
Query Reformulation for the XML standards XPath,
XQuery and XSLT

Sven Groppe, Stefan Böttcher

University of Paderborn

Faculty 5 (Computer Science, Electrical Engineering & Mathematics)

Fürstenallee 11,

D-33102 Paderborn , Germany

sg@uni-paderborn.de

stb@uni-paderborn.de

Abstract: Whenever transformation of data is used to bridge the gap of different

data formats, and a query is given in the destination format, query reformulation

can speed up the transformation of data. We achieve this speed-up in

transformation when only the required data segment, described by the computed

reformulated query, is transformed. Whenever the required section of data is not

too large, query reformulation allows transformation on demand, even when the

input data is large. Among other things, using query reformulation avoids

problems of replication (especially synchronization problems), saves time and

memory space for transformation and, in distributed scenarios, reduces the size of

transmitted documents and transmission time. Whereas query reformulation is used

in traditional relational databases, there has not been any complete query

reformulation approach applicable to all of the most widely used XML standards

of the W3C, most notably XPath, XQuery and XSLT. Within this paper, we

outline a global approach to implement query reformulation for each of the XML

standards XPath, XQuery and XSLT.

1 Introduction

The W3C developed XML as a standard for exchanging data in the web and introduced

languages for querying XML documents such as XPath [W3C99] and XQuery [W3C03].

The result of evaluating an XPath expression is a set of nodes. In comparison, XQuery

expressions embed XPath expressions. Additionally, XQuery expressions contain a

return statement, which specifies the result in the form of an XML fragment. Therefore,

XQuery can be used for both the querying of XML documents and transformation of

XML data. For the purpose of transforming XML documents, the W3C also developed

XSLT [W3C01]. XSLT stylesheets contain XPath expressions for read operations on the

input XML document. Furthermore, XSLT can also be used for querying XML

documents. Within this paper, we outline an approach to implement query reformulation

for the XML standards XPath, XQuery and XSLT within a single system as shown in

Figure 1.

XML document
D in format FR

View V formulated in

XQuery XSLT

Reformulated query R

in format FR

Query Q formulated in

in format FQ

XPath

XPathXQuery XSLT

Resultant

XML fragment
R(D)

Answer Q(V(R(D)))

XML fragment
in format FQ

Transformed

resultant

XML fragment
V(R(D))

Apply reformulated query

T
ra

n
sfo

rm

a
c
co

rd
in

g
 to

 V
A

p
p

ly
 Q

T
ra

n
sfo

rm
 a

c
c
o
rd

in
g
 to

 V

Figure 1: Overview of complete system

Whenever an XML document D is given in one XML format FR, but the data is needed

in a different format FQ, we have to transform at least parts of D into the format FQ. The

time needed for transformation, and the necessary memory and disk space increase with

the size of D. Therefore, on demand transformations of complete documents are not

applicable to larger XML documents D. Very often however, applications only use a

small fragment of the transformed XML document. Whenever a query Q, which is

formulated in the XML format FQ, describes the required small XML fragment, the

technique of query transformation allows us to determine a query R that is formulated in

terms of XML format FR (see Figure 1). We can apply this query R in order to filter the

input XML document and get a small remaining input XML fragment called resultant

XML fragment R(D). This resultant XML fragment R(D) is defined to contain all the

nodes and all their ancestors up to the root of the original XML document D, which

contribute to the successful evaluation of the query Q. The transformed version of the

resultant XML fragment R(D) contains all the information that is required in order to

answer the query Q correctly. The transformation of the resultant XML fragment is much

faster than the transformation of the entire XML document. As a conclusion, our

technique allows on demand transformation of fragments of XML documents.

A technique corresponding to query transformation called query reformulation is used in

traditional database technology within different scenarios, as for example within the

following three scenarios. Firstly, query reformulation is used within data integration,

where schema FQ is the global schema and schema FR is one of several local schemas.

Secondly, query reformulation is used within schema evolution, where schema FR is the

old schema and schema FQ is the new schema. Thirdly, query reformulation is used

within bilateral situations, where two applications exchange data.

