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Abstract. Lifted inference approaches reduce computational work as
inference is performed using representatives for sets of indistinguishable
random variables, which allows for tractable inference w.r.t. domain sizes
in dynamic probabilistic relational models. Unfortunately, maintaining
a lifted representation is challenging in practically relevant application
domains, as evidence often breaks symmetries making lifted techniques
fall back on their ground counterparts. In existing approaches asym-
metric evidence is counteracted by merging similar but distinguishable
objects when moving forward in time. While undoing splits a posteriori
is reasonable, we propose learning approximate model symmetries a pri-
ori to prevent unnecessary splits due to inaccuracy or one-time events.
In particular, we propose a multivariate ordinal pattern symbolization
approach followed by spectral clustering to determine sets of domain en-
tities behaving approximately the same over time. By using object clus-
ters, we avoid unnecessary splits by keeping entities together that tend
to behave the same over time. Understanding symmetrical and asymmet-
rical entity behavior a priori allows for increasing accuracy in inference
by means of inferred evidence for unobserved entities to better represent
reality. Empirical results show that our approach reduces unnecessary
splits, i.e., improves runtimes, while keeping accuracy in inference high.
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1 Introduction

To cope with uncertainty and relational information of numerous objects over
time, in many real-world applications, dynamic (also called temporal) proba-
bilistic relational models (DPRMs1) are employed [6]. We consider an example
from logistics, specifically shipping, where the transportation of cargo using ves-
sels (objects) changes over time (temporal) depending on supply and demand
(relational). To ensure efficient query answering in DPRMs, objects of the same
type and behavior, e.g., vessels transporting the same cargo, are treated together
in groups, yielding a sparse representation (lifting). Lifted inference approaches

1 pronounced deeper models
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use relations in a model, allowing for tractable inference w.r.t. domain sizes [14].
Unfortunately, maintaining a sparse representation to ensure efficient query an-
swering is challenging, as evidence breaks symmetries making lifted techniques
fall back to their ground counterparts [11]. To retain a lifted representation the
field of approximate inference, i.e., approximating symmetries, has emerged in
research. Asymmetric evidence is counteracted by treating similar but distin-
guishable objects as if they were identical to obtain a lifted solution, while only
introducing a small and bounded error in exchange for efficient reasoning.

For static models, Singla et al. [18] propose two algorithms for approximate
lifted belief propagation and provide error bounds for them. Venugopal and
Gogate [20] determine similarities between domain objects based on evidence
to form clusters and project the marginal distribution of one object to all ob-
jects of a cluster. As approximate symmetries have an effect on the marginal
probability distributions of the models, van den Broeck and Niepert [4] propose
an approach that produces improved probability estimates on an approximate
model. As all these approaches do not account for temporal behavior, Gehrke
et al. [8] propose recreating a new lifted representation by merging groundings,
which were introduced over time. Common to all these approaches is that in
the first place groundings are allowed and then dealt with afterwards, i.e., by
exploiting approximate symmetries within message passing in inference tasks.

While dealing with groundings to recover a lifted representation a posteriori
has been studied extensively in research, preventing groundings a priori, i.e.,
before they even occur, has to the best of our knowledge not been studied yet.
In this paper, we investigate how understanding model symmetries a priori can
prevent groundings from occurring. Motivated by examples from seaborne trans-
portation, we extend learning a lifted model by finding groups of entities, e.g.
vessels transporting the same cargo, that behave approximately the same over
time. In particular, we determine entity symmetries through an ordinal pattern
symbolization approach followed by spectral clustering. Using these entity clus-
ters, we show how to avoid groundings by keeping similar entities together. In
general, as we argue, understanding model symmetries a priori to avoid ground-
ings combines well with existing approaches by merging groundings when objects
align again. Furthermore, we introduce the concept of interconnectivity and its
potential for inferred evidence, e.g., evidence observed for one entity also apply-
ing to other entities. We conclude with an empirical evaluation and show that
our approach significantly reduces groundings, i.e., improves runtime perfor-
mance while increasing accuracy in inference as the reality is better represented
by means of inferred evidence.

