
Querying transformed XML documents: Determining a
sufficient fragment of the original document

Sven Groppe , Stefan Böttcher

University of Paderborn
Faculty 5 (Computer Science, Electrical Engineering & Mathematics)

Fürstenallee 11 , D-33102 Paderborn , Germany
email : sg@uni-paderborn.de , stb@uni-paderborn.de

Abstract. Large XML documents which are stored in an XML database can be
transformed further by an XSL processor using an XSLT stylesheet. In order to
answer an XPath query based on the transformed XML document, it may be of
considerable advantage to retrieve and process only that part of an XML document
stored in the database which is used by a query. Our contribution uses an XSLT
stylesheet to transform a given XPath query such that the amount of data which is
retrieved from the XML database and transformed by the XSL processor according
to the XSLT stylesheet is reduced.

1 Introduction

 1.1 Problem origin and motivation

Whenever XML data is shared by heterogeneous applications, which use different XML
representations of the same XML data, it is necessary to transform XML data from one
XML format 1 into another XML format 2. The conventional approach is to transform
entire XML documents into the application-specific XML format, so that each
application can work locally on its preferred format. Among other things, this causes
problems of replication (especially synchronization problems), consumes a lot of
processing time and in distributed scenarios, leads to high transportation costs. A more
economic approach to the integration of heterogeneous XML data involves transforming
and transporting the data on demand only, and only the amount which is needed to
perform a given operation.

XML format 2 XML format 1

XML-DBtransformed
XML fragment

F2

query XP2

XSLT stylesheet

query XP1

XML fragment
F1

transformation component
query transformation

XSL processor

Figure 1: The transformation process

More specifically, our work is motivated by the development of an XML database
system which ships data to remote clients. Whenever clients use their own XML format,
XSLT is used for transforming documents given in XML format 1 (of the database) into
XML format 2 (of the client). Whenever a client application submits an XPath query
XP2 for XML data in format 2, we propose transforming XP2 using a new query
transformation algorithm into an XPath query XP1 on the original XML data in format
1. The evaluation of XP1 yields a fragment of the original document which, when
transformed using the XSLT stylesheet, can be used to evaluate the original query XP2
of the client. This approach (cf. Figure 1) may result in a considerable reduction in the
amount of data transformed and shipped in comparison to the process of transforming
the whole document via the XSLT stylesheet and applying the query XP2 afterwards.

<?xml version="1.0"?>
(1) <xsl:stylesheet xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform"
version="1.0">

(2) <xsl:template match="/">
(3) <xsl:element name="Maps">
(4) <xsl:apply-templates select="area"/>

</xsl:element>
</xsl:template>

(5) <xsl:template match="area">
(6) <xsl:element name="Map">
(7) <xsl:element name=“title">
(8) <xsl:value-of select=“label"/>

</xsl:element>
(9) <xsl:element name="content“>
(10) <xsl:value-of select=“bitmap"/>

</xsl:element>
</xsl:element>

(11) <xsl:apply-templates select="area"/>
</xsl:template>

</xsl:stylesheet>

<Maps>
<Map>

<title>World</title>
<content>
… Bitmap of the world …
</content>

</Map>
<Map>

<title>Africa</title>
<content>
… Bitmap of whole Africa …
</content>

</Map>
<Map>

<title>Zimbabwe</title>
<content>
… Bitmap of country …
</content>

</Map>
</Maps>

<area>
<label>World</label>
<bitmap>
… Bitmap of the world …
</bitmap>
<area>
<label>Africa</label>
<bitmap>
… Bitmap of whole Africa …
</bitmap>

<area>
<label>
Zimbabwe
</label>
<bitmap>
… Bitmap of country …
</bitmap>

</area>
</area>

</area>

transformed XML document S(D)
XML fragment F2=S(XP1(D))

original XML document D
XML fragment F1=XP1(D)

XSLT stylesheet S

Figure 2: Example of the transformation of F1 into F2 by an XSLT stylesheet S

For example, consider the XML document D and the XSLT stylesheet S in Figure 2. The
XML document D contains named maps (in the form of bitmaps with large sizes) of
nested areas. The XSLT stylesheet S transforms the XML document D to S(D), a flat
presentation of the XML document. We only retrieve the titles of the maps by applying
an XPath query

XP2 = /Maps/Map/title

given in XML format 2 on S(D). Throughout this paper, we explain why it is sufficient
to only transform that bold face part of XML document D (i.e. XML fragment F1) in
Figure 2, which can be described using the following query XP1 given in XML format 1

XP1 = /area (/area)* /label

where A* is a short notation for an arbitrary number of paths A.1 The result of only
transforming the XML fragment F1 is the XML fragment F2, which is the bold face part
of S(D) in Figure 2. Notice, that F2 is still sufficient to answer the query XP2, but it
excludes especially the bitmaps with large sizes.

