume some instances of February are declared.

(instance feb-2003 February)

(constrained feb-2003 year-1 year)

(constrained feb-2003 days-in-feb-2003 days-in-month)

(constraints (= year-1 2003))

(instance feb-2000 February)

(constrained feb-2000 year-2 year)

(constrained feb-2000 days-in-feb-2000 days-in-month)

(constraints (= year-2 2000))

Note that the number of days for both months is not given explicitly. Neverthe-
less, asking (concept-instances month-inleapyear) yields (feb-2000) whereas asking for
(concept-instances (not month-inleapyear)) returns (feb-2003). In addition, one could
check the number of days:

(constraint-entailed? (<> days-in-feb-2003 29))

(constraint-entailed? (= days-in-feb-2000 29))

In both cases, the answer is true.

Concrete domain ttributes are considered as “typed” since they can either have fillers of type
cardinal, integer, real, complex, or string. The same attribute cannot be used in the same
T-box such that both types are applicable, e.g., (min has-age 18) and (>= has-age 18) are not
allowed. If the type of an attribute is not explicitly declared, its type is implicitly derived from
its use in a T-box/A-box. An attribute and its type can be declared with the signature form (see
above) or by using the KRSS-like form define-concrete-domain-attribute. If an attribute is
declared to be of type complex is can be used in linear (in-)equations. However, if an attribute is
declare to be of type real or integer it is an error to use this attribute in terms for nonlinear
polynoms. In a similar way, currently, an attribute of type integer may not be used in a term for a
linear polynoms, either. If the coefficients are integers, then cardinal (natural number, including
0) for the type of attributes may be used in a linear polynom. Furthermore, attributes of type
string may not be used on polynoms, and non-strings may not be used in constraints for strings.

Last but not least, please note that concrete domain attributes should not be confused with datatype
properties as defined in OWL.

3.6 Individual Assertions and A-boxes

An A-box contains assertions about individuals. The set of individual names (or individuals for
brevity) I is the signature of the A-box. The set of individuals must be disjoint to the set of
concept names and the set of role names. There are four kinds of assertions:

Concept assertions with instance state that an individual IN is an instance of a specified
concept C .

70 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

Role assertions with related state that an individual IN 1 is a role filler for a role R with respect
to an individual IN 2.

Attribute assertions with constrained state that an object ON is a filler for a role R with
respect to an individual IN .

Constraints within constraints state relationships between objects of the concrete domain. The
syntax for constraints is explained in Figure 3.2. Instead of attribute names, object names
must be used.

In RacerPro the unique name assumption holds, this means that all individual names used in an
A-box refer to distinct domain objects, therefore two names cannot refer to the same domain object.
Note that the unique name assumption does not hold for object names.

In the RacerPro system each A-box refers to a T-box. The concept assertions in the A-box are
interpreted with respect to the concept axioms given in the referenced T-box. The role assertions
are also interpreted according to the role declarations stated in that T-box. When a new A-box is
built, the T-box to be referenced must already exist. The same T-box may be referred to by several
A-boxes. If no signature is used for the T-box, the assertions in the A-box may use new names for
roles4 or concepts5 which are not mentioned in the T-box.

4These roles are treated as roles that are neither a feature, nor transitive and do not have any superroles. New
items are added to the T-box. Note that this might lead to surprising query results, e.g. the set of subconcepts for >
contains concepts not mentioned in the T-box in any concept axiom. Therefore we recommend to use a signature

declaration (see below).
5These concepts are assumed to be atomic concepts.

3.7. SPECIFYING RULES 71

3.7 Specifying Rules

The application of rules provides for optimized manipulation of structures, in particular in server-
based environments such as RacerPro. Standards such as SWRL ensure the necessary consolidation
such that industrial work becomes possible. Therefore, RacerPro has been extended with support
for applying SWRL rules to instances mentioned in an OWL ontology or corresponding RDF data
descriptions in order to make implicit information explicit.

Figure 3.6: SWRL rules shown in the “Queries + Rules” tab of RacerPorter.

To show how the OWL/SWRL specification is interpreted by RacerPro we will use an example
ontology containing SWRL rules. The ontology is called “family.swrl.owl”6, which is found in the
RacerPro distribution under the path “examples/swrl/”. In Figure 3.6 the ids of the various SWRL
rules are shown. We will execute the rule with Id “#!:Def-hasUncle-6”, which in a simplified rep-
resentation looks as follows:

Person(?x) ∧ hasParent(?x ?y) ∧ hasBrother(?y ?z)→ hasUncle(?x ?z)

Various semantics have been proposed for rule languages. Rules have a body and a head. If there
exists a binding for the variables in the body such that the predicates (either unary or binary
predicates are possible in SWRL) are satisfied, then the predicate comprising the head also holds.
The predicates in the body (see the left-hand side of the arrow in the rule above) are also called the
precondition and the head (see the right-hand side of the arrow in the rule above) is the consequence.
Variables are bound to a finite set of individuals, namely those, explicitly mentioned in the ontology

6Downloaded from http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl and edited for the
purposes of this example.

72 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

(or A-box). The question is whether, given a specific binding for variables, the precondition has to
be satisfied in one “world” or in all worlds. We call the former semantics the first-order semantics,
whereas the latter is called the rule semantics. RacerPro applies the rule semantics. This can be
seen as an advantage or as a disadvantage.

To continue with the example, now we will add the necessary individuals to the A-box part of the
ontology that satisfy the precondition of the rule above. For this, we will add the individuals MARY,
SUE and JOHN as instances of Person, then relate MARY with SUE under the role hasParent, and
SUE with JOHN under the role hasBrother. For this we use the following commands:

(instance #!:MARY #!:Person)

(instance #!:SUE #!:Person)

(instance #!:JOHN #!:Person)

(related #!:MARY #!:SUE #!:hasParent)

(related #!:SUE #!:JOHN #!:hasBrother)

Figure 3.7 shows the resulting A-box graph. To execute the famous “has uncle” rule one can use
the “Queries + Rules” tab of RacerPorter. With the “Queries + Rules” tab, rules can be inspected
(see buttons “Describe Original”), executed, re-executed, etc. To execute the rule, select the id of
the corresponding rule and click on the button “Execute”. As Figure 3.8 shows a new role is added
between the individuals MARY and JOHN called hasUncle. This new assertion can be seen in the
A-box graph of RacerPorter which allows us to analyze the effect graphically, the shell window also
updates the information accordingly. Thus, the rule is responsible for asserting a new role.

RacerPro offers a forward chainer with the command (swrl-forward-chaining) that applies
SWRL rules until no new information is added.

In RacerPro, for a fixed variable binding to a individual in an A-box, the predicates in the body
must be satisfied in all models. This has important consequences as we will see in the following
example.

Let us assume, we have class names French, Italian, Wine-drinker, Not-wine-drinker, and
French-or-italian. For the latter two classes the following necessary and sufficient conditions
are specified:

French-or-italian ≡ French t Italian

Not-wine-drinker ≡ ¬ Wine-drinker

The individual john is an instance of Not-wine-drinker and French-or-Italian. Thus, for john
we have indefinite information. More over, if the following rules are specified:

Rule-1: French(?x) → Wine-drinker(?x)

Rule-2: Italian(?x) → Wine-drinker(?x)

the ontology would be inconsistent with first-order semantics. There are two worlds to consider:
Assume john is a French citizen, then he must be an instance of Wine-drinker due to Rule-1.
But he is declared to be an instance of Not-wine-drinker. In the other possible world, john is
an instance of Italian. Again, due to the rules, he must be a Wine-drinker, which results in a
contradiction. In the rule semantics, one can neither prove that john is an instance of Italian nor
can one prove that john is an instance of French. Thus, the rules are not applied and the ontology
remains consistent. In order to achieve the same effect as in the first-order semantics, in this case
a rule with precondition Not-wine-drinker could be added.

3.7. SPECIFYING RULES 73

Figure 3.7: A-box Graph of RacerPorter before applying the “uncle” rule.

Figure 3.8: A-box Graph of RacerPorter after applying the “uncle” rule.

74 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

3.8 Hints on Modeling and Reasoning with RacerPro

There are several excellent books and introductory papers on description logics (e.g., [4, 7]). In
this Chapter we discuss additional issues that are important when RacerPro is used in practical
applications.

3.8.1 Representing Data with Description Logics (?)

Almost nothing is required to use a description logic inference system to store data. In particular,
there is not need to specify any kind of memory management information as in databases or even in
object-oriented programming systems. In order to make this clear, a very simple example is given
as follows:

(in-knowledge-base test)

(instance i a)

(instance i b)

(related i j r)

Given these declaration for “data”, query functions can be used to retrieve data.

(concept-instances (and a (some r b)))

returns i. You could also use the nRQL query language (see Chapter 4).

(retrieve (?x) (?x (and a (some a b))))

If you would like to know which fillers actually got names in the A-box, use the following query:

(retrieve (?x ?y) (and (?x a) (?x ?y r) (?y b)))

Note, however, that the latter query would not return results for the following A-box whereas the
former query would return i (the query language uses the active domain semantics for variable
bindings).

(in-knowledge-base test)

(instance i (and a (some r b))

For a detailed explanation see Chapter 4. In any case, description logics (and ontology languages
such as OWL) are important if concept names have definitions in the T-box or if the A-box contains
indefinite descriptions (such as (instance john (or french italian))). Although it is possible
to represent (an object-based view of) a database as an A-box, currently, description logic systems
do not provide for transactions and persistency of data, and in order to ensure decidability in
the general case, the query language is in some sense less expressive than, for instance, relational
database query languages such as SQL. So, mass data (representing definite information) is better
stored in databases right now. Description logic (and semantic web) technology comes into play
when indefinite information (disjunctive information) is to be treated as well. See also the comment
about the open-world and closed-world assumptions below. Databases employ the closed-world
assumption. What is not explicitly stated in the database is assumed to be false.

3.8. HINTS ON MODELING AND REASONING WITH RACERPRO 75

3.8.2 Nominals or Concrete Domains?

The language OWL provides for means to address individuals in concepts. As a example, one could
represent the concept human with the following axioms:

(define-primitive-role ancestor-of :transitive t :inverse has-descendant)

(define-primitive-role has-descendant)

(equivalent human (some ancestor-of (one-of adam)))

(instance john human)

(related kain john has-descendant)

The concept-forming operator one-of takes an individual and construct a concept whose extension
contains just the semantic object to which the individual adam is mapped. Thus the extension of
(one-of adam) is a singleton set. Individuals in concepts are also known a nominals.

Asking for the ancestors of john yields kain and adam although the latter is not explicitly stated
in the A-box.

Currently, RacerPro does not support nominals in full generality. Only axioms of the form

(equivalent (one-of i) c)

(equivalent (one-of i) (some r (one-of j)))

are supported. These axioms are very important for practical purposes, and they directly correspond
to the following A-box assertions

(instance i c)

(related i j r)

In many practically important cases, nominals are not required in concepts terms. The same effect
can be achieve using concrete domain values. For instance, one might think of using nominals for
representing colors of (simple) traffic lights: (one-of red green). The following example demonstrates
the use of A-boxes and the string concrete domain to provide for a formal model of a crossing with
(simple) traffic lights.

(in-knowledge-base traffic-lights)

(define-concrete-domain-attribute color :type string)

(define-concept colorful-object

(or (string= color "red")

(string= color "green")))

(define-concept traffic-light

(and (a color) colorful-object))

(instance traffic-light-1 traffic-light)

(instance traffic-light-2 traffic-light)

(instance traffic-light-3 traffic-light)

(instance traffic-light-4 traffic-light)

(constrained traffic-light-1 ?color-traffic-light-1 color)

(constrained traffic-light-2 ?color-traffic-light-2 color)

76 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

(constrained traffic-light-3 ?color-traffic-light-3 color)

(constrained traffic-light-4 ?color-traffic-light-4 color)

(constraints (string= ?color-traffic-light-1 ?color-traffic-light-3))

(constraints (string= ?color-traffic-light-2 ?color-traffic-light-4))

(constraints (string<> ?color-traffic-light-1 ?color-traffic-light-2))

(constraints (string<> ?color-traffic-light-2 "red"))

(constraint-entailed? (string= ?color-traffic-light-2 "green"))

(constraint-entailed? (string= ?color-traffic-light-4 "green"))

(constraint-entailed? (string= ?color-traffic-light-1 "red"))

(constraint-entailed? (string= ?color-traffic-light-3 "red"))

The four queries at the end all return t (for true) although only indefinite information is explicitly
stated (the color of traffic-light-2 is not "red"). Thus, only "green" remains, and due to the
other constraints, the colors of the other traffic lights are determined. It is obvious that instead of
string values one could have used nominals. However, optimized reasoning algorithms for nominals
will only be part of a future version of RacerPro.

Using nominals might be even tricky. Consider the following knowledge base:

(equivalent shabby-car (all has-color shabby-color))

(equivalent redish-object (some has-color (one-of orange, red)))

(instance car-1 (and redish-object (not (some has-color (one-of orange)))))

(instance car-2 (and redish-object (not (some has-color (one-of orange)))))

Now assume, some information of the color of car-1 is available, car-1 is an old car.

(instance car-1 (all has-color shabby-color))

It is obvious that due to the use of nominals, car-2 is a shabby car as well. This is probably
unintended and is most likely a modeling error.

3.8. HINTS ON MODELING AND REASONING WITH RACERPRO 77

3.8.3 Open-World Assumption

As other description logic systems, RacerPro employs the Open World Assumption (OWA) for
reasoning. This means that what cannot be proven to be true is not believed to be false. Given the
T-box and A-box of the family example (see the previous chapters), a standard pitfall would be to
think that RacerPro is wrong considering its answer to the following query:

(individual-instance? alice (at-most 2 has-child))

RacerPro answers NIL. However, NIL does not mean NO but just “cannot be proven w.r.t. the
information given to RacerPro”. Absence of information w.r.t. a third child is not interpreted as
“there is none” (this would be the Closed-World Assumption, CWA). It might be the case that
there will be an assertion (related alice william has-child) added to the A-box later on.
Thus, the answer NIL is correct but has to be interpreted in the sense of “cannot be proven”. Note
that it is possible to add the assertion

(instance alice (at-most 2 has-child))

to the A-box. Given this, the A-box will become inconsistent if another individual (e.g., william)
is declared to be a child of alice. Many users asked for a switch such that RacerPro automatically
closes roles. However, this problem is ill-defined. A small example should suffice to illustrate why
closing a role (or even a KB) is a tricky problem. Assume the following axioms:

(disjoint a b c)

(instance i (and (some r a) (some r b) (some r c) (some r d)))

(related i j r)

Now assume the task is to closed the role r for the individual i. Just determining the number of
fillers of r w.r.t. i and adding a corresponding assertion (at-most 1 r) to the A-box is a bad idea
because the A-box gets inconsistent. Due to the T-box, the minimum number of fillers is 3. But,
should we add (at-most 1 r) or (at-most 1 r (and a b c))? The first one might be too strong
(because of i being an instance of (some r d). What about d? Would it be a good idea to also add
(at-most 1 r d)? If yes, then the question arises how to determine the qualifier concepts used in
qualified number restrictions.

3.8.4 Closed-World Assumption

Due to the non-monotonic nature of the closed-world assumption and the ambiguities about what
closing should actually mean, in description logic inference systems usually there is no support for
the closed-world assumption. However, with the publish and subscribe interface of RacerPro, users
can achieve a local closed-world (LCW) assumption (see Section 5.4). The nRQL query language
allows you to query A-boxes using negation as failure semantics (see Chapter 4).

Feedback from many users of the RacerPro system indicates that, for instance, instance retrieval
queries could profit from possibilities to “close” a knowledge base in one way or another. Due to
the non-monotonic nature of the closed-world assumption and the ambiguities about what closing
should actually mean, in description logic inference systems usually there is no support for the
closed-world assumption. However, with the publish and subscribe interface of RacerPro, users
can achieve a similar effect. Consider, for instance, a query for a book which does not have an
author. Because of the open-world assumption, subscribing to a channel for (and Book (at-most

0 has-author)) does not make much sense. Nevertheless the agent can subscribe to a channel
for Book and a channel for (at-least 1 has-author). It can accumulate the results returned by

78 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

RacerPro into two variables A and B, respectively, and, in order to compute the set of books for
which there does not exist an author, it can consider the complement of B wrt. A. We see this
strategy as an implementation of a local closed-world (LCW) assumption.

However, as time evolves, authors for documents determined by the above-mentioned query indeed
might become known. In others words, the set B will probably be extended. In this case, the agent
is responsible for implementing appropriate backtracking strategies, of course.

The LCW example demonstrates that the RacerPro publish and subscribe interface is a very general
mechanism, which can also be used to solve other problems in knowledge representation.

3.8.5 Unique Name Assumption

In addition to the Open World Assumption, it is possible to instruct RacerPro to employ the Unique
Name Assumption (UNA). This means that all individuals used in an A-box are assumed to be
mapped to different elements of the universe, i.e. two individuals cannot refer to the same domain
element. Hence, adding (instance alice (at-most 1 has-child)) does not identify betty and
charles but makes the A-box inconsistent. Due to our experience with users, we would like to
emphasize that most users take UNA for granted but are astonished to learn that OWA is assumed
(rather than CWA). However, in order to be compliant with the semantics of OWL RacerPro does
not apply the unique name assumption by default. If you want this, use the following statement
before asking any queries.

(set-unique-name-assumption t)

You might want to put this directive into a file init.racer and start RacerPro with the following
option.

$ RacerPro -- -init init.racer

3.9 Evaluating RacerPro and Configuring Reasoning Modes

After the declaration of a T-box or an A-box, RacerPro can be instructed to answer queries. Pro-
cessing the knowledge base in order to answer a query may take some time. The standard inference
mode of RacerPro ensures the following behavior: Depending on the kind of query, RacerPro tries
to be as smart as possible to locally minimize computation time (lazy inference mode). For instance,
in order to answer a subsumption query w.r.t. a T-box it is not necessary to classify the T-box.
However, once a T-box is classified, answering subsumption queries for atomic concepts is just a
lookup. Furthermore, asking whether there exists an atomic concept in a T-box that is inconsistent
(tbox-coherent-p) does not require the T-box to be classified, either. In the lazy mode of inference
(the default), RacerPro avoids computations that are not required concerning the current query. In
some situations, however, in order to globally minimize processing time it might be better to just
classify a T-box before answering a query (eager inference mode).

A similar strategy is applied if the computation of the direct types of individuals is requested.
RacerPro requires as precondition that the corresponding T-box has to be classified. If the lazy
inference mode is enabled, only the individuals involved in a “direct types” query are realized.

We recommend that T-boxes and A-boxes should be kept in separate files. If an A-box is revised
(by reloading or reevaluating a file), there is no need to recompute anything for the T-box. How-
ever, if the T-box is placed in the same file, reevaluating a file presumably causes the T-box to
be reinitialized and the axioms to be declared again. Thus, in order to answer an A-box query,

3.9. EVALUATING RACERPRO AND CONFIGURING REASONING MODES 79

recomputations concerning the T-box might be necessary. So, if different A-boxes are to be tested,
they should probably be located separately from the associated T-boxes in order to save processing
time.

During the development phase of a T-box it might be advantageous to call inference services
directly. For instance, during the development phase of a T-box it might be useful to check which
atomic concepts in the T-box are inconsistent by calling check-tbox-coherence. This service
is usually much faster than calling classify-tbox. However, if an application problem can be
solved, for example, by checking whether a certain A-box is consistent or not (see the function
abox-consistent-p), it is not necessary to call either check-tbox-coherence or classify-tbox.
For all queries, RacerPro ensures that the knowledge bases are in the appropriate states. This
behavior usually guarantees minimum runtimes for answering queries.

The standard configuration of RacerPro ensures that only those computations are performed that
are required for answering queries. For instance, in order to answer a query for the parents of a
concept, the T-box must be classified. However, for answering an instance retrieval query this is
not necessary and, therefore, RacerPro does not classify the T-box in the standard inference mode.
Nevertheless, if multiple instance retrieval queries are to be answered by RacerPro, it might be
useful to have the T-box classified in order to be able to compute an index for query answering.
Considering a single query RacerPro cannot determine whether computing an index is worth the
required computational resources. Therefore, RacerPro can be instructed about answering strategies
for subsequent queries.

• In order to ensure a T-box is classified, you can use the statement (classify-tbox

&optional tbox-name).

• To compute an index for fast instance retrieval for an A-box you can call
(compute-index-for-instance-retrieval &optional abox-name). Computing an index
is usually a costly process, so this should be done offline. After having computed an index for
an A-box one might use the persistency services of RacerPro to dump the internal A-box data
structures for later reuse. The index computation process is also known as A-box realization,
and you can also call the function (realize-abox &optional abox-name) to achieve the
same effect.

• The function (prepare-abox) can be used to compute index structures for an A-box. You can
call this function offline to save computational resources at query answering time. In addition,
you can call (prepare-racer-engine) to compute index structures for query answering.
Again, this function is to be used offline to save computational resource for answering the
first query.

• If multiple queries are to be answered and each query will probably be more specific than
previous ones, use the directive (enable-subsumption-based-query-processing). The T-
box is then classified once the first query is answered.

• If you use nRQL it is possible to instruct RacerPro to use less costly algorithms for
query answering (see also Chapter 4). This can be done by calling (set-nrql-mode 1).
In this case, query answering is complete only for hierarchies (T-boxes with very sim-
ple axioms). If for every exists restrictions declared in the T-box there exists an explicit
filler declared in the A-box, you can instruct RacerPro to speedup query answering even
more by calling (enable-optimized-query-answering). Note that it is necessary that you
call (enable-optimized-query-answering) before you read the OWL files comprising the
knowledge base.

• The function (abox-consistent?) can be explicitly called. Before the first instance retrieval
query is answered, the A-box in question is checked for consistency. You might want to call this

80 CHAPTER 3. MODELING LANGUAGES AND BASIC REASONING SERVICES

function offline to save computational resource when the first query is answered. The function
(abox-consistent?) is not to be called if (set-nrql-mode 1) is called (see above).

The following sequence of statements provides for fastest execution times. Reasoning is only com-
plete forALE with simple GCIs and A-boxes for which there exists a filler for every exists restriction.

;; offline phase

(full-reset)

(set-nrql-mode 1)

(enable-optimized-query-processing)

(set-unique-name-assumption t)

(time (load-data))

(time (prepare-abox))

(time (prepare-racer-engine))

;; online phase

(retrieve ...)

Nevertheless, it might be useful to use this mode for information retrieval problems (see also
Chapter 4).

Chapter 4

The New RacerPro Query Language -
nRQL

In this chapter of the user guide we will describe an expressive ABox query language for RacerPro,
called nRQL. nRQL is an acronym for new Racer Query Language, pronounce: Nercle. Previous
versions have been called RQL; in order to avoid confusion with an RDF query language we have
changed the name.

nRQL can be used to

• query RacerPro ABoxes,

• query RacerPro TBoxes,

• query RDF documents,

• query OWL documents.

Thus, nRQL is

• an expressive ABox query language for the very expressive DL ALCQHIR+(D−),

• an RDF query language,

• an OWL query language.

nRQL allows for the formulation of conjunctive queries. In a nRQL query, query variables are
used which will be bound to those ABox individuals that satisfy the query. Queries will make
use of arbitrary concept and role terms. TBoxes (or OWL class definitions) supply the domain
specific vocabulary to be exploited in the queries. However, nRQL offers much more than plain old
conjunctive queries.

The features of the nRQL language can be summarized as follows:

• Complex queries are built from query atoms.

nRQL offers concept query atoms, role query atoms, constraint query atoms, and SAME-AS

query atoms (as well as some auxiliary query atoms). Query atoms are combined to form
complex queries with the query constructors and, union, neg and project-to.

81

82 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

• nRQL has a well-defined syntax and clean compositional semantics.

We claim that the language is easy to understand, since users of RacerPro are already familiar
with the notion of logical entailment.

nRQL only offers so-called must-bind (or: distinguished) variables which range solely over the
individuals of an ABox (resp. individuals of an RDF / OWL document). Thus, a concept
query atom such as (?x mother) has exactly the same semantics as (concept-instances

mother). A variable is only bound to an ABox individual if this individual satisfies the query.
Satisfies means that the query resulting from substituting all variables with their bindings is
logically entailed by the KB.

Purely existentially quantified statements (“there exists a filler of the has-child role of ?x
such that . . . ”) can be made by exploiting the expressive power of RacerPro’s concept ex-
pressions (e.g., use statements such as (?x (some has-child ...))).

• Negation as failure (NAF) as well as true classical negation is available.

NAF is especially useful for measuring the degree of completeness of a modeling of the domain
of discourse in the KB (e.g., we can ask for the individuals from the ABox which are known
to be woman but not known to be mothers). nRQL is currently the only practically available
OWL query language which allows for the execution of such “autoepistemic” queries.

• Special support for querying the concrete domain part of an ABox. nRQL allows for the
specification of complex retrieval conditions on concrete domain attribute fillers of ABox
individuals by means of complex concrete domain predicates. Moreover, in case satisfying
concrete domain values are known (“told”) in the ABox, these can be retrieved. For example,
we can query for the individuals which are adults, i.e., the filler of the has-age concrete
domain attribute of these individuals of type real must satisfy the complex concrete domain
predicate ≥ 18.

Constraint checking on the concrete domain is also supported by nRQL, again by means
of complex predicate expressions. For example, we can use nRQL to query for all pairs of
individuals such that one individual is (at least) 8 years older than the other individual.

• Adequate handling of synonym individuals and proper treatment of same-as assertions.

• A projection operator project-to for query bodies.

nRQL is more expressive than relational algebra (or non recursive Datalog); however, the
semantics of nRQL is specified in an algebraic way which is easy to understand for users
which are familiar with relational algebra. Please refer to the list of research publications at
www.racer-systems.com for the formal specification of the semantics of nRQL.

• Various projection operators (e.g., types, direct-types, describe,
individual-synonyms), as well as a more complete told-value-if-exists head projection
operator to retrieve told values of concrete domain attributes.

• nRQL is also a powerful OWL and RDF query language which is far more expressive than
typical RDF query languages, and even more expressive in certain aspects than the semi-
official OWL query language OWL QL.

nRQL allows you to exploit the expressive power of (arbritrary, anonymous) concept expres-
sions in concept query atoms, use negated roles in role query atoms, have queries with NAF
semantics as well as with classical negation in one query, etc. None of these expressive means
is supported by typical RDF query languages.

nRQL allows for the specification of complex retrieval conditions on the (XML Schema)
datatype fillers (values) of OWL datatype properties. Like in the case of the concrete domain,

83

we might be interested in retrieving those individuals from an OWL document which are
adults; thus, the filler of the has-age OWL Datatype Property should satisfy the predicate
≥ 18.

For this purpose, nRQL offers an extended RacerPro concept syntax which can be used in
concept query atoms. The extended syntax allows for the user friendly specification of such
retrieval conditions. Moreover, the known (“told”) concrete fillers of such OWL datatype (or
annotation) properties can be retrieved, like in the concrete domain case.

Note that OWL itself does not support the specification of complex predicates. Thus, nRQL
is currently the only OWL query language which offers this expressivity.

Also the constraint checking facilities of nRQL apply to the OWL case. The constraint check-
ing facility is unique to nRQL.

• Complex TBox queries are also available. These enable you to search for certain patterns of
sub/superclass relationships in a taxonomy (of a RacerPro TBox or OWL KB).

• nRQL offers now termination-safe functional lambda expressions. These lambda expressions
can be used in query heads and rule antecedences. nRQL allows a restricted kind of server-
sided programming and can thus be used to implement, for example

1. user-defined output formats for query results (e.g., the query results can also be written
into a file),

2. certain kinds of combined ABox/TBox queries,

3. efficient aggregation operators (e.g., sum, avg, like in SQL).

• nRQL also supports so-called hybrid queries, see below.

The nRQL language must be distinguished from the nRQL query processing engine, which is an
internal part of the RacerPro server. The main features of this engine are:

• Cost-based heuristic optimizer.

• A facility to define queries.

• A simple rule mechanism. In the following, we only speak of queries - most described func-
tionality also applies to rules.

• Queries (and rules) are maintained as objects within the engine. Thus, the engine offers life-
cycle management for queries, etc.

• Multi-processing of queries: More than one query can be answered “simultaneously” (concur-
rently).

• Support for different querying modes:

– “Set at a time” mode: In this mode, the answer to a query is delivered in one big bunch
as a set. The nRQL API works in a synchronous fashion in this mode which means that
the API is blocked (not available) until the current answer has been computed and is
returned to the client.

– “Tuple at a time mode”: In this mode, the answer to a query is computed and retrieved
incrementally, tuple by tuple. The API then works in a asynchronous fashion. A client
can request additional tuples of a query answer one by one. True multiprocessing of
queries is available in this mode, since the API is not blocked if a query is submitted to
the nRQL engine.

84 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

This mode works either lazy, computing the next tuple only on demand, or eager, pre-
computing next tuple(s) in the background even though they have not been requested
by the client yet. The lazy mode maximizes the availability of nRQL, whereas the eager
mode has the advantage that requesting a next tuple of a certain query will eventually
be faster if it has already been computed.

• Configurable degree of completeness: nRQL offers a complete mode as well as various incom-
plete modes which differ w.r.t. the amount of completeness they achieve. An incomplete mode
will only deliver a subset of the answer to a query (compared with the answer which would
be computed in the complete mode). However, the incomplete modes can be much more
performant and will also be complete for KBs which do not required the full expressivity of
ALCQHIR+(D−) or OWL. Moreover, the incomplete modes scale better than the complete
mode.

The so-called two-phase processing modes take care that query processing works in two phases:
In the first phase, the so-called cheap tuples are computed and delivered to the client. ABox
reasoning is not required for the computation of these cheap tuples. Thus, RacerPro is not
involved for their computation. The client (application) can now chose to request more tuples.
Then, the second phase is used to compute the missing tuples, exploiting full RacerPro ABox
reasoning. These tuples are therefore called expensive tuples. nRQL can be advised to deliver
a so-called warning token which will be delivered before phase two starts. Clients can then
chose to retrieve these additional expensive tuples or not.

• Configurable runtime resources. The number of delivered answer tuples can be bounded, a
timeout is settable, and the incomplete modes are available. Also permutations of answer
tuples can be excluded.

• Support for maintaining and querying so-called hybrid representations. A so-called “substrate
representation layer” can be associated with an ABox to create a layered hybrid representa-
tion. The data substrate as well as the RCC substrate are currently available and works for
OWL.

Once created, the hybrid representation can be queried with nRQL - nRQL is a hybrid query
language. Thus, some atoms in a hybrid nRQL query address the ABox, whereas the other
query atoms address the substrate representation which is associated with the ABox to be
queried. Expressive means (e.g., certain predicates for constraint checking) which cannot be
allowed in the ABox part of nRQL due to reasons of decidability are offered in the substrate
part of a hybrid nRQL query. The substrate query atoms can be used for constraint and
model checking purposes. For example, if an RCC substrate (RCC network) is associated with
an ABox, then RCC constraint checking is supported though nRQL. Note that the specific
characteristics of qualitative spatial RCC relationships cannot be adequately represented and
enforced in the ABox; thus, specific facilities representation and querying facilities such as
the RCC substrate are offered.

• Reasoning on queries. This functionality is currently still experimental (and incomplete).
nRQL offers (incomplete) query satisfiability and query subsumption (entailment) checks.

nRQL can be advised to maintain a so-called query repository (QBox), which is a DAG-
structured query cache. nRQL uses the query subsumption check to maintain and compute
this DAG. This can be called an semantic optimization. A further optimization technique
which is also still experimental is query realization, see below.

We will first introduce the nRQL language in a tutorial-like style, and then describe the nRQL
engine. The complete nRQL API is discussed in the nRQL Reference Manual.

4.1. THE NRQL LANGUAGE 85

In the next Section we describe the nRQL language by following a bottom up way of description.
First, the available atoms are discussed, then we show how to combine the described atoms into
complex queries. We then turn to more complex (and non-essential) issues, such as defined queries,
nRQL rules, complex TBox queries, and the substrate representation facility. Finally, we give an
EBNF syntax description of the nRQL language.

In the subsequent section we describe the nRQL engine by simply presenting and discussing the
features of this engine.

4.1 The nRQL Language

We will introduce the nRQL language in a tutorial-like style. For the description of nRQL (from
the ABox query language perspective) we will use the knowledge base family.racer as a running
example. You will find this example KB in the file containing the example KBs which you can find
on your personal RacerPro download page. However, for the description of nRQL from the OWL
/ RFD query language perspective, we will sometimes use OWL snippets and/or ad hoc OWL
examples which you will not find among the example KBs (however, you can use an OWL ontology
editor such as Protégé or simply type in the listed OWL examples into the RacerEditor).

In order to get the same answers for the queries as printed in this manual, it is assumed that
you evaluate (full-reset) before you load a new KB or OWL document. You can either use the
“Load” button of RacerPorter, or use RacerPro API commands such as (owl-read-file ...),

(racer-read-file ...). We assume that you use RacerPorter as an interactive shell for the
following example queries in the remainder of this manual.

4.1.1 Query Atoms, Objects, Individuals, and Variables

The basic expressions of the nRQL language are so called query atoms, or simply atoms.

Atoms are either unary or binary. A unary atom references one object, and a binary atom references
two objects.

An object is either an ABox individual, or a variable. For example, ?x and $?x are variables,
and betty is an individual. Variables are bound to those ABox individuals that satisfy the query
expression.

nRQL offers different kinds of variables:

• Injective variables are prefixed with “?”, e.g. ?x, ?y are injective variables. An injective
variable can only be bound to an ABox individual which is not already bound by another
injective variable - the mapping from variables to ABox individuals is an injective mapping.
Thus, if ?x is bound to betty, then ?y cannot be bound to betty as well.

• Ordinary (non-injective) variables are prefixed with “$?”, e.g. $?x, $?y are (ordinary) vari-
ables. The mapping need not be injective; an arbitrary mapping is fine. Thus, if $?x is bound
to betty, then $?y can be bound to betty as well.

Moreover, if only certain pairs of variables shall be bound to different individuals, then
SAME-AS query atoms such as (neg (same-as $?x $?y)) can be used, see below. This will
enforce that $?x, $?y are bound to different ABox individuals.

86 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

There are only four types of atoms available:

• Unary atoms:

– concept query atoms.

• Binary atoms:

– role query atoms,

– constraint query atoms,

– SAME-AS query atoms.

There are some auxiliary atoms (“syntactic sugar”), such as bind-individual atoms, etc.

We will now introduce each type of atom. Each atom can also be negated, in two ways: nRQL offers
negation as failure (NAF) as well as classical, true negation.

Concept Query Atoms

Concept query atoms are unary atoms. A concept query atom is used to retrieve the individu-
als (members) of a concept, or an OWL (or RDFS) class. Please enter (full-reset) and load
family.racer. Our first nRQL query uses a concept query atom (?x woman) to retrieve the in-
stances of the concept woman. Thus,

(retrieve (?x) (?x woman))

asks RacerPro for all instances of the concept (name) woman from the (current-abox), which is
smith-family (note that the TBox of this ABox is family). These instances are successively bound
to the variable ?x. Thus, the answer is:

(((?X EVE)) ((?X DORIS)) ((?X ALICE)) ((?X BETTY)))

Terminology - Query Head and Query Body The query body is satisfied if the variable ?x

is bound to Eve, to Doris, to Alice, or to Betty. Racer has returned a list of binding lists. Each
binding list lists a number of variable-value-pairs. The format of these returned binding lists is
specified by the query head. In this case, the head of the query is (?x), and the query body or query
expression is given by the single concept query atom (?x woman). The set of objects mentioned
in the query head must be a subset of the set of objects referenced in the query body. An empty
query head is permitted (see below).