2 Preliminaries

We recapitulate DPRMs presented by Gehrke et al. [7], which are based on para-
metric factor graphs introduced by Poole [16]. We illustrate DPRMs in context
of an example from shipping. DPRMs combine relational logic with a factor
graph, using logical variables (logvars) as parameters for randvars (parameter-



Approximation of Symmetries in Dynamic Probabilistic Relational Models 3

Dt−1(Z)

g2
t−1

At−1(Z, V )

g1
t−1

St−1(Z)

Rt−1(Z)

gS gV gD
St(Z)

g1
t

Rt(Z)

At(Z, V )

g2
t

Dt(Z)

Fig. 1: Two-slice parameterized probabilistic model G→.

ized randvar, or PRV for short). PRVs compactly represent sets of randvars that
are considered indistinguishable without further evidence.

Definition 1 (PRV). Let R be a set of randvar names, L a set of logvar
names, Φ a set of factor names, and D a set of entities. All sets are finite.
Each logvar L has a domain D(L) ⊆ D. A constraint is a tuple (X , CX) of
a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). A PRV
R(L1, . . . , Ln), n ≥ 0 is a construct of a randvar name R ∈ R combined with
logvars L1, . . . , Ln ∈ L. The term R(A) denotes the (range) values of a PRV A.

To represent independent relations, PRVs are linked by parametric factors
(parfactors) to compactly encode the full joint distribution of the DPRM.

Definition 2 (Parfactor). We denote a parfactor g by φ(A)|C with A =
(A1, . . . , An) a sequence of PRVs, φ : ×ni=1R(Ai) 7→ R+ a function with name
φ ∈ Φ, and C a constraint on the logvars of A. A PRV A or logvar L under con-
straint C is given by A|C or L|C , respectively. The term gr(P ) denotes the set of
all instances of P . An instance is a grounding of P , substituting the logvars in P
with a set of entities from the constraints in P . The term lv(P ) refers to logvars
in P . A parameterized model PRM G is a set of parfactors {gi}ni=1, representing
the full joint distribution PG = 1

Z

∏
f∈gr(G) f, where Z is a normalizing constant.

Roughly speaking, DPRMs are defined by an initial model and a temporal
copy pattern to describe model changes over time.

Definition 3 (DPRM). A DPRM is a pair of PRMs (G0, G→) where G0 is
a PRM representing the first time step and G→ is a two-slice temporal param-
eterized model representing At−1 and At where Aπ is a set of PRVs from time
slice π. An inter-slice parfactor φ(A)|C has arguments A under constraint C
containing PRVs from both At−1 and At, encoding transitioning from time step
t − 1 to t. A DPRM (G0, G→) represents the full joint distribution P(G0,G→),T

by unrolling the DPRM for T time steps, forming a PRM as defined above.

Figure 1 shows a DPRM illustrating seaborne transportation that is mainly
driven by supply St(Z) and demand Dt(Z) of commodities across various lo-
cations (zones Z). Vessels V move between these zones, captured by At(Z, V ),
representing trade flows: Vessels are in zones with high supply (to load cargo), in
zones with high demand (to discharge cargo), and in between while traveling. For
transportation, a fee per ton, called freight rate Rt(Z), is charged. In Figure 1,
variable nodes (ellipses) correspond to PRVs, factor nodes (boxes) to parfactors.
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Parfactors gS , gV , and gD are so called inter-slice parfactors. The submodel to
the left and to the right of these inter-slice parfactors are duplicates of each
other, with the left referencing time step t − 1 and the right referencing time
step t. Parfactors reference time-indexed PRVs, namely, a boolean PRV At(Z, V )
and PRVs St(Z), Rt(Z), Dt(Z) with range values {high,medium, low}. Given
a DPRM, one can ask queries for probability distributions or the probability of
an event given evidence.

Definition 4 (Queries). Given a DPRM (G0, G→), a ground PRV Qt, and
evidence E0:t = {{Es,i = es,i}ni=1}ts=0 (set of events for time steps 0 to t), the
term P (Qπ | E0:t), π ∈ {0, . . . , T}, t ≤ T , denotes a query w.r.t. P(G0,G→),T .