In database theory, the problem of query reformulation is commonly defined as follows

(e.g. [DT03]): Given two schemas FR and FQ and a correspondence V which maps data

from FR to FQ, find a query R formulated in terms of schema FR which is equivalent to a

given query Q formulated in terms of schema FQ modulo the correspondence V.

Within our approach, the correspondence V can be an XSLT stylesheet or an XQuery

expression, which we call view definition in the following. Furthermore, we allow the

combination of both types of view definitions with queries Q that can be formulated in

XPath, in XQuery or in XSLT.

Section 2 presents the complete query reformulation framework, whereas Section 3

discusses the relation to other contributions.

2 Query Reformulation Framework

Figure 2 gives an overview of the query reformulation framework, whereas Section 2.1

to Section 2.5 present in detail, how every combination of the query languages XPath,

XQuery or XSLT can be reformulated according to an XQuery or XSLT view definition.

Note that our approach to query reformulation over views includes 6 combinations of

views and query languages (see Figure 1), thereby going far beyond previous partial

results, which are included into our approach wherever possible.

We adapt the definition of query reformulation to XPath, XQuery and XSLT in such a

way that we can use standard XPath evaluators, standard XQuery engines and standard

XSLT processors wherever possible, and call it query transformation.

In the following, we use the notation R(D) for the query result of applying the query R

to the data D, and V(D) for the transformation of the data D (which can again be a

resultant XML fragment of a query) according to V.

Problem definition: The algorithmic problem of query transformation is to determine

the XPath expression R according to a given query Q formulated in XPath, XQuery or

XSLT and a view definition V formulated in XQuery or XSLT such that R meets the

following conditions: The resultant XML fragment of R(D) has to be as small as

possible, but must also guarantee the equivalence of Q(V(R(D))) and Q(V(D)), i.e.

that Q(V(R(D))) returns the same result as Q(V(D)) for every XML document D.

The following discussion refers to the transformation steps 1 to 9, which are summarized

in Figure 2.

Queries
to V(D)

Reformulated

Query

<result

time="{/trains/train/departure[@station='PB']/@time}"

/>

<?xml version="1.0 "?>

<xsl:stylesheet>

<xsl:template match="/">

<result

time="{/trains/train/departure[@station='PB']/@time}"/>

</xsl:template>

</xsl:stylesheet>

/trains/train/departure[@station='PB']/@time

<trains>

{

for $a in

fn:doc('input.xml')/connections/

public_transport[@type='train']

return

<train>

<departure station = "{ $a/departure/place }"

time = "{ $a/departure/time }" />

<arrival station = "{ $a/arrival/place }"

time = "{ $a/arrival/time }" />

</train>

}

</trains>

<?xml version="1.0"?>

<xsl:stylesheet>

<xsl:template match="/">

<trains>

<xsl:for-each

select="/connections/public_transport[@type='train']">

<train>

<departure station="{departure/place}“

time="{departure/time}"/>

<arrival station="{arrival/place}”

time="{arrival/time}"/>

</train>

</xsl:for-each>

</trains>

</xsl:template>

</xsl:stylesheet>

/connections/public_trans port[@type='train']

/departure[place='PB']/time

<connections>

<public_trans port type="train">

<departure>

<time>12:00</time>

<place>PB</place>

</departure>

<arrival>

<time>14:00</time>

<place>NU</place>

</arrival>

</public_trans port>

<public_trans port type="plane">

…

</public_trans port>

</connections>

<trains>

<train>

<departure time="12:00" station=""/>

</train>

</trains>

XPath: QXPath

XPath: RXPath

XSLT: VXSLT

XQuery: VXQuery

XQuery: QXQuery

XSLT: QXSLT

<connections>

<public_trans port type="train">

<departure>

<time>12:00</time>

</departure>

</public_trans port>

</connections>

View V

G :=

/descendant-or-self

::node()

Resultant XML fragment
RXPath(D)

Apply reformulated query

Transformed XML fragment
V(RXPath(D))

T
r
an

sfo
rm

 acc
ordin

g
 to

 view
 d

e
finitio

n

Original document D

Answer

<result time=“12:00”/> “12:00”

XPath:
AXPath

XQuery: AXQuery
/ XSLT: AXSLT

A
p
p
ly o

rigin
al q

u
ery

1

2

3

45

6

7

8

A
p
p
ly o

rigin
al q

u
ery

9

Figure 2: Example of queries, views and XML data

2.1 XPath Reformulation according to XSLT Stylesheets (Steps 5, 6, 7 and 9)

The system presented in Figure 2 extends our previous approach of XPath reformulation

according to XSLT stylesheets by XQuery views, by XQuery queries and XSLT queries.

