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1. Introduction

Systems evolve from technical systems to socio-technical 

systems, which requires consideration of the human being and 

its behavior in combination with the technical system. [1]

therefore propose to consider the customer (end user), the 

technical system and its purpose as interdependent objects. 

In this regard, Advanced Systems Engineering emphasizes 

the role of the user and postulates the protection of human 

factors especially in early phases of product development [2].

Still, human factors such as usability and cognitive workload 

are tested on real prototypes in late stages of product 

development, when changes to the product and interaction 

design are usually too expensive to include. Including human 

factors and cognitive requirements in early stages of product 

development is a central challenge, proving high relevance for 

a holistic model mapping of the product and the human 

interacting with it.

Digital Twins are often considered in the context of 

products, production systems or product service systems. 

However, a consistent concept of a Cognitive Digital Twin able 

to plan and make decisions on interaction with an interface and 

manipulation of a physically reacting system – which in turn 

changes the perceived environment of the user – is still missing.

Digital Twins in industry aim at creating a digital 

representation of a physical product. [3, p. 1] define Digital 

Twins as “a digital representation of an active unique product 

[...] or unique product-service system [...] that comprises its 

selected characteristics, properties, conditions, and behaviors 

by means of models, information, and data within a single or 

even across multiple life cycle phases”. More specifically, 

Digital Twins contain a combination of a Digital Master and a 

Digital Shadow. A Digital Master is composed of product 

description models such as geometry and kinematics models; a 

Digital Shadow is composed of data such as operation and 

usage data [4,3]. Potential applications include improved data 

availability and interpretation and thereby supporting decision-

making, monitoring of products or processes or enabling 

predictive maintenance as well as higher efficiency [5].

This concept of product-centered Digital Twins can 

analogously be applied to humans in order to create a Digital 

Twin of an (end) user. Here, we consider a Cognitive Digital 

Twin, which according to [6] describes a digital reflection of 

the user, intended to make decisions and carry out tasks on the 
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user’s behalf. The intention of the Cognitive Digital Twin is to 

model the cognitive processes underlying the  user’s decision. 

This includes perceptual dependencies (e.g. visual search) as 

well as reacting to physical changes in a given environment, 

including those caused by the user. A Cognitive Digital Twin 

can simulate a human interacting with a product and facilitate 

human-centered product development. Cognitive Digital 

Twins are based on cognitive models of a task, a formalization 

of presumed human behavior during task-solving. Ideally, such 

a cognitive model would make use of existing behavioral data 

collected during user interaction.

First examples of cognitive models interacting with or 

anticipating humans interacting with complex systems and 

reacting to changes caused in the environment by its actions 

have been developed before (e.g. [7,8,9]). But these approaches 

are focused on simulating realistic cognition and behavior, and 

do not interact with a virtual product that shows specific 

realistic behavior.

A Cognitive Digital Twin able of physical, real-world

interactions requires the cognitive architecture to offer 

mechanisms that implement recognition of objects in three-

dimensional space, as well as a way to plan interactions with 

these objects. A custom extension to the ACT-R architecture 

introduces support for spatial cognition, namely mental 

planning of spatial transformative efforts in the form of object 

interaction [10].

In this paper we aim to develop a methodology to realize a 

holistic modeling approach for early phases in product 

development. Evaluating this approach necessitates comparing 

interactions of real participants with a physical product with 

interactions of a digital human and digital product, and by 

extension of a digital human with a physical product and a real 

human with a digital product. One relevant question here is 

how closely such Digital Twins capture reality and where the 

boundaries in such an approach lie.

A complete Digital and Cognitive Digital Twin setup 

thereby requires the following steps:

1. creation of a Digital Master,

2. user data collection to create a Digital Shadow,

3. creating a Digital Twin able to mimic the product in real-

time,

4. creating a Cognitive Digital Twin able to mimic a user in

real-time,

5. connecting both representations into a combined, predictive

system that is then able to guide and improve product

development.

A cognitive model representing a Cognitive Digital Twin 

needs to meet the following requirements: (1) reasonable and 

sufficient formalization of user behavior – the cognitive 

processes of a user guiding his interaction with the product 

need to be reasonably replicated by a formalization of goal-

oriented device interactions and to be able to fulfill the given 

task sufficiently; (2) close fit of predicted model data to 

behavioral data – the cognitive model should closely replicate 

behavioral markers, such as task-solving time, success rate, 

strategy use etc.; (3) ability to predict or give insight on regular 

and specific use cases – the cognitive model needs to offer 

reasonable explanations and mechanisms for factors 

influencing product usage, e.g. task difficulty, cognitive 

workload, memory limitations, or device usability.