In context of the shipping application, an example query for t = 10, such
as P (R10(z1) | S10(z2) = high, S10(z3) = high), contains a set of observations
S10(z2) = high and S(z3) = high as evidence. Sets of parfactors encode evidence,
one parfactor for each subset of evidence that concern one PRV with the same
observation.

Definition 5 (Encoding Evidence). A parfactor ge = φe(E(X))|Ce
encodes

evidence for a set of events {E(xi) = o}ni=1 of a PRV E(X). The function φe
maps the value o to 1 and the remaining range values of E(X) to 0. Constraint
Ce encodes the observed groundings xi of E(X), i.e., Ce = (X, {xi}ni=1).

Suppose we ask for the probability distribution of supply at a time step t = 2
in a certain zone z1, given that in the previous time step t = 1 the supply was
high, i.e., P (S2(z1) | S1(z1) = high. Then evidence is encoded in parfactors g1

1 by
duplicating the parfactor and using one to encode evidence and one to represent
all sets of entities that are still considered indistinguishable. Each parfactor
represents a different set of entities bounded by the use of constraints, e.g.,
limiting the domain for the evidence parfactor to z1. The parfactor that encodes
evidence is adjusted such that all range value combinations in the parfactors
distribution φ are dropped for S1(z1) 6= high. During message passing, the splits
carry over. Thus, the parfactors gS and g2

1 also split into one part for z1 and
another for all other instances. Thus, under evidence a model Gt = {git}ni=1 at
time step t, is split w.r.t. its parfactors such that its structure remains

Gt = {gi,1t , . . . , gi,kt }ni=1 (1)

with k ∈ N+. Every parfactor git can have up to k ∈ N+ splits gi,jt = φi,jt (Ai)|Ci,j ,
where 1 ≤ j ≤ k and Ai is a sequence of the same PRVs but with different
constraint Ci,j and varying functions φi,jt due to evidence.

3 A Priori Approximation of Symmetries

In relational models evidence leads to splits within the models’ symmetric struc-
tures, i.e., asymmetric evidence slowly grounds a lifted model over time. In the
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worst case a model is fully grounded, i.e., a model as defined in Eq. (1) contains

k =
∏

L∈lv(A)

|L| (2)

splits for every parfactor git = φit(A)|Ci such that each object l ∈ L is in its own
parfactor split. We propose learning approximate model symmetries a priori to
relieve the model from unnecessary splits due to inaccuracy or one time events.
When knowing approximate model symmetries in advance, one can prevent splits
through evidence, e.g., if those are only a one time blip. In general, our approach
works well with any other approach undoing splits after they occurred when
moving forward in time, i.e., in message passing by merging sets of entities when
those align again (temporal approximate merging). As we argue, combining both
kind of approaches brings together the best of both worlds:

(a) While with determining approximate model symmetries, we can use the full
amount of historical training data to prevent groundings a priori,

(b) with temporal approximate merging, we can merge non-preventable parfactor
splits even after they occurred.

Next, we introduce our approach for the a priori determination of model sym-
metries in DPRMs in two steps. First, we individually encode PRVs behavior by
ordinal pattern symbolization. Secondly, we build groups with similar behavior
by spectral clustering. Algorithm 1 in the Appendix outlines the corresponding
pseudocode combining both steps.

3.1 Encoding Model Behavior by Ordinal Pattern Symbolization

To describe and understand the behavior of entities and to find symmetries
between them, historical observations (evidence), encoded in the models PRVs,
is used. This means in particular: Every PRV represents multiple entities, e.g.,
vessels V or zones Z, of the same type. That is, for a PRV St(Z), entities z
represented by a logvar Z with its domain D(Z) of size |D(Z)|. For each entity
zi ∈ D(Z) from this PRV St(Z) own observations are made over time, i.e., a
time series is generated. Having |D(Z)| entities in Z, we consider |D(Z)| samples
of time series in a data matrix

X = ((St(zi))
|D(Z)|
i=1 )Tt=1 (3)

with observations St(zi) for every zi ∈ D(Z) in time t ∈ {1, . . . , T}. Note that
a PRV can be parameterized with more than one logvar, but for the sake of
simplicity we introduce our approach using PRVs with only one logvar. Sym-
metry detection for m-logvar PRVs works similar to one-logvar PRVs, with the
difference, that in symmetry detection entity pairs, i.e., m-tuples, are used. As
an example, for any 2-logvar PRV Pt(X,Y ), an entity pair is a 2-tuple (x1, y1)
with x1 ∈ D(X) and y1 ∈ D(Y ).