The algorithmic problem is as follows: Given an XPath query XP2 and an XSLT
stylesheet S, which are used to transform XML documents D (e.g. the XML document in
Figure 2), or XML fragments respectively, into S(D), we compute an XPath query XP1
such that the following property holds:

We retrieve the same result for all XML documents D given in format 1,
• when firstly we apply the XSLT stylesheet S to D, and then apply the query XP2 to

the XML fragment S(D), and
• when firstly we apply the query XP1 to the XML fragment D, then transform the

result according to the XSLT stylesheet S and finally apply the query XP2,
i.e. XP2(S(D)) must be equivalent to XP2(S(XP1(D))). Our goal is to keep
F1=XP1(D) small in comparison to D.

In this case, we can ship and transform F1=XP1(D) instead of D, which saves
transportation costs and processing time.

1.2 Relation to other work and our focus

For the transformation of XML queries into queries to other data storage formats at least
two major research directions can be distinguished: firstly, the mapping of XML queries
to object oriented or relational databases (e.g. [BBB00]), and secondly, the
transformation of XML queries or XML documents into other XML queries or XML
documents (e.g. [Ab99]). We follow the second approach; however, we focus on XSL
[W3C01] for the transformation of both, data and XPath [W3C99] queries.

Within related contributions to schema integration, two approaches to data and query
translation can be distinguished. While the majority of contributions (e.g. [CDSS98],
[ACM97], [SSR94]) map the data to a unique representation, we follow [CG00] and
[CG99] and map the queries to those domains where the data resides.

 [CVV01] reformulates queries according to path-to-path mappings. We go beyond this,
as we use XSLT as a more powerful mapping language.

1 Standard XPath evaluators do not support A*, but we can retrieve a superset by replacing A*/ with //.
Furthermore, a modified XPath evaluator has to return not only the result set of XP1 (as standard XPath
evaluators do), but a result XML fragment F1. This result XML fragment F1 must contain all nodes and all
their ancestors up to the root of the original XML document D, which contribute to the successful evaluation of
the query XP1.

[Mo02] describes how XSL processing can be incorporated into database engines, but it
focuses on efficient XSL processing.

In contrast to all the other approaches, we focus on the transformation of XPath queries
according to a mapping, which is implicitly given by an XSLT stylesheet.

1.3 Considered subsets of XPath and XSLT

Since XPath and XSLT are very powerful and expressive languages, however, our
applications only need a small subset. We currently restrict XPath queries XP2, such that
they conform to the following rule for LocationPath given in the Extended Backus
Naur Form (EBNF):

LocationPath ::= (("/" | "//") Name)*.

This subset of XPath allows for the querying for an XML fragment which can be
described by succeeding elements (in an arbitrary depth).

Similarly, we restrict XSLT, i.e., we consider the following nodes of an XSLT
stylesheet:
• <xsl:stylesheet>,
• <xsl:template match=M1 name=N>,
• <xsl:element name=N>,
• <xsl:apply-templates select=S1>,
• <xsl:text>,
• <xsl:value-of select=S2>,
• <xsl:for-each select=S1>,
• <xsl:call-template name=N>,
• <xsl:if test=T>,
• <xsl:choose>,
• <xsl:when test=T>,
• <xsl:otherwise>,
• <xsl:processing-instruction>,
• <xsl:comment> and
• <xsl:sort>,
where S1, S2 and M1 contain an XPath expression with relative paths without function
calls, T is a boolean expression with relative paths and N is a string constant.
Additionally, M1 can contain the document root “/”.

Whenever attribute values are generated by the XSLT stylesheet, we assume (in order to
keep this presentation simple) that this is only done in one XSLT node (i.e.
<xsl:text> or <xsl:value-of select=S2>).