The Active Domain Semantics A so-called active domain semantics is employed for the vari-
ables. Variables can only be bound to explicitly modeled ABox individuals in the current ABox.
Please note that there is no guarantee on the order in which the possible bindings are
delivered. Currently, there are no ordering functions available.

What is the semantics of the atom (?x woman)? It is equivalent to (concept-instances woman)

which returns

(BETTY ALICE EVE DORIS).

A concept query atom (?x C) for an arbitrary concept C has the same semantics as
(concept-instances C). Instead of a simple concept name such as woman we can of course also
use a complex concept term for C, e.g. (and human (some has-gender female)).

4.1. THE NRQL LANGUAGE 87

Queries with individuals Suppose we just want to know if there are any woman at all modeled
in the current ABox. We could simply query with

(retrieve () (?x woman))

and RacerPro replies: T,

which means yes. This query has an empty head – such a query never returns any bindings, but
only a boolean answer T or NIL. T is returned if any satisfying binding can be found, and NIL

otherwise.

We already mentioned that query atoms use objects. Since ABox individuals are objects, it is also
possible to use an ABox individual instead of a variable. Suppose we just want to know if betty is
a woman:

(retrieve () (betty woman))

RacerPro replies: T,

and consequently we get NIL for

(retrieve () (betty man))

Other nRQL Peculiarities Certain names are reserved in nRQL and thus cannot be used to
identify ABox individuals having the same name - please consult <symbol> in the EBNF specifica-
tion, Section 4.1.9.

If ABox individuals are listed in the query head, then they will be included in the returned binding
lists as well, since the head always specifies the format of the returned binding lists:

(retrieve (betty) (betty woman))

RacerPro replies:

((($?BETTY BETTY)))

The answer ((($?BETTY BETTY))) is returned instead of (((BETTY BETTY))) (as probably ex-
pected) since the query is internally rewritten into

(retrieve ($?betty) (and (same-as $?betty betty) (betty woman)))

See below for an explanation of the SAME-AS query atom.

Querying OWL KBs (RDF Data) with Concept Query Atoms OWL KBs (and RDF
data) can be queried with concept query atoms as well. Consider the following OWL document,
defining one instance michael of class person and one instance book123 of class book:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

88 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="person"/>

<owl:Class rdf:ID="book"/>

<person rdf:ID="michael"/>

<book rdf:ID="book123"/>

</rdf:RDF>

With nRQL we can easily retrieve the instances of http://www.owl-ontologies.com/unnamed.owl#person:

(retrieve (?x) (?x |http://www.owl-ontologies.com/unnamed.owl#person|))

RacerPro replies:

(((?X |http://www.owl-ontologies.com/unnamed.owl#michael|)))

It is important to use the “pipes” (| ... |):

(retrieve (?x) (?x http://www.owl-ontologies.com/unnamed.owl#michael))

does not work. Moreover, the correct namespace etc. must be used. You can use RacerPorter to
find out the correct syntactical names for the concepts, roles, and individuals that RacerPro has
created for an OWL document.

Note that you can also query RDF documents in this way. nRQL is more powerful than other RDF
query languages. For example, complex concept expressions can be used, which is not possible in
other RDF query languages:

(retrieve (?x) (?x (or |http://www.owl-ontologies.com/unnamed.owl#person|

|http://www.owl-ontologies.com/unnamed.owl#book|)))

Answer:

(((?X |http://www.owl-ontologies.com/unnamed.owl#michael|))

((?X |http://www.owl-ontologies.com/unnamed.owl#book123|)))

Role Query Atoms

The second type of nRQL atoms are the role query atoms. These are binary atoms, in contrast to
the previously discussed unary concept query atoms. Role query atoms are used to retrieve pairs
of role fillers from an ABox, or pairs of OWL (RDF) individuals which stand in a certain OWL
object property relationship to one another,

Suppose we are looking for all explicitly modeled “mother child” pairs in the smith-family ABox.
The role has-child is declared in the associated TBox family. We can therefore make the following
query:

4.1. THE NRQL LANGUAGE 89

(retrieve (?mother ?child) (?mother ?child has-child))

RacerPro replies:

(((?MOTHER BETTY) (?CHILD DORIS))

((?MOTHER BETTY) (?CHILD EVE))

((?MOTHER ALICE) (?CHILD BETTY))

((?MOTHER ALICE) (?CHILD CHARLES)))

The expression (?mother ?child has-child) is a role query atom.

If we are just interested in the children of Betty, we could ask Racer like this:

(retrieve (?child-of-betty) (betty ?child-of-betty has-child))

and RacerPro replies:

(((?CHILD-OF-BETTY DORIS)) ((?CHILD-OF-BETTY EVE)))

Role Terms in Role Query Atoms We mentioned that arbitrary concept expressions can be
used in concept query atoms, not only concept names. The same applies to role query atoms – role
terms can be used, not only role names, as the following example demonstrates:

(retrieve (?child-of-betty) (?child-of-betty betty (inv has-child)))

Again, RacerPro replies:

(((?CHILD-OF-BETTY DORIS)) ((?CHILD-OF-BETTY EVE))).

Please note that the set of role terms is rather limited in RacerPro (only inv is available as a
term constructor). However, nRQL adds one more constructor which is only available in role query
atoms: classical negated roles, which are provided with the not constructor.

Classical Negated Roles in nRQL It is obvious that the instances of the concept (not

mother) can be retrieved with (retrieve (?x) (?x (not mother))): RacerPro replies (((?X

CHARLES))), since charles is a man, and man and woman are disjoint. This follows from the defini-
tions of these concepts in the family TBox. Thus, RacerPro can prove that charles is an instance
of the concept (not mother). In the ALCQHIR+(D−) description logic (the DL implemented
by RacerPro), negated roles are not offered, in contrast to negated concepts, due to reasons of
decidability. However, negated roles can be used in nRQL role query atoms for querying purposes!

Analogously as for (?x (not mother)) and charles where RacerPro can prove that charles is
not an instance of mother, sometimes it can also be proven that a certain pair of ABox individuals
cannot be in a certain role relationship. To demonstrate this, let us add the features (functional
roles) has-father and has-mother to family.racer. Please modify the KBs signature as follows
(don’t forget to modify the role has-child as well):

90 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(signature ...

:roles (...

(has-child :parent has-descendant

:inverse has-parent

:domain parent

:range person)

...

)

...

:features ((has-father :parent has-parent :range father)

(has-mother :parent has-parent :range mother)))

At the end of the file, add the following ABox role membership assertion to the file:

(related eve charles has-father)

Please enter (full-reset) and reload the modified file family.racer into RacerPro. Now, the
query

(retrieve (?x ?y) (?x ?y has-father))

should return

(((?X EVE) (?Y CHARLES)))

Let us now use a negated role in a role query atom. Since female persons cannot be fathers, RacerPro
is actually able to prove that certain individuals cannot be in a has-father role relationship to
one another. Thus,

(retrieve (?x ?y) (?x ?y (NOT has-father)))

gives us

(((?X CHARLES) (?Y BETTY))

((?X CHARLES) (?Y ALICE))

((?X CHARLES) (?Y EVE))

((?X CHARLES) (?Y DORIS))

((?X BETTY) (?Y ALICE))

((?X BETTY) (?Y EVE))

((?X BETTY) (?Y DORIS))

((?X ALICE) (?Y BETTY))

((?X ALICE) (?Y EVE))

((?X ALICE) (?Y DORIS))

((?X EVE) (?Y BETTY))

((?X EVE) (?Y ALICE))

((?X EVE) (?Y DORIS))

((?X DORIS) (?Y BETTY))

((?X DORIS) (?Y ALICE))

((?X DORIS) (?Y EVE)))

Please note that only female persons appear as bindings for ?y. The role expression (not

has-father) is an example for a negated role.

However, please note that the computational complexity of this feature is rather high. Thus, the
extensive use of negated roles might be unadvantageous.

4.1. THE NRQL LANGUAGE 91

Features and Attributes in Roles Query Atoms Please note that you may only use roles
(or role terms) in role query atoms. However, also features classify as roles (these are functional
roles). However, concrete domain attributes are not permitted. If

(define-concrete-domain-attribute age :type cardinal)

had been defined as a concrete domain attribute meant to represent the ages of the individual family
members, then you cannot use the following query to retrieve the ages of the family members:

(retrieve (?person ?age) (?person ?age age))

RacerPro will raise an error:

*** NRQL ERROR: PARSER ERROR: UNRECOGNIZED EXPRESSION (?PERSON ?AGE AGE)

As explained, variables in nRQL can only be bound to ABox individuals. However, conceptually
?age would either be an object of type cardinal, or a so-called concrete domain object. Since these
are not ABox individuals it is impossible to bind a nRQL variable to such an object. Nevertheless
it is possible to retrieve the individual ages of the family members - please consult Section 4.1.2.
A special set of so-called head projection operators is offered for this purpose.

Inverted Roles Role query atoms can also be inverted :

(retrieve (?mother ?child) (inv (?mother ?child has-child)))

is equivalent to

(retrieve (?mother ?child) (?child ?mother (inv has-child)))

Of course, the answer will be the same as for

(retrieve (?mother ?child) (?mother ?child has-child)).

Thus, inverted roles are only provided for the sake of completeness.

Querying for Semantically Equal Individuals – The NRQL-EQUAL-ROLE Please consider the
ABox constructed as the result of executing the following sequence of statements (we denote the
prompt of RacerPorter or another RacerPro client with “>” and the answer of RacerPro in the
following line):

> (full-reset)

:OKAY-FULL-RESET

> (define-primitive-role f :feature t)

F

> (related i j f)

> (related i k f)

92 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

We have constructed an ABox in which j and k denote the same individual in the domain of
discourse - they are semantically equal, although they have different names. Since k and j are
fillers of a feature f (and features are functional roles), k and j are in fact different names for the
(semantically) same domain individual (in the interpretation domain).

nRQL offers a special so-called equal role which can be used to query for those pairs of individuals
by means of a role query atom which are semantically equal. The special role NRQL-EQUAL-ROLE is
reserved for use within role query atoms and has a special meaning there. The special meaning of
NRQL-EQUAL-ROLE will only be recognized in role query atoms (not in concept expressions):

> (retrieve (?x ?y) (?x ?y nrql-equal-role))

(((?X K) (?Y J)) ((?X J) (?Y K)))

> (retrieve ($?x $?y) ($?x $?y nrql-equal-role))

((($?X K) ($?Y J)) (($?X J) ($?Y K))

(($?X I) ($?Y I)) (($?X J) ($?Y J)) (($?X K) ($?Y K)))

Please note that the second query delivers more answer tuples; namely those which are excluded
from the answer of the first query due to the invectiveness requirement. We can add some more
atoms to the last query to make it equivalent to the first query:

> (retrieve ($?x $?y) (and ($?x $?y nrql-equal-role) (neg (same-as $?x $?y))))

((($?X K) ($?Y J)) (($?X J) ($?Y K)))

Here we query for individuals which are semantically equal, but have different names. The SAME-AS

atom is explained in more detail below. Basically, SAME-AS only checks whether ABox individual
names are syntactically equal, whereas NRQL-EQUAL-ROLE check whether these ABox individual
names semantically denote the same domain individual in all models of the KB.

Sometimes one also wants to know which pairs of ABox individuals must not necessarily be mapped
to the same domain individual:

> (retrieve (?x ?y) (neg (?x ?y nrql-equal-role)))

(((?X I) (?Y K)) ((?X I) (?Y J)) ((?X K) (?Y I)) ((?X J) (?Y I)))

Note that (((?X K) (?Y J)) ((?X J) (?Y K))) is missing, and that

> (retrieve ($?x $?y) (neg ($?x $?y nrql-equal-role)))

((($?X I) ($?Y K)) (($?X I) ($?Y J)) (($?X K) ($?Y I)) (($?X J) ($?Y I)))

necessarily produces the same answer.

Currently, it is not possible to use the negated NRQL-EQUAL-ROLE: (?x ?y (not

nrql-equal-role)) will raise an error.

Querying OWL KBs (RDF Data) with Role Query Atoms In the OWL realm, so-called
object properties are the equivalent of roles. Consider the following OWL document:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

4.1. THE NRQL LANGUAGE 93

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="person"/>

<owl:ObjectProperty rdf:ID="hasChild">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="#person"/>

</owl:ObjectProperty>

<person rdf:ID="margrit">

<hasChild>

<person rdf:ID="michael"/>

</hasChild>

</person>

</rdf:RDF>

In this KB, the individual http://www.owl-ontologies.com/unnamed.owl#michael is the filler of
the http://www.owl-ontologies.com/unnamed.owl#hasChild object property of the individual
http://www.owl-ontologies.com/unnamed.owl#margrit. Object properties are mapped to roles;
thus, simple role query atoms such as

(retrieve (?x ?y)

(?x ?y |http://www.owl-ontologies.com/unnamed.owl#haschild|))

will work for object properties:

(((?X |http://www.owl-ontologies.com/unnamed.owl#margrit|)

(?Y |http://www.owl-ontologies.com/unnamed.owl#michael|)))

Note that nRQL also provides facilities to query for the fillers of OWL annotation and OWL
datatype properties, see below.

Explicit and Implicit Role Fillers Since nRQL uses the active domain semantics, you can
only retrieve those role fillers which are explicitly modeled as individuals in the ABox. Suppose
that the concept mother is defined as follows

(define-concept mother (and woman (some has-child person))),

and that there is the following ABox:

(instance jenny mother)

(instance susan mother)

(related susan peter has-child)

Thus, both susan and jenny are known to be mothers. As such, this implies that both must have,
in every model of the KB, an individual as a filler of the has-child role, since mother implies
(some has-child person). However, if you use

94 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child)))

you will only get

(((?X SUSAN) (?Y PETER))),

since there are no known children of jenny. However, we can still check (if not retrieve) which
individuals necessarily must have children in all models of the KB. The concept query atom

(retrieve (?x) (?x (some has-child top)))

yields

(((?X SUSAN)) ((?X JENNY))).

However, note that we have used a concept query atom, not a role query atom.

Constraint Query Atoms

Another important type of query atom is the constraint query atom. Constraint query atoms are
binary atoms, like the role query atoms. They are are meant to address the concrete domain part of
a KB. A constraint query atom can be used to retrieve those pairs of ABox (or OWL) individuals
whose fillers of certain specified concrete domain attributes (or OWL datatype properties) satisfy
a specified concrete domain predicate, also called constraint. For example, we can retrieve those
pairs of individuals that have the same age, if we assume that age is a concrete domain attribute.

Getting Ready for Constraint Query Atoms To demonstrate a constraint query atom, we
need to make some changes to the family.racer KB. Please load family.racer into your favorite
text editor and add the following concept membership assertions representing the ages of the
individual family members at the end of the file:

(instance alice (= age 80))

(instance betty (= age 50))

(instance charles (= age 55))

(instance eve (= age 18))

(instance doris (= age 24))

Please enter (full-reset) and reload the modified file family.racer into RacerPro.

Every person should now have an age. This we can verify with the concept query atom (?x (an

age)):

(retrieve (?x) (?x (an age)))

RacerPro replies:

(((?X CHARLES)) ((?X DORIS)) ((?X BETTY)) ((?X EVE)) ((?X ALICE)))

Fine. Now we can ask RacerPro who is at least 75 years old:

(retrieve (?x) (?x (>= age 75)))

RacerPro replies:

(((?X ALICE)))

We can now proceed with the constraint query atoms.

4.1. THE NRQL LANGUAGE 95

Our First Constraint Query Atom Concept query atoms such as (?x (>= age 75)) are
insufficient if we want, for example, find out who is older than whom, or who is older than alice.
However, using constraint query atoms we can make the following queries:

(retrieve (?x ?y) (?x ?y (constraint age age >)))

RacerPro replies:

(((?X CHARLES) (?Y EVE))

((?X CHARLES) (?Y DORIS))

((?X CHARLES) (?Y BETTY))

((?X ALICE) (?Y CHARLES))

((?X ALICE) (?Y EVE))

((?X ALICE) (?Y DORIS))

((?X ALICE) (?Y BETTY))

((?X DORIS) (?Y EVE))

((?X BETTY) (?Y EVE))

((?X BETTY) (?Y DORIS)))

Thus, charles is older than eve, doris, and betty, etc. Note that constraint is a keyword, age
is a concrete domain attribute, and > is one of the concrete domain predicates offered by RacerPro.

As usual, individuals can be used at variable (object9 positions. Let us verify that nobody is older
than alice:

(retrieve (?y) (?y alice (constraint age age >)))

RacerPro replies: NIL.

Role and Feature Chains in Constraint Query Atoms A constraint query atom such as
(?x ?y (constraint age age >)) retrieves the set of all tuples (?x, ?y) such that the value
(filler) of the age attribute of the first argument in the tuples which is bound to ?x is greater than
(>) the value (filler) of the age attribute of the second argument of the tuple which is bound to ?y.

Instead of using two single concrete domain attribute names (like age, age), it is also possible to
use role chains of arbitrary length such that the last argument in each chain is a concrete domain
attribute.

Let us consider an example using feature chains. Note that a feature is just a functional role. Again
we need to modify the signature of the family.racer KB. It should now read like this:

(signature ...

:roles (...

(has-child :parent has-descendant

:inverse has-parent

:domain parent

:range person)

...

)

...

:features ((has-father :parent has-parent :range father)

(has-mother :parent has-parent :range mother)))

96 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

That means, add the has-father and has-mother features, and modify the has-child role such
that its inverse is named has-parent. Then, add the following ABox assertions at the end of the
file:

(related betty alice has-mother)

(related charles alice has-mother)

(related doris betty has-mother)

(related eve betty has-mother)

(related eve charles has-father) ; for the sake of KB brevity ;-)

Enter (full-reset) and reload the file family.racer into RacerPro.

Now that we have the features has-mother and has-father, we can query for persons whose father
is older than their mother:

(retrieve (?x) (?x ?x (constraint (has-father age)

(has-mother age) >)))

RacerPro replies:

(((?X EVE)))

Note that (has-father age) and (has-mother age) are role (feature) chains ended by concrete
domain attributes, as required. The chains can be of arbitrary length:

(retrieve (?x) (?x ?x (constraint (has-father has-mother age)

(has-mother has-mother age) =)))

RacerPro replies:

(((?X EVE)))

The query succeeds since betty and charles are actually siblings but also have a common child
eve (for the sake of KB brevity).

We can use “true” role chains instead of features:

(retrieve (?x ?y) (?x ?y (constraint (has-child has-child age)

(has-child age) =)))

RacerPro replies:

(((?X ALICE) (?Y BETTY))

((?X ALICE) (?Y CHARLES))).

Please note that you can even use role terms instead of single roles in these chains! Thus, even
negated and inverted roles are allowed.

4.1. THE NRQL LANGUAGE 97

Complex Predicate Expressions So far we have only used simple predicate names (like “>”)
in constraint query atoms. You can also use complex predicate expressions. Suppose you want to
find out who is at least 40 years older than whom. Thus, there must be a difference of at least 40
between the ages of ?x and ?y. The nRQL query

(retrieve (?x ?y) (?x ?y (constraint (age) (age)

(> age-1 (+ age-2 40)))))

retrieves

(((?X ALICE) (?Y EVE)) ((?X ALICE) (?Y DORIS))).

So what is age-1 and age-2 in the expression (> age-1 (+ age-2 40))? The answer is simple:
In order to differentiate the age attribute of the individual bound to ?x from the age attribute of
the individual bound to ?y, nRQL has internally renamed the attributes by adding suffixes. Thus,
age-1 represents the filler of the age attribute of the individual reached by following the first role
chain, whereas age-2 references the filler of the age attribute of the individual reached by following
the second role chain. If the two attributes fillers to compare are different, then the suffixes will not
be added, e.g. as in

(retrieve (?x ?y) (?x ?y (constraint (age) (works-for-years-in-company)

(< age (+ works-for-years-in-company 10))))).

Please consult the EBNF in Section 4.1.9 to learn more about the syntax for complex predicate
expressions.

Querying OWL KBs with Constraint Query Atoms In the OWL realm, the equivalent of
concrete domain attributes are called OWL datatype properties. Thus, it would be good if constraint
query atoms could be used to query OWL documents with constraint query atoms referencing
datatype properties as if they were concrete domain attributes.

In principle this is possible with nRQL! However, the price is that, at the time of this writing,
additional assertions must be added to the original ABox (extensional information in an OWL
document is represented as an ABox in RacerPro) which is therefore “polluted”.

Consider the following OWL KB in which we have two datatype properties age and name (names-
pace prefixes skipped), as well as 3 instance a, b, c:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="person"/>

<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#person"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

98 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#person"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<person rdf:ID="b">

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">45</age>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">betty</name>

</person>

<person rdf:ID="a">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">betty</name>

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">35</age>

</person>

<person rdf:ID="c">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">michael</name>

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">35</age>

</person>

</rdf:RDF>

Let us assume that this OWL document is stored as a file under ~/dtp.owl. We can then use
a constraint query atoms to retrieve those individuals which have same age, as in the concrete
domain case:

> (full-reset)

:OKAY-FULL-RESET

> (owl-read-file "~/dtp.owl")

Reading ~/dtp.owl...

done.

> (add-role-assertions-for-datatype-properties)

:OKAY-ADDING-ROLE-ASSERTIONS-FOR-DATATYPE-PROPERTIES

> (retrieve (?x ?y)

(?x ?y

(constraint |http://www.owl-ontologies.com/unnamed.owl#age|

|http://www.owl-ontologies.com/unnamed.owl#age|

=)))

(((?X |http://www.owl-ontologies.com/unnamed.owl#c|)

(?Y |http://www.owl-ontologies.com/unnamed.owl#a|))

((?X |http://www.owl-ontologies.com/unnamed.owl#a|)

(?Y |http://www.owl-ontologies.com/unnamed.owl#c|)))

4.1. THE NRQL LANGUAGE 99

Again, you can also use complex predicates (as discussed above). nRQL is the only OWL
query language which allows for this kind of constraint checking on OWL documents. Note
(add-role-assertions-for-datatype-properties) is crucial here, otherwise the query will not
succeed and return NIL.

SAME-AS Query Atoms

These atoms are binary. We already mentioned that queries such as

(retrieve (betty) (betty woman))

are internally rewritten into

(retrieve ($?betty) (and (same-as $?betty betty) ($?betty woman)))

A SAME-AS query atom can be used to enforce a binding of a variable (e.g., $?betty) to an ABox
individual (e.g., betty), or to enforce that two non-injective variables are bound to the same (or
to a different!) ABox individual.

Please note that SAME-AS works purely syntactically. If you want to know which pair of ABox
individuals must always be interpreted as the same domain individual (of the interpretation domain)
in the models of a KB, then you must use the NRQL-EQUAL-ROLE in a role query atom, see the Section
on role query atoms.

The following examples require no further explanations:

> (full-reset)

:OKAY-FULL-RESET

> (instance i top)

> (instance j top)

> (retrieve (?x) (same-as ?x i))

(((?X I)))

> (retrieve (?x ?y) (same-as ?x ?y))

NIL

> (retrieve ($?x $?y) (same-as $?x $?y))

((($?X J) ($?Y J)) (($?X I) ($?Y I)))

> (retrieve ($?x $?y) (and (same-as $?x $?y) (same-as j $?y)))

((($?X J) ($?Y J)))

> (retrieve () (same-as i j))

NIL

> (retrieve () (same-as i i))

T

In older versions of RacerPro (< 1.9) it was required that the first argument of SAME-AS must be
a variable, and the second argument had to be an individual. This is no longer required, as the
examples demonstrate.

Suppose we have on more individual k:

100 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (instance k top)

The query using three injective variables ?x, ?y, ?z

> (retrieve (?x ?y ?z) (and (?x top) (?y top) (?z top)))

(((?X I) (?Y J) (?Z K)) ((?X I) (?Y K) (?Z J)) ((?X J) (?Y I) (?Z K))

((?X J) (?Y K) (?Z I)) ((?X K) (?Y I) (?Z J)) ((?X K) (?Y J) (?Z I)))

is in fact equivalent to

> (retrieve ($?x $?y $?z)

(and ($?x top) ($?y top) ($?z top)

(neg (same-as $?x $?y))

(neg (same-as $?x $?z))

(neg (same-as $?y $?z))))

((($?X I) ($?Y K) ($?Z J)) (($?X I) ($?Y J) ($?Z K)) (($?X J) ($?Y K) ($?Z I))

(($?X J) ($?Y I) ($?Z K)) (($?X K) ($?Y J) ($?Z I)) (($?X K) ($?Y I) ($?Z J)))

See below for an explanation of the and, neg constructors.

Auxiliary Query Atoms

Some auxiliary query atoms are offered by nRQL. However, these atoms are not as important as
the atoms we have already discussed.

HAS-KNOWN-SUCCESSOR Query Atoms Sometimes one just wants to retrieve individuals which
have a certain explicitly modeled role successor in an ABox, but one is not interested in actually
retrieving this successor. For example, suppose we want to know for which individuals we have
explicitly modeled children in the ABox. The query

(retrieve (?x) (?x (has-known-successor has-child)))

gives us

(((?X CHARLES)) ((?X BETTY)) ((?X ALICE))),

since these are the individuals for which we have has-child role successors in the ABox. Alterna-
tively we could have used

(retrieve (?x) (?x ?y has-child)).

However, there is a subtle difference between the two alternative formulation which will come into
play if we consider NAF negated atoms, see below.

Also note that, as a consequence of the active domain semantics for variables, the query

(retrieve (?x) (?x (has-known-successor has-child)))

4.1. THE NRQL LANGUAGE 101

is not equivalent to

(retrieve (?x) (?x (some has-child top))).

Suppose we add the axiom

(instance doris mother)

to the ABox and query with

(retrieve (?x) (?x (some has-child top))).

We then get

(((?X DORIS)) ((?X CHARLES)) ((?X BETTY)) ((?X ALICE))),

but

(retrieve (?x) (?x (has-known-successor has-child)))

still only gives us

(((?X CHARLES)) ((?X BETTY)) ((?X ALICE))),

since the child of Doris is not explicitly present in the ABox. However, its existence is logically
implied due to Doris’ motherhood. But there is no such known successor.

The has-known-successor is just “syntactic sugar”. The atom (?x (has-known-successor

has-child)) is rewritten into (project-to (?x) (?x ?y has-child)), see below for an expla-
nation of project-to and and.

4.1.2 Query Head Projection Operators to Retrieve Told Values

Before we continue with the description of the syntax of the query expressions (how to combine
the introduced query atoms to form complex query bodies), we want to discuss another more basic
feature – the head projection operators. These projection operators are needed in order

• to retrieve the fillers of concrete domain attributes of ABox individuals (so-called concrete
domain objects), and

• to retrieve the told values of such concrete domain attributes (so-called concrete domain
values),

• to retrieve the XML Schema datatype values which are told fillers of OWL datatype and
OWL annotation properties of OWL individuals.

It is not only possible to retrieve these told values, but also to specify complex retrieval conditions
(using concrete domain predicates) on the told values to be retrieved.

102 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Motivation

We have mentioned that the query head is simply a list of objects. But this is only half of the story.
Moreover, special head projection operators are permitted in the head of a query as well.

Such an operator is denoted in a functional style, e.g. (<op1> ?x), (<op2> (<op1> alice)), mean-
ing the projection operator <op1> is applied to the current binding of ?x, the projection operator
<op2> is applied to the result of applying the projection operator <op1> to alice, etc.

So what is the purpose of these projection operators? We already mentioned that variables can
only be bound to ABox individuals, but never to concrete domain objects or even values from the
concrete domain. The same applies to fillers of OWL annotation and OWL datatype properties,
which are elements in the domain of a primitive XML Schema datatype, e.g. xsd:int.

Thus, to retrieve concrete domain objects or these told values, the head projection operators can
be used. With them we can retrieve the told value of the age concrete domain attribute of the
individual alice.

Some Terminology from the Concrete Domain

Let us explain some terminology first. First we want to fix the age (which is a concrete domain
attribute of type cardinal) of alice in family.racer. This can be achieved in a number of ways:

1. The age of alice can be specified with a concept membership axiom such as (instance

alice (= age 80)) in the ABox. Note that (= age 80) is an ordinary concept expression.

2. Alternatively, a concrete domain object can be added to the ABox: (constrained alice

alice-age age). The object alice-age is a so-called concrete domain object, which is the
filler of the age concrete domain attribute of alice. The admissible concrete domain values
of this concrete domain object (alice-age) can then be constrained by adding (constraints

(= alice-age 80)).

In this case, 80 is called a told (concrete domain) value. This told value can be retrieved
with a nRQL head projection operator. If we just have (instance alice (= age 80)) in
the ABox, then this value cannot be retrieved.

Note that RacerPro also permits the specification of told values using (attribute-filler

alice 80 age). An anonymous concrete domain object will be created, which then plays the
same role as alice-age. Thus, also told values specified by means of attribute-filler can
be retrieved.

Retrieving Told Values from the Concrete Domain

So how can we now actually retrieve the age of alice? We already mentioned that the following
query does not work:

(retrieve (alice ?age) (alice ?age age)),

since age is not a role, but a concrete domain attribute. To solve this retrieval problem, we can
proceed as follows. First, according to our discussion above, add

(constrained alice alice-age age)

(constraints (= alice-age 80))

to the file family.racer. As always, enter (full-reset) and reload the file family.racer into
RacerPro. Now the head projection operators come into play:

4.1. THE NRQL LANGUAGE 103

(retrieve (alice (age alice) (told-value (age alice)))

(alice (an age)))

will give us

((($?ALICE ALICE)

((AGE $?ALICE) (ALICE-AGE))

((:TOLD-VALUE (AGE $?ALICE)) (80)))).

Note that RacerPro has returned a much more complex binding list: ALICE is the binding of the
variable $?ALICE. By applying the age attribute projection operator to the binding of $?ALICE

we get a list of concrete domain objects which are fillers of this concrete domain attribute, in this
case (ALICE-AGE). Finally, the told values of these concrete domain objects are retrieved using
(:TOLD-VALUE (AGE $?ALICE)). This yields a list of concrete domain values: (80).

Of course, also variables can be used:

(retrieve (?x (age ?x) (told-value (age ?x)))

(?x (and human (an age) (> age 30))))

RacerPro replies:

(((?X ALICE)

((AGE ALICE) (HUHU ALICE-AGE))

((:TOLD-VALUE (AGE ?X)) (:NO-TOLD-VALUE 80)))

((?X BETTY)

((AGE ?X) :NO-KNOWN-CD-OBJECTS)

((:TOLD-VALUE (AGE ?X)) :NO-KNOWN-CD-OBJECTS))

((?X CHARLES)

((AGE ?X) :NO-KNOWN-CD-OBJECTS)

((TOLD-VALUE (AGE ?X)) :NO-KNOWN-CD-OBJECTS))).

Please note that we can use ordinary concept query atoms such as (?x (and human (an age) (>

age 30))) to specify rather complex retrieval conditions on the fillers. The same applies to OWL
datatype properties, see below.

The Attribute Projection Operator in More Detail

The attribute projection operator (age alice) retrieves the concrete domain objects from the
ABox which are known to be fillers of the age concrete domain attribute of alice. This operator
is available for each concrete domain attribute defined in the referenced TBox.

Thus,

(retrieve (alice (age alice))

(bind-individual alice))

returns

((($?ALICE ALICE) ((AGE $?ALICE) (ALICE-AGE)))).

104 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

In case there is more than one concrete domain object filler for the age attribute of alice, e.g.
if we also add (constrained alice huhu age) to the KB, then we will get ((($?ALICE ALICE)

((AGE $?ALICE) (HUHU ALICE-AGE)))) for the previous query. Semantically, huhu and alice-age

denote the same concrete domain object resp. value. If there is no concrete domain object which
is known to be a filler of an attribute, e.g. as for

(retrieve (betty (age betty))

(bind-individual betty))

we will get

((($?BETTY BETTY) ((AGE $?BETTY) :NO-KNOWN-CD-OBJECTS))).

Thus, the token :no-known-cd-objects indicates that there is no concrete domain object which
is a filler of this attribute.

The Told Value Projection Operator in More Detail

As already seen, the projection operator (told-value (age alice)) can be used on concrete
domain objects to retrieve their actual told values.

This is how we can actually retrieve the age of Alice:

(retrieve (alice (age alice) (told-value (age alice)))

(bind-individual alice))

and get

((($?ALICE ALICE)

((AGE $?ALICE) (HUHU ALICE-AGE))

((:TOLD-VALUE (AGE $?ALICE)) (:NO-TOLD-VALUE 80))))

Note that we have no told value for the concrete domain object huhu. RacerPro indicates this using
the token :no-told-value.

Also note that, even though huhu and alice-age semantically denote the same concrete domain
object, only for alice-age the correct told value of 80 is returned, whereas for huhu, the binding is
no-told-value. This behavior is inherited from RacerPro’s ABox querying function told-value.

Remarks on Completeness

Please note that told-value is somehow incomplete. Consider the concept (and (> age 18) (<

age 20)). If age is a concrete domain attribute of type cardinal or integer, then age must
be 19. Thus, 19 could somehow be regarded as a “told value” as well. However, there is no way
for RacerPro or nRQL to return this value as a told-value, since RacerPro can only check the
satisfiability of a concrete domain constraint system, but not compute its solutions (even if it could
it would not be possible to return these solutions as single values in most cases).

However, told-value in nRQL is slightly more complete than the API function told-value, since
the effect of equality statements is analyzed and taken into account. Consider this example:

4.1. THE NRQL LANGUAGE 105

(full-reset)

(define-concrete-domain-attribute age :type cardinal)

(constrained a a-age age)

(constrained b b-age age)

(constrained c c-age age)

(constraints (= a-age b-age)

(= b-age c-age)

(= c-age 10))

If we use the told-value API function, we will only get b-age, c-age, 10 as answers to
(told-value ’a-age), (told-value ’b-age), (told-value ’c-age), even though 10 would be
a “more complete” answer in all three cases. With nRQL we can get 10 for all three told values:

(retrieve (?x (age ?x) (told-value (age ?x))) (?x (an age)))

RacerPro replies:

(((?X C) ((AGE ?X) (C-AGE)) ((:TOLD-VALUE (AGE ?X)) (10)))

((?X B) ((AGE ?X) (B-AGE)) ((:TOLD-VALUE (AGE ?X)) (10)))

((?X A) ((AGE ?X) (A-AGE)) ((:TOLD-VALUE (AGE ?X)) (10)))).

Retrieving Told Values Fillers of OWL Datatype Properties

As already mentioned, OWL offers so-called datatype properties. Let us consider an example KB:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="test"/>

<owl:DatatypeProperty rdf:ID="p1">

<rdfs:domain rdf:resource="#test"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<test rdf:ID="i">

<p1 rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</p1>

<p1 rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</p1>

<p1 rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</p1>

</test>

</rdf:RDF>

106 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Let us assume this OWL document is stored as a file under ~/dtp2.owl. Please load it into Rac-
erPro:

> (FULL-RESET)

:OKAY-FULL-RESET

> (OWL-READ-FILE "~/dtp2.owl")

Reading ~/dtp2.owl...

done.

In this document, http://a.com/ontology#p1 is a datatype property of type type int. For
the individual i, the three concrete integer values 1, 2, 3 are defined as fillers of the
http://a.com/ontology#p1 datatype property.