This paper discusses cognitive modeling as part of a Digital 

Twin. We describe the behavioral data collection necessary for 

a Cognitive Digital Twin and report two experiments with a 

modular and remote-controlled operating table, in the form of 

both physical system and Digital Master, as an exemplary 

product. This system was chosen because of its physical size, 

inherent transformability and beginner-friendly user interface. 

The first experiment aims at gaining valuable insight of user 

behavior for the development of a cognitive user model 

developed with the cognitive architecture ACT-R. We analyze 

human interaction with two different kinds of interfaces as the 

basis for a comprehensive cognitive model. The second 

experiment focuses on establishing a better understanding in 

regard to human interaction with a physical product compared 

to a digital model of a product, while serving as a proof-of-

concept for extending the product with sensor data for a Digital 

Shadow. Thus, the first steps towards a complete, integrated 

system of Digital and Cognitive Digital Twin are taken.

2. Methods

Ongoing research intends to reveal the behavior of end users 

when interacting with a transformable technical system. The 

first experiment examines interaction with virtual table and 

remote variants, while a follow-up experiment gauges the use 

of sensor data for use with a physical version of the table on 

one hand and compares user interaction quality between the 

virtual and physical operating tables on the other. The first 

study aims at understanding factors of user behavior and 

product usability to inform the development of a cognitive 

model. For this, human measures like difficulty, cues on 

cognitive (spatial) processing and their influence on task 

planning and precision are considered. The second study seeks 

to build a Digital Shadow using sensor data and test the validity 

of a Digital Twin compared to its physical counterpart in user 

interaction by analyzing planning time, correctly adjusted parts 

and the influence of product virtualization.

2.1. Experiment 1

Participants were asked to use a virtual version of the default 

remote interface provided with the physical table to interact 

with a 3D model of the table displayed in a neutral CAD 

environment, with the goal of configuring a series of positions. 

A desktop monitor showing the CAD model, a tablet computer 

running the virtual interface, as well as the current target 

position were visible at all times during the experiment. The 

software remote control was intended to be used as a 

touchscreen interface running on a Microsoft Surface tablet.

Two variants of the software interface were developed to 

serve as input mechanisms for the virtual table. Remote control 

interfaces were switched halfway through the experiment for 

each participant, with interface order alternating between 

participants. The default version of the software remote control 

is designed to mimic the default physical, vertically aligned 

remote in both form and function. A revised interface was 

developed that was displayed horizontally and incorporated 

color-coded buttons and was used in conjunction with a CAD 

model colored accordingly (see Fig. 1). Both remotes feature 
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horizontal and vertical tilt buttons (2 each), back rotation 

buttons (upwards/downwards), leg rotation buttons 

(upwards/downwards), a button controlling leg rotation mode 

(left leg/right leg/both) as well as a confirmation button to 

signal planning or trial completion, respectively. An LED 

signaled the current leg rotation mode, while another LED 

signaled the current trial state to the participant (planning phase 

/ action phase). Additional buttons for lifting or lowering the 

table, moving the table along its length axis, changing 

movement speed or resetting the table to its default position 

were not used in the experiments.

Pre-experiment, a questionnaire on technical affinity [11] as 

well as a mental rotation pretest based on [12] were 

administered. The task required participants to set the operating 

table to a sequence of different positions. For each trial, the 

difficulty of reaching a position was determined by the number 

of table parts necessary to be manipulated. Three curated 

blocks of ten trials each were presented to the participants in 

semi-randomized order for each interface variant. After each 

remote control set, NASA-TLX and SUS [13,14] were 

administered to gauge workload and usability of the presented 

remote control. At the start of each trial, the experimenter 

presented the target position while participants were asked to 

press the confirmation button once to synchronize time 

measurement. They were then asked to mentally plan their 

movements before actively using the remote control, after 

which their first button press initiated the action phase. After 

participants were content with their configuration, they were 

asked to press the confirmation button again to end time 

measurement of the trial. The next trial then started with the 

target position of the last. The final offset to the target position 

was calculated as the sum of the absolute angular disparity of 

each table part.

Variables of interest are remote control variant, trial 

difficulty, overall trial time, length of planning time and offset 

compared to the target position.