An example of our approach of [GBB04], [Gr04a] and [Gr04b] contains transformation

steps 5, 6, 7 and 9, which transform an XPath query QXPath according to a view VXSLT

into an XPath query RXPath, and further with an input XML document D into the

sufficient source XML fragment RXPath(D), the transformed XML fragment

V(RXPath(D)), and the answer AXPath to the query QXPath.

The XSLT stylesheet VXSLT defines the transformation of public transportation

information given in XML document D into a model of train connections. Assume that

we want to know all the times when trains leave Paderborn. For this purpose, we

formulate an XPath query

QXPath = /trains/train/departure[@station=„PB“]/@time

to be applied to the transformed XML document. It is sufficient to transform only a

resultant XML fragment RXPath(D) for answering QXPath, where RXPath is a query

computed by our query transformation algorithm [GBB04] in step 5. Within our query

transformation algorithm, a modified XPath evaluator searches for paths of those XSLT

nodes in the XSLT stylesheet VXSLT, which generate output, which is relevant to answer

the query QXPath, and returns the successfully searched paths of VXSLT. Within a second

step, our query transformation algorithm computes the transformed query RXPath by

combining the input path expressions of the successfully searched paths of VXSLT. We

refer to [GBB04] for a more detailed discussion. In the example of Figure 2, we get

RXPath = /connections/public_transport[@type='train']

 /departure[place='PB']/time

Notice that standard XPath evaluators only return a query result as a node set, not as a

resultant XML fragment. However, this resultant XML fragment RXPath(D) is defined to

contain all the nodes and all their ancestors up to the root of the original XML document

D, which contribute to the successful evaluation of the query QXPath.
1
 We retrieve the

resultant XML fragment of the query RXPath, i.e. RXPath(D), in step 6. Within step 7, a

standard XSLT processor transforms RXPath(D) into VXSLT(RXPath(D)), i.e. a

transformed XML fragment according to the XSLT stylesheet VXSLT. In order to finally

retrieve the result set, as the last step, the original query QXPath is applied to the

transformed XML fragment in step 9, and we retrieve the answer AXPath, i.e. "12:00".

1 The computed resultant XML fragment RXPath(D) is minimal in the following sense: RXPath(D) does not

contain other XML nodes of the input XML document D except those, which will be successfully visited by the

internal XPath evaluator of the XSLT processor, when the XSLT processor executes that section of an XSLT

stylesheet, which generates output that is relevant to answer the query QXPath (see the query transformation

algorithm in [GBB04]).

[GBB04] contains an experimental evaluation, which we summarize in this paragraph:

The measurement system is an Intel Pentium 4 with 512 Megabyte DDR-RAM,

Windows XP, Java VM build version 1.4.2, Xerces2 Java parser 2.5.0 and Xalan-Java

version 2.5.1. In the case of querying for single entries, our approach was 2 times faster

compared to transforming the whole input XML document at a document size of 200

Kilobytes, 3 times faster at 500 Kilobytes and up to 40 times faster at 17 Megabytes.

Furthermore, we varied the selectivity of the transformed query in order to determine the

limit of the selectivity, when our approach is faster. The measurements show that the

limit increases with the document size: Our approach is faster for queries with selectivity

less than 30 % at 3.5 Megabyte, and is faster for queries with selectivity less than 53.3 %

at 7 Megabyte. Therefore, our approach is scalable, i.e. our approach performs

increasingly better the larger the XML documents are compared to transforming the

whole input XML document.

