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Kurzfassung Eine wichtige Aufgabe im Bereich der natürlichen Sprachverarbei-
tung ist es, natürlichsprachliche Texte zu verstehen. Beim Lesen eines Textes nutzen
Menschen Erfahrungen über die Welt, in der sie leben. Daher benötigt ein Agent,
der einen Text verarbeitet, ähnliche Erfahrungen. Beispielsweise würden Menschen,
wenn sie das Wort Bank in einem Text über das Thema Geld lesen, davon ausgehen,
dass es sich bei der Bank um ein Finanzinstitut handelt und nicht um etwas, auf
dem man sitzen kann. Das Ziel von Subjective Content Descriptions (SCDs) ist es,
Daten als Annotationen zu natürlichsprachlichen Texten hinzuzufügen. In unserem
Beispiel könnte die SCD ein weiterer Satz sein, der die Bank als Finanzinstitut de-
finiert, oder ein Link zu einer Entität Finanzinstitut in einer externen Quelle.

In dieser Arbeit skizzieren wir die Bedeutung von SCDs und vergleichen Techni-
ken zur Bestimmung von textuellen SCDs. Wir verwenden das bekannte Sprachmo-
dell Bidirectional Encoder Representations from Transformers (BERT) [DCLT19]
und vergleichen BERTs Leistung mit Algorithmen für das Most Probably suited
SCD [KBBM19] und inline SCD [BBG+21b] Problem.
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Abstract An important task in the area of Natural Language Processing is lan-
guage understanding. While reading a text, humans rely on experiences of the world
they live in. Thus, an agent processing a text needs similar experiences, e.g., when
humans read the word bank in a text dealing about money, they would assume the
bank to be a financial institution and not something to sit on. The goal of Subjec-
tive Content Descriptions (SCDs) is to add data in form of annotations to natural
language texts. In our example, the SCD could be another sentence, defining the
bank to be a financial institution, or a link to an entity financial institution in an
external source.

In this thesis, we outline the importance of SCDs and compare techniques for esti-
mating textual SCDs. We use the well-known Bidirectional Encoder Representations
from Transformers (BERT) [DCLT19] language model and compare BERT’s perfor-
mance against algorithms solving the Most Probably suited SCD [KBBM19] and
inline SCD [BBG+21b] problem.
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List of Variables and Notations

This list provides an overview of the variables and notations used in this thesis. All
variables will be introduced and explained in the chapters of the thesis, too.

• Chapter 1 – General notations

wi: Word from a given vocabulary V = {w1, . . . , wL}, L ∈ N

d: Document, a sequence of words (wd1, . . . , wdN), N ∈ N, where each
word wdi ∈ V

wdi,j: Subsequence of words wdi,j = (wdi , ..., wdj ) from document d where
1 ≤ i < j ≤ N

D: Corpus of documents {d1, . . . , d|D|}, |D| ∈ N

t: SCD, a sequence of words t = (w′1, ..., w′l), l ∈ N

(t, ρ): Located SCD t, where ρ defines a position, ρ ∈ [i, j], in d

g(d): Set containing located SCDs {(tj, ρj)}Mj=1, M ∈ N, for d

wind,ρ: SCD window wind,ρ ⊆ wd1,N , a sequence of words in d surrounding
the word wdρ in d

I(wd, wind,ρ): Influence value for each word wd ∈ wind,ρ representing distance
of wd and position ρ

• Chapter 2 – Subjective Content Descriptions

δ(D): SCD matrix shaped M × L

W : Set of similarity values sim ∈ W yielded by the MPS2CD algo-
rithm

th: Threshold for the threshold-based algorithm solving the iSCD
problem

• Chapter 3 – Transformer Language Models

xi: Inputs of a unit in a neural network, i = 1, ..., n

yi: Outputs of a unit in a neural network, i = 1, ..., n

αi: Weights of a unit in a neural network, i = 1, ..., n

ϕ: Activation function of a perceptron

q, k, v: Query, key, and value vector, used as input for scaled dot-product
attention
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Q,K, V : Matrices of multiple q, k, v each

ew: Embedded representation of word w

Wq,Wk,Wv: Matrices of TLM to derive query, key and value

h: Number of scaled dot-product attentions used by the multi-head
attention

E1, ..., EN : Embedded input vectors for e.g. BERT

T1, ..., TN : Encoded output vectors of e.g. BERT

• Chapter 4 – Transformer Language Models for Subjective Content Descriptions

c1, c2: Two different contexts of corpora

Dc1 : Corpus containing documents from c1

g(Dc1): Set of SCDs matching corpus’ context
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1. Introduction

The most intuitive way of human communication is natural language. In a modern
world, humans do not only interact with other humans. Much interaction also takes
place against software, so-called agents. We follow the idea that an agent is a
program assigned a task to fulfil. From an agent-theoretic perspective, an agent is a
rational, autonomous unit acting in a world, fulfilling its task. For example, the task
of an agent is to provide a document retrieval service, i.e., given a document from
a user the agent returns a ranked list of similar documents. We assume the agent
maintains a corpus of text documents and then returns documents from its corpus.

To concretize the example, the agent provides a search engine for browsing publi-
cations of the category computer science. Such an agent has to maintain a corpus
of text documents consisting of relevant publications for its users. As continuously
new publications are made available on web sites in the internet, the agent has to
update its corpus with new documents. Therefore, the agent might consist of a
crawler scanning the internet for relevant web sites. For simplicity, we may inter-
pret a web site found by the crawler as a document of plain natural language texts.
Now, given such document from a web site, the agent has to decide what to do with
the document. The agent may add the document to its corpus or ignore it, because
it does not match the defined category computer science. However, there are more
possibilities, a publication found by the agent may be already contained in the cor-
pus or it may be a revised or extended version of an already contained publication.
Besides maintaining the documents in the corpus, the agent has to answer queries.
A query send by a user to the agent is also a natural language text to which the
agent has to return similar documents as a result.

One of the key competences of an agent providing a document retrieval service
is to process and understand natural language. Therefore, the field of Natural
Language Processing (NLP) became more and more important in the last decades.
Current NLP approaches mostly use neural networks, for tasks like calculating vector
representations of texts, so-called embeddings. Furthermore, neural networks are
used to translate, summarize, and even generate text.

A remarkable improvement in the field of NLP was reached by Transformer Lan-
guage Models (TLMs) [VSP+17]. TLMs use a special architecture of neural networks
and can, in contrast to the approaches used before, handle much larger amounts of
data. Thus, TLMs allow to build larger and more powerful models, while they can
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1. Introduction

be used for the same tasks as neural networks before, e.g., automatically trans-
late text documents and generate vector representations of text documents. In this
thesis, we use the TLM Bidirectional Encoder Representations from Transformers
(BERT) [DCLT19], which is an encoder and calculates vector representations for
text documents.

However, a vector representation gained from BERT does not directly help to un-
derstand a text document, as it is only a different representation of the same docu-
ment. Humans reading a text document rely on experiences of the world they live
in. Though, an agent processing a text document does not have such experiences.
Thus, an agent needs further data associated with a text document it processes.
In this thesis, we use the vector representations gained from BERT to associate
Subjective Content Descriptions (SCDs) [KBBM19] with text documents. SCDs
are location-specific data making the content near the SCD’s location explicit by
providing descriptions, references, or explanations. For example, using SCDs the
previously described agent providing a search engine can automatically take the de-
cision if a found publication is an related, unrelated, revised, or extended version of
the publications already contained in its corpus [KBBM19].

In this thesis, we are dedicated to follow problems in the field of SCDs: (i) An agent
may be faced with documents which lack associated SCDs needed by the agent.
Thus, the agent first has to associate SCDs with the given document only given the
document itself. The Most Probably suited SCD (MPS2CD) problem [KBBM19]
formalizes associating suitable SCDs to documents. (ii) An agent may be faced with
documents where content and SCDs are interleaved. To solve the agent’s task, it
first has to separate content and SCDs. The inline SCD (iSCD) problem [BBG+21b]
formalizes separating content from SCDs in a document.

Both problems were introduced in [KBBM19, BBG+21b]. Also, the authors propose
a solution for both problems using an SCD-word distribution matrix as basic model.
In this thesis, we describe how to use BERT for both problems and compare the
performance using BERT and the SCD-word distribution matrix.

We divide this thesis into four chapters:

Subjective Content Descriptions We introduce SCDs in general and describe in
detail the MPS2CD and iSCD problem and the solutions introduced by Kuhr
et al. [KBBM19, BBG+21b]. We also outline differences in our usage to make
the solutions comparable with TLM-based solutions in the evaluation.