2 Query transformation as search problem in the stylesheet graph

The Querying of the transformed XML document S(D) using a given query XP2 only
selects a certain part of S(D) (i.e. XP2(S(D))), which is generated by the XSLT
processor at certain so called output nodes of the XSLT stylesheet S. In the example of
Figure 2, all the elements Maps in S(D) are generated by the node (3) of S (see Figure
2), all elements Map are generated by node (6) and all elements title and their
contents are generated by node (7) and (8). These output nodes of the XSLT stylesheet S
are reached, after a sequence of nodes (which we call stylesheet paths) of the XSLT
stylesheet S have been executed. In the example, one stylesheet path that contains the
nodes (3), (6), (7) and (8) is <(1),(2),(3),(4),(5),(6),(7),(8)>. While executing these
stylesheet paths, the XSLT processor also processes so called input nodes (e.g. node (4)
and (8)) each of which selects a node set of the input XML document D. The input nodes
altogether select a certain whole node set of the input XML document D. In the
stylesheet path above, this is the node set /area/label. When considering our idea to
reduce the amount of data of the input XML document, we notice that all the nodes (but
not more nodes!) of the input XML document which are selected within input nodes
along the stylesheet path must be available in order to execute the stylesheet path in the
same way as all nodes of the input XML document are available. If we can determine the
whole node set (described using a query XP1), which is selected on all stylesheet paths,
which generate output which fits to the query XP2, we can then select a smaller, but yet
sufficient part XP1(D) of the input XML document D, where the transformed XP1(D),
i.e. S(XP1(D)), contains all the information required to answer the query XP2
correctly, i.e. XP2(S(XP1(D))) is equivalent to XP2(S(D)).

Within our approach, at first we transform the XSLT stylesheet into a stylesheet graph
(see Section 2.1 and 2.2) in order to search more easily for stylesheet paths (see Section
2.3), which generate elements and their contents in the correct order according to the
query XP2.

For each of these stylesheet paths, within Section 3 we determine the so called input path
expression of the XSLT stylesheet, which summarizes the XPath expressions of the
input nodes along the stylesheet path. The transformed query XP1 is the disjunction of
all the determined input path expressions of each stylesheet path.

2.1 Determination of the callable templates

For the construction of the stylesheet graph (see section 2.2.), we have to determine (a
superset of) all the templates <xsl:template match=m> which can (possibly) be
called from a node <xsl:apply-templates select=s>.

Within the node <xsl:apply-templates select=s> a certain node set is
selected depending on its context, where s contains a relative path (see section 1.3). We
ignore the exact context of the node here and describe a superset s_super of the
selected node set by assigning //s to s_super. Similarly, if m<>”/” we assign //m to
m_super for the node <xsl:template match=m>, which describes a superset of
the matching nodes m. If m=“/” we assign the document root “/” to m_super. For
example, see nodes (4) and (5) of Figure 2. Within this example, s_super is //area,
m_super is //area.

We can then use a fast (but incomplete) tester (e.g. the one in [BT03]) in order to prove
that m_super and s_super are disjointed. Whenever the supersets s_super and
m_super are disjointed, we are then sure that s and m are also disjointed, i.e.
<xsl:apply-templates select=s> can not call a template <xsl:template
match=m>. For example, this is the case for node (4) and node (2) of Figure 2. If the
intersection of s_super and m_super is not empty, we must consider the fact that the
template can possibly match the selected node set. For example, this is the case for
s_super=//area of node (4) and m_super=//area of node (5) of Figure 2.

Since this can give us a superset of the templates which can be applied, the transformed
query XP1 may query for more than is needed. Note however that we never obtain a
wrong result, because we always apply the query XP2 afterwards.

2.2 Stylesheet graph

In order to compute the node set of the input XML document which is relevant to the
query XP2, we transform an XSLT stylesheet (e.g., that of Figure 2) into a graph (e.g.,
that of Figure 3). The basic idea involves connecting all nodes n1 and n2 by an edge, if
n2 can be reached directly after n1, while executing the XSLT stylesheet.

parent child

area

Maps

Map label

output node

input node

start node

(1) (5)

(11)

(6) (8)

(2) (3)

title

(7)

content
(9)

bitmap

(10)

area

(4)

Figure 3: Stylesheet graph of the XSLT stylesheet S of figure 2

A stylesheet graph consists of a set N of nodes and a set E of directed edges. A node n �
N is a normal node, an output node or an input node. An output node contains an
additional entry A which represents the XML element (e.g. Map) that is generated by the
node during the transformation process of the XML document. An input node contains
an additional XPath expression entry which represents the read operations on the input
XML document during the transformation. One special node of the stylesheet graph is
the start node. An edge e is a pair of nodes, e=(n1,n2) with n1,n2 � N.