2.1.1 Optimized subsets of XPath and XSLT

At first, we describe the supported subsets of the most widely used XML standards for

each transformation step. Based on this, Section 2.5 summarizes the supported subsets of

the complete system and the bottlenecks.

Transformation step 5 of Figure 2, i.e. the XPath query reformulation based on XSLT

stylesheets, supports a subset of XPath queries, which we call SXPath and which is a

superset of Core XPath [GKP03].

Definition of the subset SXPath of XPath: The syntax of the subset SXPath of XPath is

defined by the following grammar

locpath ::= '/' locpath | locpath '/' locpath | locpath '|' locpath | locstep.
locstep ::= axis '::' ntest '[' bexpr ']' … '[' bexpr ']'.
bexpr ::= bexpr 'and' bexpr | bexpr 'or' bexpr | 'not(' bexpr ')' |
 locpath | (locpath | const) relop (locpath | const).
axis ::= 'self' | 'child' | 'parent' | 'descendant' | 'descendant-or-self' |
 'ancestor' | 'ancestor-or-self' | 'following' | 'following-sibling' |
 'preceding' | 'preceding-sibling'.
ntest ::= 'node()' | 'text()' | '*' | name.
relop ::= '=' | '!=' | '<' | '<=' | '>' | '>='.

where "locpath" is the start production, "axis" denotes the axis relations, "ntest" denotes

node tests and "name" denotes tags labeling document nodes. "const" represents a string

or number constant.

Furthermore, we restrict the XSLT stylesheet VXSLT to use only the subset SXSLT of

XSLT, which we define in the following.

Definition of the subset SXSLT of XSLT: The XSLT stylesheets of SXSLT are restricted to

the following nodes:

• <xsl:stylesheet>,

• <xsl:template match=M name=N>,

• <xsl:element name=N>,

• <xsl:attribute name=N>,

• <xsl:apply-templates select=I>,

• <xsl:text>,

• <xsl:value-of select=I>,

• <xsl:for-each select=I>,

• <xsl:call-template name=N>,

• <xsl:attribute-set name=N>,

• <xsl:if test=T>,

• <xsl:choose>,

• <xsl:when test=T>,

• <xsl:otherwise>,

• <xsl:processing-instruction>,

• <xsl:comment>,

• <xsl:sort>,

• <xsl:copy-of select=I>,

• <xsl:variable name=N>,

• <xsl:with-param name=N> and

• <xsl:param name=N>,

where I and M contain an XPath expression without function calls, T is a boolean

expression and N is a string constant.

Whenever attribute values are generated by the XSLT stylesheet, we assume that each

value is generated by one XSLT node (i.e. <xsl:text> or <xsl:value-of

select=I>).

2.2 Collecting XPath Expressions from an XQuery Expression (Step 3, 5, 6, 7, 8)

Within this section, we present how the approach described in Section 2.1 can be

extended in such a way that we can use an XQuery expression to describe the query. As

before, an XSLT stylesheet is used to define the view. We adapt the contribution of

[MS03] for this purpose.

[MS03] projects XML documents to the necessary input nodes according to an XQuery

expression. It furthermore contains a static XPath analysis which retrieves the XPath

expressions that describe the necessary input nodes of an XML document.

Figure 2 shows how the steps 3, 5, 6, 7 and 8 evaluate a given query QXQuery in order to

retrieve the answer AXQuery.

Step 3 can use the contribution presented in [MS03] in order to retrieve the used XPath

expression QXPath from the XQuery query QXQuery such that QXPath describes the

necessary input nodes of the XML document. From now on, we use our query

reformulation algorithm already described in Section 2.1: Within step 5, we reformulate

the XPath expression QXPath (which is the result of step 3) according to the XSLT

stylesheet VXSLT, into the reformulated query RXPath. The reformulated XPath expression

RXPath describes a sufficiently smaller resultant XML fragment RXPath(D), which we

retrieve in step 6. After transforming RXPath(D) into the transformed XML fragment

V(RXPath(D)) in step 7, we finally apply the XQuery query QXQuery to V(RXPath(D))

in step 8 in order to retrieve the final result AXQuery.