To encode the behavior of an entity (or entity pair), we use ordinal pattern
symbolization based on the works by Bandt and Pompe [1]. Ordinal patterns
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(b) Ordinal pattern determination of order d = 3 and delay
τ = 10 of a time series concerning two objects z1 and z2.

Fig. 2: Ordinal pattern determination. Note, the delay τ refers to the neighbours
under consideration within a pattern. The determination of an ordinal pattern
is carried out at any time step t ∈ [τ(d− 1) + 1, T ]. Best viewed in color.

encode the up and downs in a time series by the total order between two or
more neighbours and their permutations and therefore give a good abstraction
of the overall behavior or the generating process of a time series. Ordinal patterns
are formally defined as follows.

Definition 6. A vector (x1, ..., xd) ∈ Rd has ordinal pattern (r1, ..., rd) ∈ Nd of
order d ∈ N if xr1 ≥ ... ≥ xrd and rl−1 > rl in the case xrl−1

= xrl .

Figure 2a shows all possible ordinal patterns of order d = 3 of a vector (x1, x2, x3).
For a fixed order d, there are d! different ordinal patterns denoted as o = 1, . . . , d!.
The ordinal approach has notable advantages in applications: (i) The method is
conceptually simple, (ii) it is not necessary to have previous knowledge about the
data range or type of time series, (iii) the ordinal approach supports robust and
fast implementations [10, 15], and, (iv) compared to classical symbolization ap-
proaches such as the well-known Symbolic Aggregate ApproXimation (SAX) [5]
it allows an easier estimation of a good symbolization scheme [9, 19].

To symbolize a time series (x1, x2, ..., xT ) ∈ RT , each time step t ∈ {d, ..., T}
is assigned its ordinal pattern o of order d, as shown in Figure 2b exemplarily for
five time steps in each of two time series. To access overarching trend, delayed
behavior is of interest, showing various details of structure of the time series.
The time delay τ ∈ N>0 is the delay between successive points in the symbol
sequences. Finding optimal orders d and delays τ depend on the application and
is a challenging problem in research [13]. Practical advice can be found in [17].

A DPRM, as introduced in Section 2, encodes sequential data using its PRVs,
e.g., the PRV St(Z) encodes supply at time step t in various zones on the globe.
Figure 2b shows the time series of two continuous variables, dashed in grey
and solid in black, corresponding to observations for the level of supply in two
zones z1 and z2. Note that for the sake of simplicity we here look at supply
over time with its continues range values before its discretization, since DPRMs
only support discrete range values. Hereby, the PRVs range values have a total
ordering, intuitively, low < medium < high. Note that for example, the PRVs
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At(Z, V ) are boolean and thus have no total order. The further procedure can
be executed in this case however on the raw data with the disadvantage that
no temporal neighborhood relations are included. The figure shows symmetry in
the behavior of the time series data for both variables z1 and z2. The time series
(xt)t∈T for z2 follows the time series (yt)t∈T for z1 (or vice versa) with varying
offset almost the whole time. The only exceptions are the intervals 40 < t < 60
and 130 < t < 150, where both curves develop contrary to each other.