Let us now demonstrate how to retrieve these told values as well as how to specify retrieval conditions
on the datatype values to be retrieved. The attribute projection operators can be used for datatype
properties as follows:

(retrieve

(?x

(told-value (|http://www.owl-ontologies.com/unnamed.owl#p1| ?x)))

(?x |http://www.owl-ontologies.com/unnamed.owl#test|))

yields

(((?X |http://www.owl-ontologies.com/unnamed.owl#i|)

((:TOLD-VALUE

(|http://www.owl-ontologies.com/unnamed.owl#p1| ?X))

(1 2 3))))

as if http://www.owl-ontologies.com/unnamed.owl#p1 were a concrete domain attribute. In-
stead of told-value, also fillers, datatype-fillers, told-values, or told-fillers can be
used. Please consult the EBNF specification in Section 4.1.9.

To enable the specification of complex retrieval conditions on the fillers of such datatype properties,
we have extended the RacerPro concept syntax. The basic Idea is that datatype properties can be
used in a similar way like concrete domain attributes in concept expressions. For example,

(retrieve (?x (datatype-fillers

(|http://www.owl-ontologies.com/unnamed.owl#p1| ?x)))

(?x (at-least 3 |http://www.owl-ontologies.com/unnamed.owl#p1|

(and (min 0) (max 5) (not (equal 4))))))

will be recognized as a valid query. The answer is (again)

(((?X |http://www.owl-ontologies.com/unnamed.owl#i|)

((:TOLD-VALUE

(|http://www.owl-ontologies.com/unnamed.owl#p1| ?X))

(1 2 3))))

Note that the extended RacerPro concept expression

4.1. THE NRQL LANGUAGE 107

(at-least 3 |http://www.owl-ontologies.com/unnamed.owl#p1|

(and (min 0) (max 5) (not (equal 4))))

can only be used in concept query atoms and thus only for retrieval purposes. It is not possible to
use such concepts in other places. nRQL rewrites this concept expression into a native RacerPro
concept syntax:

(at-least 3 |http://www.owl-ontologies.com/unnamed.owl#p1|)

(and (min racer::racer-internal%has-integer-value 0)

(max racer::racer-internal%has-integer-value 5)

(not (equal racer::racer-internal%has-integer-value 4))))

More generally, a concept which references a role that represents an OWL datatype property is
“rewritten” in such a way that the qualification used in the concept will make sense for the declared
datatype property, as in the examples. Datatype properties can also be used instead of concrete
domain attributes in concept expressions in concept query atoms. Thus, also expressions such as
(an |http://a.com/ontology#p1|) are valid, even though |http://a.com/ontology#p1| is not
a concrete domain attribute.

Retrieving Told Values of OWL Annotation Properties

In OWL, the so-called annotation properties are used to annotate resources with meta information
(e.g., comments on authorship of an ontology, etc.). Annotation properties are not used for reason-
ing. Typically, the fillers of these annotation properties are plain strings - these told values can be
retrieved with nRQL.

nRQL can be used to retrieve the fillers of annotation properties. OWL annotation (datatype or
object) properties are handled in a similar way as told values of concrete domain objects (see
above).

Consider the following OWL KB snippet in which two annotation properties annot1 and annot2

are declared (header information etc. excluded) as well as some instances:

<owl:DatatypeProperty rdf:ID="annot1">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="annot2">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>

</owl:ObjectProperty>

<c rdf:ID="i">

<annot2 rdf:resource="#j"/>

<r rdf:resource="#j"/>

<r rdf:resource="#k"/>

<annot1 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

Annotation

</annot1>

</c>

Thus, the three instances i,j,k of the class C are defined. The annotation datatype property
annot2 is defined for i, with the value ‘‘Annotation’’. Moreover, i and j are set into relation
using annotation object property annot1.

108 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

We can now retrieve the told values of these annotation properties as follows:

(retrieve ((annotations

(|http://www.owl-ontologies.com/unnamed.owl#annot1| ?x)))

(?x (an |http://www.owl-ontologies.com/unnamed.owl#annot1|)))

RacerPro returns:

((((:TOLD-VALUE (|http://www.owl-ontologies.com/unnamed.owl#annot1| ?X))

("Annotation")))),

and

(retrieve (?x ?y)

(?x ?y |http://www.owl-ontologies.com/unnamed.owl#annot2|))

returns

(((?X |http://www.owl-ontologies.com/unnamed.owl#i|)

(?Y |http://www.owl-ontologies.com/unnamed.owl#j|))).

Again, annotations is just syntactic sugar for told-value.

4.1.3 Complex Queries

After having discussed the available query atoms and the structure of a nRQL head (which may
contain head projection operators) we can continue with the specification of the valid nRQL query
bodies. A nRQL body is inductively defined as being either a single query atom, or as a complex
query body which is constructed by supplying component query bodies as arguments to the following
query constructors, which are denoted in prefix syntax:

• AND is an n-ary constructor which is used for the formulation of conjunctive queries. The
arguments of the AND are called conjuncts.

• UNION can be used to compute the union of the answer sets of the argument query bodies.
The arguments of the UNION are called disjuncts.

• NEG implements a negation as failure semantics.

• INV can be used to “reverse” all role query atoms eventually present in the argument query
body (this constructor is rarely needed).

• PROJECT-TO ist the projection operator for query bodies. The first argument to this con-
structor is a projection list ; this must be a list of objects. Head projection operators are not
permitted here. The second argument is an ordinary query body. However, as for a nRQL
query, the objects mentioned in the projection list must form a subset of the objects mentioned
in this query body. This operator must not be confused with the head projection operators
which have been discussed before.

Please look up the EBNF specification to learn more about the compositional syntax of nRQL (see
Section 4.1.9).

4.1. THE NRQL LANGUAGE 109

The AND Constructor – Conjunctive Queries

Suppose we want to retrieve all mothers of male persons in the family.racer KB. This is a classic
conjunctive query:

(retrieve (?x ?y) (and (?x mother) (?y man) (?x ?y has-child)))

RacerPro replies:

(((?X ALICE) (?Y CHARLES)))

About Variables in Conjunctive (AND) Queries We have already mentioned that nRQL offers
different kinds of variables. If we query family.racer with

(retrieve (?x ?y) (and (?x man) (?y man)))

then we will get NIL. Again, the rationale is that there is only one known man in the ABox. Due
to the constraint that injective variables must be mapped injectively to ABox individuals, ?x and
?y must be bound to different man in the ABox, but there is only charles. The alternative would
be to use non-injective variables – if we use

(retrieve ($?x $?y) (and ($?x man) ($?y man)))

instead, then we get

((($?X CHARLES) ($?Y CHARLES))).

If ABox individuals are used within a query, then these individuals are NOT automatically excluded
as bindings for other injective variables in the query. Thus, injective variables “only see other
injective variables”. A query referencing an individual such as

(retrieve (?x charles) (and (?x man) (charles man)))

is rewritten into

(retrieve (?x $?charles) (and (?x man) (charles man)

(same-as $?charles charles))),

which means that $?charles is a non-injective variable (see below). We will thus get the desired
result (((?X CHARLES) ($?CHARLES CHARLES))).

A More Complex Example

nRQL queries are especially useful when searching for complex role filler graph structures in an
ABox. Consider the following query, which searches for children having a common mother:

(retrieve (?mother ?child1 ?child2)

(and (?child1 human)

(?child2 human)

(?mother ?child1 has-child)

(?mother ?child2 has-child)))

110 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

RacerPro replies:

(((?MOTHER BETTY) (?CHILD1 DORIS) (?CHILD2 EVE))

((?MOTHER BETTY) (?CHILD1 EVE) (?CHILD2 DORIS))

((?MOTHER ALICE) (?CHILD1 BETTY) (?CHILD2 CHARLES))

((?MOTHER ALICE) (?CHILD1 CHARLES) (?CHILD2 BETTY)))

An even more complex query is required if we want to search for odd family interrelationships (it
is assumed that you have added the additional ABox axioms from the previous chapters to the
original family.racer KB, otherwise the answer will be NIL):

(retrieve (?x ?y ?z ?u)

(and (?x ?y has-descendant) (?x ?z has-descendant)

(?y ?u has-descendant) (?z ?u has-descendant)))

RacerPro replies:

(((?X ALICE) (?Y BETTY) (?Z CHARLES) (?U EVE))

((?X ALICE) (?Y CHARLES) (?Z BETTY) (?U EVE)))

The properties of the roles are of course correctly preserved in nRQL queries; for example,
has-descendant is a transitive role. Other properties of roles are correctly handled as well.

The UNION Constructor

nRQL also offers a UNION constructor:

(retrieve (?x) (union (?x woman) (?x man)))

RacerPro replies:

(((?X CHARLES)) ((?X EVE)) ((?X DORIS)) ((?X BETTY)) ((?X ALICE)))

Understanding the UNION Constructor As the name suggests, the UNION just constructs the
union of the answer sets of the argument queries (disjuncts). However, the union is only well-defined
and meaningful if the argument sets have the same arity. Thus, nRQL must ensure that the answer
sets will have the same arity. The arguments query bodies of a union query are thus transformed
in such a way that they will all produce answer sets of same arity. Consider the query

(retrieve (?x ?y) (union (?x ?y has-child) (?x man))).

nRQL will rewrite this query into the following:

(retrieve (?x ?y) (union (?x ?y has-child) (and (?x man) (?y top)))).

Now, both component queries (?x ?y has-child) and (and (?x man) (?y top)) return lists of
(?x,?y) pairs. Thus, the union is meaningful.

There is another issue. If argument query bodies of a UNION reference different variables, then nRQL
will ensure that each argument references the same variables, even if the arguments have identical
arities. For example, the query

4.1. THE NRQL LANGUAGE 111

(retrieve (?x ?y) (union (?x woman) (?y man)))

will be rewritten into

(retrieve (?x ?y) (union (and (?x woman) (?y top))

(and (?x top) (?y man)))).

The variable names matter, since each (differently) named variable creates a new axis in an n-
dimensional tuple space. The result of the previous query will be

(((?X EVE) (?Y DORIS))

((?X EVE) (?Y CHARLES))

((?X EVE) (?Y BETTY))

((?X EVE) (?Y ALICE))

((?X DORIS) (?Y EVE))

((?X DORIS) (?Y CHARLES))

((?X DORIS) (?Y BETTY))

((?X DORIS) (?Y ALICE))

((?X BETTY) (?Y DORIS))

((?X BETTY) (?Y EVE))

((?X BETTY) (?Y CHARLES))

((?X BETTY) (?Y ALICE))

((?X ALICE) (?Y DORIS))

((?X ALICE) (?Y EVE))

((?X ALICE) (?Y CHARLES))

((?X ALICE) (?Y BETTY)))

As expected, this is simply the union of the two component queries

> (retrieve (?x ?y) (and (?x woman) (?y top)))

(((?X EVE) (?Y BETTY))

((?X DORIS) (?Y BETTY))

((?X ALICE) (?Y BETTY))

((?X EVE) (?Y DORIS))

((?X BETTY) (?Y DORIS))

((?X ALICE) (?Y DORIS))

((?X EVE) (?Y CHARLES))

((?X DORIS) (?Y CHARLES))

((?X BETTY) (?Y CHARLES))

((?X ALICE) (?Y CHARLES))

((?X DORIS) (?Y EVE))

((?X BETTY) (?Y EVE))

((?X ALICE) (?Y EVE))

((?X EVE) (?Y ALICE))

((?X DORIS) (?Y ALICE))

((?X BETTY) (?Y ALICE)))

and

112 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (retrieve (?x ?y) (and (?x top) (?y man)))

(((?X BETTY) (?Y CHARLES))

((?X DORIS) (?Y CHARLES))

((?X EVE) (?Y CHARLES))

((?X ALICE) (?Y CHARLES)))

However, the second disjunct does not produce any additional tuples.

Now consider the same query, but with a modified head:

(retrieve (?y) (union (?x woman) (?y man)))

Thus, we are only interested in the bindings of ?y. A common pitfall is to think that this query is
equivalent to the query

(retrieve (?y) (?y man)).

However, it is not. As already described, RacerPro will rewrite this query into

(retrieve (?y) (union (and (?x woman) (?y top))

(and (?x top) (?y man)))).

Thus, the possible bindings for ?y are from the union of top and man (and thus top). RacerPro
therefore replies:

(((?Y ALICE)) ((?Y DORIS)) ((?Y EVE)) ((?Y CHARLES)) ((?Y BETTY))),

whereas

(retrieve (?y) (?y man)).

just returns

(((?Y CHARLES))).

UNION vs. OR Consider the query

(retrieve (?x) (union (?x C) (?x (NOT C)))),

for some concept C.

A common pitfall is to consider this as equivalent to

(retrieve (?x) (?x (or C (NOT C)))),

which in turn is equivalent to

(retrieve (?x) (?x TOP))

4.1. THE NRQL LANGUAGE 113

and should thus return all individuals. However, this is not the case. The answer of this query is
given be the union of the answers of the argument queries

(retrieve (?x) (?x C))

and

(retrieve (?x) (?x (not C))).

Note that, due to the Open World Semantics, there can be individuals which can neither be proven
to be instances of the concept C, nor be proven to be instances of the concept (NOT C). For example,
consider the ABox (instance i top). On this ABox, (retrieve (?x) (union (?x c) (?x (not

c)))) returns NIL, but (retrieve (?x) (?x (or c (not c)))) returns of course (((?x i))).

NEG – The Negation As Failure Constructor

A NEG constructor is provided which implements a Negation as Failure (NAF) Semantics.

NAF is especially useful for measuring the completeness of the modeling in an ABox, which is impor-
tant for many applications. Users will probably be familiar with the PROLOG logic programming
language, which also offers NAF.

NAF is quite different from classic true negation. The following discussions will make this clear.

Negation as Failure for Concept Query Atoms Consider this query to family.racer:

(retrieve (?x) (?x grandmother))

RacerPro replies:

((?X ALICE)).

Thus, RacerPro can prove that alice is a grandmother. Fine. If we now use a negated concept in
the concept query atom in this query

(retrieve (?x) (?x (NOT grandmother))),

then we get

((?X CHARLES)),

since charles is a man, and thus, he cannot be a grandmother. RacerPro is able to prove that
charles is an instance of (not grandmother), given the definitions of man and grandmother.
However, due to the open world semantics, charles is the only individual for which this can be
proven: If we consider betty, then someday betty may become a grandmother, or she already is,
and we just do not have complete knowledge about her. Currently, it is just not known that betty
is a grandmother.

So suppose we want to know which individuals are currently not known to be instances of
grandmother. This is were NAF comes into play. To retrieve the individuals for which Racer-
Pro cannot prove that they are instances of grandmother, we will use a NAF-negated concept
query atom as follows:

114 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(retrieve (?x) (NEG (?x grandmother)))

RacerPro replies:

(((?X DORIS)) ((?X EVE)) ((?X CHARLES)) ((?X BETTY))).

Note that the NEG is placed “around” the entire atom, and that the answer is complementary to the
answer set returned by (retrieve (?x) (?x grandmother)). In general, for any concept C, the
query (retrieve (?x) (union (?x C) (neg (?x C)))) will always return the set of all ABox
individuals. Moreover, (retrieve (?x) (?x (not C))) will always return a subset of (retrieve
(?x) (neg (?x C))).

Things get tricky if NAF is used in combination with classic true negation. Consider

(retrieve (?x) (neg (?x (not grandmother)))),

which returns

(((?X DORIS)) ((?X EVE)) ((?X BETTY)) ((?X ALICE))).

We have been asking for all individuals for which RacerPro cannot prove that they are in-
stances of (not grandmother). Since charles is the only individual for which membership in
(not grandmother) can be proven (see above), ((?X CHARLES)) is not in the answer set, since a
NAF-negated atom and its non-NAF-negated variant are always complementary.

Negation as Failure for Role Query Atoms The neg operator can also be applied to role
query atoms. Again, a role query atom and its NAF-negated variant are complementary to one
another. Thus, since

(retrieve (?x ?y) (?x ?y has-child))

yields the 5 tuples

(((?X BETTY) (?Y DORIS))

((?X BETTY) (?Y EVE))

((?X CHARLES) (?Y EVE))

((?X ALICE) (?Y BETTY))

((?X ALICE) (?Y CHARLES)))},

on family.racer, its NAF-negated variant

(retrieve (?x ?y) (neg (?x ?y has-child)))

returns the “remaining” 15 tuples (note that we have 5 individuals in the ABox; thus, there must
be 5*4=20 pairs of individuals if injective variables are used):

(((?X EVE) (?Y BETTY))

((?X EVE) (?Y DORIS))

((?X EVE) (?Y CHARLES))

((?X EVE) (?Y ALICE))

((?X BETTY) (?Y CHARLES))

4.1. THE NRQL LANGUAGE 115

((?X BETTY) (?Y ALICE))

((?X DORIS) (?Y EVE))

((?X DORIS) (?Y BETTY))

((?X DORIS) (?Y CHARLES))

((?X DORIS) (?Y ALICE))

((?X CHARLES) (?Y BETTY))

((?X CHARLES) (?Y DORIS))

((?X CHARLES) (?Y ALICE))

((?X ALICE) (?Y EVE))

((?X ALICE) (?Y DORIS))).

The query

(retrieve (?x ?y) (union (?x ?y R) (neg (?x ?y R))))

will always return the set of all pairs of individuals from an ABox (minus the ones which are
excluded due to injective variables), for all role terms R.

Suppose we are now looking for people without known (explicitly modeled) children. Unfortunately,
the query

(retrieve (?x) (neg (?x ?y has-child)))

will not solve the task, since the answer is

(((?X EVE)) ((?X BETTY)) ((?X DORIS)) ((?X CHARLES)) ((?X ALICE)))

However, we already know that only betty has children (doris and eve). What has gone wrong?
nRQL has first computed the answer of (?x ?y has-child). Then, the set difference w.r.t. the
set of all pairs of individuals was constructed. Finally, a projection to the first component of these
pairs was carried out. Since, as we have already seen, the answer to (neg (?x ?y has-child))

also includes the pairs ((?X BETTY) (?Y ALICE)), the projection to ?x also includes betty.

In a next attempt we try the query

(retrieve (?x) (?x (not (some has-child top)))),

which yields NIL. What has gone wrong? Again, due to the open world semantics, if an individual in
the ABox does not have a known has-child successor, then this does not mean that there cannot
be any children at all for this individual. There is just no known such child. Again, we will need
the NEG operator instead of NOT:

(retrieve (?x) (neg (?x (some has-child top))))

which then yields

(((?X DORIS)) ((?X EVE))).

However, there is a problem with this query as well! Suppose that (instance doris mother) is
added to the Abox. Thus, if we query again with

(retrieve (?x) (neg (?x (some has-child top)))),

116 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

then doris will be excluded from the answer, even if doris does not have a known child:

(((?X EVE))).

The reason is that RacerPro can now prove that doris has a child, since doris is an instance of
the concept mother.

Thus, if we want to get a positive answer that doris does not have any explicitly modeled children
in the ABox, we must use the query

(retrieve (?x) (neg (?x (has-known-successor has-child))))

and finally get

((?X DORIS) (?X EVE)),

even if (instance doris mother) has been added to the ABox.

Please note that this query is equivalent to

(retrieve (?x) (neg (project-to (?x) (?x ?y has-child)))).

Thus, before computing the complement set of (?x ?y has-child) with neg we must make a
projection to ?x, and then compute the unary complement of the result of this projection. This will
solve the retrieval problem. We will describe the project-to constructor in more detail later on.

We also borrowed the following syntax from the query language of the LOOM system:

(retrieve (?x) (?x NIL has-child)),

which is just syntactic sugar for the previous query.

Please note that, since has-parent is the inverse role of has-child, the following query achieves
the same:

(retrieve (?x) (NIL ?x has-parent)).

As for the concept query atoms, it is the case that (?x ?y (not R)) always returns a subset of
(neg (?x ?y R)). This holds for an arbitrary role term R.

Negation as Failure for Constraint Query Atoms

As for the role query atoms, a negated constraint query atom returns the complement of its non-
NAF-negated variant. Since

(retrieve (?x ?y) (?x ?y (constraint (has-father age) age =)))

returns

(((?X EVE) (?Y CHARLES)))

(note that charles is the father of eve), we will get the remaining 19 tuples from

(retrieve (?x ?y) (neg (?x ?y (constraint (has-father age) age =)))).

4.1. THE NRQL LANGUAGE 117

Negated SAME-AS Query Atoms (NAF)

A negated SAME-AS query atom simply enumerates the complemented of its positive variant. Since

(retrieve (?x) (same-as ?x eve))

returns

(((?X EVE))),

we can get all other individuals but eve with

(retrieve (?x) (neg (same-as ?x eve)))

which consequently returns

(((?X CHARLES)) ((?X BETTY)) ((?X ALICE)) ((?X DORIS))).

NAF-Negated Query Atoms Referencing Individuals

What is the semantics of a NAF atom which references ABox individuals? We already mentioned
that a query atom and its NAF-negated counterpart always behave dually. Consider the query

(retrieve (betty) (betty top)).

which is rewritten into

(retrieve ($?betty) (and (same-as $?betty betty) ($?betty top))),

and thus gives use the answer ((($?BETTY BETTY))).

As a consequence, since (betty top) returns a singleton answer set ((($?BETTY BETTY))), we
should expect that (neg (betty top)) behaves in fact like a variable, enumerating all individuals
that are not betty:

(retrieve (betty) (neg (betty top))).

In fact, RacerPro replies:

((($?BETTY DORIS)) (($?BETTY EVE)) (($?BETTY CHARLES)) (($?BETTY ALICE)))

Consequently,

(retrieve (betty) (neg (betty top)))

is an abbreviation for

(retrieve ($?betty) (neg (and (same-as $?betty betty) ($?betty top))).

Due to DeMorgan’s Law, this query is equivalent to the query

118 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(retrieve ($?betty) (union (neg (same-as $?betty betty))

(and (neg ($?betty top))

(betty top)))).

Thus, whenever an ABox individual appears within a negated query atom it is important to re-
member that it behaves in fact like a non-injective variable.

However, sometimes this behavior is unwanted. Suppose we want to verify that it cannot be proven
that eve is a mother, i.e. we want to get a positive answer iff it cannot be proven that eve is a
mother. However, the query

(retrieve (eve) (neg (eve mother))),

yields

((($?EVE EVE))

(($?EVE DORIS))

(($?EVE CHARLES))

(($?EVE BETTY))

(($?EVE ALICE))),

as described above, since eve turned into a variable. We can “focus on eve” if we add an additional
conjunct to the query; either (same-as $?eve eve), or (bind-individual eve) (which is just
syntactic sugar for (same-as $?eve eve)):

(retrieve (eve) (and (bind-individual eve) (neg (eve mother))))

yields

((($?EVE EVE)).

Thus,

(retrieve () (and (bind-individual eve) (neg (eve mother))))

returns T.

A Note on Boolean Complex Queries

So far we have introduced the and, union, neg and inv query constructors for complex query
bodies. Thus, nRQL allows for the orthogonal composition of arbitrarily “boolean query bodies”.

For processing purposes, nRQL will bring these boolean query bodies into Negation Normal form
(NNF). In an NNF query, the NEG operator appears only in front of query atoms. The semantics
of the original query is preserved by this transformation.

Moreover, the queries are then brought into Disjunctive Normal Form (DNF), for optimization
purposes. This transformation might result in an exponential blowup in query size. We would like
to inform the user of this potential performance pitfall.

4.1. THE NRQL LANGUAGE 119

PROJECT-TO – The Projection Operator for Query Bodies

Consider the query

(retrieve (?x) (and (?x c) (?x ?y r) (?y d)))

on the ABox

(instance a c)

(instance b d)

(instance c top)

(related a b r)

which gives us the expected answer

(((?X A))).

During the evaluation of the body (and (?x c) (?x ?y r) (?y d)), bindings for ?x and ?y are
computed. Internally, nRQL computes an answer set for this conjunctive query body, which is
simply a list (set) of pairs listing bindings for ?x and ?y – in this example, the internal answer set is
((A B)). The final answer (((?X A))) is then computed by projecting the tuples to the variables
mentioned in the head; in this case to ?x. Thus, the pairs are projected to their first components
which specify the bindings for ?x, since the head of the example query is (?x); moreover, head
projection operators etc. are applied. The projection to the variables mentioned in the head is
usually the last step in the query processing chain.

However, for some queries it is required that a projection operation is applied somewhere in between
in the processing chain. Suppose you want to retrieve the C instances which do not have known R

successors which are instances of D. Thus, you want to get the complement of previous query
answer; we want to find a query which returns (((?X B)) ((?X C))). In a first attempt we try

(retrieve (?x) (neg (and (?x c) (?x ?y r) (?y d)))),

which is equivalent to

(retrieve (?x) (union (and (neg (?x c)) (top ?y))

(neg (?x ?y r))

(and (neg (?y d)) (top ?x))))

(please refer to the section on UNION).

However, in this query a projection to ?x will be applied to the complement of the set ((A B)),
which is the set ((B A) (B C) (C A) (C B) (A C)) – note that the pairs (B B), (A A) and (C

C) are missing, since ?x, ?y are injective variables. The projection to ?x then gives us

(((?X B)) ((?X C)) ((?X A))),

which is not what we want.

The problem here is that the complement operator NEG has been applied to a two-dimensional set,
which again (naturally) yields a two-dimensional set, and then the projection is applied.

The solution to the retrieval problem is to apply the complement operator NEG after the projection
to ?x has been carried out. However, then we must use an explicit projection operator in the query
body, since the projection is no longer the last required processing step for this query. We can use
the project-to operator for query bodies as follows:

120 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(retrieve (?x) (neg (project-to (?x) (and (?x c) (?x ?y r) (?y d))))),

which returns the desired result

(((?X B)) ((?X C)).

Instead of project-to, also project and pi can be used as keywords.

We already mentioned that the atom (has-known-successor R) is in syntactic sugar for
(project-to (?x) (?x ?y R)), and thus, (neg (has-known-successor R)) is equivalent to
(neg (project-to (?x) (?x ?y R))).

4.1.4 Defined Queries

nRQL offers a simple macro mechanism for the specification of defined queries. For example, we can
associate the symbol mother-of with the head (?x ?y) of arity 2 and the body (and (?x woman)

(?x ?y has-child)) by using the defquery facility:

(defquery mother-of (?x ?y) (and (?x woman) (?x ?y has-child)))

RacerPro replies:

MOTHER-OF

to indicate that the definition has been stored.

Formal and Actual Parameters

The list (?x ?y) in the mother-of definition is called the list of formal parameters of the defini-
tion. Such a list formal parameter list differs from a query head, since only objects (variables and
individuals) are allowed, and no head projection operators are permitted.

A defined query can be reused resp. referenced and its body inserted with the substitute keyword:

(retrieve (?a ?b) (substitute (mother-of ?a ?b))),

or, using an alternative syntax,

(retrieve (?a ?b) (?a ?b mother-of)).

Given the definition of the mother-of query, both queries simply expand into

(retrieve (?a ?b) (and (?a woman) (?a ?b has-child))).

In the expression (substitute (mother-of ?a ?b)), the parameters ?a ?b are called the actual
parameters. The number of actual parameters must always match the number of formal parameters
in the referenced definition, i.e. in the definition (defquery mother-of (?x ?y) ...). Note that
the formal parameters ?x, ?y in the definition of mother-of have been renamed to match the
actual parameters ?a, ?b).

Thus, the result is:

4.1. THE NRQL LANGUAGE 121

(((?A ALICE) (?B CHARLES)) ((?A ALICE) (?B BETTY))

((?A BETTY) (?B EVE)) ((?A BETTY) (?B DORIS)))

If one is not interested in the bindings of a certain formal parameter, then one can simple use NIL

as an actual parameter as well. Thus, the bindings of the corresponding variable in the definition
are ignored:

(retrieve (?mother) (substitute (mother-of ?mother NIL))),

or, using the alternative syntax,

(retrieve (?mother) (?mother NIL mother-of)).

RacerPro replies:

(((?MOTHER ALICE)) ((?MOTHER BETTY))).

A defined query can be used at any position where a query body is accepted. For example, you can
NAF-negate a defined query:

(retrieve (?a ?b) (neg (substitute (mother-of ?a ?b)))),

or use

(retrieve (?a ?b) (neg (?a ?b mother-of))),

which naturally expands into

(retrieve (?a ?b) (neg (and (?a woman) (?a ?b has-child)))).

an this query is equivalent to

(retrieve (?a ?b) (union (and (neg (?a woman)) (?b top))

(neg (?a ?b has-child)))).

Sometimes it might be necessary to put a project-to operator around the referenced defined query,
as already discussed:

(retrieve (?a) (neg (project-to (?a) (?a ?b mother-of))))

Syntactically Ambiguous Queries

Please note that the query

(retrieve (?a ?b) (?a ?b mother-of))

is syntactically ambiguous, given the definition of mother-of. The expression is syntactically in-
distinguishable from a role query atom, since mother-of might be a role name as well. The same
problem occurs for concept query atoms, where the second argument of the atom can either refer
to a concept name or to a defined unary query. In these cases, nRQL will output a warning such as

122 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

*** NRQL WARNING: MOTHER-OF EXISTS IN TBOX DEFAULT.

ASSUMING YOU ARE REFERRING TO THE ROLE MOTHER-OF!

informing you that the query is ambiguous, but then assume that you are referring to the role (or
the concept) with that name, and not the defined query. Otherwise you must use the substitute

operator to disambiguate. These ambiguities obviously cannot appear for definitions having more
than 2 formal parameters. Moreover, substitute is therefore a keyword and thus cannot be used
to refer to an individual name. Thus, you should not have an individual named substitute in an
ABox which you intend to query with nRQL.

Using Defined Queries in Query Definitions

Of course it is possible to use defined queries in query definitions. However, cyclic definitions are
prohibited. Consider

(defquery mother-of-male-child (?m)

(and (substitute (mother-of ?m ?c)) (?c man)))

(retrieve (?x) (substitute (mother-of-male-child ?x)))

RacerPro replies:

(((?X ALICE))).

Again, the alternative syntax can be used:

(defquery mother-of-male-child (?m) (and (?m ?c mother-of) (?c man)))

(retrieve (?x) (?x mother-of-male-child)).

Problems with NAF-negated Defined Queries

Let us discuss a problem which is related to NAF-negated defined queries.

Suppose we want to know who is not a mother of a male child. Since we have just defined a query
(mother-of-male-child ?x) we will first come up with the query

(retrieve (?x) (neg (substitute (mother-of-male-child ?x)))).

But this query returns the unintended answer

(((?X CHARLES)) ((?X JAMES)) ((?X DORIS)) ((?X EVE)) ((?X BETTY)) ((?X ALICE))).

Since (((?X ALICE))) is included in the answer of (retrieve (?x) (?x

mother-of-male-child)) we have expected that ((?X ALICE)) would be missing from the
answer of (retrieve (?x) (neg (?x mother-of-male-child))). This problem can again be
resolved by applying one more projection operator before the complement with NEG is constructed.
In fact, we do not want to have the complement of

(and (substitute (mother-of ?m ?c)) (?c man))),

4.1. THE NRQL LANGUAGE 123

which is the expression

(union (and (neg (?x woman)) (top ?c))

(neg (?x ?c has-child))

(and (neg (?c man)) (top ?x))),

but the complement of

(project-to (?m) (and (substitute (mother-of ?m ?c)) (?c man))),

which is the expression

(neg (project-to (?x)

(union (and (neg (?x woman)) (top ?c))

(neg (?x ?c has-child))

(and (neg (?c man)) (top ?x))))).

See also Section 4.1.3 for the discussion of project-to.

Thus, we must use

(retrieve (?x) (neg (project-to (?x) (substitute (mother-of-male-child ?x))))).

to get the desired result

(((?X CHARLES)) ((?X DORIS)) ((?X JAMES)) ((?X EVE)) ((?X BETTY))).

The API for Defined Queries

There are various nRQL API functions for accessing and manipulating the defined queries. Please
refer to the Reference Manual. It is not yet possible to define TBox queries. However, defined queries
can be used for rules as well.

Defined Queries Belong to the TBox

Please note that the definitions are not global, but local. By default, the defined queries are put
into a data structure according to the (current-tbox).

Thus, if the current TBox changes, the definitions are changing, too. If you want to put a definition
into a TBox other than the current one, you can supply an optional keyword argument :tbox to
defquery and related API functions and macros. The following terminal log demonstrates these
possibilities:

> (full-reset)

:OKAY-FULL-RESET

> (in-tbox a)

A

> (in-abox a)

A

124 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (defquery test (?x) (?x a))

TEST

> (instance a a)

> (retrieve (?x) (?x test))

(((?X A)))

> (describe-all-definitions)

((DEFQUERY TEST (?X) (?X A)))

> (in-tbox b)

B

> (in-abox b)

B

> (associated-tbox ’b)

B

> (instance b b)

> (defquery test (?x) (?x b))

TEST

> (retrieve (?x) (?x test))

(((?X B)))

> (describe-all-definitions)

((DEFQUERY TEST (?X) (?X B)))

> (defquery test2 (?x) (?x top) :tbox a)

TEST2

> (describe-all-definitions)

((DEFQUERY TEST (?X) (?X B)))

> (describe-all-definitions :tbox ’a)

((DEFQUERY TEST (?X) (?X A)) (DEFQUERY TEST2 (?X) (?X TOP)))

> (retrieve (?x) (substitute (test2 ?x)))

Error:

*** NRQL ERROR: CAN’T FIND DEFINITION OF QUERY TEST2 IN DBOX FOR TBOX B!

> (in-tbox a)

A

> (in-abox a)

A

4.1. THE NRQL LANGUAGE 125

> (describe-all-definitions)

((DEFQUERY TEST (?X) (?X A)) (DEFQUERY TEST2 (?X) (?X TOP)))

> (retrieve (?x) (substitute (test2 ?x)))

(((?X A)))

4.1.5 ABox Augmentation with Simple Rules

nRQL offers a simple ABox augmentation mechanism: rules. This rule engine is also used as a basis
engine for the experimental SWRL facilities of RacerPro.

Terminology - Rule Antecedent and Consequence

nRQL rules have an antecedent and a consequence. An antecedent is just an ordinary nRQL query
body. The consequence is a set of so-called generalized ABox assertions. A generalized ABox asser-
tion can also reference variables which are bound in the rule antecedent (query body).

A Simple nRQL Rule

The following simple nRQL rule “promotes” woman which are not yet known to be mother to
mothers:

(firerule (and (?x woman) (neg (?x mother))) ((instance ?x mother)))

The antecedence is the simple conjunctive query body (and (?x woman) (neg (?x mother))),
and the consequence is a single generalize instance assertion. If this rule is applied, then the bindings
for ?x from the answer set of (and (?x woman) (neg (?x mother))) are used to “instantiate”
the generalized concept assertion, thus producing a set (list) of ordinary instance assertions by
substituting ?x with the current binding. RacerPro returns

(((INSTANCE EVE MOTHER)) ((INSTANCE DORIS MOTHER)))

to indicate which ABox assertions have been added by the rule. The query

(retrieve (?x) (?x mother))

now returns

(((?X ALICE)) ((?X BETTY)) ((?X DORIS)) ((?X EVE))).

Note that nRQL rules can behave non-monotonically - this rule cannot be applied again, since now
all woman are known to be mothers; thus, (neg (?x mother)) must fail.