2.2.1 Optimized subsets of XQuery and XSLT

The XQuery expression QXQuery, which can be used within step 3, is restricted to XQuery

expressions without function definitions. Furthermore, the embedded XPath expressions

in QXQuery are restricted to the child, self, descendant, descendant-or-

self and attribute axes each of which can be combined with the node name test,

or the node tests node() or text().

2.3 XSLT Reformulation according to XSLT Stylesheets (Steps 2, 5, 6, 7 and 8)

XSLT is specified for the transformation of XML documents, but XSLT can also be

used as a query language.

Figure 2 gives an example of our approach to query reformulation of XSLT queries, i.e.

it shows how the steps 2, 5, 6, 7 and 8 transform a given query QXSLT into the answer

AXSLT, where the steps 5, 6 and 7 are performed as before.

In the following, we show how to determine all the necessary and sufficient input nodes,

which are required by the XSLT processor to answer the XSLT query QXSLT applied to

the view V. The answer AXSLT of step 8, is the output of the XSLT stylesheet QXSLT

applied to the transformed XML fragment V(RXPath(D)). As a matter of fact, the

required part of AXSLT is the complete AXSLT, which can be described by the most general

XPath query G:=/descendand-or-self::node(). Therefore in step 2, we

compute the XPath expression QXPath that describes the sufficient input nodes of the

query QXSLT by applying the query reformulation algorithm as described in Section 2.1 to

the most general XPath query G and to the XSLT stylesheet QXSLT.

Steps 5, 6, and 7 are then performed as before. Step 8 is different to the approach in

Section 2.1, because we now retrieve the answer AXSLT, i.e. <result

time="12:00">, by processing the XSLT stylesheet QXSLT instead of applying the

query QXPath to V(RXPath(D)) in step 9.

2.3.1 Optimized subset of XSLT

The input of our transformation step 5 is the output QXPath of the query reformulation

step 2 according to the XSLT stylesheet QXSLT. Therefore, QXPath is restricted to the

subset SXPath described in Section 2.1.1. As QXPath is computed from the XPath

expressions within the XSLT stylesheet QXSLT, the XPath expressions within QXSLT are

restricted to the same subset SXPath as the query QXPath. Furthermore, the XSLT

stylesheets QXSLT and VXSLT are restricted to SXSLT, which is described in Section 2.1.1.

2.4 XQuery Transformation to XSLT Stylesheets (Steps 1, 2, 4, 5, 6, 7 and 8)

The approach presented in [LPS01] can be used for transforming a query QXQuery into

QXSLT (see step 1 in Figure 2), and for transforming a view definition VXQuery into VXSLT

(see step 4). However, within Figure 3, we show an optimized example avoiding

unnecessary transformation steps compatible to the approach in [LPS01].
2

Step 1 together with following step 2, is an alternative approach to step 3 described in

Section 2.2.

Using this approach and the approaches of Section 2.1 and Section 2.3, we can support

query reformulation for all combinations of XPath, XQuery and XSLT as query

languages, and XQuery and XSLT as view languages.

2.4.1 Optimized subsets of XQuery and XSLT

The approach of transforming XQuery into XSLT, as outlined in [LPS01], supports all

XQuery expressions of the subset SXQuery, which is defined as follows:

Definition of the subset SXQuery of XQuery: The subset SXQuery of XQuery, contains all

XQuery expressions, which do not use runtime type information of XQuery.

As our step 1 and step 4 use the contribution of [LPS01], QXQuery and VXQuery are

restricted to SXQuery.

Furthermore, the XPath expressions within QXQuery are restricted to the subset SXPath of

XPath expressions described in Section 2.1.1 for the following reasons. Step 1 generates

the XSLT stylesheet QXSLT from the XQuery expression QXQuery. Thereby, the embedded

XPath expressions in QXQuery are transferred to QXSLT. Step 2 processes QXSLT further to

QXPath, which is composed of the embedded XPath expressions of QXSLT. As step 5

requires the restrictions described in Section 2.1.1, QXPath and the XPath expressions in

both QXSLT and QXQuery are restricted to SXPath.

2 We can optimize the example, because the node identity operator of XQuery is not used. If the node identity

operator of XQuery is used, there are further transforming steps necessary, as described in [16].