Transformer Language Models We introduce TLMs and especially the attention
mechanism as well as the architecture of Transformers. At the end of the
chapter we give an introduction to BERT.
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1.1. Related Work

Transformer Language Models for Subjective Content Descriptions We show
multiple approaches to solve the iSCD problem using BERT in Section 4.1
and estimate MPS2CDs for new documents with BERT in Section 4.2. At the
end of the chapter we describe how to use BERT for detecting the context of
a document and associating a corpus with context-specific SCDs.

Evaluation For the evaluation of our approaches we mainly use the well-known
20 newsgroups data set1 and generate SCDs using definitions from the online
dictionary Wiktionary2. We compare the performance of the approaches using
the SCD-word distribution matrix against the approaches using BERT for the
MPS2CD and iSCD problem.

Finally, we also show the performance of all approaches on a corpus containing
documents from different contexts.

1.1. Related Work

Adding data to corpora of text documents has been investigated for a long time.
Often the data associated with a corpus is denoted an annotation. Thus, an SCD is
an annotation subjectively describing the content depending on the corpus’ context.
Commonly, we assume all systems adding annotations provide a value for an agent
solving a task using the annotated corpus.

The Brown Corpus [Mav69] is one of the first corpora used to analyze natural lan-
guage. First, the distribution of words among different categories and contexts of
natural language was analyzed. Later, part-of-speech tags were added, these tags
can already be interpreted as annotations assigning a class to each word.

In the beginning of natural language annotation, most annotations had to be man-
ually added to the corpora. Even today, crowdsourcing can be used to manually
annotate text documents [SBDS14]. However, manually adding annotations is a
time consuming task. Thus, semi-automatic and automatic annotation systems
were developed, e.g, DBpedia3 and OpenCalais4.

Since 2017, TLMs have shown that they are a powerful technique processing natural
language. TLMs translate text documents [VSP+17], generate sentences [RWC+19]
and automatically generate titles for papers based on the abstracts [MDSS21].

1http://qwone.com/~jason/20Newsgroups/
2https://en.wiktionary.org/
3https://www.dbpedia.org/
4http://www.opencalais.com/
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1. Introduction

In this thesis, we show how to apply TLMs as annotation systems for SCDs. We focus
on SCDs containing additional textual data. However, an agent may gain larger
benefits from SCDs containing structured data representing underlying structures
and relations in a text document.

Beltagy et al. [BRC+16] describe a system for textual entailment. The system trans-
forms sentences in logical representations, builds a knowledge base, and performs
probabilistic inference to predict whether a sentence entails another sentence. For
example, an SCD could be an entailed sentence in its textual representation, again.
However, the SCD could also be the logical representation of the sentence. Such
logical representation would allow an agent to check text documents for coherence
and detect mismatching sentences.

In contrast, Shanahan [SCBC20] detaches from language. He defines Common Sense
as capturing the deep structures of the world. Common Sense is not about detecting
the entailment of two sentences, but about understanding what each sentence means
in its full depth.

1.2. Notations

Before we introduce SCDs and TLMs, we formalize our setting of a corpus.

• A word wi, i = 1, ..., L, is a basic unit of discrete data from a vocabulary
V = {w1, . . . , wL}, L ∈ N.

• A document d is defined as a sequence of words (wd1, . . . , wdN), N ∈ N, where
each word wdi ∈ d is an element of vocabulary V .

• A subsequence of words from d can be represented as wdi,j = (wdi , ..., wdj ) where
1 ≤ i < j ≤ N . Commonly used subsequences are sentences, they are defined
as a sequence of words terminated by punctuation symbols like ".", "!", or "?".

• A corpus D represents a set of documents {d1, . . . , d|D|}, |D| ∈ N.

• Variables marked with an apostrophe describe another object of the same type,
e.g., d and d′ are documents containing a different sequence of words.

• Sequences of words or single words not assigned to a document may be written
as wi,j instead of wdi,j.

• An SCD t = (w′1, ..., w′l), l ∈ N, is a sequence of words. The SCD t can be
associated with a position ρ ∈ [i, j] in a document d. We use the term located
SCD interchangeably for associated SCD and represent a located SCD t by the
tuple (t, ρ).
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1.2. Notations

• For each document d ∈ D there exists a set g denoted as SCD set containing a
set of M located SCDs {(tj, ρj)}Mj=1. Given a document d or a set g, the terms
g(d) and d(g) refer to the set of located SCDs associated with document d and
the corresponding document d, respectively. The set of all located SCD tuples
in D is given by g(D) = ⋃

d∈D g(d).

• For each located SCD (t, ρ) ∈ g(d) there exists an SCD window wind,ρ ⊆ wd1,N
that refers to a sequence of words in d surrounding the word wdρ. In our case
the SCD window is represented by the sentence wdρ belongs to.

• Each word wd ∈ wind,ρ is associated with an influence value I(wd, wind,ρ)
representing the distance in the text between wd and position ρ. The closer
wd is positioned to ρ in wind,ρ, the higher its corresponding influence value
I(wd, wind,ρ). The influence value is chosen according to the task and might
be distributed binomial, linear, or constant.
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2. Subjective Content Descriptions

Kuhr et al. have introduced SCDs in [KBBM19]. SCDs provide additional location-
specific data for documents. The data provided by SCDs may be of various types,
like additional definitions or links to knowledge graphs. The theory of SCDs is
not restricted to text documents annotated with additional text. However, in
our evaluation and use-cases we use text documents annotated with additional
textual definitions.

Aforementioned, Kuhr et al. use an SCD-word distribution represented by a matrix
when working with SCDs. The SCD-word distribution matrix, in short SCD matrix,
can be interpreted as a generative model. A generative model for SCDs is charac-
terized by the assumption that the SCDs generate the words of the documents. We
assume that each SCD shows a specific distribution of words near the SCD’s location
in the document.

The SCD matrix δ(D) models the distributions of words for all SCDs g(D) of a
corpus D and is structured as follows:

δ(D) =



w1 w2 w3 · · · wL

t1 ν1,1 ν1,2 ν1,3 · · · ν1,L

t2 ν2,1 ν2,2 ν2,3 · · · ν2,L
... ... ... ... ... ...
tM νM,1 νM,2 νM,3 · · · νM,L



The SCD matrix consists of M rows, one for each SCD in g(D), and each row
contains the word probability distribution for the SCD. Therefore, the SCD matrix
has L columns, one for each word in the vocabulary of the corresponding corpus.

The supervised training of an SCD matrix is described in Algorithm 1. Given a
corpus D, the algorithm iterates over each document in the corpus and the docu-
ment’s located SCDs. For each located SCD given by a tuple (t, ρ), the SCD ma-
trix is updated. First, the sentence in d at position ρ is reconstructed. Next,
the row of the matrix representing SCD t gets incremented for each word in the
reconstructed sentence.
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2. Subjective Content Descriptions

Algorithm 1 Training the SCD-word distribution matrix δ(D)
1: function buildMatrix(D, g(D))
2: Input: Corpus D, Set of SCDs g(D)
3: Output: SCD-word distribution matrix δ(D)
4: Initialize an M × L matrix δ(D) with zeros
5: for each d ∈ D do
6: for each (t, ρ) ∈ g(d) do
7: for each wd ∈ wind,ρ do
8: δ(D)[t][wd] += I(wd, wind,ρ)
9: return δ(D)

Kuhr et al. use a sliding window instead of our previously described sentence-based
approach. The authors assume an SCD generates the words in a certain radius
around the SCD’s location, while we assume an SCD generates the words of the
sentence at the SCD’s location. The sentence-wise approach is required in this
thesis due to the comparability to BERT working on whole sentences. Furthermore,
a sliding window results in more computations and as we use larger corpora as Kuhr
et al. sentence-wise iteration allows us to keep the computations sufficiently low.

After Algorithm 1 has finished, the SCD matrix needs to be normalized row-wise to
meet the requirements of a probability distribution. However, we skip the normali-
zation because multiple calculations on small decimal values on a computer reduce
the accuracy. Later, we use the cosine similarity with the rows of the matrix and the
cosine similarity does a normalization by definition. Thus, by skipping the normali-
zation we save computational resources and get slightly more accurate results.

2.1. Most Probably Suited Subjective Content
Descriptions

The previously described and trained SCD matrix can be used to estimate SCDs for
a document without associated SCDs. First we formalize the MPS2CD problem and
afterwards solve the problem by Algorithm 2 using the SCD matrix [KBBM19].