Automatically Adding Rule Consequences to an ABox

RacerPro can be advised to automatically add created rule consequences to an ABox if
(add-rule-consequences-automatically) is enabled; you must add rule consequences manually
(see below) if (dont-add-rule-consequences-automatically) has been evaluated.

126 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Creating New ABox Individuals and Establishing ABox Relationships with Rules

A nRQL rule consequence can contain generalized concept assertions, generalized role assertions,
generalized constrained as well as generalized constraint assertions.

Suppose that, for each mother which does not have a known child yet in the ABox, we want to
create a new child:

(retrieve (?x) (and (?x mother)

(neg (?x (has-known-successor has-child)))))

Answer:

(((?X DORIS)) ((?X EVE))).

Thus, doris and eve are known to be mothers, but they have no known children. So let’s add these
children with a rule:

(firerule (and (?x mother)

(neg (?x (has-known-successor has-child))))

((instance (new-ind first-child-of ?x) human)

(related (new-ind first-child-of ?x) ?x has-mother)))

which adds the role assertions

(((INSTANCE FIRST-CHILD-OF-EVE HUMAN)

(RELATED FIRST-CHILD-OF-EVE EVE HAS-MOTHER))

((INSTANCE FIRST-CHILD-OF-DORIS HUMAN)

(RELATED FIRST-CHILD-OF-DORIS DORIS HAS-MOTHER)))

to the ABox.

Note that the operator (new-ind <name> <ind-or-var>*) creates a new ABox individual prefixed
with <name> for each different binding possibility of the argument objects in <ind-or-var>*, and
(new-ind <name>) will simply create a new ABox individual <name>.

Note that the rule with empty antecedence

(firerule () ((instance new-ind some-concept)))

yields

*** NRQL ERROR: PARSER ERROR: OBJECT $?NEW-IND NOT MENTIONED IN QUERY BODY

Please use

(firerule () ((instance (new-ind new-ind) some-concept)))

instead.

4.1. THE NRQL LANGUAGE 127

Rules and the Concrete Domain

As demonstrated, rules can can (among other things) add new concept assertions as well as new
role membership assertions to an ABox.

Rules can also be used to address the concrete domain part of a RacerPro ABox. This means
you can add constrained as well as constraints assertions with rules. Moreover, the syntax for
the constraints which is inherited from the RacerPro API function constrained-entailed-p has
been extended so that also head projection operators are valid as arguments. Please consider the
following examples:

> (full-reset)

:OKAY-FULL-RESET

> (define-concrete-domain-attribute age :type cardinal)

AGE

> (firerule () ((instance (new-ind a) (an age))))

(((INSTANCE A (AN AGE))))

> (firerule () ((instance (new-ind b) (an age))))

(((INSTANCE B (AN AGE))))

> (firerule (and (?x (an age)) (?y (an age)))

((constrained ?x (new-ind age-of ?x) age)

(constrained ?y (new-ind age-of ?y) age))

:how-many 1)

(((CONSTRAINED B AGE-OF-B AGE) (CONSTRAINED A AGE-OF-A AGE)))

> (firerule (and (a (an age)) (b (an age)))

((constraints (= (age b) (+ 30 (age a))))))

(((CONSTRAINTS (= AGE-OF-B (+ 30 AGE-OF-A)))))

> (retrieve (?x) (?x (= age 30)))

NIL

> (constraints (= age-of-a 30))

NIL

> (retrieve (?x) (?x (= age 30)))

(((?X A)))

> (retrieve (?x (told-value (age ?x))) (?x (= age 60)))

(((?X B) ((:TOLD-VALUE (AGE ?X)) ((+ 30 AGE-OF-A)))))

> (firerule (a top) ((constraints (= (told-value (age a)) (age a)))))

(((CONSTRAINTS (= 30 AGE-OF-A))))

> (firerule (b top) ((constraints (= (told-value (age b)) (age b)))))

(((CONSTRAINTS (= (+ 30 AGE-OF-A) AGE-OF-B))))

> (firerule (and (a (an age)) (b (an age)))

((constraints (= (told-value (age b)) (+ 30 (told-value (age a)))))))

128 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(((CONSTRAINTS (= (+ 30 AGE-OF-A) (+ 30 30)))))

> (abox-consistent?)

T

Adding Pseudo-Nominals with Rules

A similar mechanism can be used to add so-called “pseudo-nominals” to an ABox. Suppose you
need one new unique concept name for each ABox individual, e.g., you want to add (instance

betty concept-for-betty) for betty, (instance doris concept-for-doris) for doris, and
so on. The following rule achieves exactly this:

(firerule (?x top) ((instance ?x (new-symbol concept-for ?x))))

Firing the rule adds the following concept assertions to the ABox:

(((INSTANCE CHARLES CONCEPT-FOR-CHARLES))

((INSTANCE DORIS CONCEPT-FOR-DORIS))

((INSTANCE JAMES CONCEPT-FOR-JAMES))

((INSTANCE EVE CONCEPT-FOR-EVE))

((INSTANCE BETTY CONCEPT-FOR-BETTY))

((INSTANCE ALICE CONCEPT-FOR-ALICE)))

Note that we have constructed as set of new atomic concepts using the new-symbol operator. The
new-symbol operator takes the same arguments as the new-ind operator (and also has Identical
semantics).

Due to the added assertions, the query

(retrieve (?x) (?x (some has-child concept-for-doris)))

now returns

(((?X JAMES)) ((?X BETTY))).

The concept name concept-for-doris can be called a pseudo-nominal for the individual doris.

The API of the Rule Engine

There are various nRQL API functions (and macros) related to nRQL rules. Please consult the ref-
erence manual. Moreover, rules can be used in a “add all consequences at once”, or in a incremental
“add one set of consequences at a time” style.

It is possible to implement different strategies of rule application. nRQL offers API functions in
order to enable the user or application to control how and when rule consequences are added to an
ABox. See Section 4.2.4.

4.1. THE NRQL LANGUAGE 129

4.1.6 Complex TBox Queries

nRQL can also be used to search for specific superclass-class-subclass relationship patterns in the
taxonomy of a TBox. For this purpose, use tbox-retrieve.

The Relational Structure of a TBox Taxonomy

Suppose that we view the taxonomy of a TBox as a relational structure. The taxonomy of a
TBox is a so-called directed acyclic graph (DAG). A nodes in this DAG represents an equivalence
class of equivalent concept names, and an edge between two nodes represents a direct-subsumer-of
relationship.

Also assume that the following laws hold:

1. Assume that each node x has a name. The name of the node is the name of the equivalence
class [x]. However, the name of this node might be any element from the equivalence class
[x].

2. For each node x (representing an equivalence class [x]) and each member xi[x] in this equiv-
alence class, assume that the predicate xi holds - thus, xi(x) is true. Since x[x], also x(x)
holds.

3. The edges in this taxonomy representing the direct-subsumer-of relationship are labeled with
has child; that is, has child(x, y) holds iff x is a direct subsumer of y.

4. Let has parent be the inverse relationship of has child, and has descendant be the transitive
closure of has child. Let has ancestor be the inverse relationship of has descendant.

Obviously, such a relational structure can also be seen as an ABox. A has child(x, y) edge is
represented with a role membership axiom (related x y has-child), and for each x, the concept
membership axiom (instance x x) is added, and if y is in (concept-synonyms x), then also
(instance x y) is added, for all such y. But please note that the name of the node x might be
any element from the equivalence class of x. We will call this ABox which is constructed according
to the four laws the “taxonomy ABox”. Note that his taxonomy ABox is not a real ABox.

It is obvious that we can now query this very specific taxonomy ABox with nRQL - thus, the full
power of nRQL can be used for TBox querying purposes. However, set of roles that can be used in
role query atoms is then limited to has-child, has-parent, has-descendant, has-ancestor,
and the the set of concept expressions available in concept query atoms is limited to the set of
concept names from the TBox (taxonomy). Of course, querying for concrete domain attributes
etc. does not make sense in this setting, since the “taxonomy ABox” contains only information
according to the given four rules above.

Using TBOX-RETRIEVE to Query the Taxonomy

To give an example, suppose we want to retrieve all direct sub-concepts of the class woman:

(tbox-retrieve (?y) (and (?x woman) (?x ?y has-child)))

Answer:

(((?Y MOTHER)) ((?Y SISTER)))

130 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Alternatively,

(tbox-retrieve (?y) (and (?x woman) (?y ?x has-parent)))

can be used. To get all sub-concepts of woman, use

(tbox-retrieve (?y) (and (?x woman) (?x ?y has-descendant)))

Answer:

(((?Y SISTER)) ((?Y AUNT)) ((?Y *BOTTOM*)) ((?Y MOTHER)) ((?Y GRANDMOTHER)))

Please note that, in this example,

(tbox-retrieve (?x) (?x woman)),

means actually the same as

(tbox-retrieve (woman) (woman woman)).

However, this is only true because there are no equivalent concepts for woman (the equivalence class
of woman has cardinality one). See below for an example which problems arise if nodes represent
equivalence classes with a cardinality greater than one.

To retrieve all concepts but woman, use woman with neg:

(tbox-retrieve (?x) (neg (?x woman))).

RacerPro replies:

(((?X *TOP*)) ((?X *BOTTOM*)) ((?X GRANDMOTHER))

((?X FATHER)) ((?X MOTHER)) ((?X UNCLE))

((?X BROTHER)) ((?X AUNT)) ((?X SISTER))

((?X PARENT)) ((?X MAN))

((?X PERSON)) ((?X HUMAN))

((?X MALE)) ((?X FEMALE)))

Due to the presence of the (instance x x) assertions, the child concepts of woman can also be
retrieved like this:

(tbox-retrieve (?y) (woman ?y has-child)).

How to Retrieve All Concept Names

How can we retrieve all concept names? The following query gives us only the *TOP* concept:

(tbox-retrieve (?x) (?x top))

returns

(((?X *TOP*))).

4.1. THE NRQL LANGUAGE 131

Note that this is a consequence of the four rules which we used for construction of the taxonomy
ABox. Thus, in order to retrieve all concept names from the taxonomy, we need a special syntax:

(tbox-retrieve (?x) (top ?x))

RacerPro replies:

(((?X *TOP*)) ((?X *BOTTOM*)) ((?X GRANDMOTHER))

((?X FATHER)) ((?X MOTHER)) ((?X UNCLE))

((?X BROTHER)) ((?X AUNT)) ((?X SISTER))

((?X PARENT)) ((?X MAN)) ((?X WOMAN))

((?X PERSON)) ((?X HUMAN))

((?X MALE)) ((?X FEMALE)))

Complex TBox Queries

Now let us consider a more complex examples. Suppose we are searching for diamond-shaped super-
subclass relationships in the taxonomy:

(tbox-retrieve (?x ?y ?z ?u)

(and (top ?x)

(?x ?y has-child)

(?x ?z has-child)

(?y ?u has-child)

(?z ?u has-child)))

The answer is:

(((?X *TOP*) (?Y MALE) (?Z FEMALE) (?U *BOTTOM*))

((?X *TOP*) (?Y FEMALE) (?Z MALE) (?U *BOTTOM*))

((?X PERSON) (?Y PARENT) (?Z MAN) (?U FATHER))

((?X PERSON) (?Y MAN) (?Z PARENT) (?U FATHER))

((?X PERSON) (?Y PARENT) (?Z WOMAN) (?U MOTHER))

((?X PERSON) (?Y WOMAN) (?Z PARENT) (?U MOTHER)))

Problems Caused By Equivalent Concepts

Consider the following example:

> (delete-all-tboxes)

> (define-concept a b)

> (define-concept c b)

> (taxonomy)

The returned taxonomy looks like this:

((TOP NIL ((A B C))) ((C A B) (TOP) (BOTTOM)) (BOTTOM ((A B C)) NIL))

132 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Thus, the concepts A, B, C are actually equivalent. The “taxonomy ABox” will contain nodes for
TOP, BOTTOM, as well as a node representing the equivalence class A, B, C. However, we do not
know whether this node is named C, A, or B! Let us assume the name C is given to this node. Then,
the following concept assertions are added to the “taxonomy ABox”:

(instance *TOP* TOP)

(instance *BOTTOM* BOTTOM)

(instance C A)

(instance C B)

(instance C C)

(Note that we do not check this imaginary ABox for consistency, so (instance *bottom* bottom)

does no yield an inconsistent ABox; we are merely interested in the relational structure of this ABox
here).

Thus, querying this ABox with

(tbox-retrieve (?x) (top ?x))

gives us

(((?X *TOP*)) ((?X *BOTTOM*)) ((?X C)))

Since there is no node named A, querying this ABox with

(tbox-retrieve (a) (a a))

gives us NIL. However,

(tbox-retrieve (c) (c c))

correctly returns ((($?C C))), as well as

(tbox-retrieve (c) (c a))

(tbox-retrieve (c) (c b)).

Thus, it is usually better to query for a, b and c like this:

(tbox-retrieve (?x) (?x a))

(tbox-retrieve (?x) (?x b))

(tbox-retrieve (?x) (?x c))

For all three queries, the answer will be

(((?X C))).

Again we like to emphasize that nRQL TBox queries are basically just plain nRQL ABox queries
which are posed to a very specific ABox (the “taxonomy ABox” representing the taxonomy). This
taxonomy ABox is constructed from the taxonomy of the TBox according to the given four laws;
the semantics of the TBox queries is a direct consequence of using nRQL on the taxonomy ABox.

4.1. THE NRQL LANGUAGE 133

4.1.7 Hybrid Representations with the Substrate Representation Layer

The so-called substrate representation layer is used to associate a RacerPro ABox with an additional
representation layer. This additional representation layer is called a substrate.

The coupling of a RacerPro ABox with a substrate results in a hybrid representation. The substrate
layer is useful for the representation of semi-structured data.

nRQL offers various types of substrates:

• the basic data substrate,

• the mirror data substrate, as well as

• the RCC substrate.

We will discuss each substrate briefly. More types of substrates will be added in the future (e.g.,
the database substrate for coupling an ABox with a relational database is in preparation).

The Data Substrate

Similar to an ABox, a data substrate is a relational structure which can be viewed as a node- and
edge-labeled directed graph. Nodes are named and have an optional description (the label). Edges
must always have a description (the label).

Data Substrate Labels These descriptions are called data substrate labels. The exact syntax
can be found on Page 150, syntax rule <data-substrate-label>. A data substrate label is either
a simple data literal, or a list of data literals, or a list of list of data literals. Data literals are
taken from the host language (Common LISP). Symbols, strings, numbers as well as character are
supported.

Such a data substrate label is similar to a boolean formula in Conjunctive Normal Form (CNF).
For example, the data substrate label (("foo" "bar") 123.3 foobar) somehow “represents” the
positive boolean “formula” (”foo” ∨ ”bar”) ∧ 123.3 ∧ foobar. Note that "foo" and "bar" are
strings, 123.3 is a floating point number, and foobar is a symbol. Unlike boolean formulas, data
literals are always positive and thus cannot be negated.

Data Substrate Nodes, Edges and Labels To populate a data substrate, nodes and edges
with appropriate data substrate labels must be created. The macros data-node and data-edge are
provided for this purpose.

For example, the statement

(data-node michael ("michael" age 34)

(and man

(= age 34)

(some has-knowledge DL)))

does three things:

1. Creates a data substrate node named michael;

2. labels this node with the description ("michael" age 34) which is a “conjunction” of three
data literals;

134 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

3. creates an ABox individual called michael, and finally,

4. adds the concept assertion (instance michael (and man (= age 34) (some

has-knowledge DL))) to the ABox associated with this data substrate.

Note that not only symbols are valid as names for data substrate nodes, but also numbers, charac-
ters, and even strings.

As already demonstrated, data substrate nodes can be associated with individuals from an ABox.
This is done by simply giving equal names to the substrate node (michael) and the associated
ABox individual (michael). However, creation of a corresponding ABox individual is optional. It is
thus possible to create data nodes which do not have associated ABox individuals, and vice versa.

Populating the Hybrid Representation In general, RacerPro’s reasoning is completely unaf-
fected by the presence of an associated data substrate layer. Thus, you might ask, what is it good
for at all? The answer to this question is that you can use nRQL to query the hybrid representation.
nRQL is a hybrid query language. Let us consider the following example KB:

(full-reset)

(in-tbox test)

(implies man human)

(implies professor teacher)

(implies teacher human)

(define-primitive-role collegue :inverse collegue)

Let us now associate the ABox test with a data substrate. A dat a substrate is always associated
with the ABox which has the same name as the data substrate. Thus, we will use (in-data-box

test) to create a data substrate with the name test which will be automatically associated to the
ABox we have just created:

(in-abox test)

(in-data-box test)

We can now populate the substrate and the ABox:

(data-node michael ("Michael Wessel" age 34)

(and man

(some has-knowledge DL)))

(data-node ralf ("Ralf Moeller" age 38)

(and professor

(some has-knowledge DL)))

;;; Create an edge between Michael and Ralf

;;; and label this edge with the description

;;; ("this is a description" has-collegue).

;;; Moreover, a "(related michael ralf collegue)"

;;; axiom is added to the associated ABox "test".

4.1. THE NRQL LANGUAGE 135

(data-edge michael ralf

("this is a description" has-collegue)

collegue)

We can ask for a description of the current substrate as well as inspect the labels of the created
objects:

> (describe-current-substrate)

((:NAME TEST) (:TYPE THEMATIC-SUBSTRATE::DATA-SUBSTRATE)

(:ASSOCIATED-ABOX TEST) (:ASSOCIATED-TBOX TEST) (:NO-OF-NODES 2))

> (node-label michael)

(("Michael Wessel") (AGE) (34))

> (edge-label michael ralf)

(("this is a description") (HAS-COLLEGUE))

Again, note that these lists of lists of data literals must be interpreted as conjunctions (of disjunc-
tions) of data literals.

There there are also API functions (and macros) for deleting a substrate node or edge, as well as
various other substrate related API functions. Please consult the Reference Manual.

Querying the Hybrid Representation nRQL can now be used to query the hybrid represen-
tation. Here is our first hybrid query :

> (retrieve (?*x ?y) (and (?x (and human (some collegue teacher)))

(?x ?y collegue)

(?*x "Michael Wessel")))

(((?*X MICHAEL) (?Y RALF)))

Note that the variable ?y has been bound to an ABox individual, whereas ?*x has been bound to
a substrate node.

The variable ?y is an ordinary nRQL ABox variable, whereas ?*x is a so-called substrate variable
(see rule <data-substrate-query-object>, Page 150). Whenever we use a variable (or individual)
prefixed with an asterix (*), it is assumed that this object is from the substrate realm, and must
therefore be bound to a substrate node. Otherwise the object is from the ABox realm and must
therefore be bound to an ABox individual. Thus, with respect to the example, the variable ?*x

ranges over the set of nodes in the data substrate, whereas the variable ?y ranges over the set of
ABox individuals.

Moreover, these ABox and substrate variables are bound in parallel. Whenever a binding for ?x

is made, a binding of the corresponding substrate variable ?*x is automatically established to the
associated substrate node, if an associated node exists, and vice versa. Note that you can enforce
the existence of appropriate corresponding objects by putting conjuncts like (?x top) and (top

?*x) into your query.

Finally, it should be mentioned that variables which are prefixed with $?* also denote substrate
variables. However, these variables are non-injective, whereas variables beginning with ?* are in-
jective variables, as for the nRQL variables ranging over the ABox individuals.

136 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Data Substrate Query Expressions A data substrate variable is bound to a substrate node
with a certain label if this label satisfies the given data node query expression (see 150, rule
<data-node-query-expression>). These substrate data query expressions play the same role as
concept and role expression for ABox query atoms.

The node query expressions, for example, the query expression "Michael Wessel" in the query
atom (?*x "Michael Wessel"), have a structure similar to the node / edge labels. Again, a positive
boolean description of data substrate query items in CNF is assumed.

As for the usual ABox concept query atoms (e.g., (?x (and human (some colleague

teacher)))), a notion of logical entailment is employed for the matching process.

A data node matches a given data substrate node query atom iff the label of this node logically
implies the node query expression used within this substrate query atom.

For example, the data substrate node michael matches the query atom (?*x "Michael Wessel"),
because the label of michael contains "Michael Wessel" as a conjunct, and thus logically implies
the query expression "Michael Wessel".

Similarly, the node description (("a" b) 1 2.3) will match the query atom (?*x (("a" b #\c
123) (1 2) 2.3)), since (("a" b) 1 2.3) implies (("a" b #\c 123) (1 2) 2.3) (note that (1
2) means “1 or 2”, and #\c denotes the character “c”). Since data query expressions are conjunctions
(in CNF), the query

(retrieve (?*x) (?*x (age 34)))

is equivalent to

(retrieve (?*y) (and (?*x age) (?*x 34))).

Referencing Data Substrate Nodes It is possible to refer to specific nodes in the substrate
by naming them in the query, as it is possible to refer to specific ABox individuals in queries.

In order to distinguish an ABox individual in a query from the name of a data substrate node used
within a query, the latter ones are prefixed with * as well. However, * is not part of the name of
the data substrate node, but only used for referencing the node. For example, we can reference the
substrate node michael in a nRQL query with the object name *michael:

> (retrieve (*michael) (*michael (age 34)))

((($?*MICHAEL MICHAEL)))

Using Data Query Predicates So far we have only used simple data literals (like age, 34,

"Michael Wessel") as conjuncts in the CNF of data substrate query expressions. However, nRQL
also offers you to use so-called data predicates. The recognized predicates are summarized on Page
150, see rule <data-query-predicate>. For example, consider the following query:

(retrieve (?x *michael) (and (bind-individual *michael)

(*michael ?*x has-collegue)

(?x teacher)

(?*x (age (:predicate (< 40))))))

4.1. THE NRQL LANGUAGE 137

which returns

(((?X RALF) ($?*MICHAEL MICHAEL))).

Here we have been looking for the colleagues of the data node michael which are teachers for which
a corresponding data substrate node exists which also satisfies the data substrate query expression
(age (:predicate (< 40))).

Thus, the label of such a node must contain the symbol age, and there must be an other data literal
x which satisfies (logically implies the validity of) the expression (< x 40) (if x is substituted with
a literal from the label of this node).

In general, data substrate predicate expressions can be used in data substrate node query atoms
as well as in data substrate edge query atoms. Note that the ordinary data literals, e.g. age in this
example, can also be viewed as denoting equality predicates, e.g. (:predicate (equalp age)) in
this case.

Another example demonstrates that predicates are available which are not offered in the concrete
domain of RacerPro, for example, we can search for nodes that have string on their labels that
contain the substring "Michael":

> (retrieve (?*x) (?*x (:predicate (search "Michael"))))

(((?*X MICHAEL)))

Moreover, it is even possible to find pairs of nodes ?*x and ?*y which satisfy a certain predicate,
even if there is no explicit edge between these nodes. The query

(retrieve (?*x ?*y) (?*x ?*y (:satisfies (:predicate <))))

returns

(((?*X MICHAEL) (?*Y RALF))).

Here we have been searching for substrate nodes ?*x, ?*y which satisfy the binary predicate "<"

- this means, there must be a numeric literal a in the label of the node bound to ?*x, and another
numeric literal b in the label of the node bound to ?*y such that a < b holds.

A predicate used within a :satisfies substrate predicate edge query must always have arity two.
Please note that the previous query does not require the presence of an edge between michael and
ralf. Only the node labels are taken into account.

The Mirror Data Substrate

Obviously, most users do not want to populate a data substrate manually, but will prefer a facility
which automatically creates associated data substrate objects for ABox individuals. The so-called
mirror data substrate is provided for this purpose. It automatically creates, for every object in
a given ABox (the ABox which is the associated ABox of the substrate), a corresponding and
appropriately labeled substrate data object.

The functionality provided by the mirror data substrate is especially valuable for users who want
to query OWL KBs. Suppose RacerPro has internally created an ABox as a result of reading in an
OWL file. If the data substrate mirroring facility is enabled, RacerPro will automatically create data
substrate objects for all elements in the OWL KB. However, RacerPro will also create associated
data substrate if a KB which is not an OWL KB will be read in.

The associated data substrate is valuable, since nRQL can then offer additional retrieval function-
ality which is not available on the ABox side. For example, the additional retrieval :predicates
can be used, which are only available in the hybrid nRQL query language.

138 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Querying the Mirror Data Substrate Let us consider an example to demonstrate the benefits
of the mirror data substrate:

(full-reset)

(in-tbox test)

(define-concrete-domain-attribute age :type integer)

(define-concrete-domain-attribute name :type string)

(define-primitive-role has-child :parent is-relative)

(equivalent mother (and woman (some has-child human)))

(implies woman human)

(in-abox test)

(in-mirror-data-box test)

(instance alice woman)

(instance betty woman)

(related alice betty has-child)

(constrained betty betty-age age)

(constrained alice alice-age age)

(constrained betty betty-name name)

(constrained alice alice-name name)

(constraints (equal betty-age 80))

(constraints (equal alice-age 50))

(constraints (string= betty-name "Betty"))

(constraints (string= alice-name "Alice"))

Due to the declaration (in-mirror-data-box test), mirroring is enabled. A data substrate node
is created in the mirror

• for each ABox individual,

• for each concrete domain object, and

• for each concrete domain value.

Edges are created in the mirror for

• related as well as for

• constrained

axioms.

In order to be able to distinguish the “type” of a data substrate object, special markers are added
to the labels of these objects:

• The label of a data substrate node which has been created for an ABox individual will contain
the special marker :abox-individual as a conjunct (recall that data labels are descriptions
in CNF).

• The label of a node representing a concrete domain objects will contain the marker
:abox-concrete-domain-object.

4.1. THE NRQL LANGUAGE 139

• The label of a node representing a concrete domain value will contain the value itself, as well
as the marker :abox-concrete-domain-value. Moreover, the node also has the value as its
name.

The related, constrained, and constraints Abox assertions give rise to appropriately labeled
edges in the substrate, connecting the different types of substrate nodes.

Whereas a related role assertion axiom would result in a data substrate edge connecting two
nodes of type :abox-individual, a constrained assertion would create an edge between an
:abox-individual and an :abox-concrete-domain-object, etc.

The following query demonstrates the use of the different markers for querying purposes:

(retrieve (?*x ?*y

?*name-of-?*y

?*age-of-?*y

?*tv-1

?*tv-2)

(and (?*x (:abox-individual))

(?x ?y has-child)

(?y woman)

(?*y ?*age-of-?*y (:abox-attribute-relationship age))

(?*y ?*name-of-?*y (:abox-attribute-relationship name))

(?*age-of-?*y (:abox-concrete-domain-object))

(?*name-of-?*y (:abox-concrete-domain-object))

(?*age-of-?*y ?*tv-1 (:abox-told-value-relationship))

(?*name-of-?*y ?*tv-2 (:abox-told-value-relationship))

(?*tv-1 (:abox-concrete-domain-value (:predicate (< 90))))

(?*tv-2 (:abox-concrete-domain-value (:predicate (search "tty"))))))

RacerPro replies:

(((?*X ALICE) (?*Y BETTY)

(?*NAME-OF-?*Y BETTY-NAME) (?*AGE-OF-?*Y BETTY-AGE)

(?*TV-1 80) (?*TV-2 "Betty")))

Note that, for example, the ABox assertion (constraints (equal betty-age 80)) was responsi-
ble for the creation of the nodes betty-age, 80, as well as for the establishment of an edge between
these two. Let us inspect the labels of these objects:

> (node-label alice)

((WOMAN) (*TOP*) (TOP) (:ABOX-OBJECT) (:ABOX-INDIVIDUAL))

> (node-label betty-age)

((:ABOX-CONCRETE-DOMAIN-OBJECT) (:ABOX-OBJECT))

140 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (node-label 80)

((:ABOX-CONCRETE-DOMAIN-VALUE) (80))

> (edge-label betty-age 80)

((:ABOX-RELATIONSHIP) (:ABOX-TOLD-VALUE-RELATIONSHIP))

> (edge-label alice betty)

((:ABOX-RELATIONSHIP) (:ABOX-ROLE-RELATIONSHIP) (HAS-CHILD))

Please note that also concept assertions have been mirrored, e.g., the information that alice is a
woman.

Moreover, the amount of information which is mirrored for the ABox individuals and the ABox
related statements is computed according to the current nRQL mode, see the documentation of
set-nrql-mode in the Reference Manual.

For example, using nRQL mode 0, only the told syntactic information from the ABox is used for
the concept membership assertions. However, for the related axioms, also the effects of the role
hierarchy are taken into account. Mode 1 is like mode 0, but also the atomic concept ancestors and
the atomic concept synonyms are added to the labels of the substrate nodes. In mode 2, additionally,
also the concept synonyms and ancestors for complex concept membership assertions are asserted
to the labels of the nodes.

Thus, if we use

(in-mirror-data-box test)

(enable-smart-abox-mirroring)

in the above example, then the label of alice will additionally contain human, and the edge label
of the edge between alice and betty also contains is-relative, due to the role hierarchy:

> (node-label alice)

((WOMAN) (HUMAN) (*TOP*) (TOP) (:ABOX-OBJECT) (:ABOX-INDIVIDUAL))

> (edge-label alice betty)

((:ABOX-RELATIONSHIP) (:ABOX-ROLE-RELATIONSHIP) (HAS-CHILD) (IS-RELATIVE))

Markers Used in the Mirror Data Substrate In general, the following set of markers is used.

For the nodes:

• :abox-object,

• :abox-individual,

• :abox-concrete-domain-object,

• :abox-concrete-domain-value.

For the edges:

• :abox-object,

• :abox-relationship,

4.1. THE NRQL LANGUAGE 141

• :abox-role-relationship,

• :abox-attribute-relationship,

• :abox-told-value-relationship.

In addition, some additional markers are added in case the ABox has been created from an OWL
KB:

• :owl-annotation,

• :owl-annotation-concept-assertion,

• :owl-annotation-relationship,

• :owl-annotation-object-relationship,

• :owl-annotation-datatype-relationship,

• :owl-annotation-datatype-object,

• :owl-annotation-value,

• :owl-datatype-value,

• :owl-datatype-role.

Using the Mirror Data Substrate on OWL Documents Especially in the case of OWL
KBs, the additional querying functionality offered by means of a data mirror substrate can be
valuable, since OWL KBs tend to contain a lot of annotations and told (XML Schema datatype)
data values. With the data substrate mirror you can query for resources which whose fillers of an
OWL annotation property contain a certain substring, etc.

The mirror data substrate allows you to evaluate certain (predefined) predicates over the set of
OWL annotations. Let us (again) consider the following OWL example KB:

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/unnamed.owl#"

xml:base="http://www.owl-ontologies.com/unnamed.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="person"/>

<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#person"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#person"/>

142 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<person rdf:ID="b">

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">45</age>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">betty</name>

</person>

<person rdf:ID="a">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">betty</name>

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">35</age>

</person>

<person rdf:ID="c">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">michael</name>

<age rdf:datatype="http://www.w3.org/2001/XMLSchema#int">35</age>

</person>

</rdf:RDF>

Let us assume this OWL document is stored as a file under ~/dtp.owl:

> (FULL-RESET)

:OKAY-FULL-RESET

> (ENABLE-DATA-SUBSTRATE-MIRRORING)

:OKAY-DATA-SUBSTRATE-MIRRORING-ENABLED

> (OWL-READ-FILE "~/dtp.owl")

Reading ~/dtp.owl...

done.

The following queries demonstrate the retrieval possibilities offered by the mirror data substrate:

> (retrieve (?*x $?*x-dtp-value)

(?*x $?*x-dtp-value (:owl-datatype-role)))

(((?*X |http://www.owl-ontologies.com/unnamed.owl#b|) ($?*X-DTP-VALUE 45))

((?*X |http://www.owl-ontologies.com/unnamed.owl#b|) ($?*X-DTP-VALUE "betty"))

((?*X |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*X-DTP-VALUE 35))

((?*X |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*X-DTP-VALUE "betty"))

((?*X |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*X-DTP-VALUE 35))

((?*X |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*X-DTP-VALUE "michael")))

> (retrieve (?*x $?*x-dtp-value)

(?*x $?*x-dtp-value (:owl-datatype-role

|http://www.owl-ontologies.com/unnamed.owl#age|)))

(((?*X |http://www.owl-ontologies.com/unnamed.owl#b|) ($?*X-DTP-VALUE 45))

((?*X |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*X-DTP-VALUE 35))

((?*X |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*X-DTP-VALUE 35)))

> (retrieve (?*x $?*x-dtp-value ?*y $?*y-dtp-value)

(and (?*x $?*x-dtp-value

(:owl-datatype-role

4.1. THE NRQL LANGUAGE 143

|http://www.owl-ontologies.com/unnamed.owl#age|))

(?*y $?*y-dtp-value

(:owl-datatype-role

|http://www.owl-ontologies.com/unnamed.owl#age|))

($?*x-dtp-value $?*y-dtp-value (:satisfies (:predicate =)))))

(((?*X |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*X-DTP-VALUE 35)

(?*Y |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*Y-DTP-VALUE 35))

((?*X |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*X-DTP-VALUE 35)

(?*Y |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*Y-DTP-VALUE 35)))

> (retrieve (?*x $?*x-dtp-value ?*y $?*y-dtp-value)

(and (?*x $?*x-dtp-value

(:owl-datatype-role

|http://www.owl-ontologies.com/unnamed.owl#name|))

(?*y $?*y-dtp-value

(:owl-datatype-role

|http://www.owl-ontologies.com/unnamed.owl#name|))

($?*x-dtp-value $?*y-dtp-value (:satisfies (:predicate string<)))))

(((?*X |http://www.owl-ontologies.com/unnamed.owl#b|) ($?*X-DTP-VALUE "betty")

(?*Y |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*Y-DTP-VALUE "michael"))

((?*X |http://www.owl-ontologies.com/unnamed.owl#a|) ($?*X-DTP-VALUE "betty")

(?*Y |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*Y-DTP-VALUE "michael")))

> (retrieve (?*x $?*x-dtp-value)

(and (?*x $?*x-dtp-value

(:owl-datatype-role

|http://www.owl-ontologies.com/unnamed.owl#name|))

($?*x-dtp-value (:predicate (search "ael")))))

(((?*X |http://www.owl-ontologies.com/unnamed.owl#c|) ($?*X-DTP-VALUE "michael")))

An interesting feature of the mirror data substrate is that variables such as $?*x-dtp-value can
now be bound to told values (of OWL datatype or annotation fillers)! This is due to the fact that the
told values are accessible as nodes in the mirror data substrate. Moreover, retrieval conditions can be
specified which are otherwise impossible to specify - for example, in the last query, we were searching
for datatype values being fillers of the |http://www.owl-ontologies.com/unnamed.owl#name|

property that satisfy the predicate (:predicate (search "ael")); thus, we are searching for
substrings. These predicates don’t exist as concrete domain predicates for reasons of decidability.
However, they can easily be offered in the data substrate, since query answering reduces to model
checking here, which is fine for data such as “told values” in OWL documents.

Moreover, since a mirror data substrate is just a special kind of data substrate (see previous
subsection), nodes and edges can of course be added manually, by using the already discussed
constructors data-node, data-edge, etc. The full data substrate API applies here, please consult
the Reference Manual.

The RCC Substrate - Querying RCC Networks

The so-called Region Connection (RCC) Calculus offers means for describing and reasoning about
qualitative spatial relationships between spatial objects. To support applications which have to
represent domain objects having a spatial character, we are supplying yet another type of substrate.
The so-called RCC substrate is a special kind of data substrate.