2.2. Experiment 2

As mentioned initially, the second experiment gauges the 

use of sensor data with a physical product, to analyze how 

precisely participants accomplished the tasks. Focus lies on 

mentally configuring a physically changing technical system, 

compared between virtual and physical setups. The study was 

divided into two main parts, the virtual and physical block. The 

first block design is an adaptation from experiment 1. A virtual 

CAD-Model of the operating chair was displayed on a desktop 

monitor while the software remote control ran on a tablet 

computer for touchscreen interaction. The second block 

focuses on physical device interaction, therefore the physical 

table and the default physical remote control unit from Getinge 

were included in this setup. During both blocks the target 

positions were viewable at any time. 

Order of physical and virtual block was pseudorandomized, 

i.e. alternated between participants to control whether block 

order influences overall performance. After each block the 

same questionnaires as in experiment 1 had to be completed. 

Trial difficulty was determined by the number of parts 

necessary to be manipulated. Due to technical limitations, a 

new block consisting of three new trials with increasing levels 

of difficulty was developed to ensure that all tasks could be 

executed properly in both virtual and physical task 

environments. 12 part positions in total had to be configured by 

the participants: three within the first (easy difficulty), four 

during the second (medium) and five within the third trial 

(hard). In total six target positions had to be completed by the 

participants.

To reliably compare virtual and physical human-machine 

interactions, it was necessary to implement angular rate

sensors.  All manipulable parts of the operating chair had to be 

rigged with sensors independently. Sensors measured positions 

of the left and right leg, back, as well as tilt and roll of the entire 

chair. Thus it was necessary to implement a total of four sensors 

onto the physical device for angular position tracking. The 

kinematics of a part being moved are first recognized by the 

hardware and subsequently processed by a custom software 

script. Finally, accurate positions are collected and logged at 

2Hz.

2.3. Cognitive Model

The cognitive model concept is designed to be a reasonable 

representation of a typical user tasked with Experiment 1. It is 

assumed that the user follows the experiment instruction and 

has already completed a short training, i.e. is familiar with the 

functions of device and interface. For the cognitive model, this 

knowledge is implemented as world knowledge in the form of 

declarative and procedural memory. The model roughly 

follows the cognitive processes presumed to be necessary for 

human solvers to competently fulfill the task while adhering to 

the given instructions. Following those, it is assumed that the 

user plans the necessary table transformations before using the 

remote control to enact them.

The processes can be formalized as follows:

● visual encoding: the current position of the table and

its parts, as well as the configuration of the target position,

are perceived

● spatial comparison: the user focuses on either the complete

table or single table parts and considers necessary changes

● spatial transformation: the changes are mentally

simulated, after which another area of the table is put in

focus

Fig. 1. Depiction of the presented CAD model (center), the target position

(top right) as well as default (left) and revised remote control interface

(bottom), as well as the alternate, colored CAD model  (bottom right).
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● action phase: after all necessary changes have been

planned, they are enacted via remote control. If planned

changes are forgotten or incorrect, new changes need to be

considered ad-hoc

These steps are then implemented as a software simulation 

of an end user of the operating table. Based on data collected 

during experiment 1, the model should closely fit behavioral 

data like completion times and success rate over experiment 

variables like difficulty or learning experience to prove validity 

as a Cognitive Digital Twin. On this basis, the model will then 

be able to offer insight into cognitive bottlenecks, strain on 

cognitive resources, or strategy choices and their development 

over the course of the experiment. The concept above explicitly 

allows for different strategies (e.g. first bringing the table into 

position, then adjusting singular parts, or vice versa) and 

memory constraints (e.g. pre-planning of necessary changes 

may strain working memory capacity).

3. Results

3.1. Experiment 1

As of yet, 15 participants (6 female, 9 male) took part in the 

experiment, with an average age of 29 years (SD=5.73). 

Participants on average needed 59.15s per trial, of which 8.51s 

were used for planning. On average, participants solved trials 

with a total angular offset to the target of 23.75 degrees. Outlier 

correction was applied by setting data beyond a 95% 

confidence interval to that limit for trial time, planning time and 

offset each.

To understand the effects of user and task environment on 

planning time and precision, linear models were fitted to each. 