The MPS2CD problem asks for the M most probably suited SCDs t1, ..., tM for a
document d′ given the SCD matrix δ(D):

g(d′) = arg max
t1,...,tM∈g(D)

P (t1, ..., tM | d′, δ(D))

The definition of the MPS2CD problem does not consider the sentence-wise iteration
used while training the SCD matrix. We can reformulate the MPS2CD problem to
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2.1. Most Probably Suited Subjective Content Descriptions

Algorithm 2 Estimating MPS2CD sequence and similarity values
1: function estimateMPS2CD(d′, δ(D))
2: Input: Document d′, SCD matrix δ(D)
3: Output: SCDs g(d′) with similarity values W
4: W ← ∅
5: for each sentence wi,j ∈ d′ do
6: wind′,ρ ← wi,j
7: δ(wind′,ρ)← new zero-vector of length K
8: for each word w ∈ wind′,ρ do
9: δ(wind′,ρ)[w] += I(w,wind′,ρ)
10:

11: t′ ← arg max
t∈g(D)

‖δ(D)[t]‖ 2 · ‖δ(wind′,ρ)‖ 2

‖δ(D)[t]‖2 · ‖δ(wind′,ρ)‖2
12:

13: sim← max
t∈g(D)

‖δ(D)[t]‖ 2 · ‖δ(wind′,ρ)‖ 2

‖δ(D)[t]‖2 · ‖δ(wind′,ρ)‖2
14:
15: g(d′)← g(d′) ∪ {(t′, ρ)}
16: W ←W ∪ {(t′, sim)}
17: return g(d′), W

consider the sentence-wise iteration:

g(d′) =
⋃

sentences
wi,j∈d′

arg max
t∈g(D)

P (t | wi,j, δ(D))

Analogous to the second definition of the MPS2CD problem, Algorithm 2 iterates
over each sentence of d′. For each sentence the algorithm creates a vector represent-
ing the words of the sentences δ(wind′,ρ). The vector is created using the approach
that was used for the rows of the matrix in Algorithm 1. We use the cosine similarity
to compare δ(wind′,ρ) with a row of the SCD matrix δ(D)[t] representing SCD t:

‖δ(D)[t]‖ 2 · ‖δ(wind′,ρ)‖ 2

‖δ(D)[t]‖2 · ‖δ(wind′,ρ)‖2

The most probably suited SCD t is defined as the SCD belonging to the row resulting
in the highest cosine similarity value.

The MPS2CD algorithm allows us to estimate the most probably suited SCDs for
any sentence given the words of the sentence and the SCD matrix. Next, we
use the MPS2CD algorithm to separate SCDs from content occurring interleaved
in a document.
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2. Subjective Content Descriptions

2.2. Inline Subjective Content Descriptions

In the last section we have described the MPS2CD algorithm. The algorithm does
not only return the sequence of MPS2CDs, it also returns a sequence of similarity
values. The MPS2CD similarity values give further insights about the corpus D and
the new document d′. We assume a similar context of d′ and D if the values are
overall high and a less similar context in the case of low values. This assumption is
based on the fact that documents of similar contexts share similar words and thus,
similar word distributions. When looking at the MPS2CD similarity values for each
sentence or window, it is also possible to detect similar and less similar parts of d′.

The MPS2CD similarity values are used to classify documents as related, extended,
revised, or unrelated in [KBBM20]. In this thesis, we focus on the iSCD problem
and describe the solution provided by Bender et al. [BBG+21b] using MPS2CD
similarity values, too.

In the scenario of the iSCD problem, documents are already annotated with SCDs,
but the SCDs are not separated from the content of the documents. For each word
of each document, the agents has then to decide whether the word is part of an
SCD or belongs to the content. The iSCD problem asks to separate SCDs and
content given interleaved in a document d′. Formalized, the iSCD problem’s input
is a document d′ = (wd′

1 , ..., w
d′
N) and the output is the content d as sequence of words

and a set of SCDs g(d).

Example 2.1. Inline SCD Example
Assume a new document d′ contains the following sentence with two SCDs inter-
leaved. The underlined words represent the SCDs, while other the words form the
content.

“We visited the bisons large animals in the zoo a place where non-domes-
tic animals are exhibited.”

Document d′ can be represented as a sequence of words. The words belonging to the
SCDs are only underlined for readability.

d′ = (wd′

1 , w
d′

2 , w
d′

3 , w
d′

4 , w
d′

5 , w
d′

6 ,w
d′

7 , w
d′

8 , w
d′

9 , w
d′

10, w
d′

11, w
d′

12, w
d′

13, w
d′

14, w
d′

15, w
d′

16)

After solving the iSCD problem, the result would be:

d = (wd′

1 , w
d′

2 , w
d′

3 , w
d′

4 , w
d′

7 , w
d′

8 , w
d′

9 )
g(d) = { {(wd′

5 , w
d′

6 ), 4}, {(wd′

10, w
d′

11, w
d′

12, w
d′

13, w
d′

14, w
d′

15, w
d′

16), 9} }
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2.2. Inline Subjective Content Descriptions

Bender et al. propose the following three approaches solving the iSCD problem: (i)
the word-based approach, (ii) the threshold-based approach, and (iii) the Hidden
Markov Model (HMM)-based approach.

The word-based approach does not use an SCD matrix, it only uses the frequencies
of the words in the set of SCDs and the content.

The threshold-based approach works as follows:

(i) Choose a threshold th ∈ (0, 1).

(ii) Train an SCD matrix.

(iii) Run the MPS2CD algorithm for the new document d′ and collect the similarity
values for each word wd′ .

(iv) Classify each word wd′ as SCD or content based on its similarity value sim.

class(sim) =
”SCD” sim < th,

”content” sim ≥ th

Intuitively, a subsequence containing an SCD yields lower MPS2CD similarity values
than a subsequence containing content. The similarities are lower because the SCD
matrix is trained only on content and not on SCDs, for which a different vocabulary
is assumed. For a vector representing content, Algorithm 2 may estimate more
similar rows in the SCD matrix than for a vector representing an SCD.

The first three steps of the HMM-based approach are identical to the threshold-based
approach, but for the classification the authors train an HMM with two states on the
discretized sequence of similarity values. One state of the HMM represents the SCDs
and the other state represents the content. The classification task of a new document
then uses the Viterbi algorithm [Vit67]. The Viterbi algorithm returns the most
likely sequence of states in an HMM given a sequence of observation symbols. The
authors use the Viterbi algorithm to calculate the HMM’s state for each word and
use the discretized similarity values of the new document as observation symbols.

We decide to use the threshold-based approach for our evaluation. Even though
the performance of the HMM-based approach is slightly better, choosing a good
threshold th results in a nearly equal performance and the threshold-based approach
simplifies the implementation significantly.

In this thesis, we again deviate from Bender et al. as we decide for each sentence
and not for each word of a document, whether the sentence belongs to an SCD or
to the content.
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In the previous chapter we have introduced SCDs. In this chapter, we describe
Transformer Language Models (TLMs) [VSP+17] and focus on the Bidirectional
Encoder Representations from Transformers (BERT) [DCLT19]. We use BERT to
solve the MPS2CD and iSCD problem introduced in Section 2.1 and Section 2.2.

3.1. Neural Networks

Neural networks are a commonly used technique in the area of machine learning to
classify an input value by calculating the network’s output value. The structure of
a neural network consists of multiple layers, where each layer consists of multiple
units. An input value is fed into the units of the first layer. Classically only booleans
act as input values, but today also numeric values or vectors are used. Each unit
then computes an output value and forwards the value to one or multiple units of the
next layer. The values are passed along the layers until the last layer is reached. The
outputs of the units of the last layer than form the output of the entire network.

The network is described by its architecture, the number of layers, units and con-
nections between the units, as well as the units. A classical unit is the perceptron, it
consists of weights α1, ..., αn and an activation function ϕ. A perceptron getting the
inputs x1, ..., xn and calculating the output y may be described by the formula:

y = ϕ

(
n∑
i=1

αi · xi
)

More complex units are, e.g., Long Short-Term Memory (LSTM) [HS97] units used
to process sequential data. LSTMs can store information in their units.

Usually the architecture of a network and the units, including their functions, have
to be defined by the user before the network can be trained. During the training
the weights and further parameters of each unit are estimated based on labeled
data, i.e., pairs of input and expected output. The training pursues the objective to
minimize the error of the network, whereas the error is often defined as difference
of the output gained from the network and the expected output.
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The architecture of neural networks can be divided in many types. Feed-Forward
networks [RN10] allow only connections between units in one direction, so the values
are passed from layer to layer until they reach the last layer. In contrast, Recurrent
Neural Networks (RNNs) [RHW86] allow feedback loops. Feedback loops pass the
output of a unit back into the same unit or another unit on the same layer or on a
previous layer. RNNs allow the processing of sequential data, as the feedback loops
allow to store previous values.

A commonly used function to normalize vectors gained by neural networks is the
softmax, defined by:

softmax(x1, ..., xn)i = exi∑n
j=1 e

xj

The softmax does not only yield a vector whose sum is 1, but also takes into account
the size of the distance of each numerical value, e.g., softmax(1, 2) = (0.27, 0.73)
while softmax(5, 10) = (0.006, 0.994).