The Purpose of the RCC Substrate An RCC substrate allows for the creation and querying
of so-called RCC networks. In contrast to usual data substrates, the set of admissible edge labels is

144 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

constrained. Edges must be labeled with so-called RCC relationships. However, the set of allowed
node labels is not constrained.

The edges of an RCC network are labeled with RCC relationships, denoting the relative qualitative
spatial arrangement of two objects. For example, you can use the set of RCC5 relationships to
distinguish whether two objects are disjoint (RCC5 relationship “DR”), overlapping (RCC5 re-
lationship “O”), congruent (RCC5 relationship “EQ”), or contained within each other (“PP” for
proper part or “inside”, and its converse, “PPI” for “contains”). Moreover, disjunctions of these
relations can be used to represent coarser or indefinite (underspecified) knowledge regarding the
spatial relationship between two objects. The RCC substrate offers the well-known set of RCC8 rela-
tionships, as well as the RCC5 relationships. The latter ones can be defined in terms of disjunctions
of the former ones.

An RCC relation is specified as a single symbol (e.g., DR), or as a flat list of symbols (e.g. (PO DR))
representing a disjunction. In general, again a CNF like description is employed, as for ordinary
data substrate edge labels. However, in contrast, only data literals which are symbols from the set
of RCC5 or RCC8 base relations are acceptable.

For example, suppose you want to represent that object a contains b, and b contains c, but a and
c are disjoint. The build-in RCC network consistency checker will discover that this network is
inconsistent.

More importantly, it is also possible to query an RCC network using nRQL. Usually, you will
not create an “isolated” RCC network, but a network in which the nodes will have associated
(corresponding) ABox individuals. Thus, the RCC substrate can serve an ABox as an additional
representation medium which is aware of the special characteristics of qualitative spatial (RCC)
relationships and thus can be used for answering qualitative spatial queries by means of constraint
checking. For example, if a contains b (PPI), and a and c are disjoint (DC), then a nRQL query
asking for disjoint (DC) objects will not only retrieve a and c, but also b and c, even though only the
edges (a b PPI), (a c DC) are explicitly modeled in the RCC substrate. However, (b c DC) is a
logical consequence in this RCC network. Moreover, the RCC substrate will detect inconsistencies,
like the one discussed above.

The RCC querying facilities are best demonstrated with yet another example:

(full-reset)

(in-tbox geo-example)

(define-concrete-domain-attribute inhabitants :type cardinal)

(define-concrete-domain-attribute has-name :type string)

(define-primitive-attribute has-language)

(in-abox geo-example)

;;; Create an RCC5 substrate which is associated with the ABox

;;; geo-example

(in-rcc-box geo-example :rcc5)

;;; Create some RCC substrate nodes.

;;; Note that "data-node" can be used

;;; as well.

(rcc-instance europe)

4.1. THE NRQL LANGUAGE 145

(rcc-instance germany

(country germany)

(and country

(string= has-name "Germany")

(all has-language german)

(some has-language language)

(= inhabitants 82600000)))

(rcc-instance hamburg

(city hamburg)

(and city

(some in-country germany)

(string= has-name "Hamburg")))

;;; Create some RCC substrate edges.

;;; Note that "data-edge" can be used

;;; as well.

;;; Europe contains (= PPI) Germany:

(rcc-related europe germany PPI)

;;; Germany contains (= PPI) Hamburg:

(rcc-related germany hamburg PPI)

In this example, 3 RCC nodes named europe, germany and hamburg are created. For europe, no
additional description and no corresponding ABox individual is created. The RCC node germany

is described as country ∧ germany, and a corresponding ABox individual called germany is cre-
ated as well. The ABox individual is annotated with a RacerPro concept expression. Finally, the
node hamburg is created, and the three nodes are set into a spatial containment relation by using
the RCC5 role PPI (“proper part inverse”). Note that rcc-instance is just syntactic sugar, and
data-node can be used as well. The same applies to rcc-related and data-edge.

We can pose the following spatio-thematic query to the RCC substrate we have just defined:

(retrieve (?*x ?*y ?*z)

(and (?x (and (string= has-name "Hamburg")

(some in-country germany)))

(?y (and country

(> inhabitants 8000000)))

(?*x ?*y :pp)

(?*y ?*z :pp)))

The answer is:

(((?*X HAMBURG) (?*Y GERMANY) (?*Z EUROPE)))

Given the previous explanation, the meaning of the query should be obvious.

Note that nRQL has deduced that (rcc-related europe hamburg PPI) holds (thus, also
(rcc-related hamburg europe PP)) by means of constraint checking, due to the presence of
(rcc-related europe germany PPI) and (rcc-related germany hamburg PPI).

146 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

4.1.8 Functional Lambda Expressions

As previously introduced, lambda expressions can be used in query heads and rule antecedences.
nRQL allows a restricted kind of server-sided programming and can thus be used to implement, for
example

1. user-defined output formats for query results (e.g., the query results can also be written into
a file),

2. certain kinds of combined ABox/TBox queries,

3. efficient aggregation operators (e.g., sum, avg, like in SQL).

In the following nRQL examples we will demonstratee the points 1. to 3. For this, consider the
following simple ABox:

(related i j r)

(related j k r)

Suppose you want to create a comma separated values file called test.csv which contains all the
(possible implied) R role assertions. nRQL allows you to do this:

(retrieve (((:lambda (x y)

(with-open-output-file ("~/test.csv")

(format *output-stream* "~A;~A~%" x y)))

?x ?y))

(?x ?y r))

So, the query body retrieves all ?x, ?y individuals which stand in an R relationship; for each ?x,

?y tuple, one more line is attached to the file test.csv.

Regarding point 2, let us illustrate how “combined” TBox/ABox queries can be used to retrieve
the direct instances of a concept, which has been requested by many users.

Let us create two concepts c and d such that d is a sub concept (child concept) of c:

? (full-reset)

> :okay-full-reset

? (define-concept c (some r top))

> :OKAY

? (define-concept d (and c e))

> :OKAY

We can verify that d is indeed a child concept of c, using a so-called TBox query:

? (tbox-retrieve (?x) (c ?x has-child))

> (((?x d)))

Let us create two individuals so that i and j are instances of c; moreover, j is also an instances of
d:

4.1. THE NRQL LANGUAGE 147

? (related i j r)

> :OKAY

? (related j k r)

> :OKAY

? (instance j e)

> :OKAY

? (retrieve (?x) (?x c))

> (((?x j)) ((?x i)))

? (retrieve (?x) (?x d))

> (((?x j)))

Thus, both i and j are c instances. However, only i is a direct c instance. We can retrieve these
direct instances of c as follows:

? (retrieve1 (?x c)

(((:lambda (x)

(if (some (lambda (subclass)

(retrieve () ‘(,x ,subclass)))

(flatten

(tbox-retrieve1 ‘(c ?subclass has-child)

‘(((:lambda (subclass) subclass) ?subclass)))))

:reject

‘(?x ,x)))

?x)))

> (((?x i)))

Basically, retrieve1 is like retrieve, but first comes the body, and then the head. Thus,
?x is bound to a c instance. Using this binding, it is checked by means of a TBox subquery
(tbox-retrieve1) whether the individual bound to ?x is also an instance of any subclass of c. If
this is the case, the result tuple (resp. the current binding of ?x) is rejected (see the special :reject
token); otherwise, the result tuple is constructed and returned. The returned result tuples make up
the final result set.

Please note that the combination of lambda expressions and :reject token gives you the ability to
define arbitrary, used-defined filter predicates which are executed efficiently since they are directly
on the RacerPro server.

Finally, let us consider how aggregation operators can be implemented. Consider the following book
store scenario:

(full-reset)

(instance b1 book)

(instance b2 book)

(related b1 a1 has-author)

(related b1 a2 has-author)

(related b2 a3 has-author)

148 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(define-concrete-domain-attribute price :type real)

(instance b1 (= price 10.0))

(instance b2 (= price 20.0))

We can now determine the number of authors of the single books with the following query:

? (retrieve (?x

((lambda (book)

(let ((authors

(retrieve ‘(?a) ‘(,book ?a has-author))))

(length authors)))

?x))

(?x book)

:dont-show-lambdas-p t)

> (((?x b1) 2) ((?x b2) 1))

Another interesting question might be to ask for the average price of all the books. This is a little
bit more tricky, but works in nRQL as well:

? (retrieve

(((lambda nil

(let ((prices

(flatten

(retrieve ‘((told-value-if-exists (price ?x)))

‘(?x book)

:dont-show-head-projection-operators-p t))))

‘(average-book-price

,(float (/ (reduce ’+ prices) (length prices))))))))

true-query

:dont-show-lambdas-p t)

> (((average-book-price 15.0)))

The trick here is to use the always true query body true-query in order to let nRQL first evaluate
the lambda body (since lambda bodies are only valid in nRQL heads, but not available as “first
order statements” in RacerPro); thus, the lambda simply acquires all the prices of the individual
books and then computes and returns the average price, as expected.

Please refer to the chapter on nRQL in the RacerPro User Guide in order to learn how to implement
even more efficient versions of these queries.

Functional programming statements cannot only be used in Lambda terms in queries, but also at
toplevel.

(evaluate (let ((x ...)) ...))

Often, user-defined query format output must be generated from query results, e.g., HTML reports.
This is easy with nRQL as well. For example, the result of the query

(retrieve (?x ?y) (and (?x #!:person) (?x ?y #!:has_pet) (?y #!:cat)))

4.1. THE NRQL LANGUAGE 149

on the famous people+pets.owl KB is

(((?x http://cohse.semanticweb.org/ontologies/people#Fred)

(?y http://cohse.semanticweb.org/ontologies/people#Tibbs))

((?x http://cohse.semanticweb.org/ontologies/people#Minnie)

(?y http://cohse.semanticweb.org/ontologies/people#Tom)))

Suppose this result shall be presented as an HTML table, together with some additional information
about the query which has been posed. In principle, it is easy to generate a HTML file using
with-open-output-file and print (format) statements to write some HTML. However, this results
in ugly code. For this reason, some syntactic sugar is available. The following query will generate
an HTML file example.html which is shown in Figure 4.1:

Figure 4.1: Generated HTML Page

(evaluate

(let ((res

(retrieve ’(?x ?y)

’(and (?x \# !"person")

(?x ?y \# !"has_pet")))))

(with-html ("example.html")

150 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(html (head) (html (title) (content "MiniLisp Output")))

(html (body)

(html (h1) (content "MiniLisp Output"))

(html (h2) (content "Query Head"))

(content (query-head :last))

(html (h2) (content "Query Body"))

(content (query-body :last))

(html (h2) (content "Query Answer"))

(html

(table :border 1)

(let ((count 0))

(maplist (lambda (bindings)

(html

(tr)

(html

(th :colspan 2)

(content

(format nil

"Result Tuple No. ~a"

(incf count)))))

(maplist (lambda

(var-val)

(let

((var (first var-val))

(val (second var-val)))

(html

(tr)

(html (td) (content var))

(html (td) (content val)))))

bindings))

res)))))))

4.1.9 Formal Syntax of nRQL

Here we give an EBNF syntax definition of nRQL. * means zero or more occurrences; "X" denotes
a literal; { "X" | "Y" | "Z" } means chose exactly one from the given literals "X", "Y", "Z".

For example, the list (?x betty (age ?y)) is a valid <query-head> (if age is a concrete domain
attribute, see <attribute-name>), as well as (?x betty betty $?y |http://a.com/ontoly#a|),
and (). (nil) or (t) are invalid <query-head>s.

Moreover, the set of objects referenced within <query-head> must be a subset of the objects which
are referenced in <query-body>; otherwise an error will be signaled.

Top-level syntax:

(retrieve <query-head>

<query-body>)

(retrieve-under-premise <query-premise>

<query-head>

<query-body>)

4.1. THE NRQL LANGUAGE 151

(tbox-retrieve <query-head>

<query-body>)

Note: In TBox queries, only the roles has-child, has-parent,

has-ancestor, has-descendant are meaningful in role

query atoms, and only concept names are meaningful

in concept query atoms

(defquery <query-name>

<def-query-head>

<query-body>)

(firerule <rule-antecedence>

<rule-consequence>)

Query head for queries and defined queries. Note that also the syntax for the data substrate layer queries is
included (“hybrid nRQL queries”, see manual):

<query-head> -> "(" <head-entry>* ")"

<query-premise> -> List of RacerPro ABox assertions

<query-name> -> <symbol> (naming a defined query)

<def-query-head> -> "(" <def-head-entry>* ")"

<head-entry> -> <abox-query-object> |

<data-substrate-query-object> |

<head-projection-operator>

<def-head-entry> -> <abox-query-object> |

<data-substrate-query-object>

<abox-query-object> -> <abox-query-variable> |

<abox-query-individual>

<abox-query-variable> -> "?"<symbol> | "$?"<symbol>

<abox-query-individual> -> <symbol> (naming a RacerPro ABox individual)

Note: Data query objects can only be used if nRQL is put into data substrate mode.

<data-substrate-query-object> -> <data-substrate-query-variable> |

<data-substrate-query-individual>

<data-substrate-query-variable> -> "?*"<symbol> | "$?*"<symbol>

<data-substrate-query-individual> -> "*"<symbol>

Syntax of head projection operators:

<head-projection-operator -> "(" <attribute-name> <abox-query-object> ")" |

"(TOLD-VALUE"

"(" <attribute-name> <abox-query-object> "))" |

"({ "TOLD-VALUE" | "TOLD-VALUES" |

152 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

"DATATYPE-FILLER" | "DATATYPE-FILLERS" |

"FILLER" | "FILLERS" |

"TOLD-FILLER" | "TOLD-FILLERS" |

"ANNOTATION" | "ANNOTATIONS"

}

"(" { <OWL-datatype-property> |

<OWL-annotation-property> }

<abox-query-object> "))"

<symbol> -> any LISP symbol

(e.g., huhu, foobar, |http://a.com/ontoly#a|)

WITH THE FOLLOWING EXCEPTIONS:

T, NIL, BIND-INDIVIDUAL, INV, NOT, NEG, AND, INTERSECTION,

OR, UNION, CAP, CUP, RACER, SATISFIES, TOP, BOTTOM,

CONSTRAINT, HAS-KNOWN-SUCCESSOR, PROJECT, PROJECT-TO, PI,

SUBSTITUTE, INSERT, SAME-AS, EQUAL, =, INTERSECTION,

UNION, CAP, CUP, NRQL-EQUAL-ROLE

Query bodies and atoms:

<query-body> ->

<empty-query-body> |

<abox-query-atom> |

<substrate-query-atom> |

"(" { "PROJECT-TO" | "PROJECT" | "PI" } <def-query-head>

<query-body> ")" |

"(" { "AND" | "CAP" | "INTERSECTION" } <query-body>* ")" |

"(" { "OR" | "CUP" | "UNION" } <query-body>* ")" |

"(" { "NOT" | "NEG" } <query-body> ")" |

"(" "INV" <query-body> ")"

<empty-query-body> -> ""

<abox-query-atom> ->

"(" { "NOT" | "NEG" } <abox-query-atom> ")" |

"(" "INV" <abox-query-atom> ")" |

"(" <abox-query-object> <concept-expression> ")" |

"(" <abox-query-object> <abox-query-object> <role-expression> ")" |

"(" <abox-query-object> "NIL" <role-expression> ")" |

"(" "NIL" <abox-query-object> <role-expression> ")" |

"(" TOP <abox-query-object> ")" |

"(" BOTTOM <abox-query-object> ")" |

"(" <abox-query-object> <abox-query-object>

"(" "CONSTRAINT"

4.1. THE NRQL LANGUAGE 153

<role-chain-followed-by-attribute>

<role-chain-followed-by-attribute>

<predicate-expression>

")"

")" |

"(" "BIND-INDIVIDUAL" <abox-query-individual> ")" |

"(" { "SUBSTITUTE" | "INSERT" }

"(" <query-name>

{ <abox-query-object> | <data-query-object> | "NIL" }*

")"

")" |

"(" { <abox-query-object> | <data-query-object> }* <query-name>

")" |

"(" { "SAME-AS" | "=" | "EQUAL" }

<abox-query-object> <abox-query-object>

")" |

"(" <abox-query-object>

"(" "HAS-KNOWN-SUCCESSOR" <role-expression> ")"

")"

nRQL query syntax used for querying the data substrate:

<data-query-atom> ->

"(" { "NOT" | "NEG" } <data-query-atom> ")" |

"(" <data-query-object> <data-node-query-expression> ")" |

"(" <data-query-object> <data-query-object> <data-edge-query-expression> ")" |

"(" <data-query-object> "NIL" <data-edge-query-expression> ")" |

"(" "NIL" <data-query-object> <data-edge-query-expression> ")" |

"(" TOP <data-query-object> ")" |

"(" BOTTOM <data-query-object> ")" |

"(" <data-query-object> <data-query-object>

<data-edge-query-satisfies-expression>

")" |

"(" "BIND-INDIVIDUAL" <data-query-individual> ")" |

"(" { "SAME-AS" | "=" | "EQUAL" }

<data-query-variable> <data-query-individual>

")" |

"(" <data-query-object>

"(" "HAS-KNOWN-SUCCESSOR" <data-edge-query-expression> ")"

")" |

"(" { "SUBSTITUTE" | "INSERT" }

154 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

"(" <query-name>

{ <abox-query-object> | <data-query-object> | "NIL" }*

")"

")" |

"(" { <abox-query-object> | <data-query-object> }* <query-name>

")"

Auxiliary (Racer) syntax:

<role-chain-followed-by-attribute> ->

<cd-attribute-name> |

"(" <role-expression>* <cd-attribute-name> ")"

<concept-expression> -> see <C> on page 56, Fig. 3.1

<cd-attribute-name> -> see <AN> on page 57, Fig. 3.2

<cd-object-name> -> a RacerPro concrete domain object

<role-expression1> -> see <R> on page 56, Fig. 3.1 |

"(INV" <role-expression1> ")"

Note: a feature can be used for <R> as well!

<role-expression> -> <role-expression1> |

"(NOT" <role-expression1> ")"

<OWL-datatype-property> -> see <R> on page 56, Fig. 3.1

Note: role-used-as-datatype-property-p

must return T for <R>!

<OWL-annotation-property> -> see <R> on page 56, Fig. 3.1

Note: role-used-as-annotation-property-p

must return T for <R>!

<prediate-expression> -> see <CDC> on page 57, Fig. 3.2 |

<CD-predicate>

Note: means either use <CDC> syntax,

or use <CD-predicate> syntax

<CD-prediate> -> "EQUAL" | "UNEQUAL" | "STRING=" | "STRING<>" |

">" | "<" | ">=" | "<=" |

"<>" | "=" | "BOOLEAN=" | "BOOLEAN<>"

<concept-expression> -> see <C> on page 56, Fig. 3.1

Syntax of data substrate nodes and edge labels:

<data-substrate-label> -> <conjunction-of-data-items>

<conjunction-of-data-items> -> <data-literal> |

"(" <disjunction-of-data-items>+ ")"

<disjunction-of-data-items> -> <data-literal> |

4.1. THE NRQL LANGUAGE 155

"(" <data-literal>+ ")"

<data-literal> -> <symbol-data-literal> |

<character-data-literal> |

<string-data-literal> |

<numeric-data-literal>

<symbol-data-literal> -> a Common LISP symbol, e.g. symbol

<character-data-literal> -> a Common LISP character, e.g. #\a

<string-data-literal> -> a Common LISP string, e.g. "string"

<numeric-data-literal> -> a Common LISP number, e.g. 123, 3/2, 123.23

Syntax of nRQL data substrate queries:

<data-node-query-expression> -> <conjunction-of-data-query-items>

<data-edge-query-expression> -> <conjunction-of-data-query-items>

<data-edge-query-satisfies-expression> -> "(" ":SATISFIES"

{ <2-ary-data-query-predicate> |

"(" <disjunction-of-data-query-predicates>+ ")"

}

")"

<data-query-item> -> <data-literal> |

<data-query-predicate>

<conjunction-of-data-query-items> -> <data-query-item> |

"(" <disjunction-of-data-query-items>+ ")"

<disjunction-of-data-query-items> -> <data-query-item> |

"(" <data-query-item>+ ")"

<data-query-predicate> -> "(" ":PREDICATE" { <0-ary-data-query-predicate> |

<1-ary-data-query-predicate> } ")"

<disjunction-of-data-query-predicate-items> -> <2-ary-data-query-predicate> |

"(" <2-ary-data-query-predicate>+ ")"

<0-ary-data-query-predicate> -> "STRINGP" | "ZEROP" | "INTEGERP" |

"NUMBERP" | "CONSP" | "SYMBOLP" |

"KEYWORDP" | "RATIONALP" | "FLOATP" |

"MINUSP"

<1-ary-data-query-predicate> -> "(" { "STRING=" | "STRING/=" |

"STRING-EQUAL" | "STRING-NOT-EQUAL" |

"STRING<" | "STRING<=" |

"STRING>" | "STRING>=" |

"STRING-LESSP" | "STRING-GREATERP" |

"STRING-NOT-LESSP" | "STRING-NOT-GREATERP" |

"SEARCH"

}

<string-data-literal>

")" |

156 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

"(" { "=" | "/=" |

">" | "<" |

">=" | "<="

}

<numeric-data-literal>

")" |

"(" "find" <character-data-literal> ")"

<2-ary-data-query-predicate> -> "STRING=" | "STRING/=" |

"STRING-EQUAL" | "STRING-NOT-EQUAL" |

"STRING<" | "STRING<=" |

"STRING>" | "STRING>=" |

"STRING-LESSP" | "STRING-GREATERP" |

"STRING-NOT-LESSP" | "STRING-NOT-GREATERP" |

"=" | "/=" |

">" | "<" |

">=" | "<="

Rule consequences:

<rule-consequence> -> "(" <generalized-abox-assertion>* ")"

<rule-antecedence> -> <query-body>

<generalized-abox-assertion> -> "("

<related-assertion> | <instance-assertion> |

<constrained-assertion> | <constraints-assertion> |

<forget-role-assertion> | <forget-concept-assertion> |

<forget-constrained-assertion> |

<forget-constraint-assertion>

")"

<generalized-object> -> "(" <query-object> | <new-ind-operator> ")"

<new-ind-operator> -> "(" { "NEW-IND" | "INDIVIDUAL" |

"NEW-INDIVIDUAL" |

"INDIVIDUAL" |

"CREATE-INDIVIDUAL" }

<symbol> <query-object>* ")"

<concept-expression2> -> a RacerPro concept expression which may contain

(new-symbol <atomic-concept> <query-object>)

operators, allowing for the construction of new

atomic concepts based on

bindings of <query-objects>s.

<instance-assertion> -> "(" "INSTANCE" <generalized-object>

<concept-expression2> ")"

<related-assertion> -> "(" "RELATED" <generalized-object>

<generalized-object>

<role-expression1> ")"

<constrained-assertion> -> "(" "CONSTRAINED" <generalized-object>

<generalized-object>

<cd-attribute-name> ")"

4.2. THE NRQL QUERY PROCESSING ENGINE 157

<constraints-assertion> -> "(" { "CONSTRAINTS" | "CONSTRAINT" }

see RacerPro ‘‘constraints’’ syntax ")"

Note that you can also use projection operators

within constraint expression; thus, the syntax

has been extended by allowing also expression such as

(constraints (= (age b) (+ 30 (age a)))) or

(constraints (= (told-value (age ?y))

(age ?y))) etc.

<forget-concept-assertion> -> "(" "FORGET-CONCEPT-ASSERTION"

<query-object>

<concept-expression2> ")"

<forget-role-assertion> -> "(" "FORGET-ROLE-ASSERTION"

<query-object>

<query-object>

<role-expression1> ")"

<forget-constrained-assertion> -> "(" "FORGET-CONSTRAINED-ASSERTION"

<query-object>

<cd-object>

<cd-attribute-name> ")"

<forget-constraint-assertion> -> see RacerPro syntax. However, the

extensions mentioned in <constraints-assertion>

cannot be used here.

4.2 The nRQL Query Processing Engine

The nRQL query processing engine implements the nRQL language. It is an internal part of Rac-
erPro. The nRQL engine offers various querying modes. In this section we describe the core func-
tionality of this engine.

4.2.1 The Query Processing Modes of nRQL

nRQL can be used in different querying modes. The two major modes are the set at a time mode
and the tuple-at-a-time mode.

The Set at a Time Mode

So far we have only used the so-called set at a time mode. In this mode, a call to retrieve directly
returns the answer set of a query at once, in one bunch (the answer set). Most users and/or client
applications will be happy with this mode.

The Tuple at a Time Modes - Incremental Query Processing

Sometimes it is demanded to load and compute the tuples from the answer set of a query in an
incremental fashion. The user or application requesting the tuples can look at the already retrieved
tuples and decide whether it is necessary to request yet another tuple from the answer set. These
incremental modes are called tuple at a time modes.

158 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

The nRQL API provides the function get-next-tuple for this purpose. Applications can also check
for the availability of a next tuple by calling next-tuple-available-p.

We demonstrate the incremental mode with an example. Consider family.racer loaded into Rac-
erPro. You are already familiar with the behavior of the API in the set at a time mode:

> (retrieve (?x) (?x woman))

(((?X BETTY)) ((?X EVE)) ((?X DORIS)) ((?X ALICE)))

> (describe-query-processing-mode)

(... :SET-AT-A-TIME-MODE ...)

Now let us switch the nRQL engine into the tuple at a time mode:

> (process-tuple-at-a-time)

:OKAY-PROCESSING-TUPLE-AT-A-TIME

> (describe-query-processing-mode)

(... :TUPLE-AT-A-TIME-MODE :EAGER ...)

The meaning of :EAGER will be explained later. Now let us use the incremental query processing
mode:

> (retrieve (?x) (?x woman))

(:QUERY-466 :RUNNING)

> (get-next-tuple :last)

((?X BETTY))

> (get-next-tuple :query-466)

((?X EVE))

> (get-next-tuple :query-466)

((?X DORIS))

> (get-next-tuple :query-466)

((?X ALICE))

> (get-next-tuple :query-466)

:EXHAUSTED

> (get-answer :query-456)

:NOT-FOUND

> (get-answer :query-466)

(((?X BETTY)) ((?X EVE)) ((?X DORIS)) ((?X ALICE)))

Thus, after the nRQL engine has been set into incremental mode, retrieve behaves differently:
Instead of returning the whole answer set at once, it returns a so-called query Identifier (Id). This
query Id can then be used as an argument to API functions such as get-next-tuple to Identify
the query. Moreover, the Identifier :last always refers to the last submitted query.

4.2. THE NRQL QUERY PROCESSING ENGINE 159

Multiple Running Queries (Concurrent Incremental Query Processing) Conceptually,
the nRQL engine is a multi-process query answering engine which allows you to run several queries
concurrently (in parallel).

Thus, is is possible to submit a number of calls to retrieve to the engine, and then request tuples
from these queries in a random order:

> (retrieve (?x) (?x man))

(:QUERY-467 :RUNNING)

> (retrieve (?x) (?x uncle))

(:QUERY-468 :RUNNING)

> (get-next-tuple :query-467)

((?X CHARLES))

> (get-next-tuple :query-468)

((?X CHARLES))

> (get-next-tuple :query-467)

:EXHAUSTED

> (get-next-tuple :query-468)

:EXHAUSTED

> (retrieve (?x) (?x woman))

(:QUERY-469 :RUNNING)

> (retrieve (?x) (?x man))

(:QUERY-470 :RUNNING)

> (get-next-tuple :query-469)

((?X BETTY))

> (get-next-tuple :query-469)

((?X EVE))

> (get-next-tuple :query-470)

((?X CHARLES))

> (get-next-tuple :query-469)

((?X DORIS))

> (get-next-tuple :query-470)

:EXHAUSTED

> (get-next-tuple :query-469)

((?X ALICE))

> (get-next-tuple :query-469)

:EXHAUSTED

160 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Lazy and Eager Tuple at a Time Modes The tuple at a time mode comes in two forms: lazy
and eager :

• In the so-called lazy incremental mode, the next tuple of a query is not computed before it is
actually requested by the user or application (unless get-next-tuple is called). The thread
computing the tuples – which is called the query answering thread in the following - is put
to sleep, and get-next-tuple re-awakes it.

• In the so-called eager incremental mode, the query answering is not put to sleep. Instead, it
continues to compute tuple after tuple, even if the application has not yet requested these
“future tuples”. These tuples are put into a queue for future requests.

The API behaves the same for both modes. In both cases, the query answering thread dies when all
tuples have been computed, or when the query is manually aborted by the user, or if a timeout is
reached, or the maximal number of requested tuples bound is reached. The query becomes inactive
then.

4.2.2 The Life Cycle of a Query

A query has a life cycle: It is created, then made active (computes tuples), eventually goes to sleep,
will be reactivated (compute some more tuples), etc., and eventually dies. RacerPorter provides the
“Queries” tab which can be used to inspect and manage the queries as well as their current states.

Internally, the nRQL engine maintains a number of lists to maintain the life cycles of queries (similar
to the scheduler found in operating systems):

1. A list of all queries. This list includes queries which have not yet been started, queries which
are currently running or waiting, and queries which have already been processed and thus
been terminated. A corresponding API function named all-queries returns this list. Note
that queries which have been started in set at a time mode appear on this list as well. To
manage this list, use delete-query, delete-all-queries, etc. As long as a query is on this
list, the API functions will know the Id of the query, and as such it is possible to access the
query.

2. Queries which are ready to run, but have not been started yet. The queries on this list are
called ready queries or prepared queries. No query answering thread has been created for
them yet. If you use retrieve, queries will be started automatically and put on the list of
active queries (see below). It is possible to apply the API function execute-query to queries
which are ready to run. In order to put a query to this list, use the API function/macro
prepare-abox-query instead of retrieve. If you want to know whether a specific query is
on this list, call query-ready-p or query-prepared-p on the Id of the queries. To retrieve the
list of prepared queries, use the API functions ready-queries or prepared-queries (they
are equivalent).

3. A list of active queries. These queries have been started. There is a query answering thread
associated with each query which is either currently running, thus consuming CPU time, or
currently sleeping. To get the list of active queries, use the API function active-queries.
Thus, the list of active queries is further partitioned into the following two lists:

(a) Queries which are currently running. The query answering threads of these queries are
consuming CPU time, computing the next tuple(s). Retrieve this list with the API
function running-queries.

4.2. THE NRQL QUERY PROCESSING ENGINE 161

(b) Queries which are currently waiting (sleeping). A query will sleep/wait (if it has been
started in lazy mode) until the next tuple is requested by the user or application. The
list of waiting queries can be retrieved with the API function waiting-queries.

4. A list of already processed (terminated, inactive) queries. A query is put on this list if its
answer set has been computed exhaustively, or if a timeout has been reached, if the query has
been aborted (via the API function abort-query), or if the maximum number of requested
tuples has been computed. To get this list, use the API functions processed-queries,

inactive-queries or terminated-queries (they are all equivalent).

It is possible to put a processed query back to the list of ready queries. This is also true for
rule. This is especially useful for rules, if a rule has to be fired (applied) more than once. See
reprepare-query, reprepare-rule.

4.2.3 The Life Cycle of a Rule

The same six different lists are also maintained for nRQL rules. RacerPorter provides the “Rules”
tab which can be used to inspect and manage the rules as well as their current states.

The corresponding API functions are named

1. all-rules

2. prepared-rules, ready-rules (equivalent)

3. active-rules

(a) running-rules

(b) waiting-rules

4. processed-rules, terminated-rules, inactive-rules (all equivalent)

Note that there is (yet) no module which automatically checks for applicable rules and applies them
automatically. The rules have to be fired manually. However, the API function applicable-rules

returns the rules which can fire.

4.2.4 How to Implement Your Own Rule Application Strategy

nRQL does not offer a fixed rule application strategy other than the simple strategy “add all
consequences of a rule to an ABox”. This “strategy” works only if nRQL rules are used in the
so-called set at a time mode.

In the set at a time mode, all computed (produced) rule consequences can be added auto-
matically to an ABox if nRQL is in add-rule-consequences-automatically mode. All com-
puted rule consequences will be added to the ABox after the rule has terminated. In case
dont-add-rule-consequences-automatically mode is used, the computed set of rule conse-
quences will be memorized, and later add-chosen-sets-of-rule-consequences can be called
on this rule to change the ABox by adding the memorized rule consequences produced by this rule
(although nothing is really “chosen” here, please read further).

However, it is also possible to use the incremental tuple at a time mode for rules. In this case the
nRQL API supports you with appropriate functions which you will need in order to implement
domain specific rule application strategies.

As in the incremental query answering modes, instead of returning the whole set of sets of rule
consequences at once in a bunch (one big set), nRQL will incrementally return one set of rule
consequences constructed after the other, one at a time.

162 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Thus, in the tuple at a time mode, the next set of rule consequences must be explicitly requested with
get-next-set-of-rule-consequences. Then nRQL can be advised to memorize this computed
set of rule consequences with choose-current-set-of-rule-consequences. In case nRQL is in
add-rule-consequences-automatically mode, the chosen sets of rule consequences are added
automatically to the ABox after the last set has been delivered (and the rule is processed). Other-
wise, the API function add-chosen-sets-of-rule-consequences must be used to add the chosen
sets of consequence manually. However, this function cannot be called until the rule terminates.
Please note that an aborted rule never adds rule consequences to an ABox.

Let us consider an example session:

> (full-reset)

:OKAY-FULL-RESET

> (process-tuple-at-a-time)

:OKAY-PROCESSING-TUPLE-AT-A-TIME

> (instance betty woman)

NIL

> (instance doris woman)

NIL

> (prepare-abox-rule (?x woman)

((instance ?x mother)

(related ?x (new-ind child-of ?x) has-child)))

(:RULE-1 :READY-TO-RUN)

> (ready-rules)

(:RULE-1)

> (applicable-rules)

(:RULE-1)

> (get-next-set-of-rule-consequences :rule-1)

:NOT-FOUND

> (execute-rule :rule-1)

(:RULE-1 :RUNNING)

> (active-rules)

(:RULE-1)

> (get-next-set-of-rule-consequences :rule-1)

((INSTANCE DORIS MOTHER) (RELATED DORIS CHILD-OF-DORIS HAS-CHILD))

> (get-current-set-of-rule-consequences :rule-1)

((INSTANCE DORIS MOTHER) (RELATED DORIS CHILD-OF-DORIS HAS-CHILD))

> (choose-current-set-of-rule-consequences :rule-1)

(((INSTANCE DORIS MOTHER) (RELATED DORIS CHILD-OF-DORIS HAS-CHILD)))

> (get-next-set-of-rule-consequences :rule-1)

4.2. THE NRQL QUERY PROCESSING ENGINE 163

((INSTANCE BETTY MOTHER) (RELATED BETTY CHILD-OF-BETTY HAS-CHILD))

> (get-next-set-of-rule-consequences :rule-1)

:EXHAUSTED

> (get-next-set-of-rule-consequences :rule-1)

:EXHAUSTED

> (active-rules)

NIL

> (all-concept-assertions)

((DORIS MOTHER) (DORIS WOMAN) (BETTY WOMAN))

> (all-role-assertions)

(((DORIS CHILD-OF-DORIS) HAS-CHILD))

> (applicable-rules)

(:RULE-1)

> (execute-rule :rule-1)

(:RULE-1 :RUNNING)

> (get-next-set-of-rule-consequences :rule-1)

((INSTANCE BETTY MOTHER) (RELATED BETTY CHILD-OF-BETTY HAS-CHILD))

> (applicable-rules)

NIL

;;; NOTE: RULES WHICH ARE ALREADY RUNNING, E.G. :RULE-1,

;;; DO NOT APPEAR ON THE LIST OF (APPLICABLE-RULES)

> (choose-current-set-of-rule-consequences :rule-1)

(((INSTANCE BETTY MOTHER) (RELATED BETTY CHILD-OF-BETTY HAS-CHILD))

((INSTANCE DORIS MOTHER) (RELATED DORIS CHILD-OF-DORIS HAS-CHILD)))

> (get-next-set-of-rule-consequences :rule-1)

((INSTANCE DORIS MOTHER) (RELATED DORIS CHILD-OF-DORIS HAS-CHILD))

> (get-next-set-of-rule-consequences :rule-1)

:EXHAUSTED

> (all-concept-assertions)

((BETTY MOTHER) (DORIS MOTHER) (DORIS WOMAN) (BETTY WOMAN))

> (all-role-assertions)

(((BETTY CHILD-OF-BETTY) HAS-CHILD) ((DORIS CHILD-OF-DORIS) HAS-CHILD))

164 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

4.2.5 Configuring the Degree of nRQL Completeness

So far we have only used the complete modes of nRQL. In these modes, nRQL uses the basic ABox
querying functions of RacerPro in order to achieve completeness. However, for certain ABoxes this
mode might not scale too well. ABoxes might simply become too big to be checked for consistency
with RacerPro. If consistency checking becomes impossible, also the basic ABox retrieval functions
of RacerPro which are called by nRQL during retrieval, such as concept-instances, will fail as
well. If the ABox reasoning and retrieval services of RacerPro come to their limits and become
practically unavailable due to high complexity, then it might be an option to consider using the
incomplete modes of nRQL for retrieval on such an ABox.