Ordinal patterns are well suited to characterize an overall behavior of time
series that is independent of the data range. However, the dependence on the
data range is often relevant. For example, in Figure 2b the time series (xt)t∈T
and (yt)t∈T are similar in terms of their ordinal patterns, but differ when looking
at their y intercept. To address this problem, in the next step, entity clustering,
we use the arithmetic mean xd,τt = 1

d

∑d
k=1 xt−(k−1)τ of the time series’ values

corresponding to the ordinal pattern as an additional characteristic or feature of
behavior. There are still other features that can be relevant. For simplicity, we
only determine ordinal patterns and their means for each PRV of the DPRM,
yielding a new data representation

S ∈ 〈o,m〉|D(Z)|×(T−(τ(d−1)) (4)

where sit〈o, ·〉 ∈ S represents the ordinal pattern and sit〈·,m〉 ∈ S represents

the corresponding mean xd,τt for an entity zi ∈ D(Z) at time step t of a PRV
parameterized with the logvar Z. The order d and delay τ are passed in from
the outside and might depend on, e.g., the frequency of the data, to capture the
overarching behavior of each entity.

3.2 Entity Symmetry Approximation by Spectral Clustering

Lifted models are often used when dealing with large domains, i.e., they represent
numerous objects resulting in high dimensional data. When the use of clustering
is required to uncover symmetries in behavior, the curse of dimensionality [2]
complicates this task. Using spectral clustering became a popular setting for
problems involving high dimensional data [3].

Similarity Graph Spectral clustering is performed on a similarity graph of
entities, where each node represents an entity, e.g., for the PRV St(Z) entities
z ∈ D(Z). The edges between the entities of the lifted model represent their
similarity, more precisely how closely related two entities of the model are to
each other. The new symbolic representation S, containing tuples of ordinals
and means, is used to measure similar behavior at each time step t ∈ {τ(d−1)+
1, . . . , T} individually. As an auxiliary structure, we use a square matrix W ∈
N|D(Z)|×|D(Z)|, where each wij ∈ W describes the similarity between entities zi
and zj by simple counts of equal behavior over time t ∈ T . The similarity count
of equal behavior of two entities zi and zj is given by

wij =
∑
t≤T

[
sit〈o, ·〉 == sjt〈o, ·〉 && |sit〈·,m〉 − sjt〈·,m〉| < δ

]
, (5)
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z1 z2 z3 . . . zn
z1 0 9 8 . . . 7
z2 9 0 12 . . . 14
z3 8 12 0 . . . 4
. . . . . . . . . . . . . . . . . .
zn 7 14 3 . . . 0

(a) Auxiliary matrix W
containing counts denoting
entity similarity.

z1 z2

z3

zn

9

8

7

12
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4

(b) Similarity Graph as an-
other representation form of
the auxiliary matrix.

z1 z2 z3 . . . zn
z1 24 -1 -1 . . . -1
z2 -1 35 -1 . . . -1
z3 -1 -1 24 . . . -1
. . . . . . . . . . . . . . . . . .
zn -1 -1 -1 . . . 25

(c) Graph Laplacian matrix
to project the data onto a
lower dimensional space.

Fig. 3: (a) Auxiliary matrix and (b) similarity graph, for the construction of the
(c) Laplacian matrix used for dimension reduction.

where [x] = 1 if x and, 0 otherwise. Simply put, one counts if both time series
of zi and zj share the same ordinal pattern, and the absolute difference of the
two means of the corresponding ordinal pattern is smaller than δ > 0. Once the
auxiliary matrixW is filled, we can derive the similarity graph directly from the
auxiliary matrix, since it is just a graphical representation of a matrix as also
shown in Figures 3a and 3b. The counts wij ∈ W corresponds to the weights of
the edges in the similarity graph, where zero indicates no similarity between two
entities, while the larger the count, the more similar two entities are.

Spectral Clustering In the worst case, a similarity graph for a PRV St(Z)

contains
(|D(Z)|

2

)
fully-connected nodes, where Z is a logvar representing a set

of entities whose entity pairs share similar behavior for least one time step.
If the dimension of the similarity graph of the potentially large domains of a
lifted model becomes too large, classical clustering methods do not achieve good
results because in high-dimensional spaces the smallest and largest distances dif-
fer only relatively slightly [2]. While the well-known k-means algorithm assumes
that the points assigned to a cluster are spherical around the cluster centre and
no good clusters are found due to the relatively equal distances, spectral clus-
tering performs a dimension reduction beforehand and is therefore well suited
to uncover similar groups or symmetries in a DPRM. The general approach to
spectral clustering is to use a standard clustering method such as k-means on
k most relevant eigenvectors of a Laplacian matrix, a special representation of
the similarity graph W. For undirected graphs, the graph Laplacian matrix is
defined as L = D − A, where D ∈ N|D(Z)|×|D(Z)| is a degree matrix containing
the degree dij ∈ D for each node i of the similarity graph, i.e.,