3.2. Transformer Architecture

Vaswani et al. [VSP+17] have introduced Transformer Language Models (TLMs).
Over the last decades, commonly used techniques in the area of NLP were RNNs and
neural network with LSTM units. For both techniques, the inputs are fed into the
model sequentially one after the other. Inside the network, the previous inputs are
then stored by the feedback loops of the RNN or in the LSTM units. Furthermore,
RNNs suffer from a vanishing gradient, i.e., when adding a new input the influence of
each previous input becomes a bit smaller and vanishes for long input sequences.

In contrast, TLMs have the major advantage that all inputs are fed simultaneously
into the model. This advantage does not only solve the problem of a vanishing
gradient, it also allows to train TLMs in parallel. Thus, the introduction of TLMs
initiated the development of a large number of new models in the area of NLP.

In the following, we first describe the attention mechanism used by TLMs and the
architecture of a Transformer, the key part of TLMs. Afterwards, we introduce
BERT including the training of BERT and BERT’s use-cases.

3.2.1. Attention

The main mechanism behind TLMs is the so-called attention. The idea behind
attention is to put attention on the relevant parts of input data letting less relevant
parts fade out. For TLMs in particular the scaled dot-product attention is used.
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Given a triple of a query vector q, a key vector k, and a value vector v, the scaled
dot-product attention yields an output vector. For faster simultaneous computations
multiple vectors q, k, and v are combined in matrices Q, K, and V . The formula of
the scaled dot-product attention, combining the output vectors in a matrix, too, is
defined by:

Attention(Q,K, V ) = softmax
(

QKT

√
dimensionk

)
V

Given the output vectors of two different triples containing different q, k, and v, the
similarity between both input triples can be estimated using the dot-product, again.
A high value of the dot-product between the output vectors induces a relation of
the two input triples and a low value induces no relation.

The scaled dot-product attention needs an input of three vectors, however docu-
ments consist of sequences of words. Thus, the words have to be encoded as (input)
vectors. A common approach encoding words as vectors are embeddings, and de-
pending on the TLM, different embedding techniques are used. For now, we only
assume an embedding technique as a function transforming a word w into a vector ew
representing w.

Before we can apply the scaled dot-product attention on an input ew, we have to
derive three input vectors q, k, and v from ew. The derivation of q, k, and v only
uses ew as input and the resulting scaled dot-product attention is therefore also
called self-attention. The vectors q, k, and v all have slightly different duties in the
scaled dot-product attention and the TLMs train three matrices Wq, Wk, and Wv

for deriving q, k, and v from ew:

q = Wq ew, k = Wk ew, v = Wv ew

The scaled dot-product attention allows to identify pairs of related words in a sen-
tence by calculating the scaled dot-product attention of each word and comparing
the outputs vectors. However, one word in a sentence often has more than one re-
lation to multiple other words, e.g., a predicate has a relation to the subject and a
different relation the object. For a single scaled dot-product attention it would be
difficult to represent both relations simultaneously.

Using multiple scaled dot-product attentions the problem representing different rela-
tions to other words can be solved. A multi-head attention uses h scaled dot-product
attentions and provides a scaled dot-product attention for each type of relation. The
entire setup of a multi-head attention in combination with scaled dot-product at-
tentions is illustrated in Figure 3.1.
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Figure 3.1.: The multi-head attention (right) consists of multiple layers and
features multiple scaled dot-product attentions (left) at their center. Visualiza-
tion inspired by Figure 2 in [VSP+17].

Technically, multi-head attentions partition an input vector ew into h chunks. Each
chunk uses a dedicated scaled dot-product attention, with its own matrices Wq,
Wk, and Wv. In the end, the h resulting output vectors are concatenated again to
a single vector.

3.2.2. Transformer

The key part of an TLM is the Transformer and the Transformer is divided into an
encoder and a decoder. The encoder takes a text document as input, calculates the
embedding first and afterwards applies the multi-head attention multiple times to
create an encoded representation of the input. The decoder then takes the encoded
representation and is able to decode it back into a textual representation.

TLMs are typically used to translate text documents from one language to another
language. However, the concept of TLMs can be used for many other tasks.

In this thesis, we use the encoded representations generated by BERT. Therefore,
we focus on the encoder of TLMs and especially BERT. Figure 3.2 represents the
detailed structure of a full encoder unit. First the embedding of the input is calcu-
lated. Afterwards, a positional embedding is added. The multi-head attention does
not recognize the order of words in an input sequence, therefore the order is fed into
the model by adding vectors encoding the position of the words.
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Figure 3.2.: The encoder used by TLMs. The actual encoding takes place in
the layer highlighted gray. Visualization inspired by Figure 1 in [VSP+17].

Next, the part highlighted gray represents the main part of the encoder. This main
part may be stacked multiple times to increase the performance. The main part
consists of a multi-head attention, one may see the derivation of query, key, and
value. Afterwards, the output is summed to the input and normalized before it is
passed into a fully connected feed-forward network.

It is important to note, that TLMs encode each input vector separately. Encoding
a document of N words results in N vectors, each representing a word. Later, the
bidirectional encoding of BERT will soften the separate encodings.

Well-known TLMs are BERT [DCLT19] and Generative Pre-trained Transformer
(GPT) [RN18, RWC+19, BMR+20]. ELMo [PABP17, JPH18] is another well-known
encoder, but it uses LSTMs instead of Transformers. We focus on BERT in this
thesis, however we will also have a short comparison of BERT, ELMo, and GPT.

3.3. Bidirectional Encoder Representations from
Transformers

A well-known TLM is the Bidirectional Encoder Representations from Transformers
(BERT). BERT was introduced by Devlin et al. [DCLT19]. As stated before, BERT
is only an encoder and encodes a sequence of inputs, i.e. words, into a sequence
of vector representations. In addition to the encoded vector for each word, BERT
features a class output representing the entire input sequence in one vector.

BERT uses a special architecture of the encoders from TLMs, described in the
previous section. The architecture of BERT is shown in Figure 3.3. In Figure
3.3, E1, ..., EN represent the sequence of input vectors, already transformed to the
embeddings, and T1, ..., TN represent the sequence of outputs, the encoded vectors.
Between input and output, the layers and connections of the network are depicted
and each encoder unit from TLMs is marked as TR.
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Figure 3.3.: Comparison of the architecture for the three well-known models
BERT, GPT, and ELMo. Each encoder unit TR in each layer of BERT is bidi-
rectionally connected to all units in the next layer. In GPT each TR is only con-
nected to the units representing the subsequent elements in the input sequence.
In contrast to BERT and GPT, ELMo uses a different approach, it indepen-
dently trains LSTMs left-to-right and right-to-left per input and concatenates
both outputs. Visualization inspired by Figure 3 in [DCLT19].

As the full name of BERT states, BERT uses a bidirectional encoding. The bidi-
rectionality of BERT is based on the fact that each TR is connected to each TR
of the next layer. By the bidirectional connections, each input of BERT does not
only influence its own output, but may also influence all other outputs of the entire
sequence. Therefore, BERT may encode entire sentences as well as the context of
words and phrases.

BERT is available in different sizes. The default size consists of 12 layers and the
maximum length for the input sequence, which is also the number of TR units
per layer, is 512. Furthermore, the used vectors consist of 768 elements each and
each multi-head attention combines h = 12 dot-product attentions. In total, BERT
features 110 million parameters.

In comparison to BERT, GPT does not use bidirectional connections between each
layer. The architecture of GPT features only connections of each TR to the sub-
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Figure 3.4.: Generation of the input vectors of BERT and the different parts
combined in each vector. The token IDs, segment IDs, and positions are each
represented as a vector and added up for each token to a vector forming the input
of BERT. The sequence mask activates the correct number of inputs from the
512 inputs BERT has.

sequent TRs of the next layer (see Figure 3.3). Therefore, in GPT the first ele-
ment in the sequence of inputs can influence all outputs, while the last element
can only influence the last output. ELMo does not use TR units and instead uses
LSTM units, but ELMo also models bidirectional influences. ELMo trains one set
of LSTMs left-to-right and another set right-to-left, and in the end, the resulting
vectors are concatenated.

In the previous paragraphs we always assume to get a sequence of vectors as in-
put for BERT. These vectors are an embedded representation of a sequence of
words, e.g., one or multiple sentences. BERT uses the WordPiece embedding tech-
nique [WSC+16] with a vocabulary of 30 000 words. The embedding is trained along
with BERT.

An example of BERT’s input embedding with two sentences is shown in Figure
3.4. The figure shows the different parts combined in each input vector. First,
two special tokens [CLS] and [SEP] are added. The token [CLS] is always the
first token for any input sequence, it marks the class output. Therefore, the vector
at the first position of an output from BERT always represents the entire input
sequence and can be used to classify the sequence. The token [SEP] marks the end
of the input sequence and also separates multiple sentences. Second, both sentences
are tokenized into their words and punctuation. The word bisons creates two
tokens bison and ##s, together both tokens represent the plural of bison. The
representation as bison and ##s allows to represent words that are not part of the
vocabulary, i.e., bisons is not contained in the vocabulary, but bison is. Third,
all tokens are transformed into their numeric representation, which can be converted
to a vector later.