The following rules transform an XSLT stylesheet into the corresponding stylesheet
graph:

a. For each node in the XSLT stylesheet, we insert an own node into the stylesheet
graph. In the example, the numbers below the nodes of the stylesheet graph of
Figure 3 correspond to the numbers of the nodes in the XSLT stylesheet of Figure 2.
For example the node (1) in Figure 3 corresponds to the node <xsl:stylesheet
…> in the XSLT stylesheet of Figure 2.

b. The node in the stylesheet graph that corresponds to the node
<xsl:stylesheet> of the XSLT stylesheet is the start node of the stylesheet
graph. For example, see node (1) in Figure 2 and Figure 3.

c. For each node in the stylesheet graph we check, whether or not the node belongs to
the output nodes or to the input nodes:
1) If the corresponding node in the XSLT stylesheet generates an element E

(<xsl:element name=E>), the node in the stylesheet graph belongs to the
output nodes: We assign E which is generated in the corresponding node of the
XSLT stylesheet to the output entry of the output node. For example, see nodes
(3), (6), (7) and (9) in Figures 2 and 3.

2) If the corresponding node in the XSLT stylesheet selects a node set S of the
input XML document (<xsl:apply-templates select=S/>,
<xsl:value-of select=S/>, or <xsl:for-each select=S>), the
node in the stylesheet graph belongs to the input nodes: we copy S to the input
entry of the node of the stylesheet graph. For example, see nodes (4), (8) and
(10) in Figure 2 and Figure 3. The same applies to <xsl:if test=T> or
<xsl:when test=T>, if S occurs in the Boolean expression T.

d. Let n1 and n2 be the nodes in the stylesheet graph which correspond to the nodes
S1 and S2 in the XSLT stylesheet. We draw an edge from n1 to n2, if
1) S2 is a child node of S1 within the XSLT stylesheet (for example, see node (1)

and (2) in Figure 2 and Figure 3), or
2) S1 is a node <xsl:call-template name=N> and S2 a node

<xsl:template name=N> with an attribute name set to the same N, or
3) S1 is a node <xsl:apply-templates select=s/> and S2 a node

<xsl:template match=m> and the template of S2 can possibly be called
from the selected node set s (see section 2.1). For example, see nodes (4) and
(5) in Figure 2 and Figure 3.

2.3 Output path search in the stylesheet graph

Algorithm 1 contains the (depth-first search) algorithm of the output path search. We
describe the idea behind the algorithm in this section:

In order to determine the paths through an XSLT stylesheet graph which may generate
output that is relevant to XP2, we search for so called successful element stylesheet
paths, i.e. paths which begin at the start node and contain all the output nodes of the
stylesheet graph which may contribute to answering the query XP2.

For example, for XP2=/Maps/Map/title and the XSLT stylesheet of Figure 2 (or
its stylesheet graph shown in Figure 3, respectively), we search for the output nodes (see
Algorithm 1, lines 36 to 38) which generate the elements Maps, Map and title in the
correct order. Firstly, we begin our search at the start node (1) and we search for an
output node which generates Maps. The search can pass normal nodes and input nodes
as they do not generate any output, which does not fit to XP2 (see Algorithm 1, lines 33
to 35). The search can also pass any output nodes if we search next for an element E in
arbitrary depth, i.e. for //E (see Algorithm 1, lines 33 to 35). We find this output node
generating the element Maps at the node (3) after the nodes (1) and (2). Afterwards, we
search for an output node which generates Map. We find an output node (6) generating
Map, after the nodes (4) and (5) have been passed. The following node (7) generates
title (and node (8) its content), i.e. the last element in XP2 to be searched for: We
found a successful element stylesheet path with nodes (1), (2), (3), (4), (5), (6), (7) and
(8).

parent child

area

Maps

Map

label

output node

input node

start node

(1)

(5)

(11)

(6)

(8)

(2)