The XPath expressions within view VXQuery are not restricted, as we do not apply the

query reformulation algorithm to the reformulated queries RXPath again.

2.5 Subsets optimized by the complete system

Summarizing all, the considered subsets of the complete systems are:

1) The subset SXPath, as described in Section 2.1.1, for the XPath expressions QXPath and

the XPath expressions embedded within the XQuery expression QXQuery and within the

XSLT stylesheet QXSLT.

2) The subset SXQuery, as described in Section 2.4.1, for the XQuery expressions QXQuery

and VXQuery.

3) The subset SXSLT, as described in Section 2.1.1, for the XSLT styleheets QXSLT and

VXSLT.

3 Further Related Work

For the transformation of XML queries into queries based upon other data storage

formats, at least two major research directions can be distinguished. Firstly, the mapping

of XML queries to object oriented or relational databases (e.g. [BBB00], [DT03]), and

secondly, the transformation of XML queries or XML documents into other XML

queries or XML documents (e.g. [Ab99]). We follow the second approach; however, we

focus on XSL and XQuery for the transformation of both XML data and queries, where

the queries can be formulated in XPath, XQuery or XSLT.

Within related contributions to schema integration, two approaches to data and query

translation can be distinguished. While the majority of contributions (e.g. [ACM97],

[Cl98]) map the data to a unique representation, we follow [CG00] and map the queries

to those domains where the data resides.

The contribution in [CVV01] presents query reformulation according to path-to-path

mappings. We go beyond this, as we support each of the current XML standards

XQuery, XPath and XSLT. [Mo02] describes how XSL processing can be incorporated

into database engines, but focuses on efficient XSL processing. The complexity of XPath

query evaluation on XML documents is examined in [GKP03]. In comparison, we use an

evaluation based on output nodes of an XSLT stylesheet and consider query

transformation. Altinel and Franklin present in [AF00], an algorithm, which filters XML

documents according to a given query and analyzes the performance, but the algorithm

does not contain query transformation.

We presented approaches to reformulate XPath queries according to XSLT stylesheets

([GBB04], [Gr04b]). Within this paper, we present how to combine our approaches with

other approaches in order to support query reformulation not only for XPath, but also for

XQuery and XSLT queries. Furthermore, we extend query reformulation to view

definitions formulated in XSLT or in XQuery.

[MS03] projects XML documents to a sufficient XML fragment before processing

XQuery queries. [MS03] contains a static path analysis of XQuery queries, which

computes a set of projection paths formulated in XPath. Our approach is compatible to

[MS03], but additionally provides query reformulation through views in XSLT or

XQuery.

[Fe02] and [Sh01] present systems, which support to answer XQuery queries on XQuery

views, where the XML data is stored in relational databases. In comparison, within our

approach, the view can be formulated in XQuery or XSLT and the query in XPath,

XQuery or XSLT. Furthermore, our approach stores the data in XML and does not store

the XML data in relational databases.

In comparison to all other approaches, some of which are partial results of our result, our

approach is the first, which integrates the two different view definition languages of

XSLT and XQuery for XML views, with the possibility to express queries in XPath,

XSLT or XQuery.

4 Summary and Conclusions

In summary, we have presented how query reformulation can be applied to XPath,

XQuery or XSLT queries. The view definition can be either formulated in XQuery or

XSLT. Within our approach, we support the most widely used XML document query

standards and transformation standards of the W3C. Our implementation of the XSLT

transformation part, i.e. query reformulation of XPath queries using VXSLT, has been

completed and shows that the document size and overall speed can be reduced for a large

set of queries (see [GBB04], [Gr04a]). Future work will involve the integration of the

contributions of [LPS01] and [MS03] in order to evaluate the performance of the

proposed integrated query reformulation system. Another big challenge is to investigate

how to extend our approach in such a way that XML data updates can be efficiently

propagated through an XML view formulated in XQuery or XSLT.

References

[Ab99] Abiteboul, S.: On views and XML. In PODS, pages 1-9, 1999.