Before we can pass the vectors to BERT a positional encoding, which was already
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used before in TLMs, is added. BERT may get two sentences simultaneously,
the segment IDs mark for each token to which sentence the token belongs. For
each token, the added up token ID, segment ID, and position form a vector of the
input sequence.

The maximum length for the input sequence of BERT is 512, however, not all input
sequences may contain 512 vectors. The sequence mask makes sure to use only the
available vectors.

We have now described the basic architecture of BERT, next we describe how BERT
is trained and how BERT can be used.

3.3.1. Pre-Training and Fine-Tuning

Training BERT requires two stages, the pre-training and fine-tuning. The pre-
training is done on a huge corpus and pursues the objective to understand natural
language. A pre-trained model provides a general language understanding and con-
text dependent encoding of input tokens. Normally, such pre-trained models do
not facilitate a special task and are available for public download. Being available
for download and usable for many different tasks is required, since the pre-training
takes a long time and requires large computational resources.

Afterwards, the fine-tuning will be done on a previously pre-trained model and will
focus the model on a specific task. During the fine-tuning the model is trained by
labeled inputs and “learns” how to solve its special task. As the model already
provides an understanding of natural language, the fine-tuning may be done on less
data and runs much faster.

One may understand the pre-training as learning the basics of a language and
human communication with no focus on special use-cases. Whereas fine-tuning
means focussing on a use-case and gaining specific “knowledge” about the domain
and given tasks.

The pre-training of BERT is done on two objectives. Both objectives use only
corpora of text documents and do not need further labels or annotations for the
documents.

Masked Word Prediction A single sentence is used as input. In the sentence ran-
domly one word is replaced by the special token [MASK] 80% of the time.
In each 10% of the time, the randomly chosen word is left unchanged or the
randomly chosen word is replaced by a different randomly selected word. The
task of the model is to predict the correct word at the position of the randomly
chosen word. This prediction is realized by a linear classification of the vector
returned by BERT at the position of the randomly chosen word.
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The masked word prediction forces BERT to learn a representation of each
word based on the word’s surroundings and context. The token [MASK] is
only used 80% of the time to make sure every word gets known to BERT and
to make it not always possible for BERT to know which word needs to be
predicted.

Next Sentence Prediction A pair of two sentences is used as input. Either both
sentences occur consecutively in a document or both sentences are randomly
put together. The task of the model is to classify if both sentences occur
consecutively or not.

The next sentence prediction forces BERT to learn the relation and context
between two sentences occurring consecutively.

It is possible to train the model for both objectives simultaneously by using two
sentences and additionally mask words in the sentences.

Next, we present the different use-cases for BERT. A pre-trained model is fine-tuned
specifically for one of the use-cases.

3.3.2. Use-Cases for BERT

BERT can be used in a variety of different use-cases. For every use-case the same
pre-trained model can be used and fine-tuned.

Figure 3.5 shows the pre-training and the typical use-cases for BERT. We now
imagine BERT as a black box model getting at maximum 512 tokens as input and
therefore generating 512 output vectors. Of course, the special tokens [CLS] and
[SEP] are always added to the inputs. The black box model is depicted as a box
getting the inputs at the bottom and yielding the outputs at the top.

On the left side of Figure 3.5 the objectives during the pre-training are shown. In
case of the masked word prediction, a linear classifier predicts the masked word
based on the output at the position of the token [MASK]. For the next sentence
prediction, two sentences separated by [SEP] are fed into the model and the class
output is used to decide if both sentences occur consecutively. In the literature, the
different classifiers placed on top of BERT are called heads.

As the pre-trained BERT does not provide a wide range of functionality—mostly
it only creates encoded representations—the following heads use the encoded rep-
resentations. However, the encoded representations contain the required data for
the use-cases. Thus, the use-cases can be realized using simple methods like linear
classifiers, dot-products and the softmax function. The linear classifiers are learned
from scratch during fine-tuning.
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[SEP]
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[SEP]
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[SEP]
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Figure 3.5.: The different heads put on top of BERT during pre-training and
fine-tuning for multiple use-cases. BERT is depicted as a box getting the inputs
at the bottom and yielding the outputs at the top. The different heads are then
placed on top of BERT’s box yielding the actual results for each use-case.
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Sequence Classification A single sentence is used as input. The task of the model
is to assign a class to the sentence. The classes assigned are taken from the
class labels in the training data used for fine-tuning.

The classification uses a linear classifier at BERT’s class output.

Next Sentence Prediction A pair of two sentences is used as input. The task of
the model is similar to the next sentence prediction objective already used for
pre-training. However, here the model may learn any type of relation between
both sentences given as input. The relation between both sentences is given
by boolean labels in the training data used for fine-tuning.

Again, a linear classifier at BERT’s class output is used.

Multiple Choice A single sentence, the query, together with a set of sentences, the
possible answers, is used as input. The task of the model is to select the best
answer from the set of answers for the query.

Multiple choice is the only use-case not shown in Figure 3.5 because it uses
next sentence prediction multiple times. For each possible answer to the
query, a pair of query and answer is passed to the next sentence predic-
tion. Then for each pair, the next sentence prediction returns a score and
the answer in the pair reaching the best score is returned as solution for the
multiple choice use-case.

Question Answering A single sentence, the question, and a short document con-
taining the answer are used as input. The task of the model is to select the
answer to the question in the short document. The selection is done by re-
turning a start and end position and thus an interval. Then, the answer gen-
erated by the model is formed by the words of the short document contained
in the interval.

During the fine-tuning two vectors are trained. The start vector is used to
calculate the start position and the end vector to calculate the end position,
respectively. The data used during fine-tuning contains start and end positions
as labels. To calculate the start position, each output vector resulting from a
token of the short document is dot-multiplied by the start vector. The softmax
across all dot-products gives the start position. The end position is calculated
the same way using the end vector.

Token Classification A single sentence is used as input. The task of the model is
to assign a class to each token of the input. The classes are taken from the
class labels in the training data used for fine-tuning.

The classification uses a linear classifier at each of BERT’s outputs.
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We have now presented SCDs, the MPS2CD algorithm, and BERT. In the next
chapter, we show how to solve the iSCD and MPS2CD problem with BERT.
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4. Transformer Language Models for
Subjective Content Descriptions

Applying the theoretical foundations of SCDs and TLMs introduced in the previous
chapters, the contribution of this thesis is to combine the framework of SCDs with
TLMs and use BERT to solve problems Kuhr et al. have introduced along with SCDs.

In this chapter, we describe how to apply the use-cases of BERT introduced in
Subsection 3.3.2 to SCDs. All use-cases have in common that they are based on
a pre-trained model of BERT which is fine-tuned on the particular use-case and
problem to solve. Hence, we apply BERT to solve the MPS2CD and iSCD problem.
For both problems, we outline the suitable use-cases and describe how to arrange
the documents and SCDs as input sequences for BERT.

BERT gets a sequence of words as input. We decide to always use the words of
one sentence as one input sequence. This sentence-wise approach differs from Kuhr
et al. as they use a sliding window over the words of the documents in a corpus.
Using a sliding window results in more input sequences to consider and less variation
among the sequences. Less variation may lead to overfitting during the fine-tuning
of BERT. In this thesis, we use larger corpora than Kuhr et al. because the fine-
tuning of BERT needs more samples than required to train the SCD matrix. We use
the sentence-wise approach to prevent overfitting and to keep the number of input
sequences moderate.

We argue that the sentence-wise approach does not result in a bad partitioning as
in natural language a sentence is a logical unit. Thus, the most influential words of
a word belong to the same sentence the word itself belongs to. The sentence-wise
approach maintains the logical structure of the documents.

Theoretically, it would be possible to apply the use-cases described below using
sentences in the same way to sequences obtained from a sliding window.

4.1. Identifying Subjective Content Descriptions

The iSCD problem asks to separate SCDs and content given interleaved as sequence
of words in a document. Applying the sentence-wise approach, the input for the
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iSCD problem is a sequence of sentences to be distinguished into the sentences being
SCDs and the sentences being content. Thus, the iSCD problem is a classification
problem with two classes, namely SCD and content.

The use-cases of BERT solving classification problems are sequence classification,
next sentence prediction, and token classification (see Figure 3.5 on page 30 for a
visualization). In the following paragraphs we consider each of the three use-cases.