(3)

title(7)

area(4)

successful element
stylesheet path

loop
stylesheet path

Figure 4: Result of the Output Path Search

(1) types:
(2) list of (Node, XPath) Stylesheet_path;
(3) global variables:
(4) Stylesheet_graph sg;
(5) list of Stylesheet_path
(6) successful_element_stylesheet_paths;
(7) list of ((Node, XPath), Stylesheet_path)
(8) loop_stylesheet_paths;
(9)
(10) startSearch(in XPath XP2)
(11) { SearchElement(sg.getStartNode(),XP2,
(12) new Stylesheet_path()); }
(13)
(14) boolean isLoop(in Node N, in XPath XP2r,
(15) inout Stylesheet_path sp)
(16) { if (sp.contains((N,XP2r)))
(17) { loop_stylesheet_paths.add((N,XP2r),
(18) sp.subList(sp.firstOccurrence((N,XP2r))+1,
(19) sp.size()));
(20) return true;
(21) }
(22) else { sp.add((N,XP2r));
(23) return false;
(24) }
(25) }
(26)
(27) SearchElement(in Node N, in XPath XP2r,
(28) in Stylesheet_path sp)
(29) { if(not isLoop(N, XP2r, sp))
(30) { if(XP2r is empty and
(31) (N is output node or N has no descendant))
(32) successful_element_stylesheet_paths.add(sp);
(33) if(N is not output node or XP2r starts with “//”)
(34) for all descendants DN of N do
(35) SearchElement(DN, XP2r, sp);
(36) if(N is output node generating element E and
(37) (XP2r starts with “/E” or “//E”))
(38) { XP2r=XP2r.stringAfter(“E”);
(39) if(XP2r is empty and N has no descendant)
(40) successful_element_stylesheet_paths.add(sp);
(41) for all descendants DN of N do
(42) SearchElement(DN,XP2r,sp);
(43) }
(44) }
(45) }

Algorithm 1: Output path search

In order to store information for each part of the query XP2 which we search next, we
define a stylesheet path as a list of pairs (N, XP2r) where N is a node in the stylesheet
graph and XP2r is the remaining location steps of XP2 which still have to be processed
(see Algorithm 1, line 2). We call the stylesheet path, which contains all the visited
nodes of the path from the start node to the current node in the visited order, the current
stylesheet path sp.

During the search it may occur, that we revisit a node N of the XSLT graph without any
progress in the processing of XP2r. For example, we can visit the nodes (1), (2), (3), (4),
(5), (11) and then the node (5) again in Figure 3. We call this a loop, and we define a
loop as follows: The loop is the current stylesheet path minus the stylesheet path of the
first visit of N. In the example, this is <((11), /Map/title),((5), /Map/title)>
in Figure 4. For each loop in the stylesheet graph (see Algorithm 1, lines 14 to 25), we
store the loop itself, the current node N and XP2r as an entry to the set of loop stylesheet
paths, because we need to know the input which is consumed when the XSLT processor
executes the nodes of a loop (see Section 3.4). In order to avoid an infinite search, we
abort the search at this point.

Figure 4 shows both, the successful element stylesheet path and the attached loop
stylesheet path of our example.

3 Computing input path expressions

Within Section 2 we computed successful element stylesheet paths such that (only) when
the XSLT processor tracks a successful element stylesheet path (and its attached loop
stylesheet paths), does it generate an XML fragment F2 which contributes to the query
XP2. While tracking a successful element stylesheet path, the XSLT processor selects a
certain node set called input node set of the input XML document whose existence is
necessary for the execution of the successful element stylesheet path. The input node set
is described using the so called input path expressions, which are contained in the input
entries of the input nodes. The remaining task to be completed is to determine this input
node set and to describe this input node set using a query XP1.

The XSLT processor does not select the input node set of the input XML document
immediately. In fact, the XSLT processor selects the input node set step by step in
different input nodes of the XSLT stylesheet which are described by their input path
expressions in the successful element stylesheet path and its attached loop stylesheet
paths. For this reason, we have to combine all these input path expressions along a
successful element stylesheet path (and its attached loop stylesheet paths). Figure 5
shows the computation of the input path expressions of our example, which we will
explain in more detail in the following subsections.