dij =

{∑|D(Z)|
j=1 wij if i = j,

0 if i 6= j,
(6)

and A is the adjacency matrix corresponding to the auxiliary matrix W, where
aij = 1 if wij > 0, and 0 else. Figure 3c shows the graph Laplacian matrix for
the corresponding similarity graph in Figure 3b. Based on the graph Laplacian
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matrix L, the first k eigenvectors corresponding to the k smallest eigenvalues of
L are calculated. Considering the matrix formed by the first k eigenvectors, the
rows are used for clustering by a classical clustering algorithm, such as k-means.

The eigenvectors contained in the clusters CSt(Z)
i , i = 1, ..., k can then be traced

back to the entities of an PRV St(Z) by indices, and entity symmetry clusters

C(St(Z)) =

k⋃
i=1

CSt(Z)
i . (7)

are built with each C
St(Z)
i containing a subset of entities z ∈ D(Z). As symme-

try clustering is done individually for each PRV, C denotes the set of all entity
symmetry clusters for all PRVs.

Next, we introduce an approach utilizing symmetry clusters to prevent the model
from grounding.

4 Preventing Groundings

Commonly, evidence is set in relational models when moving forward in time
while answering queries in inference tasks. Here, based on the entity symme-
try approximation described in Section 3, we present a procedure for preventing
groundings in inference. Algorithm 2 in the Appendix presents the corresponding
pseudocode. As entity symmetry approximation also works with other relational
formalisms, the procedure can be included in any algorithm before setting evi-
dence that leads to groundings. As the first part of the procedure we address how
to avoid model splits, while in the second part we deal with inferred evidence.

4.1 Avoiding Model Splits with Evidence

To avoid model splits, our procedure requires a DPRM, together with a stream
of evidence E and queries Q as inputs. Furthermore, order d, delay τ , and entity
symmetry clusters C are given as inputs to Algorithm 1. Our procedure contains
the following steps.

1. We first loop over all PRVs Pt(A) of the DPRM to initialize for each PRV
an auxiliary vector of length |D(A)| that stores the number of times when
observed evidence is dismissed due to dissimilar behavior to entities of its
symmetry cluster. As follows, when moving forward in time t = 0, 1, . . . , T
evidence Et is consumed from an evidence stream E for that time step t.

2. Since we detect similarity clusters on a PRV level, we consider evidence
Et on a PRV basis, i.e., we extract evidence from Et only concerning one
PRV P (A) at the time. We denote evidence at time step t for a PRV Pt(A)

from the evidence stream E as E
P (A)
t . Evidence E

Pt(A)
t for a PRV Pt(A)

might contain more than one observation, so we additionally cluster E
Pt(A)
t

such that we derive evidence clusters M and each evidence cluster contains
evidence for entities that are in the same symmetry cluster CPt(A) ∈ C.
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3. By looping over evidence clusterMi ∈M, i.e., clusters of evidence contain-
ing observations for entities in the same symmetry cluster of a PRV P (A),
the observation observed the most max(x) is determined.

4. All other observations x inMi for an entity ai ∈ D(A), which are different to
the observation max(x), are dismissed. Still, observations are only dismissed
if they are no longer than a certain time period observed.

5. To ensure this, each dismissed observation is counted in the auxiliary vector
created in the initialization phase. Once the count reaches the threshold of
d·τ/2, evidence is no longer dismissed and the entity zi is outsourced from its
entity symmetry cluster into its own parfactor split.