4.1.1. Sequence Classification

Using sequence classification to solve the iSCD problem by BERT is straightforward.
For each sentence as input sequence the encoded representation is calculated. From
the encoded representation, only the vector at the class output is needed to classify
the sentence as SCD or content. We train a linear classifier for the vectors at
the class output.

We fine-tune the model with D and measure the model’s performance on a different
D′. Especially, the sets of SCDs are disjoint, i.e., g(D)∩g(D′) = ∅. The disjoint sets
of SCDs are important to prevent the model from simply memorizing all SCDs. To
prevent the model from remembering undesired relations, we also randomly shuffle
the sentences such that no pattern of occurrence between SCD and content exists.

A disadvantage when using sequence classification is that the relation between sen-
tences and their associated SCDs is not modeled. Each sentence, whether SCD or
content, gets classified independently.

4.1.2. Next Sentence Prediction

In the last paragraph, we noticed that sequence classification does not model the re-
lations between sentences and their SCDs. Though, next sentence prediction models
the relation between two sentences and classifies if two sentences are in a relation.
We specify to model the relation between a sentence from the content and its asso-
ciated SCD. The model is fine-tuned on tuples of two sentences, meaning the first
sentence is always a sentence from the content and the second sentence may be a
related SCD or the subsequent sentence from the content. Thus, the model classifies
the second sentence as (related) SCD or no SCD.

As with sequence classification, we use different corpora and disjoint sets of SCDs,
as well as shuffle the tuples of sentences.
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4.1.3. Token Classification

In combination with the sentence-wise approach, we are only interested in the results
for the entire input sequence. Though, token classification calculates classes for each
token. Thus, we do not use token classification in this thesis.

However, it would be possible fine-tuning BERT to classify each word as SCD or
content. When the MPS2CD algorithm is used with a sliding window over the
words of a document, it also yields similarity values for each word, which can then
be converted to classes by a threshold. In this way, our sentences-based approach
can be used in combination with a sliding window.

The token classification is the only use-case that allows using such a mixture of the
sentence-based approach for BERT and a sliding window for the MPS2CD algorithm.
Hence, we do not investigate the idea further.

4.2. Estimating Most Probably Suited Subjective
Content Descriptions

The MPS2CD problem asks for the most probably suited SCDs associated with a
given non-annotated sentence. Solving the MPS2CD problem allows us to estimate
SCDs from a set of known SCDs for each sentence in a document. Thus, documents
featuring a similar context as the set of known SCDs can be annotated.

Multiple choice and question answering are the remaining use-cases of BERT (see
Figure 3.5 on page 30 for a visualization) and both can select best matches from a
set of possibilities. In the following paragraphs we apply each of the two use-cases.

4.2.1. Multiple Choice

Using the multiple choice use-case to solve the MPS2CD problem by BERT is
straightforward. For each sentence a set of four SCDs is given. We offer four
SCDs to BERT because the duration running BERT four times is acceptable and
well-known tasks like SWAG [ZBSC18] also provide four options to choose from. In
the set of four SCDs, the solution always has to be unique, i.e., one SCD may be as-
sociated with the sentence while the other three must not be associated. Internally,
the model does a next sentence prediction four times and returns the SCD with the
highest probability.

We fine-tune and measure the performance of the model again on different corpora
and disjoint sets of SCDs. However, we do not shuffle the ordering of the sentences in
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the documents and only randomly choose at which of the four positions the correct
SCD is presented to the model.

4.2.2. Question Answering

Analogous to multiple choice, the question answering use-case gets a sentence and
four SCDs to select one SCD from. The four SCDs are randomly shuffled and
concatenated to a short document. The sentence and the short document are then
fed into BERT. BERT returns an interval and selects the words in this interval of
the short document as SCD for the sentence.

The input sequence must not exceed BERT’s size of 512 tokens, concatenating four
SCDs might result in too long documents. If a document gets too long, we first try
to omit one or two SCDs and ignore the entire sample in the end.

We fine-tune and measure the performance of the model again on different corpora.
Once more, we use disjoint sets of SCDs as well as, in addition, the same set of
possible SCDs for both corpora.

4.2.3. Notable Difference

The MPS2CD algorithm provided by Kuhr et al. returns an SCD known by the
model and does not select a best SCD from a given set. To validate the solution of
the MPS2CD algorithm we have to compare two SCDs, the SCD labeled as correct
in the given set and the SCD returned by the MPS2CD algorithm. Especially, when
the sets of SCDs used for training and testing are disjoint, the two SCDs will never
be equal but might be both correct.

In our evaluation, the SCDs are gained from an agent. This agent allows inverse
queries, i.e., the agent can tell if it would annotate a sentence with both anno-
tations. If the agent would do so, we assume the MPS2CD algorithm selected
the correct SCD.

Another possibility is to compare the SCD returned by the MPS2CD algorithm to
all four SCDs given. We use the embedding technique Doc2Vec [LM14] to encode
the SCDs as vectors. Afterwards, the cosine similarity is calculated between all four
SCDs and the SCD returned by the MPS2CD algorithm in their Doc2Vec represen-
tation. Finally, the SCD resulting in the highest similarity to the SCD returned by
the MPS2CD algorithm is selected from all four SCDs.
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4.3. Context-Specific Subjective Content
Descriptions

The title of this thesis states to estimate context-specific SCDs. The estimation is
primarily situated in the MPS2CD approach, but we did not mention the specific
context until now.

In the previous parts, we have always assumed context-specific SCDs because the
collection of documents in a corpus always represents a specific context for us. The
corpora and the SCDs represent a context and the model silently learns that context.
However, in a more realistic scenario, a model also has to disambiguate between
multiple contexts. For example, a sentence in a scientific paper should be annotated
with different SCDs than a sentence in a children’s book.

Determining a context and estimating MPS2CDs can be realized with two distinct
models. One model selects the contextually most similar corpus from a set of known
corpora, and depending on the selected corpus, a different model trained on the se-
lected corpus then estimates the MPS2CDs. However, we propose a context-sensitive
model combining both steps. We use the same approaches and problems introduced
in Section 4.1, 4.2, and Chapter 2 and only change the corpora and their SCDs.

Given are two corpora Dc1 ,Dc2 representing two different contexts c1, c2 with their
context dependent SCDs g(Dc1), g(Dc2). We create a combined corpus D and its
SCDs g(D) to train the context-sensitive model on:

D = Dc1 ∪ Dc2 , g(D) = g(Dc1) ∪ g(Dc2)

D and g(D) are formed by the union while taking care to update the positions of
the located SCDs.

The MPS2CDs are estimated based on the words in a sentence. In the combined cor-
pus the model now has to represent the originating corpus and the MPS2CD together.

For the context-sensitive model we assume the performance stays similar if the solu-
tion does not model the relation between sentence and associated SCD, e.g., solving
the iSCD problem using the SCD matrix or using BERT’s sequence classification
use-case. Further we assume, the performance slightly decreases if the solution mod-
els the relation between sentence and associated SCD, e.g., solving the MPS2CD
problem using the SCD matrix or using BERT’s multiple choice use-case.
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5. Evaluation

After we have introduced two approaches each solving the iSCD and MPS2CD prob-
lem with BERT, we present an evaluation of the previously introduced approaches.
We compare the performance of the together four approaches using BERT to the
performance of the two approaches using an SCD matrix. Especially, we demon-
strate that both, BERT and the SCD matrix, are capable techniques to model the
relations of SCDs and sentences.

5.1. Datasets

In this evaluation we use the 20 newsgroups1 dataset. 20 newsgroups is a well-
known corpus consisting of e-mails from 20 e-mail newsgroups. Thematically, the
20 newsgroups can be divided into six topics, computer, sport, science, politics,
religion and for sale. The entire corpus consists of 18 828 text documents. The
documents have between 1 and 39 682 words with a median of 160 words.

For training the SCD matrix and fine-tuning BERT on the 20 newsgroups dataset,
we need not only the documents but also SCDs associated with each sentence in the
documents. However, documents in the 20 newsgroups dataset are not associated
with SCDs. Therefore, we use definitions from the online dictionary Wiktionary2

and annotate each sentence in the documents of the 20 newsgroups dataset with a
definition from Wiktionary acting as SCD. The set of definitions from Wiktionary
contains in total 293 296 definitions for 201 688 different words and phrases.

The Wiktionary annotation agent allows us to automate the annotation of docu-
ments and generates g(D) for any corpus D. Thereby, a number of SCDs generated
for each sentence can be freely chosen. For the same sentence, the agent always
returns the same SCD, while trying to maximize the variance of SCDs for similar
but different sentences.

The Wiktionary annotation agent also allows to generate non-matching SCDs for a
sentence and thus gives negative samples. Furthermore, it is possible to query the
agent inversely and check if an SCD describes a sentence.