However, for certain kinds of ABoxes which are simply structured, the incomplete modes might
be complete! For example, some ABoxes only contain data; those ABoxes are basically sets of
ground terms and thus contain no disjunctions, no role qualifications, etc. Bulk data from relational
databases would qualify for the incomplete modes. In order to query such a potentially huge but
simply structured ABox, nRQL can be configured in such a way that it uses only the syntactic,
told information from the ABox for query answering. Thus, query answering can be implemented
using plain relational lookup techniques, and no (or only very cheap) reasoning is required. It is
also possible to take TBox information into account; however, in this case, the TBox should be
classified first in order to get as many answers as possible.

The nRQL Modes in Detail

The nRQL engine offers the following degrees of completeness for query answering, which are now
discussed in oder of increasing completeness:

1. Told information querying (Mode 0). In this setting, to answer a nRQL query, only the
syntactic, told information from an ABox will be used which is given by the ABox assertions.

For example, if an ABox contains the assertion (instance betty mother), then (retrieve

(?x) (?x mother)) will correctly return (((?X BETTY))), but the query (retrieve (?x)

(?x woman)) will FAIL, since this information is not explicitly given in the ABox. The mode
is therefore severely incomplete. For example, for (instance i a) (instance i b), either
(retrieve (?x) (?x a)) and (retrieve (?x) (?x b)) will return (((?X I))), but the
query (retrieve (?x) (?x (and a b))) fails as well. In principle, you could write a nRQL
rule to augment the ABox syntactically: (firerule (and (?x a) (?x b)) ((instance ?x

(and a b)))).

However, in the other direction, if an ABox concept assertion such as (instance i (and a

b)) is encountered, then also (instance i a) and (instance i b) will be added in order to
achieve a minimal degree of completeness. Thus, (retrieve (?x) (?x a)) and (retrieve

(?x) (?x b)) will succeed.

Regarding the relational structure of the ABox which is spawned by the role assertions, nRQL
is only complete in this mode if there are no at-most number restrictions present in the Abox,
and if there are no features used.

Thus, nRQL will be complete up to the description logic ALCHIR+ concerning the relational
structure of the ABox, even in this incomplete mode. This means, the effects of role hierarchies,
transitively closed roles and inverse roles are completely captured.

If you consider to query a plain relational structure (and you don’t need a TBox) with
labeled nodes (for example, a big graph representing a public transportation network with
a few 10.000 nodes or the like), then this is the nRQL setting you will need and which is
“complete enough” for your application. You could also use the data substrate (if neither
transitively closed roles and role hierarchies etc. are needed).

4.2. THE NRQL QUERY PROCESSING ENGINE 165

In order to enable this mode, enter (set-nrql-mode 0).

2. Told information querying plus exploited TBox information for concept names (Mode 1).
This is like the previous setting, but now the TBox information is taken into account for
concept membership assertions of the form (instance i C), where C is a concept name.
If C is a concept name, then nRQL will use the classified TBox to compute the set of
atomic-concept-synonyms, as well as the set of atomic-concept-ancestors, and put these
as implied concept membership assertions into the ABox as well. For example, if the ABox is
(instance betty mother), then also (instance betty woman) will be added, since woman

is a member of (atomic-concept-ancestors mother). The resulting “upward saturated
ABox” is then queried like in the previous setting. If a concept membership assertion uses a
top-level AND, then the same process will be applied recursively for the atomic conjuncts of
this AND.

Note that, in contrast to the previous setting, (retrieve (?x) (?x woman)) now correctly
returns (((?X BETTY))). However, this technique will still fail for the query (retrieve (?x)

(?x (and woman human))). In the latter case, the next setting might help. Again, please note
that you have the nRQL rules available to syntactically augment the ABox.

In order to enable this mode, enter (set-nrql-mode 1).

3. Told information querying plus exploited TBox information for all concepts (Mode 2). Like the
previous setting, but now the atomic concept synonyms and ancestors will also be computed
for arbitrary concept membership assertions, not only for concept membership assertions
referencing concept names.

Thus, if the ABox contains, for example, (instance betty (OR woman mother)), Racer-
Pro will compute the equivalent concepts and concept ancestors of this concept (OR woman

mother) from the TBox, and add these to the ABox as well – in this case, (instance betty

woman) and (instance betty human), etc.

But carefully: For big ABoxes containing many different concept expressions this process
might take a long time, since each of this concept expressions must be classified into the
TBox.

In order to enable this mode, enter (set-nrql-mode 2).

4. Complete RacerPro ABox reasoning (Mode 3). We don’t need to discuss this mode, since it
is the default mode and has been discussed all the time in this manual.

In order to enable this mode, enter (set-nrql-mode 3).

5. See below for an explanation of (set-nrql-mode 4) and (set-nrql-mode 5).

6. If you use (set-nrql-mode 6), then this mode behaves like (set-nrql-mode 3). Thus, mode
6 is a complete mode. However, mode 6 might be faster than mode 3. See below for an
explanation.

Please note that the incomplete modes will only achieve a certain degree of completeness if you
restrict yourself to concept query atoms which use only concept names instead of arbitrary concept
expressions. If you insist on using complex concepts in the concept query atoms of your nRQL
queries, then the complete nRQL modes will be needed.

An Example Demonstrating the Different nRQL Modes

Please edit the original family.racer KB file, and replace the (instance alice mother)

with (instance alice (and human grandmother)), and (instance betty mother) with

166 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(instance betty (or mother grandmother)). Also add (related eve jade has-child). En-
ter (full-reset), and reload the file into RacerPro. Then, the following answers should be repro-
ducable:

> (set-nrql-mode 0)

:OKAY-MODE-0

> (retrieve (?x) (?x mother))

NIL

> (set-nrql-mode 1)

:OKAY-MODE-1

> (retrieve (?x) (?x mother))

(((?X ALICE)))

> (set-nrql-mode 2)

:OKAY-MODE-2

> (retrieve (?x) (?x mother))

(((?X ALICE)) ((?X BETTY)))

> (set-nrql-mode 3)

:OKAY-MODE-3

> (retrieve (?x) (?x mother))

(((?X BETTY)) ((?X EVE)) ((?X ALICE)))

The Two-Phase Query Processing Modes

The so-called two-phase query processing modes are special lazy incremental (tuple at a time)
query processing modes. The modes are complete. To put nRQL into one of these modes, use
(set-nrql-mode 4) or (set-nrql-mode 5). Internally, the two-phase tuple computation mode
will also be exploited for the nRQL mode 6 which is a set at a time mode. Mode 6 behaves like
mode 3 and is thus complete, but reduces the number of calls to RacerPro’s expensive ABox retrieval
functions to a minimum. See below for further discussion of this mode.

Let us describe the modes 4 and 5. If nRQL is used in these modes, then delivery of tuples will be
arranged in two phases:

• In phase one, the so-called cheap tuples will be returned,

• followed by the expensive tuples in phase two.

The cheap tuples can be delivered without using RacerPro’s ABox retrieval functions. These tuples
are computed from nRQL’s internal data structures and are computed as if nRQL were used in
(set-nrql-mode 1) or (set-nrql-mode 2). Thus, the tuples which are delivered in phase one of
(set-nrql-mode 4) are exactly the same as if nRQL were used in (set-nrql-mode 1). The same
applies to the relationship between (set-nrql-mode 5) and (set-nrql-mode 2).

In phase two, after the cheap tuples are exhausted, nRQL will switch to the complete ABox retrieval
mode. In this mode, computation of tuples might take considerably longer. These tuples are therefore
called the expensive tuples. The expensive tuples are computed using RacerPro’s ABox retrieval
functions.

4.2. THE NRQL QUERY PROCESSING ENGINE 167

The Warning Token nRQL can be advised to deliver a so-called phase-two-starts warning token
before phase two starts, informing the application or user that the next call to get-next-tuple

will invoke RacerPro’s expensive ABox retrieval functions and might thus eventually take longer.
However, delivery of this warning token is optional. Please refer to the Reference Manual for more
details and inspect the following example session.

Completeness of Modes 4 and 5 Please note that, like mode 3, modes 4 and 5 are complete.
The overall set of tuples delivered is the same as in mode 3. The only difference is that delivery of
tuples is arranged in two phases, and that mode 4 and 5 are lazy and incremental. However, tuples
will not be duplicated. Mode 5 will eventually return more tuples in phase 1 than mode 4, but the
overall returned set of tuples is Identical.

Mode 4 and 5 Cannot be Used for Queries with NEG Please note that only queries that
do not make use of the NEG operator can take advantage of the two-phase query processing mode
(the reason is that if an incomplete answer is computed for the argument query body of NEG in
mode 1, then the set-difference yields already too many tuples in mode 1; thus, the answer would
be incorrect).

If nRQL is in mode 4, 5, or 6, and a query is posed containing NEG, then nRQL will answer this
query using mode the incremental (tuple at a time) mode 3.

Two-Phase Tuple Computation Example Session Please modify the original family.racer
file as follows: Replace the assertions (instance alice mother) with (instance alice

(and human grandmother)), (instance betty mother) with (instance betty (or mother

grandmother)), and add (related eve jane has-child). Enter (full-reset) and reload the
KB.

Using mode 4, nRQL behaves like this:

> (set-nrql-completeness 4)

:OKAY-MODE-4

> (describe-query-processing-mode)

(... :MODE-4 :TUPLE-AT-A-TIME-MODE

:LAZY :TWO-PHASE-QUERY-PROCESSING-MODE ...

:DELIVER-PHASE-TWO-WARNING-TOKENS ...)

> (retrieve (?x) (?x mother))

(:QUERY-9 :RUNNING)

> (get-next-tuple :last)

((?X ALICE))

> (get-next-tuple :last)

(:WARNING-EXPENSIVE-PHASE-TWO-STARTS)

> (get-next-tuple :last)

((?X BETTY))

> (get-next-tuple :last)

((?X EVE))

168 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (get-next-tuple :last)

:EXHAUSTED

We can also switch to mode 5. Note that phase 1 using mode 5 is now able to produce one more
tuple; thus, the :WARNING-EXPENSIVE-PHASE-TWO-STARTS warning token is delivered slightly later:

> (set-nrql-completeness 5)

:OKAY-MODE-5

> (retrieve (?x) (?x mother))

(:QUERY-10 :RUNNING)

> (get-next-tuple :last)

((?X ALICE))

> (get-next-tuple :last)

((?X BETTY))

> (get-next-tuple :last)

(:WARNING-EXPENSIVE-PHASE-TWO-STARTS)

> (get-next-tuple :last)

((?X EVE))

> (get-next-tuple :last)

:EXHAUSTED

Mode 6 vs. Mode 3

If you use (set-nrql-mode 6), then nRQL will basically behave as if (set-nrql-mode 3) were
used.

Thus, mode 6 is a complete set at a time mode. However, unlike mode 3, nRQL will exploit the
two phase query processing scheme. nRQL will thus ensure that an expensive ABox test on a tuple
(in phase two) will only be made if that same tuple has not already been computed in phase one.
Thus, expensive ABox retrieval functions are avoided whenever possible. However, since phase one
is incomplete, it might be the case that no answer tuples can be computed in phase one at all, thus
leaving all the work for phase two. Nevertheless it is worth trying to use mode 6 whenever you
encounter performance problems in mode 3.

4.2.6 Automatic Deadlock Prevention

Certain types of queries (or rules) must make temporary changes to the queried ABox in order
to be answered, i.e., ABox assertions must be added. This is, for example, the case if classical
negated roles are used in role query atoms. If more than one query (or rule) is currently active and
references the same ABox, then these different queries most be isolated from one another. nRQL
uses locking techniques to achieve isolation and preserve ABox consistency. Thus, an ABox which
must be modified by a query (or rule) in order to be answered will be locked until that query has
been terminated.

This means that nRQL will not allow you to start (execute) a query (rule) which is about to make
changes to an ABox if there are still other queries active that refer to the same ABox. Such a “delay
situation” for a query can only happen if nRQL is used in incremental (tuple at a time) mode.

4.2. THE NRQL QUERY PROCESSING ENGINE 169

But there is a problem. If some of these active queries had been started in lazy incremental tuple
computation mode, then these queries will not terminate automatically (unless a timeout had
been set or the last tuple is requested). Please note that queries which have been started in eager
incremental mode will terminate automatically after some time, since the query processing thread
is not put to sleep. Thus, in order to avoid deadlock situations, nRQL will eventually not allow you
to start a query at all. If such a deadlock situation is encountered by nRQL, execute-query will
return immediately with an appropriate error message.

> (FULL-RESET)

:OKAY-FULL-RESET

> (DEFINE-PRIMITIVE-ROLE R :DOMAIN C :RANGE (NOT C))

36:OKAY

> (INSTANCE I C)

:OKAY

> (INSTANCE J C)

:OKAY

> (INSTANCE K D)

:OKAY

> (INSTANCE L C)

:OKAY

> (PROCESS-TUPLE-AT-A-TIME)

:OKAY-PROCESSING-TUPLE-AT-A-TIME

> (ENABLE-LAZY-TUPLE-COMPUTATION)

:OKAY-LAZY-MODE-ENABLED

> (RETRIEVE (?X) (?X C))

(:QUERY-1 :RUNNING)

> (GET-NEXT-TUPLE :LAST)

:WARNING-KB-HAS-CHANGED

> (GET-NEXT-TUPLE :LAST)

((?X I))

> (ACTIVE-QUERIES)

(:QUERY-1)

> (RETRIEVE (?X ?Y) (?X ?Y (NOT R)))

*** NRQL WARNING: DENIED DUE TO DEADLOCK PREVENTION!

THE FOLLOWING QUERIES WILL NOT TERMINATE AUTOMATICALLY,

SINCE THEY HAVE BEEN STARTED IN LAZY INCREMENTAL MODE:

(QUERY-1).

(:QUERY-2 :DENIED-DUE-TO-DEADLOCK-PREVENTION)

170 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (GET-NEXT-TUPLE :LAST)

((?X J))

> (GET-NEXT-TUPLE :LAST)

((?X L))

> (GET-NEXT-TUPLE :LAST)

:EXHAUSTED

> (RETRIEVE (?X ?Y) (?X ?Y (NOT R)))

(:QUERY-3 :RUNNING)

> (GET-NEXT-TUPLE :LAST)

((?X L) (?Y J))

> (GET-NEXT-TUPLE :LAST)

:WARNING-KB-HAS-CHANGED

> (GET-NEXT-TUPLE :LAST)

((?X L) (?Y I))

> (GET-NEXT-TUPLE :LAST)

((?X K) (?Y L))

> (GET-NEXT-TUPLE :LAST)

((?X K) (?Y J))

> (GET-NEXT-TUPLE :LAST)

((?X K) (?Y I))

> (GET-NEXT-TUPLE :LAST)

((?X J) (?Y L))

> (GET-NEXT-TUPLE :LAST)

((?X J) (?Y I))

> (GET-NEXT-TUPLE :LAST)

((?X I) (?Y L))

> (GET-NEXT-TUPLE :LAST)

((?X I) (?Y J))

> (GET-NEXT-TUPLE :LAST)

:EXHAUSTED

> (ACTIVE-QUERIES)

NIL

> (PROCESSED-QUERIES)

(:QUERY-3 :QUERY-1)

4.2. THE NRQL QUERY PROCESSING ENGINE 171

4.2.7 Reasoning with Queries

The services described in this Section should be considered as non-essential add-ons and are still
experimental. If you are wondering why a certain query never returns any tuples and you think
it should, consider using the consistency checking service (it might find an inconsistency in your
query).

Reporting Inconsistent and Tautological Queries

The nRQL engine also offers (yet experimental!) reasoning services for queries. Consistency checking
of queries is such a service. An inconsistent query must necessarily produce an empty answer on
all ABoxes; thus, CPU cycles can be saved if such queries are recognized before starting them.
In contrast, a tautological query always returns all possible combinations of tuples. In most cases,
such a query does not return useful information. Thus, it is good to recognize such queries as
well. Even though the reasoning mechanism offered by nRQL for queries are incomplete (and yet
experimental), they are still useful.

The incompleteness in the query consistency checker is caused by NAF. If you don’t use NAF in
your query, then the consistency check is “quite complete”. However, the dual situation arises for
the tautology checker.

Here is an example session, demonstrating the utility of nRQL’s reasoning facilities. Again we have
used the original family.racer KB, but we have entirely removed the signature statement, and
added the following role declarations instead:

(define-primitive-role has-descendant

:transitive t

:inverse descendant-of)

(define-primitive-role has-child

:parent has-descendant

:inverse has-parent

:domain parent

:range person)

(define-primitive-role has-parent

:parent descendant-of)

(disjoint man woman)

Then, nRQL should behave as follows:

> (report-inconsistent-queries)

:OKAY-REPORTING-INCONSISTENT-QUERIES

> (report-tautological-queries)

:OKAY-REPORTING-TAUTOLOGICAL-QUERIES

> (retrieve (?x) (and (?x woman) (?x man)))

*** NRQL WARNING: QUERY-1 IS INCONSISTENT

:INCONSISTENT

172 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (prepare-abox-query (?x) (and (?x woman) (?x (not mother))

(?x ?y has-child) (?y person)))

*** NRQL WARNING: QUERY-3 IS INCONSISTENT

(:QUERY-3 :READY-TO-RUN)

> (execute-query :query-3)

:INCONSISTENT

> (prepare-abox-query (?x)

(and (?x woman) (?x ?y has-child)

(?y (all has-parent (all has-descendant woman)))

(?y ?z has-child) (?z ?u has-child) (?u uncle)))

*** NRQL WARNING: QUERY-5 IS INCONSISTENT

(:QUERY-5 :READY-TO-RUN)

> (prepare-abox-query (?x)

(and (?x woman) (?x ?y has-child)

(?y (all descendant-of (all has-descendant woman)))

(?y ?z has-child) (?z ?u has-child) (?u uncle)))

*** NRQL WARNING: QUERY-7 IS INCONSISTENT

(:QUERY-7 :READY-TO-RUN)

> (prepare-abox-query (?x) (neg (?x bottom)))

*** NRQL WARNING: QUERY-9 IS TAUTOLOGICAL

(:QUERY-9 :READY-TO-RUN)

> (prepare-abox-query (?x) (union (neg (?x man)) (neg (?x woman))))

*** NRQL WARNING: QUERY-11 IS TAUTOLOGICAL

(:QUERY-11 :READY-TO-RUN)

Reporting Inconsistent and Tautological Rules

The described reasoning services are also provided for rule. In this case, also the consequence of
the rule is taken into account:

> (full-reset)

:OKAY-FULL-RESET

> (report-inconsistent-queries)

:OKAY-REPORTING-INCONSISTENT-QUERIES

> (prepare-abox-rule (and (?x c) (?y d))

((instance ?x d) (related ?x ?y r)

(instance ?y (all (inv r) (not d)))))

*** NRQL WARNING: RULE-1 IS INCONSISTENT

4.2. THE NRQL QUERY PROCESSING ENGINE 173

(:RULE-1 :READY-TO-RUN)

> (prepare-abox-rule (and (?x c) (?x (not c)))

((instance ?x d)))

*** NRQL WARNING: RULE-2 IS INCONSISTENT

(:RULE-2 :READY-TO-RUN)

> (prepare-abox-rule (and (?x c) (?x d))

((instance ?x (not (and c d)))))

*** NRQL WARNING: RULE-3 IS INCONSISTENT

(:RULE-3 :READY-TO-RUN)

Checking for Query Entailment

The function query-entails-p checks whether one query is more specific than another one. This is
also known as query subsumption. The function query-equivalent-p checks whether both queries
mutually entail (subsume) each other. The offered query entailment check is incomplete as well,
but T answers can be trusted.

Query entailment is more difficult to understand than query consistency. For each query, an asso-
ciated vector of variables and individuals exists. This vector is called the object vector, and should
not be confused with the head of a query. Even queries with empty head have an object vector.

The object vector lists all variables and individuals which are referenced in the body of the query,
but in lexicographic order, not in syntactic order. Recall that union queries are internally rewritten
such that each disjunct references the same variables (see Section 4.1.3).

For example, the associated object vector of the query (and (?x person) (?y top)) is <?x,?y>.
The vector of (and (?y person) (?x top)) is also <?x,?y>. This vector specifies the internal
format of the answer tuples, which are projected and reordered according to an eventually given
head to yield the answer set which is finally returned to the user (as a result of a call to retrieve

etc.)

When two queries are checked for entailment, then these internal sets of answer tuples are com-
pared, and not the resulting answer sets which are returned to the user. The tuples of the internal
answer set of the body (and (?x person) (?y top)) are also “typed”, in this case the type is
<person,top> This means, the first element of each tuple has type person, and the second element
has type top, since the object vector is <?x,?y>.

For the query body (and (?y person) (?x top), the object vector is also <?x,?y>. Thus, the
internal result tuples have type <top,person>.

Given this example, it is obvious that these internal tuple sets are not in a subset relationship
to one another, or even equal. Thus, there holds no query entailment (subsumption) relationship
between the two queries.

The situation is even more complex when checking for entailment of two queries having different
object vectors. In this case, the variables from the second query (which is assumed to be the
more general one) are renamed in order to match the names in the vector of the first query (the
more specific one). However, individuals are never renamed. Given the first query and the variable-
renamed second query, then a query (and query1 (neg query2)) is constructed, and checked for
consistency with the query consistency checker. If this query is inconsistent, then query1 entails
query2.

174 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Renaming of variables is done according to the positions of the variables in the object vectors, and
as such, the lexicographic order matters. Consider the following examples:

> (full-reset)

:OKAY-FULL-RESET

> (prepare-abox-query () (and (?x woman) (?y person)))

(:QUERY-1 :READY-TO-RUN)

> (prepare-abox-query () (and (?b woman) (?a person)))

(:QUERY-2 :READY-TO-RUN)

> (query-equivalent-p :query-1 :query-2)

NIL

;;; Note: The object vector of :QUERY-1 is <?x,?y>; and the vector

;;; of :QUERY-2 is <?a,?b> (due to lexicographic reordering).

;;; Thus, the INTERNAL answer sets of these queries are not

;;; equivalent. According to these vectors, the tuples in

;;; the internal answerset of :QUERY-1 have type

;;; <WOMAN,PERSON>, whereas the tuples in :QUERY-2

;;; have type <PERSON,WOMAN>. Thus, the queries are

;;; not equivalent, since the sets are unequal.

;;; Lets rename the variables in the query:

> (prepare-abox-query () (and (?a woman) (?b person)))

(:QUERY-4 :READY-TO-RUN)

> (query-equivalent-p :query-1 :query-4)

T

Finally, some more complex examples, demonstrating the utility of the query entailment checker.
Please ensure that family.racer has been loaded:

> (prepare-abox-query () (betty woman))

(:QUERY-1 :READY-TO-RUN)

> (prepare-abox-query () (betty mother))

(:QUERY-2 :READY-TO-RUN)

> (query-entails-p :query-1 :query-2)

NIL

> (query-entails-p :query-2 :query-1)

T

> (prepare-abox-query () (charles human))

(:QUERY-3 :READY-TO-RUN)

> (query-entails-p :query-1 :query-3)

NIL

4.2. THE NRQL QUERY PROCESSING ENGINE 175

> (query-entails-p :query-2 :query-3)

NIL

;;; Note: (betty woman) DOES NOT ENTAIL (charles human),

;;; since charles will not be renamed into betty !

> (prepare-abox-query () (?x woman))

(:QUERY-4 :READY-TO-RUN)

> (query-entails-p :query-4 :query-1)

NIL

> (query-entails-p :query-1 :query-4)

T

;;; Note: (betty woman) ENTAILS (?x woman),

;;; but not the other way arround

> (query-entails-p :query-2 :query-4)

T

;;; Note: (betty mother) ENTAILS (?x woman)

> (prepare-abox-query () (?x human))

(:QUERY-5 :READY-TO-RUN)

> (query-entails-p :query-2 :query-5)

T

> (query-entails-p :query-5 :query-4)

NIL

> (query-entails-p :query-4 :query-5)

T

> (define-concept woman (and person (some has-gender female)))

NIL

> (prepare-abox-query () (and (?x person) (?x ?y has-gender)

(?y female)))

(:QUERY-6 :READY-TO-RUN)

> (query-entails-p :query-6 :query-5)

T

;;; Note: (and (?x person) ...) ENTAILS (?x human)

> (query-entails-p :query-6 :query-4)

T

;;; Note: (and (?x person) ...) even ENTAILS (?x woman), due

;;; to redefinition of concept woman!

176 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

> (query-entails-p :query-4 :query-6)

NIL

> (prepare-abox-query () (and (?x person) (?x ?f has-gender)

(?f female) (?x ?y has-child)

(?y person)))

(:QUERY-7 :READY-TO-RUN)

> (prepare-abox-query () (?x mother))

(:QUERY-8 :READY-TO-RUN)

> (query-entails-p :query-7 :query-8)

NIL

;;; Note: In fact we have expected T here, but then we

;;; see that the object vector of :QUERY-7 is

;;; <?f,?x,?y>, thus of type <FEMALE,PERSON,PERSON>,

;;; which is compared to the vector of :QUERY-8 which is

;;; <?x> : <MOTHER>. Due to the modelling in the TBox

;;; female and mother are unrelated.

> (prepare-abox-query () (and (?x person) (?x ?y has-gender)

(?y female) (?x ?z has-child)

(?z person)))

(:QUERY-9 :READY-TO-RUN)

;;; Note: The object vector of :QUERY-9

;;; is now <?x,?y,?z> : <PERSON,FEMALE,PERSON>

;;; Thus, we get the expected result:

> (query-entails-p :query-9 :query-8)

T

;;; <PERSON,FEMALE,PERSON> is in fact <MOTHER,FEMALE,PERSON>, thus

;;; this is compared to <MOTHER>, and the entailment is detected!

;;; Note that this is a non-trivial inference.

> (query-entails-p :query-8 :query-9)

NIL

;;; Note: This is correct, since :QUERY-8 = (?x mother) DOEST NOT

;;; enforce the existence of KNOWN children, but :QUERY-9 does!

;;; Thus, :QUERY-9 is more specific than :QUERY-8.

4.2. THE NRQL QUERY PROCESSING ENGINE 177

4.2.8 The Query Repository - The QBox

The query entailment check (see previous Section) is used for the maintenance of a query repository.
This repository is also called the QBox. If enabled, a QBox is maintained for each queried ABox.
The QBox is created on demand (if needed). The QBox serves as a hierarchical cache. The service
is still experimental and should be considered an non-essential “add on”.

For each new query to be answered, its set of most specific subsumers as well as its most general
subsumes are computed. This process is called query classification. The QBox can be seen as a
“taxonomy” for queries, similar to the taxonomy which is computed from a TBox. Once a query
has been classified, cached answer sets from its parent and children queries in that QBox will
exploited for optimization purposes (as tuple caches). The incompleteness of the query entailment
check is not an issue here, since the QBox is only used as a cache and thus for optimization purposes.

If a classified query must be executed, then the cached answer sets of parent queries (direct sub-
suming queries) can be utilized as superset caches, and the cached answers sets of child queries
(direct subsumed queries) will be exploited as subset caches. In case the QBox already contains an
equivalent query with a cached answer set, this set will be returned immediately.

The query entailment check which is used for query classification is stricter than the one discussed
in the previous Section. Here we additionally require that the object vectors must have equal length.
Otherwise the queries cannot be in a QBox subsumption (entailment) relationship to one another.
This is due to the fact that we want to exploit cached tuples. The tuples from the cache must
therefore have the same “format” as the requested tuples. Therefore, a stronger notion of query
entailment is required for this purpose.

It is possible to ask for the parents, children as well as for equivalent queries of queries which have
been classified. The QBox can also be printed graphically. Please consult the Reference Manual.

Please consider the following example session to get familiar with the offered functionality and API
functions:

> (full-reset)

:OKAY-FULL-RESET

> (load "family.racer")

; Loading text file /home/mi.wessel/family.racer

#P"/home/mi.wessel/family.racer"

> (define-primitive-role has-parent :inverse has-child)

HAS-PARENT

> (enable-query-repository)

:OKAY-QUERY-REPOSITORY-ENABLED

> (retrieve (?x) (?x top))

Concept (BROTHER) causes a cycle in TBox FAMILY.

Concept (SISTER) causes a cycle in TBox FAMILY.

Concept (PARENT) causes a cycle in TBox FAMILY.

(((?X ALICE)) ((?X BETTY)) ((?X DORIS)) ((?X CHARLES)) ((?X EVE)))

> (retrieve (?a) (?a human))

(((?A EVE)) ((?A CHARLES)) ((?A DORIS)) ((?A BETTY)) ((?A ALICE)))

> (retrieve (?b) (?b woman))

178 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

(((?B ALICE)) ((?B BETTY)) ((?B DORIS)) ((?B EVE)))

> (retrieve (?y) (and (?x woman) (?x ?y has-child) (?y human)))

(((?Y EVE)) ((?Y DORIS)) ((?Y CHARLES)) ((?Y BETTY)))

> (show-current-qbox t)

;;;

;;; QBOX FOR RACER-DUMMY-SUBSTRATE FOR ABOX SMITH-FAMILY

;;;

;;; MASTER-TOP-QUERY

;;; |---(AND (?X-ANO1 WOMAN) (?Y HUMAN) (?X-ANO1 ?Y HAS-CHILD))

;;; | ___MASTER-BOTTOM-QUERY

;;; ___(?X TOP)

;;; ___(?A HUMAN)

;;; ___(?B WOMAN)

;;; ___MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (retrieve (?a) (?a mother))

(((?A BETTY)) ((?A ALICE)))

> (retrieve (?y) (and (?x mother) (?x ?y has-child) (?y human)))

(((?Y BETTY)) ((?Y CHARLES)) ((?Y DORIS)) ((?Y EVE)))

> (show-current-qbox t)

;;;

;;; QBOX FOR ABOX SMITH-FAMILY

;;;

;;; MASTER-TOP-QUERY

;;; |---(AND (?X-ANO1 WOMAN) (?Y HUMAN) (?X-ANO1 ?Y HAS-CHILD))

;;; | ___MASTER-BOTTOM-QUERY

;;; ___(?X TOP)

;;; ___(?A HUMAN)

;;; ___(?B WOMAN)

;;; ___(?A MOTHER)

;;; ___MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (show-current-qbox)

;;;

;;; QBOX FOR RACER-DUMMY-SUBSTRATE FOR ABOX SMITH-FAMILY

;;;

;;; 0:MASTER-TOP-QUERY

;;; |---4:QUERY-9 = (QUERY-48)

;;; | ___0:MASTER-BOTTOM-QUERY

;;; ___1:QUERY-1

;;; ___2:QUERY-2 = (SUBQUERY-2-OF-QUERY-48 SUBQUERY-2-OF-QUERY-9)

4.2. THE NRQL QUERY PROCESSING ENGINE 179

;;; ___3:QUERY-5 = (SUBQUERY-1-OF-QUERY-9)

;;; ___5:QUERY-43 = (SUBQUERY-1-OF-QUERY-48)

;;; ___0:MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (query-equivalents :last)

(:QUERY-9)

> (retrieve (?y) (and (?x mother) (?y ?x has-parent) (?y man)))

(((?Y CHARLES)))

> (show-current-qbox t)

;;;

;;; QBOX FOR ABOX SMITH-FAMILY

;;;

;;; MASTER-TOP-QUERY

;;; |---(AND (?X-ANO1 WOMAN) (?Y HUMAN) (?X-ANO1 ?Y HAS-CHILD))

;;; | ___(AND (?X-ANO1 MOTHER) (?Y MAN) (?Y ?X-ANO1 HAS-PARENT))

;;; | ___MASTER-BOTTOM-QUERY

;;; ___(?X TOP)

;;; ___(?A HUMAN)

;;; ___(?B WOMAN)

;;; ___(?A MOTHER)

;;; ___MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (query-children :last)

(MASTER-BOTTOM-QUERY)

> (query-children :query-9)

(:QUERY-72)

> (query-parents :query-72)

(:QUERY-9)

> (query-equivalents :query-37)

(:QUERY-9)

> (query-equivalents :query-9)

(:QUERY-37)

180 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

4.2.9 The Query Realizer

Query realization can be called a semantic query optimization which will enhance the amount of
information available for the guidance of the search process used for query answering. The service
is experimental as well.

The query realization process is similar to an ABox realization process: logically implied conjuncts
are added. The realized query is semantically equivalent to the original query.

Let us consider the following example session:

> (full-reset)

:OKAY-FULL-RESET

> (load "family.racer")

; Loading text file /home/mi.wessel/family.racer

#P"/home/mi.wessel/family.racer"

> (enable-query-realization)

:OKAY-QUERY-REALIZATION-ENABLED

> (retrieve (?x) (and (?x woman) (?x ?y has-child) (?y human)))

(((?X ALICE)) ((?X BETTY)))

;;; DESCRIBE-QUERY outputs, by default,

;;; always the internally rewritten query

;;; Note that nRQL has deduced that

;;; ?x is in fact a mother, not only a woman!

> (describe-query :last)

(:QUERY-1 (:ACCURATE :PROCESSED)

(RETRIEVE (?X)

(AND (?X ?Y-ANO1 HAS-CHILD)

(?Y-ANO1 (AND HUMAN PERSON))

(?X (AND WOMAN MOTHER)))))

;;; This is the realized query body.

;;; Note that nRQL has used the TBox to

;;; add logically implied conjuncts syntactically

;;; to the query expression.

;;;

;;; You can also get to original query:

> (describe-query :last nil)

(:QUERY-1 (:ACCURATE :PROCESSED)

(RETRIEVE (?X) (AND (?X WOMAN)

(?X ?Y HAS-CHILD)

4.2. THE NRQL QUERY PROCESSING ENGINE 181

(?Y HUMAN))))

> (retrieve (?x) (and (?x woman)

(?x (all has-descendant man))

(?x ?y has-child)

(?y human)))

NIL

> (describe-query :last)

(:QUERY-2 (:ACCURATE :PROCESSED)

(RETRIEVE (?X)

(AND (?X ?Y-ANO1 HAS-CHILD)

(?Y-ANO1 (AND HUMAN MAN))

(?X (AND WOMAN (ALL HAS-DESCENDANT MAN) MOTHER)))))

;;; Note that nRQL has deduced that ?Y must be a man,

;;; and that ?X is a mother!