The threshold of d·τ/2 is set based on the assumption that the symmetry clusters
are detected based on windows of length d · τ throughout the whole time series,
i.e., we expect that entities at least over that time horizon align again and
therefore discrepancies are allowed at least for half of the window. To allow for
different threshold, d and τ can still be overwritten externally. To keep entities
of similar behavior together in one parfactor groups, evidence observed for other
entities is also applied to those in the same symmetry cluster, introducing the
concept of inferred evidence.

4.2 Interconnectivity yielding Inferred Evidence

We introduce interconnectivity as the study of relationships that relate to the
behavior of an entity or symmetry cluster in context of other entities or symmetry
clusters. There are numerous different types of interconnectivity that, if properly
understood, can help increase the overall accuracy of the model by making the
model more representative of reality. The different forms of interconnectivity all
extend to some type of symmetric behavior, e.g.,

(a) offset symmetry as entities with similar behavior within different data ranges,
e.g., as illustrated in Fig. 2b,

(b) inverse symmetry as entities with contrary behavior, e.g., if some variable
is increasing for some entities, that the same is decreasing for others, and

(c) phase-shifted symmetry as delayed similar behavior, e.g., some entities follow
others with a certain delay phase shifted in time.

For example, in Figure 2b, both curves for entities z1 and z2 show similar
behavior for almost all times with respect to their ordinal patterns, but not with
respect to their y-intercept, which we considered in Section 3 by the additional
characteristic or feature, i.e., the mean xd,τt = 1

d

∑d
k=1 xt−(k−1)τ . Depending on

the parameter δ, this may lead to the entities not falling into a cluster together.
Nevertheless, interconnectivity exists between the two entities or clusters, so that
evidence from one cluster can be inferred for the other cluster.

In the context of our procedure of preventing groundings, not only evidence
is dismissed, but evidence can and partly has to be applied to other entities for
which observations are not available. More specifically, in our procedure, evidence
observed for one entity or cluster is similarly applied to all other entities within
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another symmetry cluster based on interconnectivity, in the following denoted
as inferred evidence. In particular, inferred evidence is necessary to prevent the
model from being grounded, as, for example, entities in the same parfactor group
need to always have the same observations to keep them in a group. That is,
evidence for one entity contrary to other evidence for entities in the same cluster,
or even no evidence, would cause new splits. The inference of evidence become
possible by knowing in advance which entities share the same evidence, and is
therefore a direct outcome of the approach described in Section 3.

5 Empirical Evaluation

This evaluation of our proposed approach is twofold. We (a) compare runtimes
in lifted inferences with and without preventing groundings, using the lifted dy-
namic junction tree (LDJT) algorithm as query answering algorithm on DPRMs,
which was introduced in [7], and (b) compare the models accuracy with and with-
out applying inferred evidence by comparing query answering results. Note, that
we do not introduce LDJT here. Details can be found in the original work [7].

To setup a DPRM as shown in Fig. 1, we use historical vessel movements
from 2020 based on automatic identification system (AIS) data2 provided by the
Danish Maritime Authority (DMA) for the Baltic Sea. As AIS data provides in-
formation about the position of a vessel, including specifications about the vessel
itself, the actual supply and demand have to be calculated first. Each AIS signal
contains the current geo-position and the total cargo quantity of a vessel. By di-
viding the Baltic Sea into zones, we derive the total amount of cargo transported
between those zones based on the vessel movements and their cargo and thus
obtain the data set for this evaluation. We split the data into a training (calendar
weeks 1 to 40) and a test data set (remaining weeks). Data and preprocessing can
be found on GitHub3. All data in the model are fully observable, i.e., the DPRM
is derived by counting observations and building a probability distributions for
each parfactor by aggregation. Besides, we determine entity symmetry clusters
for each PRV of the model based on observation in the training data set. We use
the model G0 with D(Z) = 367 and divide all 367 zones into k = 10 symmetry
groups using the approach described in Section 3 with parameters d = 3 and
τ = 1. To compare runtime and accuracy in inference, we set evidence based on
observations in the test data, i.e., we unroll the model for t = 11 further time
steps. We perform inference by answering prediction queries for St+π(Z) with
π ∈ {0, . . . , 11} for each time step t and obtain a marginal distribution for each
entity z ∈ D(Z).