For planning time, the linear model measured the effects of 

remote control variant, first variant used and their interactions 

on log-transformed planning time. Random effects in the form 

of random intercepts for participant, block and trial were 

included. The models fixed effects explained 6.21% of 

variance (R²m = 0.062), while the complete model explained 

54.43% of variance (R²c = 0.544), implying most variance 

stems from the random effects: differences between 

participants accounted for 45.29% of prediction error, with 

experiment block and trial accounting for 0.97% and 5.15%. 

Nonetheless, predictors remote control variant and the 

interaction of remote control variant first variant used are 

highly significant (both p << 0.001).

The linear model explaining precision again included 

remote control variant, first variant used and their interactions 

as predictors, trial and block as random intercepts and difficulty 

for participants as a random slope to gauge their effect on log-

transformed offset. Fixed effects account for 0.61% of variance 

(R²m = 0.006), with the complete model explaining 43.8% of 

variance (R²c = 0.438), again showing a high influence of 

random effects on experiment results. Influence of difficulty 

per participant explains 30.76%, experiment block 2.41% and 

trial 4.52% of prediction error. Although the variance 

explained by the fixed effects is negligible, they show a 

significant effect for the interaction of remote control variant 

and first variant used (p < 0.05) and show a trend for remote 

control variant (p = 0.052). Overall, results imply a high 

variance between participants. See Fig. 2 and 3 for an 

overview.

3.2. Experiment 2

Data from 11 participants (3 female, 8 male) was collected, 

with an average age of 26 years. For this experiment, we define 

the threshold for correctly manipulated parts to be ±6° offset 

for both physical and virtual setup.

The number of correctly positioned parts differs 

significantly between the virtual and physical block (p<0,05). 

The average of correctly positioned parts during the virtual 

block is 9.54 total (n=11) compared to 7.09 parts during the 

physical block. Also, for each level of difficulty (i.e. trials 1 -

3), the average of correctly positioned parts was higher during 

the virtual block. The differences between the virtual and 

physical block are statistically significant only for trial 1 

(p<0.05) and trial 2 (p<0.01), however not for trial 3 (p=0.26). 

Participants who started with the virtual block (n=6) scored 

an average of 9.83 correctly positioned table parts during the 

virtual block and an average of 8.67 during the second, physical 

block; whereas participants starting with the physical block 

(n=5) scored an average of 5.20 correctly positioned table parts 

during the physical block and 9.20 during the second, virtual 

block. Hence, task performance was better for both groups 

during the virtual block compared to the physical block.

Planning time does not differ significantly between virtual 

and physical block (p=0.45). The average planning time during 

the virtual and physical block are 98.4s and 86.6s, respectively. 

During both blocks planning time increased continuously from 

the first to the last trial, corresponding to task difficulty (Fig. 

5).

Participants who started with the physical block had an 

average of 83.77s planning time during the physical block and 

Fig. 2. Interaction between experiment block and remote control variant

on planning time. 

Fig. 3. Interaction between difficulty and remote control variant on
planning time. 
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an average of 81.2s during the second, virtual block. 

Participants who started with the virtual block had an average 

of 112.7s planning time during the virtual block and an average 

of 88.99s during the second, physical block. Hence, 

independent of the setup, both groups used less planning time 

during the second block.

4. Discussion

4.1. Experiment 1

Preliminary results show that a learning effect is apparent: 

on average, participants improve over time in trial time, 

planning time and precision measures. Additional planning 

time seems to improve precision, implying that a more 

carefully planned trial was executed with less offset to the 

target position. A higher difficulty led to an increase in overall 

trial time, which is no surprise as additional necessary 

movements take longer to execute. Interestingly however, task 

difficulty has no effect on planning time – although more parts 

need to be transformed, the data show no planning time 

increase. This suggests that planning time is subject to limited 

cognitive resources, e.g. memory capacity or individual time 

constraints.

A significant effect and a trend for remote control variant

were found for planning time and precision, respectively.

Preliminary trends also show an interaction between remote 

control and remote control order for planning time and 

precision. This also has implications for creating Digital Twins: 

certain patterns of interaction could be learned by using a 

specific remote first that either facilitate or hinder improvement 

of task proficiency when forced to change interfaces halfway 

through the experiment.

4.2. Experiment 2

Planning time increases with trial difficulty during both 

experiment blocks as expected and visualized in Fig. 5. Also, 

an overall trend can be identified in Fig. 4, the amount of 

correctly positioned parts increases with an increase in 

planning time. Therefore, planning time seems to be 

successfully used for the planning of mental spatial

transformations.