For example (see Figure 5), the input path expression / (selecting the document root) is
matched within node (2) and the document root is also the current input node set of node
(3). The current input node (4) selects a relative input path expression area, so that the
total selected input path expression is /area after the current input node (4). We use a
variable current input path expression (current ipe) in order to collect the currently
selected input path expression. The current ipe contains a combination of all the input
path expressions of all input nodes up to (and including) the current node.

parent child

area

Maps

Map

label

output node

input node

start node

(1)

(5)

(11)

(6)

(8)

(2)

(3)

title(7)

area(4)

successful element
stylesheet path

loop
stylesheet path

current ipe = /

current ipe = /

current ipe = /area

current ipe = area

current ipe = /area (/area)*

current ipe = /area (/area)*

current ipe = /area (/area)*

current ipe = /area (/area)* /label

current ipe =

current ipe = /

Figure 5: Computing the input path expression of the running example

We mainly iterate through each successful element stylesheet path and we

• compute the new current ipe (current ipenew) from the input path expression of
the current node and the old current ipe (current ipeold).

• recursively compute and combine current ipes of attached loop stylesheet paths.

The initialization of current ipe is described in Section 3.1. The different combination
steps are described in Sections 3.2 to 3.4, and the determination of the complete input
path expression is described in Section 3.5.

3.1 Initialization of current ipe

In general, the current ipe in each successful element stylesheet path is initialized using
the match attribute of that node within the XSLT stylesheet, that corresponds to the
second node of this successful element stylesheet path (the first node always corresponds
to a node <xsl:stylesheet>, the second to a node <xsl:template
match=m>). However, if m (and therefore the current ipe) contains a relative path (i.e. m
does not contain the document root /), we replace m with //m within the current ipe in
order to complete the initialization. As an XML node with an arbitrary depth can be
matched with a template because of built-in templates, we do this when the value of the
match attribute contains a relative path.

In our example (see Figure 5), current ipe is initialized with the document root / before
node (2).

3.2 Non-input nodes

Whenever a node is neither an input node nor a node with an attached loop stylesheet
path, then the current ipe remains unchanged, i.e., it is identical to its previous value.

In our example (see Figure 5), this is the case for the nodes (2), (3), (6) and (7).

3.3 Basic combination step

Figures 5 shows three examples (see nodes (4), (11) and (8)) of the computation of a
new current input path expression (current ipenew) of input nodes from an old
current input path expression (current ipeold).

The general rule is as follows:

Let r be the input path expression of the current input node. The current ipe must be
combined with r:

current ipenew = current ipeold / r

3.4 Loop combination step

In our example of Figure 5, the loop stylesheet path
<((11),/Map/title),((5),/Map/title)> is attached to the node (5). Within the
loop stylesheet path, the node set area is selected. While tracking the successful
element stylesheet path, the XSLT processor can execute the nodes of the loop stylesheet
path an arbitrary number of times. This induces the XSLT processor to select the node
set area, i.e. (/area)* an arbitrary number of times. As the current ipe before the
node (5) is /area, the current ipe after the node (5) is /area (/area)*.

The general rule is as follows:

If there is a loop stylesheet path attached to the current node (for example, see node (5)
with the loop stylesheet path <((11),/Map/title),((5),/Map/title)> in
Figure 5), we start an additional recursive computation of the input paths of this loop
stylesheet path. Before this recursive computation begins, we initialize the current input
path expression (current ipeloop) of the loop with an empty path. Then we
recursively2 compute in the loop as before and obtain the current ipe after the last node
of the loop (current ipeend of loop). We compute current ipenew of the node,
to which the loop is attached, according to the following rules:

In every iteration of the loop, current ipeend of loop is selected in the context of the
input path expression current ipeold:

current ipenew = current ipeold (/current ipeend of loop)*

Let us assume that there are n>1 loops attached to the current node. Then we compute
the current ipe after the last node of the loop (current ipeend of loop[i]) for each
loop i. Then we compute current ipenew for multiple loops using the following
equation:

current ipenew = current ipeold
 (/current ipeend of loop[1]

 | … | /current ipeend of loop[n])*

3.5 The complete input path expression XP1

The complete input path expression which is used as query XP1 on the input XML
document is the union of all the current ipes after the last node of each of the n
successful element stylesheet paths (1..n),

XP1 = current ipe1 | … | current ipen.

where current ipex is the current ipe after the last node of the x-th successful
element stylesheet path has been processed.

If there is no entry in the successful element stylesheet path (i.e. n=0), then XP1 remains
empty.