1http://qwone.com/~jason/20Newsgroups/
2https://en.wiktionary.org/
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5. Evaluation

To evaluate the context-sensitive model proposed in Section 4.3, a second anno-
tation agent and a second dataset is needed. The second annotation agent works
similar to the Wiktionary annotation agent, but uses annotations from the 500 000
quotes [GMG18] dataset3. As second dataset we use Manuscript cultures4, an openly
accessible journal publishing exhibition catalogues and articles from the field of writ-
ten artefacts. The two datasets provide different contexts, namely written artefacts
and computer and science.

5.2. Implementation

The entire evaluation is implemented in Python. Python is a suitable choice be-
cause it provides a large number of libraries for machine learning tasks and neural
networks. We use the popular and well documented Huggingface Transformers5

implementation of BERT. The implementation of Algorithm 1 and Algorithm 2 is
based on Gensim6, NumPy7 and SciPy8. Additionally, for the preparation of the
corpora the Natural Language Toolkit (NLTK)9 is used.

The entire implementation of our evaluation is designed object oriented and with
maintainability in mind. For future work, it is easily possible to add more corpora
or evaluate on other TLMs than BERT. The implementation of BERT we use is
backed by PyTorch and therefore requires a graphics card to run fast. However,
the implementation of Algorithm 1 and Algorithm 2 benefits from running on mul-
tiple processor cores. To be able to easily deploy the implementation on multiple
platforms, the entire implementation is bundled as a Python package running in a
Docker container. For further details about running the evaluation, we refer to the
source code and its documentation included on the CD of this thesis10.

5.3. Workflow

In the evaluation workflow, the experiments run on two different platforms. All
experiments using the SCD matrix run in a Docker container on a machine featuring
8 Intel 6248 cores at 2.50GHz (up to 3.90GHz) and 16GB RAM. However, the virtual

3https://github.com/ShivaliGoel/Quotes-500K
4https://www.csmc.uni-hamburg.de/publications/mc.html
5https://huggingface.co/transformers/
6https://radimrehurek.com/gensim/
7https://numpy.org/
8https://www.scipy.org/
9https://www.nltk.org/

10Also available online at https://www.ifis.uni-luebeck.de/~bender/ma/docs/
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5.3. Workflow

machine does not provide a graphics card for the implementation of BERT. Thus,
all experiments using BERT run on a single NVIDIA A100 40GB graphics card of
an NVIDIA DGX A100 320GB. Beneath, the NVIDIA Container Toolkit is used to
run our Docker container with NVIDIA CUDA support.

We run all experiments five times and take the means of the resulting scores to
increase the statistical correctness. Each experiment follows a similar procedure:

(i) Download the corpus and the set of SCDs for the annotation agent.

(ii) Lowercase all characters, stem the words, tokenize the sentences and eliminate
stop words from a wordlist containing 179 words. These four tasks are called
preprocessing tasks. We perform them on the corpus and the set of SCDs for
the annotation agent. Preprocessing a text of a document transforms the text
in a more digestible form for machine learning algorithms and increases their
performance [VIN15].

The four preprocessing tasks are combined with the tokenizing mechanism for
BERT described in Figure 3.4. Thus, all preprocessed documents are prepro-
cessed for BERT again. Theoretically, it would be enough to preprocess the
documents only once as described in Figure 3.4, but as we compare the per-
formance of multiple approaches, we use a common preprocessing across all
experiments. In Section A.1 of the appendix we provide the results, when
skipping the four preprocessing tasks.

(iii) Split the corpus randomly into a training set containing 80% of the documents
and a test set containing the remaining 20%. If a disjoint set of SCDs is used
in the current experiment, the set of SCDs for the annotation agent is also
split into 80% and 20% of the definitions.

(iv) Generate the SCDs for the training set and test set by the annotation agent.
If the iSCD problem is evaluated in the current experiment, also generate
documents containing randomly interleaved SCDs and content.

(v) On the training set train the SCD matrix or fine-tune BERT, depending on
the current experiment.

We use the pre-trained bert-base-uncased11 version of BERT. This ver-
sion of BERT is case insensitive and a standard model to fine-tune for down-
stream tasks.

(vi) Evaluate the performance of the trained model on the test set. We always
calculate the accuracy of the model and other measures depending on the
evaluated problem.

11https://huggingface.co/bert-base-uncased
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5. Evaluation

5.4. Performance Measures

We measure the performance of each experiment with different measures. The mea-
sure depends on the problem and model. Generally, for each sample in the test set
a prediction is generated using the trained model and the predicted value is com-
pared against the sample’s label. In the following, the frequency of an outcome o is
denoted by #o.

For all problems and models, given the number of samples predicted correct and
wrong, the accuracy is defined by

accuracy = #correct
#correct+ #wrong .

Further, for the iSCD problem we define:

True positive tp
The sentence is classified as an iSCD by the model while being an iSCD.

False positive fp
The sentence is classified as an iSCD by the model while being content.

False negative fn
The sentence is classified as content by the model while being an iSCD.

True negative tn
The sentence is classified as content by the model while being content.

Precision is a measure to evaluate how many of the detected iSCDs are actually
iSCDs.

precision = #tp
#tp+ #fp

Recall is a measure to evaluate how many of all iSCDs are actually detected.

recall = #tp
#tp+ #fn

F1-score is a combination of the precision and the recall, resulting in a single score.

F1−score = 2 · precision · recall
precision+ recall
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5.5. Results

BERT’s question answering use-case returns an interval as prediction. It is pos-
sible to calculate the equality between two intervals by checking if the lower and
upper bounds are equal. However, intervals overlapping to a large extent can not
be counted as equal and also should not be counted as completely different. The
interval similarity introduced by Kabir et al. [KWH+17] takes the overlapping ratio
of intervals into account and yields a score between 0 and 1. We use the mean
interval similarity across all samples in the test set.

Allen’s interval algebra [All83] provides the relations during and contains between
two intervals. The predicted interval may contain the SCD or the predicted interval
may be located during the SCD. We count across all samples in the test set, how
often the predicted and labeled intervals are equal or in each of the two relations.
Using this counts, we can calculate accuracies for during and contains, too.

5.5. Results

In this section, we present results for the overall six approaches solving either the
iSCD or the MPS2CD problem. The results are gained using the previously described
implementation and workflow for experiments. First, we define for each problem and
each approach a scenario to measure the performance in an experiment:

Matrix iSCD This scenario uses an SCD matrix to solve the iSCD problem (Sec-
tion 2.2). We differentiate between two values for the threshold th, 0.55 is
chosen manually and 0.49 automatically. For the first threshold, we manually
test multiple values and select the best. For the second threshold, we use the
0.7 percentile of all similarity values sim ∈ W yielded by the SCDs in the train-
ing data. We only have a manually chosen threshold for the 20 newsgroups
dataset and use the 0.7 percentile for all other datasets.

BERT Classify This scenario uses the sequence classification use-case of BERT
to solve the iSCD problem (Subsection 4.1.1).

BERT Next This scenario uses the next sentence prediction use-case of BERT to
solve the iSCD problem (Subsection 4.1.2).

Matrix MPS2CD This scenario uses an SCD matrix to solve the MPS2CD problem
(Section 2.1). We further differentiate between the usage with a Doc2Vec d2v
embedding or an inverse annotation ia queried from the annotation agent as
introduced in Subsection 4.2.3.

BERT Choose This scenario uses the multiple choice use-case of BERT to solve the
MPS2CD problem (Subsection 4.2.1).
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5. Evaluation

α β1 β2 ε λ
5 · 10−5 0.9 0.999 10−8 0.01

Learning rate Weight decay

Table 5.1.: Hyperparameters used with AdamW during the fine-tuning of BERT.
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Figure 5.1.: Accuracies gained for all scenarios using the 20 newsgroups dataset
and the Wiktionary annotation agent.

BERT Highlight This scenario uses the question answering use-case of BERT to
solve the MPS2CD problem (Subsection 4.2.2). The interval returned by BERT
highlights the MPS2CD for a given sentence.

We do not need to specify more hyperparameters for the scenarios using the SCD
matrix. In contrast, there are multiple hyperparameters to specify for BERT. We
use a batch size of 40 during fine-tuning (10 for BERT Choose), because 40 sam-
ples fit into the 40GB of memory of the graphics card. The pre-trained model
bert-base-uncased uses a dropout of 0.1 and cross-entropy loss to determine
the model’s error.

We run the fine-tuning for 3 epochs and use AdamW [LH19]. AdamW specifies how
to change the weights of the pre-trained BERT to minimize the error during fine-
tuning. We test multiple values for the hyperparameters of AdamW and select the
best. Table 5.1 contains the used hyperparameters. The learning rate rises linear
from 0 to α in the first 500 steps of the fine-tuning.
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Figure 5.2.: Time needed training the models for all scenarios using the 20
newsgroups dataset and the Wiktionary annotation agent. There is no difference
training the SCD matrix for Matrix MPS2CD ia or Matrix MPS2CD d2v.