Since a realized query contains more syntactically explicit information, the search for answer tuples
can eventually be more constrained and thus eliminate candidate bindings for variables which
otherwise would be considered. So-called thrashing (a term borrowed from constraint programming)
is thus minimized. However, candidate generation for variable bindings will also be more expensive,
since the concepts used in concept query atoms will be more complex.

4.2.10 The nRQL Persistency Facility

Internally, nRQL maintains a so-called substrate data structure for each RacerPro ABox which
has been queried. This ABox-associated substrate data structure contains index structures and
other auxiliaries needed for query answering. Computation of these index structures is triggered
on demand (if needed). The first time a query is posed to a certain ABox which has not seen a
nRQL query before, nRQL creates a corresponding substrate for the ABox as well as all its index
structures. Thus, answering the first query to an ABox takes considerably longer than subsequent
queries to the same ABox.

In order to avoid recomputation of these index structures, it is possible to dump (store) the
complete substrate data structure into a file. The API functions store-substrate-for-abox

and store-substrate-for-current-abox do this for you. You can also dump all sub-
strates: store-all-substrates. Restoring substrates is easy as well: restore-substrate,
restore-all-substrates. Please consult the Reference Manual for more details on these API
functions.

Dumping a substrate will always automatically dump the associated ABox and TBox as well.
Moreover, there can be defined queries (see Section 4.1.4) defined for the corresponding TBox, as
well as an Query Repository (QBox) (see Section 4.2.8) associated with this substrate. The queries
in the QBox serve as an additional cache. All this information is automatically included in the
dump file. However, it is not possible to resurrect the queries from the QBox - they merely serve as
caches. Thus, you cannot call reexecute-query on a query Id which you see in a restored QBox.

This list of queries, processed queries, active queries etc. are NOT saved. If you really want to save
queries into a file, we ask you the define these queries (see Section 4.1.4). Restored definitions can
be reused. See the example below.

182 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

We have also discussed in Section 4.1.7 that there are specialized types of substrates available,
tailored for special representation tasks. For example, the data substrate, or the RCC substrate.
These substrates can be saved as well, and thus, the created hybrid representation can be preserved.

The following session demonstrates the utility of the nRQL persistency facility:

> (full-reset)

:OKAY-FULL-RESET

> (racer-load-kb "family")

; Loading text file /home/mi.wessel/family.racer

#P"/home/mi.wessel/family.racer"

> (enable-query-repository)

:OKAY-QUERY-REPOSITORY-ENABLED

> (retrieve (?x) (?x woman))

Concept (BROTHER) causes a cycle in TBox FAMILY.

Concept (SISTER) causes a cycle in TBox FAMILY.

Concept (PARENT) causes a cycle in TBox FAMILY.

(((?X EVE)) ((?X DORIS)) ((?X BETTY)) ((?X ALICE)))

> (defquery mother-with-son (?x ?y)

(and (?x woman) (?x ?y has-child) (?y man)))

MOTHER-WITH-SON

> (show-current-qbox)

;;;

;;; QBOX FOR ABOX SMITH-FAMILY

;;;

;;; 0:MASTER-TOP-QUERY

;;; ___1:QUERY-1

;;; ___0:MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (describe-all-definitions)

((DEFQUERY MOTHER-WITH-SON (?X ?Y)

(AND (?X WOMAN) (?X ?Y HAS-CHILD) (?Y MAN))))

> (store-substrate-for-current-abox "test")

SMITH-FAMILY

The substrate can now, for example, be restored on a different RacerPro server:

4.2. THE NRQL QUERY PROCESSING ENGINE 183

> (full-reset)

:OKAY-FULL-RESET

> (restore-substrate "test")

SMITH-FAMILY

> (describe-all-definitions)

((DEFQUERY MOTHER-WITH-SON (?X ?Y)

(AND (?X WOMAN) (?X ?Y HAS-CHILD) (?Y MAN))))

> (current-abox)

SMITH-FAMILY

> (show-current-qbox)

;;;

;;; QBOX FOR ABOX SMITH-FAMILY

;;;

;;; NIL:MASTER-TOP-QUERY

;;; ___NIL:QUERY-1

;;; ___NIL:MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

> (retrieve (?x ?y) (?x ?y mother-with-son))

(((?X ALICE) (?Y CHARLES)))

> (enable-query-repository)

:OKAY-QUERY-REPOSITORY-ENABLED

> (retrieve (?x) (?x mother))

(((?X ALICE)) ((?X BETTY)))

> (show-current-qbox)

;;;

;;; QBOX FOR ABOX SMITH-FAMILY

;;;

;;; NIL:MASTER-TOP-QUERY

;;; ___NIL:QUERY-1

;;; ___2:QUERY-3

;;; ___NIL:MASTER-BOTTOM-QUERY

:SEE-OUTPUT-ON-STDOUT

184 CHAPTER 4. THE NEW RACERPRO QUERY LANGUAGE - NRQL

Chapter 5

Additional Facilities

5.1 Retraction and Incremental Additions

RacerPro offers constructs for retracting T-box axioms (see the function forget-statement). How-
ever, complete reclassification may be necessary in order to answer queries. Retracting axioms is
mainly useful if the RacerPro server is used. With retracting there is no need to delete and retransfer
a knowledge base (T-box).

RacerPro also offers constructs for retracting A-box assertions (see forget,
forget-concept-assertion, forget-role-assertion, and friends). If a query has been
answered and some assertions are retracted, then RacerPro might be forced to compute the index
structures for the A-box again (realization), i.e. after retractions, some queries might take some
time to answer. Note that may queries are answered without index structures at all (see also
Section 3.9).

RacerPro also supports incremental additions to A-boxes, i.e. assertions can be added even after
queries have been answered. However, the internal data structures used for answering queries are
recomputed from scratch. This might take some time. If an A-box is used for hypothesis genera-
tion, e.g. for testing whether the assertion i : C can be added without causing an inconsistency,
we recommend using the instance checking inference service. If (individual-instance? i (not

C)) returns t, i : C cannot be added to the A-box. Now, let us assume, we can add i : C and
afterwards want to test whether i : D can be added without causing an inconsistency. In this case
it might be faster not to add i : C directly but to check whether (individual-instance? i (and

C (not D))) returns t. The reason is that, in this case, the index structures for the A-box are not
recomputed.

5.2 Rule Formalism Extended to Support Abduction

In RacerPro, A-box rules can be specified that are applied w.r.t. the autoepistemic semantics.
In a nutshell this means the following: if for the variables in the rule body (precondition), some
bindings with individuals of the A-box can be found such that all instantiated query atoms of the
body are entailed, then the assertion of the rule head (conclusion) is added to the A-box with
variables instantiated appropriately (forward-chaining). All rules whose preconditions match the
assertions of the A-box in the way just described are applied until nothing new can be added. The
rule mechanism allows for a convenient augmentation of A-boxes with assertions. For details of the
formalism see the nRQL User’s Guide. An example for such a rule is the following statement.

(define-rule (?x ?y has-sibling)

(and (?z ?x has-child)

185

186 CHAPTER 5. ADDITIONAL FACILITIES

(?z ?y has-child)

(?x human)))

The form (?x ?y has-sibling) is the head and the rest is the body.

Rules may also be specified as part of an OWL document in SWRL syntax (see Figure 5.1 for a
graphical specification of SWRL rules in Protege).

Figure 5.1: Rules in Protégé.

Rules are required because for some purposes, OWL is not expressive enough. Rather than just
adding statements to the A-box whenever preconditions are satisfied as suggested above, in some
cases it makes sense to just ask whether the head is entailed by an A-box (rules are applied in a
backward-chaining way). This facility can also be used for computing what should be added to an
A-box to make an assertion be entailed (abduction). Depending on the rule, this could involve the
addition of new individuals to the A-box. In the following we present an example involving the
detection of a pole-vault event.

(full-reset)

(in-knowledge-base test)

(define-primitive-role near)

(define-primitive-role has-part)

(disjoint pole bar)

(disjoint pv-in-start-phase pv-in-turn-phase)

5.2. RULE FORMALISM EXTENDED TO SUPPORT ABDUCTION 187

(define-rule (?x ?y near)

(and (?z ?x has-part)

(?z ?y has-part)

(?x pole)

(?y human)

(?z pole-vault)

(?z pv-in-start-phase)))

(define-rule (?x ?y near)

(and (?z ?x has-part)

(?z ?y has-part)

(?x bar)

(?y human)

(?z pole-vault)

(?z pv-in-turn-phase)))

(instance p1 pole)

(instance h1 human)

Given the statements in this knowledge base one can ask the following query.

(retrieve-with-explanation () (p1 h1 near) :final-consistency-checking-p t)

The answer is

(t (((:tuple)

(:new-inds IND-2)

(:hypothesized-assertions

(related IND-2 p1 has-part)

(instance IND-2 pole-vault)

(instance IND-2 pv-in-start-phase)

(related IND-2 h1 has-part)))))

The answer is t (as expected), and the result returned by RacerPro suggests that there is
one way to achieve this answer. One new individual is required (IND-2). In addition, a set
of hypothesized assertions to achieve the positive answer is indicated. Multiple ways to (pos-
itively) answer the query are possibly generated in other cases. If the optional keyword ar-
gument :final-consistency-checking-p t is used, RacerPro checks if the A-box would re-
main consistent if the hypothesized assertion were added to the A-box. The additional option
:incremental-consistency-checking-p t might be more efficient in some cases (intermediate
checks) but there is some overhead with multiple consistency checks.

Now, assume that there are some additional assertions added as in the following example.

(full-reset)

(in-knowledge-base test)

(define-primitive-role near)

(define-primitive-role has-part)

(disjoint pole bar)

188 CHAPTER 5. ADDITIONAL FACILITIES

(disjoint pv-in-start-phase pv-in-turn-phase)

(define-rule (?x ?y near)

(and (?z ?x has-part)

(?z ?y has-part)

(?x pole)

(?y human)

(?z pole-vault)

(?z pv-in-start-phase)))

(define-rule (?x ?y near)

(and (?z ?x has-part)

(?z ?y has-part)

(?x bar)

(?y human)

(?z pole-vault)

(?z pv-in-turn-phase)))

(instance p1 pole)

(instance h1 human)

(instance e1 pole-vault)

(instance e1 pv-in-start-phase)

(related e1 p1 has-part)

(related e1 h1 has-part)

Given the statements in this knowledge base on can ask the query from above again.

(retrieve-with-explanation () (p1 h1 near) :final-consistency-checking-p t)

The answer is now:

(t (((:tuple) (:new-inds) (:hypothesized-assertions))))

This means, (p1 h1 near) would be added if the rule was applied in a forward-chaining way, i.e.,
no hypothesized assertions are required. The retrieve-with-explanation facility can also be used
for explaining to a user what must be added to an A-box in order to positively answer a query.

Racer Systems has applied the abduction operator to media interpretation problems (image in-
terpretation and natural language text interpretation). We offer consulting to support industrial
application projects that could use these facilities.

5.3 Reasoning with Triples in Secondary Memory

In practical applications, not all parts always require reasoning with expressive T-boxes (specified
for instance in OWL ontologies). Indeed, for some purposes, classical data retrieval is just fine.
However, in almost all practical applications there will be a large amount of data. Hence, data
access must scale at least for the standard retrieval tasks. At the same time, it must be possible
to apply expressive reasoning to (parts of) the data without producing copies of the data. For this
purpose, we propose to use a triple store for RDF.

Using a triple store has several advantages. On the one hand, triples may be manipulated and
retrieved from programs (Turing-complete representations), e.g. Java programs or Common Lisp

5.3. REASONING WITH TRIPLES IN SECONDARY MEMORY 189

programs, without reasoning as usual in industrial applications. On the other hand, the same triples
can be queried w.r.t. a background a background ontology. This involves reasoning and might result
in additional, implicit triples to be found.

RacerPro allows for accessing existing AllegroGraph triple stores as well as for the creation of new
ones. In the following example, a triple store is created, afterwards it is opened, and the triples
are read into the knowledge base. nRQL queries are executed over the knowledge base. There is no
need to write long-winded data extraction programs that move triples to OWL files on which, in
turn, reasoning is then applied.

To create the triple store the following commands are used on the shell of RacerPorter, consider
that AllegroGraph should be started before the following commands are executed:

(create-triple-store "test" :directory "C:/test-ts/" :if-exists :supersede)

(triple-store-read-file "C:/Program Files/RacerPro-20-Preview/examples/semweb/

lubm/university/university0-0.owl" :init nil :ignore-import t)

(index-all-triples)

(close-triple-store)

The commands above create a triple store on the provided directory, notice that the directory
folder should be created in advanced. The content of the ontology “university0-0.owl” found in
the RacerPro distribution is added to the triple store. The (index-all-triples) command is
necessary to increase performance when working on secondary memory. Figure 5.2 shows the files
created on the system containing the triple store. Now we can open the triple store and use it for
querying on a knowledge base called “test-kb”.

(evaluate

(let ((db (open-triple-store "test" :directory "C:/test-ts/")))

(use-triple-store db :kb-name ’test-kb)))

(retrieve (?x ?y)

(and (?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Publication)

(?y ?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#publicationAuthor)

(?x http://www.Department0.University0.edu http://www.lehigh.edu/%7Ezhp2/

2004/0401/univ-bench.owl#memberOf)

(?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent)))

(retrieve (?x ?y ?z)

(and (?x ?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#advisor)

(?x ?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse)

(?y ?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf)

(?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent)

(?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#AssistantProfessor)

(?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateCourse)))

The examples should illustrate the flavor of how triples can be accessed from RacerPro. Currently,
for reasoning, the triples are loaded into main memory by RacerPro. Thus, only a limited number of
triples should be in the store. In a future version, reasoning will be done also on secondary memory.

The result tuples can be selected in a separate presentation tab (Query IO) of the editor as il-
lustrated in Figure 5.3. Afterwards, e.g., the corresponding inferred relational (role filler) A-box
structure can be viewed using one of the graph panes of RacerPorter (see Figure 5.4).

As mentioned before, it is not always the case that reasoning is required. Therefore, one can pose
the same nRQL queries to secondary memory for very fast access (but without reasoning). RacerPro
optimizes the queries in order to provide good average-case performance.

190 CHAPTER 5. ADDITIONAL FACILITIES

Figure 5.2: The triple store “test” created with RacerPorter.

(open-triple-store "test" :directory "C:/test-ts/")

(pretrieve (?x ?y)

(and (?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#Publication)

(?y ?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#publicationAuthor)

(?x http://www.Department0.University0.edu http://www.lehigh.edu/%7Ezhp2/

2004/0401/univ-bench.owl#memberOf)

(?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent)))

5.3. REASONING WITH TRIPLES IN SECONDARY MEMORY 191

Figure 5.3: Query results

Figure 5.4: A-box Graph

192 CHAPTER 5. ADDITIONAL FACILITIES

(pretrieve (?x ?y ?z)

(and (?x ?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#advisor)

(?x ?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#takesCourse)

(?y ?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#teacherOf)

(?x http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateStudent)

(?y http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#AssistantProfessor)

(?z http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl#GraduateCourse)))

(close-triple-store)

In addition, it is possible to materialize in a triple store what can be computed by applying reasoning
w.r.t. a background ontology such that later on the results are available to all applications which
may or may not use reasoning. It is possible to optimized index data structures for subsequent
query answering.

(evaluate

(let ((db (open-triple-store "test" :directory "C:/test-ts/")))

(use-triple-store db :kb-name ’test-kb :ignore-import t)

(materialize-inferences ’test-kb :db db

:directory "C:/test-ts/"

:A-box t

:index-p t)))

Ad-hoc Querying with SPARQL Queries can also be specified in the SPARQL language and
can be executed with or without reasoning w.r.t. background ontologies.

(sparql-retrieve "

PREFIX lubm: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?x, ?y

WHERE

(?y rdf:type lumb:Publication)

(?y lumb:publicationAuthor ?x)

(?x lumb:memberOf "http://www.Department0.University0.edu")

(?x rdf:type lubm:GraduateStudent)

")

This is the SPARQL pendant to the first query in the example above.

Note that there is no need to store the OWL ontology in the triple store. With RacerPro you can
access your existing triple store with various different OWL ontologies. An ontology can be put
into a file or can possibly be retrieved from the Web. A triple store is then opened an queries are
answered w.r.t. this triple store. The triple store corresponds to the A-box in this case.

5.4. THE PUBLISH-SUBSCRIBE MECHANISM 193

5.4 The Publish-Subscribe Mechanism

Instance retrieval (see the function concept-instances) is one of the main inference services for
A-boxes. However, using the standard mechanism there is no “efficient” way to declare so-called
hidden or auxiliary individuals which are not returned as elements of the result set of instance
retrieval queries.1 Furthermore, if some assertions are added to an A-box, a previous instance
retrieval query might have an extended result set. In this case some applications require that
this might be indicated by a certain “event”. For instance, in a document retrieval scenario an
application submitting an instance retrieval query for searching documents might also state that
“future matches” should be indicated.

In order to support these features, RacerPro provides the publish-subscribe facility. The idea of the
publish-subscribe system is to let users “subscribe” an instance retrieval query under a certain name
(the subscription name). A subscribed query is answered as usual, i.e. it is treated as an instance
retrieval query. The elements in the result set are by definition are only those individuals (of the
A-box in question) that have been “published” previously. If information about a new individuals is
added to an A-box and these individuals are published, the set of subscription queries is examined.
If there are new elements in the result set of previous queries, the publish function returns pairs of
corresponding subscription and individual names.

5.4.1 An Application Example

The idea is illustrated in the following example taken from a document retrieval scenario. In some
of the examples presented below, the result returned by RacerPro is indicated and discussed. If the
result of a statement is not discussed, then it is irrelevant for understanding the main ideas of the
publish-subscribe mechanism. First, a T-box document-ontology is declared.

(in-tbox document-ontology)

(define-concrete-domain-attribute isbn)

(define-concrete-domain-attribute number-of-copies-sold)

(implies book document)

(implies article document)

(implies computer-science-document document)

(implies computer-science-book (and book computer-science-document))

(implies compiler-construction-book computer-science-book)

(implies (and (min number-of-copies-sold 3000) computer-science-document)

computer-science-best-seller)

In order to manage assertions about specific documents, an A-box current-documents is defined
with the following statements. The A-box current-documents is the “current A-box” to which
subsequent statements and queries refer. The set of subscriptions (w.r.t. the current A-box) is
initialized.

(in-abox current-documents document-ontology)

(init-subscriptions)

With the following set of statements five document individuals are declared and published, i.e. the
documents are potential results of subscription-based instance retrieval queries.

1Certainly, hidden individuals can be marked as such with special concept names, and in queries they might
explicitly be excluded by conjoining the negation of the marker concept automatically to the query concept. However,
from an implementation point of view, this can be provided much more efficiently if the mechanism is built into the
retrieval machinery of RacerPro.

194 CHAPTER 5. ADDITIONAL FACILITIES

(state

(instance document-1 article)

(publish document-1)

(instance document-2 book)

(constrained document-2 isbn-2 isbn)

(constraints (equal isbn-2 2234567))

(publish document-2)

(instance document-3 book)

(constrained document-3 isbn-3 isbn)

(constraints (equal isbn-3 3234567))

(publish document-3)

(instance document-4 book)

(constrained document-4 isbn-4 isbn)

(constraints (equal isbn-4 4234567))

(publish document-4)

(instance document-5 computer-science-book)

(constrained document-5 isbn-5 isbn)

(constraints (equal isbn-5 5234567))

(publish document-5))

Now, we assume that a “client” subscribes to a certain instance retrieval query.

(state

(subscribe client-1 book))

The answer returned by RacerPro is the following

((CLIENT-1 DOCUMENT-2)

(CLIENT-1 DOCUMENT-3)

(CLIENT-1 DOCUMENT-4)

(CLIENT-1 DOCUMENT-5))

RacerPro returns a list of pairs each of which consists of a subscriber name and an individual name.
In this case four documents are found to be instances of the query concept subscribed and the name
client-1.

An application receiving this message from RacerPro as a return result can then decide how to
inform the client appropriately. In future releases of RacerPro, subscriptions can be extended with
information about how the retrieval events are to be signaled to the client. This will be done with
a proxy which is currently under development.

The example is continued with the following statements and two new subscriptions.

(state

(instance document-6 computer-science-document)

(constrained document-6 isbn-6 isbn)

(constraints (equal isbn-6 6234567))

(publish document-6))

5.4. THE PUBLISH-SUBSCRIBE MECHANISM 195

(state

(subscribe client-2 computer-science-document)

(subscribe client-3 computer-science-best-seller))

The last statement returns two additional pairs indicating the retrieval results for the instance
retrieval query subscription of client-2.

((CLIENT-2 DOCUMENT-5)

(CLIENT-2 DOCUMENT-6))

Next, information about another document is declared. The new document is published.

(state

(instance document-7 computer-science-document)

(constrained document-7 isbn-7 isbn)

(constraints (equal isbn-7 7234567))

(constrained document-7 number-of-copies-sold-7 number-of-copies-sold)

(constraints (equal number-of-copies-sold-7 4000))

(publish document-7))

The result of the last statement is:

((CLIENT-2 DOCUMENT-7)

(CLIENT-3 DOCUMENT-7))

The new document document-7 is in the result set of the query subscribed by client-2 and
client-3. Note that document can be considered as structured objects, not just names. This is
demonstrated with the following statement whose result is displayed just below.

(describe-individual ’document-7)

(DOCUMENT-7

:ASSERTIONS ((DOCUMENT-7 COMPUTER-SCIENCE-DOCUMENT))

:ROLE-FILLERS NIL

:TOLD-ATTRIBUTE-FILLERS ((ISBN 7234567)

(NUMBER-OF-COPIES-SOLD 4000))

:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)

(COMPUTER-SCIENCE-DOCUMENT)))

Thus, RacerPro has determined that the individual document-7 is also an instance
of the concept computer-science-best-seller. This is due to the value of the at-
tribute number-of-copies-sold and the given sufficient conditions for the concept
computer-science-best-seller in the T-box document-ontology.

Now, we have information about seven documents declared in the A-box current-document.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-3 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

196 CHAPTER 5. ADDITIONAL FACILITIES

In order to delete a document from the A-box, it is possible to use RacerPro’s forget facility. The
instance assertion can be removed from the A-box with the following statement.

(forget () (instance document-3 book))

Now, asking for all individuals reveal that there are only six individuals left.

(all-individuals)

(DOCUMENT-1 DOCUMENT-2 DOCUMENT-4 DOCUMENT-5 DOCUMENT-6 DOCUMENT-7)

With the next subscription a fourth client is introduced. The query is to retrieve the instances of
book. RacerPro’s answer is given below.

(subscribe client-4 book)

((CLIENT-4 DOCUMENT-2) (CLIENT-4 DOCUMENT-4) (CLIENT-4 DOCUMENT-5))

The query of client-4 is answered with three documents. Next, we discuss an example demon-
strating that sometimes subscriptions do not lead to an immediate answer w.r.t. the current A-box.

(subscribe client-2 computer-science-best-seller)

The result is (). Although document-7 is an instance of computer-science-best-seller,
this individual has already been indicated as a result of a previously subscribed query. In
order to continue our example we introduce two additional documents one of which is a
computer-science-best-seller.

(state

(instance document-8 computer-science-best-seller)

(constrained document-8 isbn-8 isbn)

(constraints (equal isbn-8 8234567))

(instance document-9 book)

(constrained document-9 isbn-9 isbn)

(constraints (equal isbn-9 9234567)))

The publish-subscribe mechanism requires that these documents are published.

(state

(publish document-8)

(publish document-9))

The RacerPro system handles all publish statements within a state as a single publish statement
and answers the following as a single list of subscription-individual pairs.

((CLIENT-1 DOCUMENT-9)

(CLIENT-2 DOCUMENT-8)

(CLIENT-3 DOCUMENT-8)

(CLIENT-4 DOCUMENT-9))

5.4. THE PUBLISH-SUBSCRIBE MECHANISM 197

Now client-2 also get information about instances of computer-science-best-seller. Note that
document-8 is an instance of computer-science-best-seller by definition although the actual
number of sold copies is not known to RacerPro.

(describe-individual ’document-8)

(DOCUMENT-8

:ASSERTIONS ((DOCUMENT-8 COMPUTER-SCIENCE-BEST-SELLER))

:ROLE-FILLERS NIL

:TOLD-ATTRIBUTE-FILLERS ((ISBN 8234567))

:DIRECT-TYPES ((COMPUTER-SCIENCE-BEST-SELLER)))

The following subscription queries indicate that the query concept must not necessarily be a concept
name but can be a concept term.

(state

(subscribe client-4 (equal isbn 7234567)))

RacerPro returns the following information:

((CLIENT-4 DOCUMENT-7))

Notice again that subscriptions might be considered when new information is added to the A-box.

(state

(subscribe client-5 (equal isbn 10234567)))

The latter statement returns NIL. However, the subscription is considered if, at some time point
later on, a document with the corresponding ISBN number is introduced (and published).

(state

(instance document-10 document)

(constrained document-10 isbn-10 isbn)

(constraints (equal isbn-10 10234567))

(publish document-10))

((CLIENT-5 DOCUMENT-10))

This concludes the examples for the publish-subscribe facility offered by the RacerPro system. The
publish-subscribe mechanism provided with the current implementation is just a first step. This
facility will be extended significantly. Future versions will include optimization techniques in order
to speedup answering subscription based instance retrieval queries such that reasonably large set
of documents can be handled. Furthermore, it will be possible to define how applications are to be
informed about “matches” to previous subscriptions (i.e. event handlers can be introduced).

198 CHAPTER 5. ADDITIONAL FACILITIES

5.4.2 Using JRacer for Publish and Subscribe

The following code fragment demonstrates how to interact with a RacerPro server from a Java
application. The aim of the example is to demonstrate the relative ease of use that such an API
provides. In our scenario, we assume that the agent instructs the RacerPro system to direct the
channel to computer "rm.sts.tu-harburg.de" at port 8080. Before the subscription is sent to a
RacerPro server, the agent should make sure that at "rm.sts.tu-harburg.de", the assumed agent
base station, a so-called listener process is started at port 8080. This can be easily accomplished
by starting the following program on rm.sts.tu-harburg.de.

public class Listener {

public static void main(String[] argv) {

try {

ServerSocket server = new ServerSocket(8080);

while (true) {

Socket client = server.accept();

BufferedReader in =

new BufferedReader(

new InputStreamReader(client.getInputStream()));

String result = in.readLine();

in.close();

}

} catch (IOException e) {

...

}

}

}

If a message comes in over the input stream, the variable result is bound accordingly. Then,
the message can be processed as suitable to the application. We do not discuss details here. The
subscription to the channel, i.e., the registration of the query, can also be easily done using the
JRacer interface as indicated with the following code fragment (we assume RacerPro runs at node
"racer.racer-systems.com" on port 8088).

public class Subscription {

public static void main(String[] argv) {

RacerServer racer = new RacerServer("www.racer-systems.com",8088);

String res;

try {

racer.openConnection();

res = racer.send("(subscribe q_1 Book \"rm.sts.tu-harburg.de\" 8080)");

racer.closeConnection();

System.out.println(res);

}

catch (Exception e) {

e.printStackTrace();

}

}

}

The connection to the RacerPro server is represented with a client object (of class
RacerSocketClient). The client object is used to send messages to the associated RacerPro server
(using the message send). Control flow stops until RacerPro acknowledges the subscription.

5.5. OWL INTERFACE 199

5.5 OWL Interface

RacerPro can read RDF, RDFS, and OWL files, see the function owl-read-file and friends
described below). Information in an RDF file is represented using an A-box in such a way that
usually triples are represented as related statements, i.e., the subject of a triple is represented
as an individual, the property as a role, and the object is also represented as an individual. The
property rdf:type is treated in a special way. Triples with property rdf:type are represented as
concept assertions. RacerPro does not represent meta-level knowledge in the theory because this
might result in paradoxes (which are reported elsewhere).

The triples in RDFS files are processed in a special way. They are represented as T-box axioms.
If the property is rdf:type, the object must be rdfs:Class or rdfs:Property. These statements
are interpreted as declarations for concept and role names, respectively. Three types of axioms are
supported with the following properties: rdfs:subClassOf, rdfs:range, and rdfs:domain. Other
triples are ignored.

OWL files are processed in a similar way. The semantics of OWL is described elsewhere (see
http://www.w3.org/TR/owl-ref/). There are a few restrictions in the RacerPro implementation.
The UNA cannot be switched off and number restrictions for attributes (datatype properties) are
not supported. Only basic datatypes of XML-Schema are supported (i.e., RacerPro cannot read
files with datatype declarations right now).

Usually, the default namespace for concept and role name is defined by the pathname of the
OWL file. If the OWL file contains a specification for the default namespace (i.e., a specification
xmlns="...") this URL is taken as a prefix for concept and role names.

<?xml version="1.0" encoding="ISO-8859-1"?>

<rdf:RDF

xmlns="http://www.mycompany.com/project#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#">

...

</rdf:RDF>

By default, RacerPro prepends the URL of the default namespace to all OWL names starting with
the # sign. If you would like to instruct RacerPro to return abbreviated names (i.e., to remove the
prefix again in output it produces), start the RacerPro server with the option -n.

Individual names (nominals) in class declarations introduced with owl:oneOf are treated as disjoint
(atomic) concepts. This is similar to the behavior of other OWL inference engines. Currently,
RacerPro can provide only an approximation for true nominals. Note that reasoning is sound but
still incomplete if owl:oneOf is used. In RacerPro, individuals used in class declarations are also
represented in the A-box part of the knowledge base. They are instances of a concept with the same
name. An example is appropriate to illustrate the idea. Although the KRSS syntax implemented by
RacerPro does not include one-of as a concept-building operator we use it here for demonstration
purposes.

(in-knowledge-base test)

(implies c (some r (one-of j)))

(instance i c)

Dealing with individuals is done by an approximation such that reasoning is sound but must remain
incomplete. The following examples demonstrate the effects of the approximation.

200 CHAPTER 5. ADDITIONAL FACILITIES

Given this knowledge base, asking for the role fillers of r w.r.t. i returns nil. Note that OWL,
names must be enclosed with bars (|).

? (individual-fillers |file:C:\\Ralf\\Ind-Examples\\ex1.owl#i|

|file:C:\\Ralf\\Ind-Examples\\ex1.owl#R|)

NIL

Asking for the instances of j returns j.

? (concept-instances |file:C:\\Ralf\\Ind-Examples\\ex1.owl#j|)

(|file:C:\\Ralf\\Ind-Examples\\ex1.owl#j|)

The following knowledge base (for the OWL version see file ex2.owl in the examples folder) is
inconsistent:

(in-knowledge-base test)

(implies c (all r (one-of j)))

(instance i c)

(related i k r)

Note again that, in general, reasoning is incomplete if individuals are used in concept terms. The
following query is given w.r.t. the above-mentioned knowledge base given in the OWL file ex2.owl

in the examples folder.

? (concept-subsumes? (at-most 1 |file:C:\\Ralf\Ind-Examples\\ex1.owl#R|)

|file:C:\Ralf\Ind-Examples\ex1.owl#c|)

NIL

If dealing with nominals were no approximation, i.e., if reasoning were complete, then RacerPro
would be able to prove a subsumption relationship because (all r (one-of j)) implies (at-most
1 r).

RacerPro can download imported ontology documents. Use the command (owl-read-file

<filename>) to read an OWL file or use (owl-read-document <url>) to read an OWL resource
given a URL.

You can manage multiple knowledge bases with RacerPro, and you can load multiple ontologies
into a single knowledge base. For instance, try

(owl-read-document "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"

:kb-name dinner)

(owl-read-document "http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl"

:kb-name dinner :init nil)

for a delicious dinner.2 Imported ontologies are automatically loaded from the corresponding web
server. Make sure you are connected to the Internet or use the mirror functionality if you are
offline.

(mirror <url-spec1> <another-url-or-local-filename>)

Examples:

2In LRacer or RacerMaster you have to quote the symbol dinner.

5.6. EXPLANATION 201

(mirror "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"

"/home/users/rm/wine.rdf")

(mirror "http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf"

"http://localhost:8081/examples/wine.rdf")

Mirror statements might be placed in a RacerPro init file. In RacerPorter you can abbreviate the
display of OWL names with the check box ”Simplify Names”.

5.6 Explanation

The development of ontologies that use highly expressive constructs is by no means a trivial task,
thus, the implicit consequences that a newly added axiom might cause to other axioms in the
ontology are not obvious. For this reason, an explanation facility is helpful to support the ontology
engineer in understanding which axioms of the ontology, both in the teminological (i.e., T-box part)
as well as in the assertional part (i.e., A-box part) are causing incoherences.

RacerPro provides explanations for unsatisfiable concepts, for subsumption relationships (either
unwanted or unexpected), and for unsatisfiable A-boxes. An example for an unsatisfiable A-box is
shown in the following example.

(in-knowledge-base test)

(implies a b)

(equivalent c (some r a))

(equivalent d (some r b))

(instance i (and c (not d)))

(check-abox-coherence)

The lines below are obtained from the shell of the RacerPorter and show the result of the explanation
facility. It is indicated which axioms in the T-box and which assertions in the A-box are the culprits
for the inconsistency of the A-box. The explanation facilities are provided through the commands
(check-abox-coherence), (check-tbox-coherence) and (check-ontology).

[1] ? (in-knowledge-base)

[1] > (NIL NIL)

[2] ? (implies a b)

[2] > :OKAY

[3] ? (equivalent c (some r a))

[3] > :OKAY

[4] ? (equivalent d (some r b))

[4] > :OKAY

[5] ? (instance i (and c (not d)))

[5] > :OKAY

[6] ? (check-abox-coherence)

202 CHAPTER 5. ADDITIONAL FACILITIES

[6] > (NIL

((i (and (not d) c))

(:inference-step

:assertion

(i c)

:axiom

(equivalent c (some r a)))

(:inference-step

:assertion

(i (not d))

:axiom

(equivalent (not d) (not (SOME r b))))))

One can use the operator (retrieve-with-explanation) in order to use the explanation facility
for query answering, which is available in case a boolean query is answered with false but the
expected answer is true.

5.7 Non-standard Inferences

RacerPro 2.0 provides an implementation of the LCS operator (least-common subsumer) for the
description logic ALE with unfoldable T-boxes. Furthermore, the MSC-k (most-specific concept up
to k levels of nested existentials) is supported. In order to demonstrate the application of these
operators, the following knowledge base is used.

(in-knowledge-base test)

(equivalent x (some r (and a d)))

(equivalent y (some r b))

(implies a b)

(implies c b)

(instance j a)

(instance i (all r (and (some r b) d)))

(related i j r)

(related j k r)

(related k i r)

We no apply the LCS operator to two input concepts.

(lcs-unfold x (and (all r d) (some r c)))

The result is (some r (and d b)). If no unfolding is desired, use lcs instead of lcs-unfold. It is
possible to specify the T-box as an optional last argument (default is the current T-box).

For some purposes, an extract of the information contained in an A-box might be useful. RacerPro
2.0 provides an implementation of the MSC-k operator. MSC-k is applied to an individual and a
nesting depth. For instance, given the knowledge base above, the following form is executed.