Within our example of Figure 5, there is only one entry in the set of successful element
stylesheet paths, and XP1 is equal to the current ipe after the last node (8):

XP1 = /area (/area)* /label

2 Note that a loop can contain other loops.

3.6 Result of the XPath evaluator for XP1

The XPath evaluator which evaluates the XPath expression XP1 on the XML database
produces an optimal result, if it supports the newly introduced A* operator which is a
short notation for an arbitrary number of location steps A. If the XPath evaluator does
not support the A* operator, then the XPath evaluator can return a superset by simply
replacing A*/ with //.

In order to determine the resulting XML fragment of the query XP1, a modified XPath
evaluator has to return not only the result set of XP1 (as standard XPath evaluators do),
but a result XML fragment F1. This result XML fragment F1 must contain all nodes and
all their ancestors up to the root of the original XML document D, which contribute to
the successful evaluation of the query XP1.

For example, the evaluation of the XPath expression

XP1 = /area (/area)* /label

on the XML database will result in the XML fragment F1 of Figure 2, which is the bold
face part of the XML document D.

4 Summary and Conclusions

In order to reduce data transformation and data transportation costs, we compute a
transformed query XP1 from a given query XP2 and a given XSLT stylesheet which can
be applied to the original XML document. This allows us to retrieve a smaller, but yet
the sufficient fragment F1 which contains all relevant data. F1 can be transformed by
the XSLT stylesheet into F2, from which the query XP2 selects the relevant data.

In comparison to other contributions to query reformulation, we transform the XSLT
stylesheet into a stylesheet graph, which we use in order to search for paths according to
the given query XP2. This allows us to transform the given query XP2 into a query XP1
on the basis of input path expressions which are found in input nodes along the searched
path.

We expect our approach to queries on transformed XML data to have considerable
advantages over the standard approach which transforms the entire XML document
particularly for very large XML documents and for shipping XML data to remote clients.

Our approach enables the seamless incorporating of XSL processing into database
management systems, which in our opinion will become increasingly important in the
very near future.

An extension of the approach presented here which would involve supporting a larger
subset of XPath and XSLT would appear to be very promising.

Acknowledgements

This work is funded by the MEMPHIS project (IST-2000-25045).

References:

[Ab99] S. Abiteboul, On views and XML. In PODS, pages 1-9, 1999.
[ACM97] S. Abiteboul, S. Cluet, and T. Milo, Correspondence and translation for

heterogeneous data. In Proc. of the 6th ICDT, 1997.
 [BG03] S. Böttcher, and S. Groppe, Automated Data Mapping for Cross Enterprise

Data Integration. International Conference of Enterprise Information Systems
(ICEIS 2003), Angers, France, 2003.

[BT03] S. Böttcher, and A. Türling, Checking XPath Expressions for Synchronization,
Access Control and Reuse of Query Results on Mobile Clients. Workshop:
Database Mechanisms for Mobile Applications, Karlsruhe, Germany, 2003.

[BBB00] R. Bourret, C. Bornhövd, and A.P. Buchmann, A Generic Load/Extract Utility
for Data Transfer Between XML Documents and Relational Databases. 2nd
Int. Workshop on Advanced Issues of EC and Web-based Information Systems
(WECWIS), San Jose, California, 2000.

[CG99] C.-C. K. Chang, and H. Garcia-Molina, Mind your vocabulary: Query mapping
across heterogeneous information sources. In Proc. of the 1999 ACM SIGMOD
Conf., Philadelphia, 1999. ACM Press, NY.

[CG00] C.-C. K. Chang, and H. Garcia-Molina, Approximate Query Translation
Across Heterogeneous Information Sources. VLDB 2000, 2000.

[CDSS98] S. Cluet, C. Delobel, J. Simon, and K. Smaga, Your mediators need data
conversion! In Proc. of the 1998 ACM SIGMOD Conf., 1998.

[CVV01] S. Cluet, P. Veltri, and D. Vodislav, Views in a Large Scale XML Repository.
In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

[LW00] A.Y. Levy, and D.S. Weld, Intelligent internet-systems. Artificial Intelligence,
118(1-2), 2000.

[Mo02] G. Moerkotte, Incorporating XSL Processing Into Database Engines. In
Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

[SSR94] E. Sciore, M. Siegel, and A. Rosenthal, Using semantic values to facilitate
interoperability among heterogeneous information systems. Trans. on
Database Systems, 19(2), 1994.

[W3C01] W3C, Extensible Stylesheet Language (XSL). http://www.w3.org/Style/XSL/,
2001.

[W3C99] W3C, XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath/, 1999.