The accuracies in Figure 5.1 demonstrate that BERT is good at solving the iSCD
problem. There is only a very small difference between BERT Classify and BERT
Next. The small difference indicates that BERT does not benefit much when getting
a pair of sentence and associated SCD simultaneously. Both scenarios using the SCD
matrix show nearly the same accuracy of around 0.61 and thus Matrix iSCD is
clearly worse than BERT Classify and BERT Next.

For the MPS2CD problem, the scenarios using BERT and the SCD matrix result
in similar values. Only BERT Highlight with a disjoint set of SCDs achieves a
very low accuracy. As BERT Highlight asks to highlight the matching SCD out
of four SCDs, the accuracy of 0.25 is as worse as randomly highlighting an SCD. We
simplify the problem for BERT Highlight and do not split the set of SCDs. Using
BERT Highlight with the same set of SCD, then, shows a similar performance as
BERT Choose and Matrix MPS2CD. However, for Matrix MPS2CD d2v we also
have to use the same set of SCDs.

The best accuracy for the iSCD problem is yielded by BERT Next and for the
MPS2CD problem by Matrix MPS2CD ia.

Besides the performance of all scenarios, also the runtime and the computational
resources needed for training are relevant. In Figure 5.2, the duration for training
each of the models is shown with a logarithmic scale. The training time of an SCD
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Figure 5.3.: Precison, recall and F1-score gained solving the iSCD problem on
the 20 newsgroups dataset and the Wiktionary annotation agent.

matrix is always similar and very fast in contrast to the fine-tuning of BERT. Also,
the training of the SCD matrix runs on a default CPU while BERT is fine-tuned on
a graphics card.

5.5.1. Identifying Subjective Content Descriptions

In addition to Figure 5.1 showing the accuracies, we present in Figure 5.3 the pre-
cison, recall and F1-score for the scenarios solving the iSCD problem. Looking at
the three additional measures, we can confirm that BERT is good at solving the
iSCD problem.

The precision of BERT Classify and BERT Next nearly reaches 1, what means
that all sentences classified as an SCD by BERT are actually an SCD. However, a
precision of nearly 1 can be an indication of overfitting, i.e., the model memorizes
all SCDs. In both scenarios we use a disjoint set of SCDs, thus we test the model
on sentences and SCDs it has never seen before. It is unlikely that the model is
overfitted, rather the iSCD problem might be a bit too simple. Nevertheless, it is a
prospective task to investigate a possible overfitting further.

In our scenario of the iSCD problem, the chance for a sentence being an SCD is
50%. Thus, an accuracy of 0.61 gained by Matrix iSCD for both thresholds comes
close to random guessing. Even though Bender et al. [BBG+21b] got partially similar
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Figure 5.4.: Accuracies, interval accuracies, and interval similarities gained
solving the MPS2CD problem on the 20 newsgroups dataset and the Wiktionary
annotation agent.

results, they identify windows of words containing the SCDs. Thus, the authors solve
a slightly different and a more difficult problem, meaning they can not randomly
guess to reach an accuracy of 0.5.

5.5.2. Estimating Most Probably Suited Subjective Content
Descriptions

Along with Figure 5.1 we only have considered the accuracy for BERT Highlight,
but BERT Highlight returns intervals and we have already defined an interval
similarity and two more accuracies based on Allen’s interval algebra. In Figure 5.4
all four measures for BERT Highlight are shown, again distinguished by using the
same set or a disjoint set of SCDs.

The accuracy, accuracy during and interval similarity yield similar values. The accu-
racy contains yields slightly higher values than the three other measures, i.e, BERT
Highlight returns occasionally a larger interval containing the correct SCD.

Overall BERT Choose and Matrix MPS2CD show the best performance solving the
MPS2CD problem.
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Figure 5.5.: Accuracies of the context-sensitive model using the 20 newsgroups
dataset with the Wiktionary annotation agent as first context and the Manuscript
cultures dataset with the quotes annotation agent as second context.

Similar to Figure 5.1, Figure 5.3, and Figure 5.4, in Section A.2 of the appendix the
results using the Manuscript cultures dataset are shown.

5.6. Context-Specific Subjective Content
Descriptions

In the previous sections of this chapter we have only a single context, the 20 news-
groups dataset and the Wiktionary annotation agent. However, as proposed in
Section 4.3, we can use the same scenarios from the previous section to create a
context-sensitive model featuring two contexts. We use a combined corpus of two
different corpora with two different annotation agents, where both pairs of corpus
and agent represent a different context.

The accuracies of the context-sensitive model in Figure 5.5 are very similar to the
accuracies of the single-context model in Figure 5.1. The context-sensitive model
reaches slightly smaller values solving the MPS2CD problem, while the relations be-
tween the accuracies of the scenarios remain the same. Surprisingly, solving the iSCD
problem, the values reached by the context-sensitive model are slightly better.
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Figure 5.6.: Precison, recall and F1-score of the context-sensitive model, again
using the 20 newsgroups and Manuscript cultures datasets as well as the Wik-
tionary and quotes annotation agents.

Considering only the iSCD problem in Figure 5.6, the results are again similar to
the results of the single-context model in Figure 5.3. We use only the 0.7 percentile
as threshold for Matrix iSCD. The precision of BERT Classify and BERT Next
is slightly lower, making an overfitting less likely.

The context-sensitive model shows the potential of BERT and the SCD matrix
for estimating SCDs. Although, the model takes a second objective, i.e., detect-
ing the context, the overall performance of the model is minimally reduced at
most. In [BBG+21a] the authors present an approach selecting context-dependent
dictionaries for documents and afterwards solve the iSCD problem for the docu-
ments. Using the context-sensitive model, we do not need a second approach to
detect contexts.
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6. Conclusion and Outlook

In this thesis, we first introduce SCDs and TLMs. Thereby, we focus on the SCD
matrix to solve the iSCD and MPS2CD problem. Also, we describe the attention
mechanism used by TLMs and the architecture of BERT.

In the main part, we introduce how to apply TLMs to SCDs. We enumerate the
different use-cases of BERT and describe for each use-case how to solve the iSCD
or MPS2CD problem. We also propose a context-sensitive model, capturing the
context of a text document yielding context-specific SCDs.

At the end of this thesis, we provide an extensive evaluation applying BERT to
SCDs. Summarized, the evaluation shows that BERT can be fined-tuned well to rep-
resent SCDs for text documents. On the iSCD problem, BERT performs better than
the approaches using the SCD matrix. On the MPS2CD problem, the approaches
using the SCD matrix perform slightly better, however, BERT performs similar.

We recommend to use BERT for solving the iSCD problem and Matrix MPS2CD
for solving the MPS2CD problem. Matrix MPS2CD and BERT Choose reach nearly
the same accuracy, while Matrix MPS2CD needs less computational resources.

We conclude that TLMs are able to grasp the concept of SCDs, in a way that
TLMs can be trained to solve SCD-related tasks. Also, the SCD matrix and
BERT provide enough capacity to additionally learn the context of corpora and
yield context-specific results.

In the field of this thesis, it would be interesting to use the token classification use-
case of BERT and compare the results with the window-based approach solving the
iSCD problem introduced by Bender et al. Another possibility is to use other TLMs
similar to BERT and rerun the evaluation of this thesis.

DistilBERT [SDCW19] is a distilled version of BERT. Distillation is a mechanism
to reduce the size of a model by trying to imitate a larger model focusing on the
model’s task. Distilled TLMs often provide better results and use less computational
resources. Longformer [BPC20] is a TLM with no limit on the length of the input
sequence. Longer input sequences would allow us to run BERT Highlight with
more than four SCDs to select from.
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A. Appendix

A.1. Less Preprocessing

The accuracies in Figure A.1 are gained for the same scenarios as in Figure 5.1, but
we do not preprocess the inputs. We run only the tokenizing mechanism for BERT
and neither stemming nor stop word elimination. We use only the 0.7 percentile to
estimate the threshold for Matrix iSCD.
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Figure A.1.: The accuracies when preprocessing the inputs for BERT only once
and skipping (ii) from Section 5.3.
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A. Appendix

A.2. Additional Corpus

The same plots as in Section 5.5, but running the experiments on the Manuscript
cultures1 dataset. We use only the 0.7 percentile to estimate the threshold for
Matrix iSCD.
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Figure A.2.: Accuracies gained for all scenarios using the Manuscript cultures
dataset and the Wiktionary annotation agent.

1https://www.csmc.uni-hamburg.de/publications/mc.html
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Figure A.3.: Performance solving the iSCD problem on the Manuscript cultures
dataset and the Wiktionary annotation agent.
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Figure A.4.: Performance solving the MPS2CD problem on the Manuscript
cultures dataset and the Wiktionary annotation agent.
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