[ACM97]Abiteboul, S., Cluet, S., and Milo, T.: Correspondence and translation for heterogeneous

data. In Proc. of the 6th ICDT, 1997.

[AF00] Altinel, M., and Franklin, M. J.: Efficient Filtering of XML documents for Selective

Dissemination of Information. In Proceedings of 26th International Conference on Very

Large Databases, Cairo, Egypt, 2000.

[BBB00] R. Bourret, R., Bornhövd, C., and Buchmann, A.P.: A Generic Load/Extract Utility for

Data Transfer Between XML Documents and Relational Databases. 2nd Int. Workshop

on Advanced Issues of EC and Web-based Information Systems (WECWIS), San Jose,

California, 2000.

[CG00] Chang, C.-C. K., and Garcia-Molina, H.: Approximate Query Translation Across

Heterogeneous Information Sources. VLDB 2000, 2000.

[CLL02] Chen, Y. B., Ling, T. W., and Lee, M. L.: Designing Valid XML Views, ER 2002, LNCS

2503, pp. 463-477, 2002.

[Cl98] Cluet, S., Delobel, C., Simon, J., and Smaga, K.: Your mediators need data conversion!

In Proc. of the 1998 ACM SIGMOD Conf., 1998.

[CVV01] Cluet, S., Veltri, P., and Vodislav, D.: Views in a Large Scale XML Repository. In

Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

[DT03] Deutsch, A., and Tannen, V.: Reformulation of XML Queries and Constraints, In ICDT

2003, LNCS 2572, pp. 225-241, 2003.

[Fe02] Fernández, M., Kadiyska, Y., Suciu, D., Morishima, A. and Wang Chiew Tan:

SilkRoute: A Framework for Publishing Relational Data in XML, ACM Transactions on

Database Systems, Vol. 27, No. 4, December 2002, pages 438-493.

[GKP03] Gottlob, G., Koch, C., and Pichler, R.: The Complexity of XPath Query Evaluation, In

Proceedings of the 22th ACM SIGMOD-SIGACT-SIGART symposium of Principles of

database systems (PODS 2003), San Diego, California, USA, 2003.

[GB03] Groppe, S., and Böttcher, S.: Querying transformed XML documents: Determining a

sufficient fragment of the original document. 3. International Workshop Web Databases

(WebDB), Berlin, Germany, 2003.

[GBB04] Groppe, S., Böttcher, S., and Birkenheuer, G.: Efficient Querying of transformed XML

documents, submitted to 6th International Conference of Enterprise Information Systems

(ICEIS 2004), Porto, Portugal, 2004.

[Gr04a] Groppe, S., Böttcher, S., Heckel, R., and Birkenheuer, G.: XPath query reformulation

based on XSLT stylesheets. Technical Report, University of Paderborn, Paderborn,

Germany, 2004.

[Gr04b] Groppe, S., Böttcher, S., Heckel, R., and Birkenheuer, G.: Using XSLT Stylesheets to

Transform XPath Queries. Eighth East-European Conference on Advances in Databases

and Information Systems (ADBIS 2004), Budapest, Hungary, September 2004.

[LPS01] Lechner, S., Preuner, G., and Schrefl, M.: Translating XQuery into XSLT, In ER 2001

Workshops, Yokohama, Japan, 2001.

[MS03] Marian, A., and Siméon, J.: Projecting XML Documents. In Proceedings of the 29th

VLDB Conference, Berlin, Germany, 2003.

[Mo02] Moerkotte, G.: Incorporating XSL Processing Into Database Engines. In Proceedings of

the 28th VLDB Conference, Hong Kong, China, 2002.

[Sh01] Shanmugasundaram, J., Kiernan, J., Shekita, E., Fan, C., and Funderburk, J.: Querying

XML Views of Relational Data, In Proceedings of the 27th VLDB Conference, Roma,

Italy, 2001.

[W3C01] W3C: Extensible Stylesheet Language (XSL). http://www.w3.org/Style/XSL/, 2001.

[W3C99] W3C: XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath/, 1999.

[W3C03] W3C: XQuery 1.0: An XML Query Language, W3C Working Draft,

http://www.w3.org/TR/xquery/, 2003.