As mentioned above, the virtual experiment setup leads to 

better results than the physical setup. It can be assumed that the 

visualization of the virtual model of the operation table during 

the virtual condition facilitates this, making it easier for 

participants to apply their strategy developed during planning 

time. Also, our results show that interacting with a digital 

model of a product improves performance using a physical 

product/machine afterwards. Overall, the results lend evidence 

to the validity of virtual models in product development.

4.3. General Discussion

The two conducted experiments both deal with virtual and 

real table representations, but differ in their extent of 

virtualization (two interface types with a virtual table in 

experiment 1, virtual and real table in experiment 2). Slight 

differences in task presentation, table movement speed or time 

measurement are thus inevitable. Nevertheless, both 

experiments show comparable results.

A general improvement in overall trial time, planning time 

and precision over the course of the experiment could be found 

in both studies. Specifically, although longer planning time 

effected better precision overall, planning time decreased over 

the course of both experiments while precision increased. 

Proficiency with the device was thus not only improved on the 

level of interaction, but on the level of task preparation, 

implying a growing understanding of the device’s

functionality.

The interactions of remote control variant in experiment 1

and virtual or real setup in experiment 2, respectively, imply an 

effect of the order of the experiment on task proficiency. 

Interaction patterns seem to be adapted over the respective first 

block of each experiment that can lead to either beneficial or 

detrimental performance in the respective second block.

As experiment 1 is still ongoing, additional participants 

could further explain some of the trends found for the effect of 

remote control variant on those factors.

4.4. Outlook

The concepts outlined in this paper serve as the first steps 

towards establishing a holistic Digital Twin. To reach that goal, 

the cognitive model will be completed (based on behavioral 

data from experiment 1) and connected to the Digital Twin 

(further refined by data gathered during experiment 2). In the 

future, we aim to establish a custom data connection to the 

modular operating table, enabling us to fully connect both 

Fig. 2. Presenting physical (left) and virtual (right) user data. In both figures, the left y-axis shows planning time, the right y-axis indicates the number of correctly 

positioned parts during the experiment. The coloured lines represent planning time during all three trials; the linear coloured, dotted graph represents the planning

time trendline. Gray bars (background) indicates the total amount of correctly manipulated parts per participant and for the particular experiment part. 
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virtual & real product to both virtual & real user, thereby fully 

realizing the Digital Twin concept. 

The upcoming cognitive model seeks to imitate the effects 

found in the experimental data: apart from providing a close fit 

of model predictions to experimental data in regards to trial 

completion time and precision, a more interesting application 

will be offering explanations for results on e.g. planning time 

or interactions of experiment conditions. A decrease in 

planning time with a simultaneous improvement in precision 

implies a sophisticated learning effect that a cognitive model 

could replicate and substantiate. Furthermore, similar planning 

times over all difficulties in experiment 1 could result from

cognitive limitations regarding memory or mental image 

complexity. Differences in planning time by first shown 

experiment setup could likewise originate in cognitive 

processes like reinforcement learning or motor memory. The 

cognitive model should help pinpoint the exact mechanisms 

behind these effects and in consequence provide pointers on 

improved product ergonomics.

Extensive additional data was collected during experiment 

1, but has not been evaluated at the time of writing. Pretests on 

spatial ability, as well as questionnaires assessing individual 

workload, technical affinity and perceived device usability 

might shed some light on personal factors influencing the 

experiment results.

By default, the operating table only features input and output 

by its default remote control and does not allow custom 

external connections. An IR interface is currently in 

development to enable additional input connections, i.e. the 

revised remote control variant running as tablet software or 

commands selected by the cognitive model. This would enable 

interaction of both Digital Twin and Cognitive Digital Twin 

with the physical product, thus taking another step towards a 

complete and closely integrated representation of digital 

product and digital user.

By gathering user data on both human- and product-centered 

aspects of the operating table, we effectively finalized its 

Digital Master and Shadow. This serves as foundation for 

creating real-time representations of the user and the product: 

a Digital Twin to closely reflect product behavior in regards to 

user interaction, and a Cognitive Digital Twin incorporating a 

human-centered view on the product’s ergonomics. Finally, 

this approach works as a proof-of-concept and can be applied 

to product development in general: these closely intertwined 

simulations can be integrated into a single closed-loop system 

able to offer direct feedback on proposed product changes early 

in development, bypassing the need for resource-intensive and 

expensive physical prototyping with additional user feedback 

studies.
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