Figure 4 shows the runtime and accuracy to answer queries for each time
step. The orange line indicates runtime for answering queries without preventing
groundings, whilst the blue line indicates runtime with preventing groundings by
means of our approach. The red line indicates the Kullback Leibler divergence
(KLD) as measure of accuracy between the two approaches. The KLD compares

2 https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/
3 https://github.com/FinkeNils/Processed-AIS-Data-Baltic-Sea-2020
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Fig. 4: Runtime [ms] and accuracy with and without preventing groundings.

the predicted probability distributions of each entity z ∈ D(Z) with and without
preventing groundings. The average KLD over all entities for each time step,
denotes the overall accuracy for a time step. A KLD close to 0 is indicative of
similar distributions, thus corresponds to a small error. In particular, Figure 4
shows that the a priori introduction of symmetry clusters to prevent groundings
speeds up inference while introducing only a very small error in inference.

6 Conclusion and Future Work

Evidence often grounds dynamic probabilistic relational models over time, negat-
ing runtime benefits in lifted inference. To maintain a lifted representation, in
this paper we propose an approach to detect model symmetries when learning
a lifted model, which can be used in inference under evidence to avoid unnec-
essary splits, e.g., due to one time events. This novel approach uses ordinal
pattern symbolization followed by spectral clustering for a priori approxima-
tion of model symmetries, preventing model groundings. Moreover, the concept
of clusters or entity interconnectivity as a result of understanding model sym-
metries enables for inferred evidence, i.e., applying evidence, which is observed
for one entity, also to other entities. The empirical evaluation shows that by
means of our approach unnecessary groundings are reduced, i.e., improving run-
time performance, while also keeping the model accuracy through leveraging
inferred evidence and therefore representing the reality more realistically. In fu-
ture work, we use multivariate ordinal patterns introduced by Mohr et al. [12]
to incorporate entity clusters based on their partitions in the DPRM, i.e., on
their parfactors. We also investigate various forms of interconnectivity between
entity symmetry clusters that can help to further increase the accuracy of the
model by representing the reality even better.
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Appendix

Algorithm 1: Entity Symmetrie Approximation

Input: Model G, Evidence E0:t, Order d, Delay τ , Delta δx̄
1 for every PRV Pt(A) in G do

2 X |A|×T ← get all evidence from E0:t concerning Pt(A)

3 S|A|×(T−τ(d−1)) ← init an empty symbolic representation matrix
4 for every dimension i = 1, . . . , |A| of X do
5 Si· ← create a time series of tuples with 〈ordinal,mean〉

6 W |A|×|A| ← auxiliary-matrix initialized with zeros
7 for every time step t of S·t do
8 wij ← do similarity counting // see Equation (5)

9 Create a similarity graph based on W
10 Calculate the graph Laplacian matrix L for dimensionality reduction
11 Perform Spectral Clustering based the eigenvectors of L

Algorithm 2: Preventing Groundings

Input: (G0, G→) DPRM, E ,Q streams, d order, τ delay, C entity
clusters

1 for each PRV P (A) ∈ Gt do // Initialization

2 HP (A) ← ~0n vector with n = |A| to count for contrary behavior

3 for t = 0, 1, ..., T do // Query Answering

4 Get evidence Et from evidence stream E
5 for each PRV Pt(A) ∈ Gt do

6 E
Pt(A)
t ← get evidence concerning the PRV P (A) from Et

7 M← cluster E
Pt(A)
t by entities using clusters CPt(A) ∈ C

8 for each evidence cluster Mi ∈M do
9 max(o)← get most common observation in Mi

10 for observation P (ai) = o ∈Mi do // dismiss evidence

11 if o 6= max(o) and HP (ai) < d·τ/2 then
12 Dismiss observation o and increase counter

HP (ai) ← HP (ai) + 1

13 else
14 Allow Split and reset counter HP (ai) ← 0

15 for ai ∈ A of XP (A) without observation do // inferred

evidence

16 Apply max(o) as inferred evidence for ai

17 Answer queries Qt from query stream Q
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