(msc-k i 3)

The result is

5.8. EVENT RECOGNITION 203

(and (some r (and a

(some r (and (some r (and (all r (and (some r b) d))

(some r (and a top)))))))))

It is possible to supply an additional boolean argument which indicates whether for each individual,
the direct types are included in the MSC approximation. For instance,

(msc-k i 3 t)

returns

(and (some r

(and x

a

(some r

(and a

d

y

(some r (and *top*

(all r (and (some r b) d))

(some r (and x a top)))))))))

The default for the third argument is nil (indicating that direct types are not to be included in
the MSC-k output). Given this boolean argument is specified, there can be a fourth argument, the
A-box (which defaults to the current A-box).

5.8 Event Recognition

In some applications it might be interesting to state that assertions are valid only within a certain
time interval. This is not possible with standard description logic systems. There are several research
results available on qualitative temporal reasoning in the context of description logics. RacerPro
can support qualitative temporal reasoning as part of the nRQL system (compare the section on
RCC substrates in the User’s Guide). In addition, in some cases, quantitative information about
time intervals might be available and could be relevant for query answering. RacerPro now also
supports A-box query answering w.r.t. assertions that are associated with specifications for time
intervals. The following example shows the main idea.

(in-knowledge-base traffic-analysis)

(define-primitive-role r :inverse r)

(implies car vehicle)

(implies volkswagen car)

(instance vw1 volkswagen)

(instance vw2 volkswagen)

(instance ralf pedestrian)

(related vw2 vw1 r)

(define-event-assertion ((move vw1) 7 80))

204 CHAPTER 5. ADDITIONAL FACILITIES

(define-event-assertion ((move vw2) 3 70))

(define-event-assertion ((move ralf) 3 70))

(define-event-assertion ((approach vw1 vw2) 10 30))

(define-event-assertion ((behind vw1 vw2) 10 30))

(define-event-assertion ((beside vw1 vw2) 30 40))

(define-event-assertion ((in-front-of vw1 vw2) 40 80))

(define-event-assertion ((recede vw1 vw2) 40 60))

(define-event-rule ((overtake ?obj1 ?obj2) ?t1 ?t2)

((?obj1 car) ?t0 ?tn)

((?obj1 ?obj2 r) ?t0 ?tn)

((move ?obj1) ?t0 ?t2)

((move ?obj2) ?t1 ?t2)

((approach ?obj1 ?obj2) ?t1 ?t3)

((behind ?obj1 ?obj2) ?t1 ?t3)

((beside ?obj1 ?obj2) ?t3 ?t4)

((in-front-of ?obj1 ?obj2) ?t4 ?t2)

((recede ?obj1 ?obj2) ?t4 ?t2))

The following query check whether there exists an overtake event hidden in the A-box and the
event assertions.

(timenet-retrieve ((overtake ?obj1 ?obj2) ?t1 ?t2))

The query returns a set of binding for variables if an event can be detected (and nil otherwise). For
time variables an interval for the lower-bound and upper-bound are returned. Thus, the overtake

event start at time unit 10 at the earliest and 29 at the latest. It ends at time unit 29 at the
earliest and 60 at the latest. In a future version of RacerPro, redundant binding specifications will
be removed.

(((?obj1 vw1) (?obj2 vw2) (?t1 (10 29)) (?t2 (41 60)))

((?obj1 vw1) (?obj2 vw2) (?t1 (10 29)) (?t2 (41 60))))

Note that the example involves reasoning. The fact that vw1 is a car is only implicitly stated. In
addition, temporal constraint have to be checked for the time intervals.

In the previous queries, variables are used. However, one might very well use constants in event
queries as shown in the following example.

(timenet-retrieve ((overtake ?obj1 vw2) ?t1 ?t2))

Now, only bindings for the variable ?obj1 are returned.

(((?obj1 vw1) (?t1 (10 29)) (?t2 (41 60)))

((?obj1 vw1) (?t1 (10 29)) (?t2 (41 60))))

In a future version, a forward-chaining application of event rules will be supported, so there is
no need to repeatedly cycle through all known events using respective queries. Racer Systems
offers consulting for industrial partners who need event recognition w.r.t. expressive background
ontologies.

Appendix A

Editions and Licenses

A.1 Editions

Racer Systems provides several different editions of the Racer technology.

RacerPro RacerPro is a server for description logic or OWL inference services. With RacerPro
you can implement industrial strength projects as well as doing research on knowledge basis and
develop complex applications. If you do not have a valid license, you are allowed to use RacerPro
but some restrictions apply.

RacerPorter The “Porter to RacerPro” (aka RacerPorter) is the graphical user client for Rac-
erPro. RacerPorter uses the TCP/IP network interface to connect to one or more RacerPro servers
and helps you manage them: You can load knowledge bases, switch between different taxonomies,
inspect your instances, visualize T-Boxes and A-Boxes, manipulate the server and much more. Rac-
erPorter is already included in the installer versions of RacerPro for Windows and Mac OS X and
separately available for Linux systems with a graphic display.

RacerPlus To minimize the performance overhead due to network-based communication between
RacerPorter and RacerPro as well as to utilize the computing power offered by a single workstation
we introduce RacerPlus, an integrated workbench which includes RacerPro and the RacerPorter
graphical user interface in a single application.

But RacerPlus goes even further: RacerPlus has a built-in knowledge base editor that has direct
access to the data structures of the integrated RacerPro! You can open, inspect, verify and edit
your T-Boxes and A-Boxes in a user interface which instantly reflects the state of the embedded
RacerPro server. Of course RacerPlus offers all the features of the integrated products: You can
connect from RacerPlus to any RacerPro-server on the network or your data in RacerPlus can
be accessed via client applications over the network. RacerPlus is available as a separate product
positioned above the RacerPro kernel license.

RacerMaster Do you develop complex applications for the Semantic Web? Are you researching
in the area of description logic, knowledge basis, and implement your own systems and algorithms for
inference problems using the Common Lisp programming language? Then you might be interested
in RacerMaster which actually is RacerPro as an object code library (“fasl file”). You can develop
your own application and use Racer technology without an external server application. We offer
RacerMaster on request for Allegro Common Lisp, Lispworks, MCL, and other Lisp development
environments.

205

206 APPENDIX A. EDITIONS AND LICENSES

A.2 Licenses

RacerPro is available as a desktop version in which the server and clients run on localhost. In
addition, there are licenses available to run RacerPro on a powerful server machine whereas graph-
ical interfaces or client applications can be executed on you personal computer (or via wireless
connections on your portable computer). Your license file is available from your personal download
page (the file is called license.racerlicense). Put this license file in your home directory. Do not
edit or delete this file. If the installation process is executed successfully, the RacerPro application
comes with an additional license file named racerpro.lic in the same directory as the RacerPro
executable. Do not remove or edit this file, either. We offer the following license schemes.

“Network” license Is the standard license of RacerPro. It allows you to run RacerPro on a
single system (server) with an unlimited number of users from the network. This license covers
the complete product including the RacerPorter. Available for 32bit versions of Windows, Linux
or Mac OS X, for Sun and other branded UNIX workstations with 32bit or 64bit, as well as 64bit
Linux environments. A Network license also includes one year of software updates and upgrades
(see “Terms and Conditions“ below). The 32-bit versions for Linux, Windows and Mac OS X are
available for 2,990.00 Euro; all other versions start at 9,990.00 Euro.

“Desktop” license A desktop license allows one user to run RacerPro on a single machine,
while all computation takes place on that local host. Usage from an another machine via the
network is prohibited. This license is ideal for evaluation in a commercial environment as well as
for an academic researcher who wants to have a non time-limited license at hand. RacerPorter is
included in this license. Available for 32bit versions of Windows, Linux or Mac OS X. No software
maintenance is included or available for a Desktop license, however bug-fixes will be provided (see
“Terms and Conditions” below). The license fee is 990.00 Euro; a volume discount is available
starting with five licenses when purchased with the same order.

“Classroom” license If you are are teacher or trainer you probably want to have your personal
license for your daily business, e.g., research, preparation of courses and the like. But you also have
to have a license of RacerPro for each computer system used by the attendees of your seminars.
Hence you have demand for a “classroom license” which covers your personal Desktop License as
well as up to 15 additional systems typically used only for attendees of lectures. Available for 32bit
versions of Windows, Linux or Mac OS X. A Classroom license also includes one year of software
updates and upgrades (see “Terms and Conditions” below). The 32-bit versions for Linux, Windows
and Mac OS X are available for 3,990.00 Euro.

“Site’ license For environments where more desktops and/or servers will be installed we offer the
site licensing of RacerPro applications. The licensing organization may use an arbitrary number of
desktop or network servers in one building. If the licensee controls more than one building, one site
license covers locations only within reasonable proximity to each other (given that they are located
in the same state/country). Available for 32bit versions of Windows, Linux or Mac OS X, for Sun
and other branded UNIX workstations with 32bit or 64bit, as well as 64bit Linux environments. A
Site license also includes one year of software updates and upgrades (see “Terms and Conditions”
below). The 32-bit versions for Linux, Windows and Mac OS X are available for 9,990.00 Euro; all
other versions start at 25,000.00 Euro.

RacerPro on other platforms RacerPro is available for a wide variety of platforms. While the
standard licensing schemes cover typical 32bit systems, we provide individual licensing options for
other 32bit systems and also for 64bit large scale computing environments. Typically available for

A.2. LICENSES 207

Sun Sparc (Solaris) and AMD Opteron (Linux) systems. Please contact us for more information
about other supported platforms. See above for prices for Network and Site Licenses for Sun and
Linux. A site license for RacerPro for the target platform is necessary. More conditions and addi-
tional fees may apply. Please contact us for more information about the availability RacerPro on
other platforms like IBM or HP.

Terms and Conditions All prices are in Euro and without taxes, shipping costs and expenses.
Given prices are calculated for electronic delivery (download). Furthermore value added tax and
other excise dues may be applicable to your individual purchase. If you are in doubt or in case need
an official offer please contact us for a quote.

All active licenses are entitled to receive bug-fix releases of the licensed version as long as this
version is the current release version.

Owners of Network, Classroom or Site licenses additionally get software updates free of charge dur-
ing the first year after purchase (“software maintenance”). Following that period software updates
are offered for an additional fee. Alternatively we offer software maintenance contracts for a yearly
charge of about 25% of the initial license fee which will cover updates and upgrades within the
second and subsequent years after purchase. Neither on-site service nor individual consulting or
support are included in software maintenance.

Before ordering please check the intended operating system with us. Before the purchase we will
provide access to the General Terms and Customer License Agreement documents.

208 APPENDIX A. EDITIONS AND LICENSES

Appendix B

Acknowledgments

RacerPro is based on scientific results presented in publications about theoretical and practical
work on KRIS, FaCT, and other description logic systems. See, for instance, [5], [13], [38], [42], [47].
[48], [43], [45], [46], [40].@

We would like to thank the team at Franz Inc. (http://www.franz.com/) for their collaboration and
for the support in making RacerPro one of the fastest and most expressive commercial OWL/RDF
and description logic reasoning systems. The graphical user interface RacerPorter is built with the
development environment from Lispworks Ltd. (http://www.lispworks.com/).

Special thanks go to Michael Hülsen, Britta Hummel, Thorsten Liebig, Marko Luther, and Ragnhild
van der Straeten, for testing RacerPro in demanding applications. We also would like to thank Olaf
Noppens for providing the Protégé plugin for RacerPro and to Ronald Cornet for providing an
earlier interface for Racer called RICE.

The XML/RDF-based part of the input interface for RacerPro is implemented using the Wilbur Se-
mantic Web Toolkit written by Ora Lassila. For more information on Wilbur and the Wilbur source
code see http://wilbur-rdf.sourceforge.net/. RacerPorter is built with Lispworks Common
Lisp.

For most versions of RacerPro, the DIG server interface is implemented with AllegroServe. For some
special versions of RacerPro, however, the HTTP server for the DIG interface of RacerPro is imple-
mented with CL-HTTP, which is developed and owned by John C. Mallery. For more information
on CL-HTTP see http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html.

Finally we would like to thank all customers and users that have directly contributed to the function-
ality and stability of the RacerPro system by giving comments, providing ideas and test knowledge
bases, implementing interfaces, or sending bug reports.

209

http://www.franz.com/
http://www.franz.com/
http://www.lispworks.com/
http://www.lispworks.com/
http://wilbur-rdf.sourceforge.net/
http://www.ai.mit.edu/projects/iiip/doc/cl-http/home-page.html

210 APPENDIX B. ACKNOWLEDGMENTS

Bibliography

[1] Allegrograph user guide. http://www.franz.com/agraph/allegrograph/.

[2] F. Baader, A. Bauer, P. Baumgartner, A. Cregan, A. Gabaldon, K. Ji, K. Lee, D. Rajaratnam,
and R. Schwitter. A novel architecture for situation awareness systems. In Martin Giese and
Arild Waaler, editors, Proceedings of the 18th International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (Tableaux 2009), volume 5607 of Lecture
Notes in Computer Science, pages 77–92. Springer-Verlag, 2009.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence IJCAI-05, Edinburgh, UK. Morgan-
Kaufmann Publishers., 2005.

[4] F. Baader, D. Calvanese, D. MacGuinness, D. Nardi, and P.F. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

[5] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis
of optimization techniques for terminological representation systems or: Making KRIS get
a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management,
4:109–132, 1994.

[6] F. Baader and B. Hollunder. KRIS: Knowledge Representation and Inference System.
SIGART Bull., 2(3):8–14, 1991.

[7] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for the se-
mantic web. In Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial Intelligence.
Springer, 2003., 2003.

[8] S. Bechhofer, R. Möller, and P. Crowther. The DIG description logic interface. In Proceedings
of the International Workshop on Description Logics (DL-2003), Rome, Italy, September 5-7,
2003.

[9] A. Borgida. On the relationship between description logics and predicate logic queries. Tech-
nical Report LCSR-TR-295-A, Rutgers University, New Brunswick (NJ, USA), 1992.

[10] A. Borgida. Description logics in data management. IEEE Trans. on Knowledge and Data
Engineering, 7(5):671–682, 1995.

[11] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. Alperin Resnick. CLASSIC: A struc-
tural data model for objects. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 59–67, 1989.

[12] A. Borgida and P.F. Patel-Schneider. A semantics and complete algorithm for subsumption
in the CLASSIC description logic. J. of Artificial Intelligence Research, 1:277–308, 1994.

[13] M. Buchheit, F.M. Donini, and A. Schaerf. Decidable reasoning in terminological knowledge
representation systems. Journal of Artificial Intelligence Research, 1:109–138, 1993.

211

http://www.franz.com/agraph/allegrograph/

212 BIBLIOGRAPHY

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Eql-lite: effective first-
order query processing in description logics. In IJCAI’07: Proceedings of the 20th International
Joint Conference on Artifical intelligence, pages 274–279, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc.

[15] S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, R. Möller, S. Montanelli, G. Peta-
sis, and M. Wessel. Multimedia interpretation for dynamic ontology evolution. Journal of Logic
and Computation, 19(5):859–897, 2008.

[16] A.K. Chandra. Theory of database queries. In Proc. of the 7th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’88), pages 1–9, 1988.

[17] S. Espinosa, A. Kaya, and R. Möller. Formalizing multimedia interpretation based on abduc-
tion over description logic Aboxes. In Proc. of the 2009 International Workshop on Description
Logics DL- 2009, 27 to 30 July 2009, Oxford, United Kingdom, 2009. CEUR Workshop Pro-
ceedings (Vol. 477).

[18] J. Faddoul and V. Haarslev. Algebraic tableau reasoning for the description logic SHOQ. In
Journal of Applied Logic, Special Issue on Hybrid Logics, page 31 pages, 2010. Accepted for
publication.

[19] J. Faddoul and V. Haarslev. Optimizing algebraic tableau reasoning for SHOQ: First ex-
perimental results. In Proceedings of the 2010 International Workshop on Description Logics
(DL-2010), Waterloo, Canada, May 4-7, pages 161–172., 2010.

[20] J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis,
Department of Computer and Information Science, University of Pennsylvania, 1995.

[21] J. W. Freeman. Hard random 3-SAT problems and the Davis-Putnam procedure. Artificial
Intelligence, 81:183–198, 1996.

[22] J. Gómez-Romero, J. Garca, M.A. Patricio, and J.M. Molina. Towards the implementation
of an ontology-based reasoning system for visual information fusion. In 3rd Annual Skövde
Workshop on Information Fusion Topics (SWIFT 2009), Skövde, Sweden: Oct., pages pp.
5–10, 2009.

[23] V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions, role hierar-
chies, and transitively closed roles. In Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2000), pages 273–284. Morgan Kaufmann, Los Altos, 2000.

[24] V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases:
A practical case study. In B. Nebel, editor, Proceedings of Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI-01, pages 161–166, 2001.

[25] V. Haarslev and R. Möller. Optimizing reasoning in description logics with qualified num-
ber restrictions. In Proceedings International Workshop on Description Logics (DL-2001),
Stanford, USA, 1.-3. August, pages 142–151, 2001.

[26] V. Haarslev and R. Möller. Optimization strategies for instance retrieval. In Proceedings of
the International Workshop on Description Logics (DL-2002). CEUR Electronic Workshop
Proceedings, http://ceur-ws.org/Vol-53/, 2002.

[27] V. Haarslev and R. Möller. Incremental query answering for implementing document retrieval
services. In Proceedings of the International Workshop on Description Logics (DL-2003),
Rome, Italy, September 5-7, pages 85–94, 2003.

BIBLIOGRAPHY 213

[28] V. Haarslev and R. Möller. Optimization techniques for retrieving resources described in
OWL/RDF documents: First results. In Proc. of the 8th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2004), 2004.

[29] V. Haarslev and R. Möller. Optimization techniques for retrieving resources described in
OWL/RDF documents: First results. In Ninth International Conference on the Principles of
Knowledge Representation and Reasoning, KR 2004, Whistler, BC, Canada, June 2-5, pages
163–173, 2004.

[30] V. Haarslev and R. Möller. The revival of structural subsumption in tableau-based description
logic reasoners. In Proceedings of the 2008 International Workshop on Description Logics
(DL-2008), 2008.

[31] V. Haarslev, R. Möller, and A.Y. Turhan. Exploiting pseudo models for TBox and ABox
reasoning in expressive description logics. In R. Goré, A. Leitsch, and T. Nipkow, editors,
International Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23, Siena,
Italy, pages 29–44. Springer-Verlag, 2001.

[32] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended with
concrete domains: A practically motivated approach. In R. Goré, A. Leitsch, and T. Nipkow,
editors, International Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23,
Siena, Italy, pages 29–44. Springer-Verlag, 2001.

[33] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended with
concrete domains: A practically motivated approach. In R. Goré, A. Leitsch, and T. Nipkow,
editors, Automated Reasoning. First International Joint Conference (IJCAR’01), Siena, Italy,
June 18–23, 2001, Proceedings, volume 2083 of Lecture Notes in Artificial Intelligence, pages
29–44, Berlin, 2001. Springer-Verlag.

[34] V. Haarslev, R. Möller, and M. Wessel. Querying the semantic web with Racer + nRQL.
In Proceedings of the KI-2004 International Workshop on Applications of Description Logics
(ADL’04), Ulm, Germany, September 24, 2004.

[35] V. Haarslev, R. Möller, and M. Wessel. Description logic inference technology: Lessons learned
in the trenches. In I. Horrocks, U. Sattler, and F. Wolter, editors, Proc. International Workshop
on Description Logics, 2005.

[36] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In Proc.
of the 2nd Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91),
pages 335–346, 1991.

[37] M. Horridge and S. Bechhofer. The OWL API: A Java API for Working with OWL 2 Ontolo-
gies. In OWLED 2009, 6th OWL Experienced and Directions Workshop, Chantilly, Virginia,
2009.

[38] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,
University of Manchester, 1997.

[39] I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 636–647,
1998.

[40] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. of the 10th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pages 57–67.
AAAI Press, 2006.

214 BIBLIOGRAPHY

[41] I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05, Edinburgh,
UK, Edinburgh (UK), 2005. Morgan Kaufmann, Los Altos.

[42] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding ALCIR+-satisfiability.
LTCS-Report 98-08, LuFg Theoretical Computer Science, RWTH Aachen, Germany, 1998.

[43] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic
SHIQ. In David MacAllester, editor, Proceedings of the 17th International Conference on
Automated Deduction (CADE-17), number 1831 in Lecture Notes in Computer Science, pages
482–496, Germany, 2000. Springer Verlag.

[44] I. Horrocks, U. Sattler, and St. Tobies. Reasoning with individuals for the description logic
SHIQ. In David McAllester, editor, Proc. of the 17th Int. Conf. on Automated Deduction
(CADE 2000), volume 1831 of Lecture Notes in Computer Science, pages 482–496. Springer-
Verlag, 2000.

[45] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc. of the 7th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pages 285–296,
2000.

[46] Ian Horrocks and Ulrike Sattler. Optimised reasoning for SHIQ. In Proc. of the 15th Eur.
Conf. on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[47] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A description logic with transitive and
converse roles, role hierarchies and qualifying number restrictions. LTCS-Report 99-08, LuFg
Theoretical Computer Science, RWTH Aachen, Germany, 1999.

[48] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive descrip-
tion logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors, Proceed-
ings of the 6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Computer Science, pages 161–180. Springer-
Verlag, 1999.

[49] Michael Hülsen, J. Marius Zöllner, Nino Haeberlen, and Christian Weiss. Asynchronous real-
time framework for knowledge-based intersection assistance. In 14th International IEEE Con-
ference on Intelligent Transportation Systems, Washington, DC, USA. October 5-7,, 2011.

[50] Michael Hülsen, J. Marius Zöllner, and Christian Weiss. Traffic intersection situation descrip-
tion ontology for advanced driver assistance. In 2011 IEEE Intelligent Vehicles Symposium
(IV), Baden-Baden, Germany, June 5-9, 2011.

[51] B. Hummel. Description Logic for Scene Understanding at the example of Urban Road Inter-
sections. Südwestdeutscher Verlag für Hochschulschriften, 2010.

[52] R.L.G. Lemmens. Semantic interoperability of distributed geo-services. PhD thesis, Interna-
tional Institute for Geo-Information Science and Earth Observations (CT), Delft, Netherlands
Geodetic Commission NCG, 2006.

[53] T. Liebig, M. Luther, O. Noppens, M. Rodrigues, D. Calvanesez, M. Wessel, R. Möller, M. Hor-
ridge, S. Bechhofer, D. Tsarkov, and E. Sirin. OWLlink: DIG for OWL 2. In Fifth International
Workshop on OWL: Experiences and Directions (OWLED08), Karlsruhe, Germany, 2008.

[54] R. Möller and B. Neumann. Ontology-based Reasoning Techniques for Multimedia Inter-
pretation and Retrieval. In Semantic Multimedia and Ontologies : Theory and Applications.
Springer, 2008.

BIBLIOGRAPHY 215

[55] O. Noppens. RACER reasoning support for OWLAPI and Protégé. http://www.uni-ulm.

de/in/ki/semantics/owltools.

[56] O. Noppens, M. Luther, and Th. Liebig. The OWLlink protocol: Infrastructure for inter-
facing and managing OWL 2 reasoning systems. In OWLED 2009, 6th OWL Experienced
and Directions Workshop, Chantilly, Virginia, October 2009, volume 529 of CEUR Workshop
Proceedings, 2009.

[57] A. Pease and I. Niles. IEEE Standard Upper Ontology: A progress report. Knowledge
Engineering Review, Special Issue on Ontologies and Agents, 17:65–70, 2002. http://www.

ontologyportal.org/.

[58] Evren Sirin. From wine to water: Optimizing description logic reasoning for nominals. In In:
Proceedings of KR-2006. (2006) 9099, pages 90–99, 2006.

[59] R. Van Der Straeten. Inconsistency Management in Model-Driven Engineering: An Approach
using Description Logics. PhD thesis, Vrije Universiteit Brussel, 2005.

[60] Sudoku in OWL. http://www.mindswap.org/~aditkal/sudoku.

[61] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing terminological reasoning for
expressive description logics. J. of Automated Reasoning, 39(3):277–316, 2007.

[62] A.-Y. Turhan. On the Computation of Common Subsumers in Description Logics. PhD thesis,
TU Dresden, Institute for Theoretical Computer Science, 2008.

[63] M. Wessel. Solving Sudoku problems using Abox reasoning. http://www.sts.tu-harburg.

de/people/mi.wessel/papers/sudoku.racer.

[64] M. Wessel. Flexible und konfigurierbare Software-Architekturen für datenintensive ontolo-
giebasierte Informationssysteme. PhD thesis, Hamburg University of Technology, 2008. ISBN
978-3-8325-2162-2.

[65] M. Wessel, M. Luther, and R. Möller. What happened to bob? semantic data mining of context
histories. In Proc. of the 2009 International Workshop on Description Logics DL-2009, Oxford,
United Kingdom, volume 477 of CEUR Workshop Proceedings, 2009.

[66] M. Wessel, M. Luther, and M. Wagner. The difference a day makes - recognizing impor-
tant events in daily context logs. In Proceedings of the International Workshop on Contexts
and Ontologies: Representation and Reasoning (C&O:RR),, volume 298 of CEUR Workshop
Proceedings, 2007.

[67] M. Wessel and R. Möller. A high performance semantic web query answering engine. In
I. Horrocks, U. Sattler, and F. Wolter, editors, Proc. International Workshop on Description
Logics, 2005.

[68] M. Wessel and R. Möller. A flexible DL-based architecture for deductive information systems.
In G. Sutcliffe, R. Schmidt, and S. Schulz, editors, Proc. IJCAR-06 Workshop on Empirically
Successful Computerized Reasoning (ESCoR), pages 92–111, 2006.

[69] M. Wessel and R. Möller. Design principles and realization techniques for user friendly, in-
teractive, and scalable ontology browsing and inspection tools. In International Workshop on
OWL: Experiences and Directions (OWLED 2007), 2007.

[70] J. Wu and V. Haarslev. Planning of axiom absorption. In Proceedings of the 2008 International
Workshop on Description Logics (DL-2008), Dresden, Germany, 2008.

http://www.uni-ulm.de/in/ki/semantics/owltools
http://www.uni-ulm.de/in/ki/semantics/owltools
http://www.ontologyportal.org/
http://www.ontologyportal.org/
http://www.mindswap.org/~aditkal/sudoku
http://www.sts.tu-harburg.de/people/mi.wessel/papers/sudoku.racer
http://www.sts.tu-harburg.de/people/mi.wessel/papers/sudoku.racer

216 BIBLIOGRAPHY

[71] M. Zuo and V. Haarslev. High performance absorption algorithms for terminological reasoning.
In Proceedings of the 2006 International Workshop on Description Logics (DL-2006), Lake
District, UK, pages 159–166, 2006.

Index

Protégé, 55

RacerEditor, 45

RacerMaster, 205

RacerPlus, 205

RacerPorter, 11, 41, 205

RacerPro, 205

AND query, 109

HAS-KNOWN-SUCCESSOR query atom, 100

NEG query, 113

PROJECT-TO operator, 119

SAME-AS query atom, 99

UNION query, 110

A-box Graph tab, 53

A-boxes tab, 50

abduction, 185

ABox augmentation, 125

ABox modification, 125

active domain semantics, 86

APIs, 20

assertion, 69

Assertions tab, 51

associated ABox individual, 134

associated Abox individual, 134

associated substrate node, 134

Axioms tab, 51

binary query atom, 85

body projection operator, 119

boolean query, 118

bug reports, 37

cheap query, 166

cheap rule, 166

cheap tuple, 166

Classroom license, 206

closed-world assumption, 77

complex query, 108

complex TBox query, 129

concept axioms, 64

concept definition, 65

concept equation, 64

217

218 INDEX

concept query atom, 86
concept term, 62
Concepts tab, 50
concrete domain restriction, 64
concrete domain value query, 101
concrete domains, 66
concurrent query processing, 159
conjunction of roles, 66
conjunctive query, 109
consistency of qualitative spatial networks, 143
constraint query atom, 94
creating individuals with a rule, 126

data representation, 133
data substrate, 133
data substrate edge, 133
data substrate edge query expression, 136
data substrate label, 133
data substrate node, 133
data substrate node query expression, 136
data substrate predicate, 136
data substrate query expression, 136
deadlock prevention, 168
Defined Queries tab, 54
defined query, 120
defined query and NAF, 122
defined query and PROJECT-TO, 122
Desktop license, 206
disjoint concepts, 64
disjunctive query, 110
domain restriction, 66

eager mode, 160
equal role, 91
event recognition, 203
exists restriction, 62
expensive query, 166
expensive rule, 166
expensive tuple, 166
explicit role filler query, 93
extended OWL query, 137, 141

feature, 65
feature chains in queries, 95
Functional Lambda Expressions, 146

GCI, 64
graphical client interfaces, 55

head projection operators, 101
hybrid ABox individual, 134
hybrid OWL query, 137, 141
hybrid query, 135, 138

INDEX 219

hybrid representation, 133

implicit role filler query, 93
incomplete mode, 164
incremental mode, 157
incremental query processing, 159
individual, 85
Individuals tab, 51
inference modes, 78
injective variable, 85

JRacer, 20

lazy mode, 160
Log tab, 54
LRacer, 34

macro query, 120
marker, 140
mirror data substrate, 137
mirror of an ABox, 137
mirror substrate, 137
mirror substrate marker, 140
mirror substrate query, 138
mirroring an ABox, 137
mirroring an OWL file, 137
mirroring OWL documents, 141

NAF, 113
NAF in constraint query atom, 116
NAF in query with individuals, 117
NAF in SAME-AS query atom, 117
NAF query, 113
negation as failure, 113
Network license, 206
nominals, 75, 128
nominals in queries, 128
nRQL API, 157
nRQL EBNF, 150
nRQL engine, 157
nRQL grammar, 150
nRQL mode, 164
nRQL mode 0, 164
nRQL mode 1, 165
nRQL mode 2, 165
nRQL mode 3, 165
nRQL mode 4, 165
nRQL mode 5, 165
nRQL mode 6, 165
nRQL modes, 157, 165
nRQL persistency, 181
nRQL syntax, 150
number restriction, 63

220 INDEX

object, 85
open-world assumption, 77
optimization strategies, 78
options, 35
OWL, 199
OWL annotation property filler query, 105
OWL annotation property value query, 105
OWL constraint checking, 97
OWL constraint query atom, 97
OWL datatype property filler query, 105
OWL datatype property value query, 105
OWL instances query, 87
OWL mirror, 137, 141
OWL object property filler query, 92
OWL query, 87, 92, 97, 105, 141

predicate, 136
predicate query, 136
preferences, 44
primitive concept, 65
Profiles tab, 47
projection, 119
projection operator, 119
pseudo-nominal, 128
publish-subscribe mechanism, 193

QBox, 177
qualitative spatial reasoning, 143
Queries + Rules tab, 54
query API, 157
query atom, 86
query body, 86
query cache, 177
query conjunct, 109
query consistency, 171
query disjunct, 110
query engine, 157
query entailment, 173
query head, 86, 101
query inconsistency, 171
query inference, 171
Query IO tab, 54
query life cycle, 160
query predicate, 136
query realization, 180
query realizer, 180
query reasoning, 171
query repository, 177
query subsumption, 173
querying qualitative spatial networks, 143

range restriction, 66
RCC consistency, 143

INDEX 221

RCC constraint checking, 144
RCC query, 144
RCC substrate, 143
RDF edge query, 92
RDF instance query, 87
RDF node query, 87
Reasoning in Secondary Memory, 188
referencing a data substrate node, 136
region connection calculus, 143
retraction, 185
retrieving concrete domain values, 101
role chains in queries, 95
role hierarchy, 65
Role Hierarchy tab, 53
role query atom, 88
role query atom with features, 91
role query atom with negated role, 89
Roles tab, 51
rule, 125
rule antecedent, 125
rule application, 125, 161
rule application strategy, 161
rule consequence, 125
rule engine, 125, 157
rule firing, 161
rule life cycle, 161
rule postcondition, 125
rule precondition, 125
rule strategy, 161
rules and pseudo-nominals, 128
rules and the concrete domain, 127

scalable query answering, 164
semantic cache, 177
semantic web, 5
semantically identical individuals, 91
semi-structured data, 133
services, 6, 7
set at a time mode, 157
Shell tab, 48
signature, 62
Site license, 206
socket interface, 20
spatial query, 144
spatial reasoning, 143
spatial reasoning substrate, 143
spatio-thematic query, 144
stored defined query, 181
stored QBox, 181
stored substrate, 181
substrate, 133
substrate layer, 133

222 INDEX

substrate persistency, 181
substrate query, 135
SWRL, 71

T-boxes tab, 50
Taxonomy tab, 52
TBox query, 129
Terms and Conditions, 207
told value query, 101
transitive role, 65
tuple at a time mode, 157
two-phase query processing, 166

unary query atom, 85
unique name assumption, 70, 78

value restriction, 62
variable, 85

warning token, 166

	Introduction
	System Overview
	Design Principles
	Description and Query Languages
	Interfaces

	Different views on RacerPro
	RacerPro as a Semantic Web Reasoning System and Information Repository
	RacerPro as a Knowledge Representation and Reasoning System

	Application Areas

	Using RacerPro and its Interfaces
	Sample Session
	Using RacerPro with RacerPorter
	Using RacerPro from the Command Line

	The RacerPro Server
	The File Interface
	TCP Interfaces
	Options for RacerPro Server
	How to Send Bug Reports
	Online Reference Manual

	RacerPorter in Details
	Distribution of GUI elements
	Preferences
	RacerEditor
	Tabs in RacerPorter
	Known Problems

	Other Graphical Client Interfaces
	Protégé
	Using Protégé and RacerPorter in Combination

	Modeling Languages and Basic Reasoning Services
	Naming Conventions
	Concept Language
	Concept Axioms
	Role Axioms
	Concrete Domains
	Individual Assertions and A-boxes
	Specifying Rules
	Hints on Modeling and Reasoning with RacerPro
	Representing Data with Description Logics (?)
	Nominals or Concrete Domains?
	Open-World Assumption
	Closed-World Assumption
	Unique Name Assumption

	Evaluating RacerPro and Configuring Reasoning Modes

	The New RacerPro Query Language - nRQL
	The nRQL Language
	Query Atoms, Objects, Individuals, and Variables
	Query Head Projection Operators to Retrieve Told Values
	Complex Queries
	Defined Queries
	ABox Augmentation with Simple Rules
	Complex TBox Queries
	Hybrid Representations with the Substrate Representation Layer
	Functional Lambda Expressions
	Formal Syntax of nRQL

	The nRQL Query Processing Engine
	The Query Processing Modes of nRQL
	The Life Cycle of a Query
	The Life Cycle of a Rule
	How to Implement Your Own Rule Application Strategy
	Configuring the Degree of nRQL Completeness
	Automatic Deadlock Prevention
	Reasoning with Queries
	The Query Repository - The QBox
	The Query Realizer
	The nRQL Persistency Facility

	Additional Facilities
	Retraction and Incremental Additions
	Rule Formalism Extended to Support Abduction
	Reasoning with Triples in Secondary Memory
	The Publish-Subscribe Mechanism
	An Application Example
	Using JRacer for Publish and Subscribe

	OWL Interface
	Explanation
	Non-standard Inferences
	Event Recognition

	Editions and Licenses
	Editions
	Licenses

	Acknowledgments
	Index

