
XPath Query Transformation based on XSLT Stylesheets
Sven Groppe

University of Paderborn, Faculty 5
Fürstenallee 11

 D-33102 Paderborn , Germany
+49 5251 606067

sg@uni-paderborn.de

Stefan Böttcher
University of Paderborn, Faculty 5

Fürstenallee 11
D-33102 Paderborn , Germany

+49 5251 606662

stb@uni-paderborn.de

ABSTRACT
Whenever XML data must be shared by heterogeneous
applications, transformations between different application-
specific XML formats are necessary. The state-of-the-art method
transforms entire XML documents from one application format
into another e.g. by using an XSLT stylesheet, so that each
application can work locally on its preferred format. In our
approach, we use an XSLT stylesheet in order to transform a
given XPath query such that we retrieve and transform only that
part of the XML document which is sufficient to answer the given
query. Among other things, our approach avoids problems of
replication, saves processing time and in distributed scenarios,
transportation costs.

Categories and Subject Descriptors
H2.4 [Database Management]: Systems – Query Processing

General Terms
Algorithms, Languages

Keywords
XPath, XSLT, query transformation, query rewriting.

1. INTRODUCTION
1.1 Problem definition and motivation
Our work is motivated by the development of an XML database
system which seamlessly incorporates XSLT processing. We
assume that data is stored in XML format 1 but can be
transformed on demand by an XSLT stylesheet S into data in
XML format 2. In our approach, a given query XP2 in XML
format 2 describes the needed transformed data of a given
operation. Our contribution involves translating an XPath query
XP2 in XML format 2 using a new query transformation
algorithm into a query XP1 on the original XML data D (i.e. the
data in format 1) which is based on an XSLT stylesheet S.
Applying XP1 selects a fragment F1 (i.e. F1=XP1(D)) from the
database which is smaller in comparison to the entire XML
document D. Only this XML fragment F1 is then transformed by

the XSLT processor (i.e. S(XP1(D))) and at last queried
according to XP2 (i.e. XP2(S(XP1(D)))). Our approach may
be of considerable advantage when compared to the process of
transforming the document via XSLT (i.e. S(D)) and applying
the query XP2 afterwards (i.e. XP2(S(D))).

The algorithmic problem is to determine XP1 according to a
given XPath query XP2 and an XSLT stylesheet S as restrictive as
possible but to guarantee the equivalence of XP2(S(XP1(D)))
and XP2(S(D)), i.e. XP2(S(XP1(D))) returns the same
result as XP2(S(D)) for every XML document D.

For example, see Figure 1: The XSLT stylesheet S transforms the
hierarchy of a company (XML document D) into a flat model, i.e.
the transformed XML document S(D). In order to answer an
XPath query
XP2 = /level/worker[@family_name=„Smith“]/@*

on the transformed XML document S(D), it is sufficient to
transform only that XML fragment F1, which is the query result
of the following query XP1

XP1 = (/employee/responsible_for)*/employee
 [@surname=„Smith“]

given in XML format 1, where A* is a short notation for an
arbitrary number of paths A.1

1.2 Relation to other work and our focus
For the transformation of XML queries into queries to other data
storage formats at least two major research directions can be
distinguished: firstly, the mapping of XML queries to object
oriented or relational databases (e.g. [5]), and secondly, the
transformation of XML queries or XML documents into other
XML queries or XML documents (e.g. [1]). We follow the second
approach; however, we focus on XSL [12] for the transformation
of both, data and XPath [13] queries.

Within related contributions to schema integration two
approaches to data and query translation can be distinguished.
While the majority of contributions (e.g. [7], [2]) map the data to

1 Standard XPath evaluators do not support A*, but we can retrieve a
superset by replacing A*/ with //. Furthermore, a modified XPath
evaluator has to return not only the result set of XP1 (as standard XPath
evaluators do), but a result XML fragment F1. This result XML fragment
F1 must contain all nodes and all their ancestors up to the root of the
original XML document D, which contribute to the successful evaluation
of the query XP1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIDM’03, November 7-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-725-7/03/0011…$5.00.

<level>
<worker family_name=„Wang“/>

</level>
<level>

<worker family_name=„Johnson“/>
<worker family_name=„Miller“/>

</level>
<level>

<worker family_name=„Smith“/>
</level>

< employee surname=„Wang“>
<responsible_for>
<employee surname=„Johnson“>

<responsible_for>
<employee surname=„Smith“/>

</responsible_for>
</employee>
<employee surname=„Miller“/>

</responsible_for>
</employee >

<xsl:stylesheet version=„1.0“
xmlns:xsl=
„http://www.w3.org/1999/XSL/Transform“>

<xsl:template match=„/|responsible_for“>
<xsl:element name=„level“>

<xsl:apply-templates select=„employee“/>
</xsl:element>
<xsl:apply-templates

select=„employee/responsible_for“/>
</xsl:template>

<xsl:template match=„employee“>
<xsl:element name=„worker“>

<xsl:attribute name=„family_name“>
<xsl:value-of select=„@surname“/>

</xsl:attribute>
</xsl:element>

</xsl:template>

</xsl:stylesheet>

transformed XML document S(D)
XML fragment F2 (in bold)

XML document D
XML fragment F1 (in bold)

(1)

(2)
(3)
(4)

(5)

(6)
(7)
(8)
(9)

XSLT stylesheet S

Figure 1: Example of the transformation of F1 into F2 by an XSLT stylesheet S

a unique representation, we follow [6] and map the queries to
those domains where the data resides.

[8] reformulates queries according to path-to-path mappings. We
go beyond this, as we use XSLT as a more powerful mapping
language. [11] describes how XSL processing can be incorporated
into database engines, but focuses on efficient XSL processing.
[9] examines the complexity of XPath query evaluation on XML
documents (instead of an evaluation based on output nodes of
XSLT) and does not consider query transformation. [3] presents
an algorithm to filter XML documents according to a given query
and analyses the performance, but does not contain query
transformation.

In contrast to all these approaches, we focus on the transformation
of XPath queries according to an XSLT stylesheet.

We go beyond our contribution of [10], because we support a
larger subset of XSLT (i.e. absolute paths are now allowed in
select attributes of XSLT nodes) and a larger subset of XPath (i.e.
predicates are now allowed) for the XPath query transformation.

1.3 Considered subsets of XPath and XSLT
and parts of XPath expressions
We currently restrict XPath queries XP2, such that they conform
to the following rule for AttributeQuery given in the
Extended Backus Naur Form (EBNF):
AttributeQuery ::= LocationPath "/@*".
LocationPath ::= Step*.
Step ::= ("/" | "//") Name Predicate*.
Predicate ::= "[" "@" Name "=" String "]".

This subset of XPath allows querying for an XML fragment which
can be described by succeeding elements (in an arbitrary depth),
the attributes of which can be restricted to a constant value.

Similarly, we restrict XSLT, i.e., we consider the following nodes
of an XSLT stylesheet:
• <xsl:stylesheet>,
• <xsl:template match=M1 name=N>,
• <xsl:element name=N>,
• <xsl:attribute name=N>,
• <xsl:apply-templates select=S1>,

• <xsl:text>,
• <xsl:value-of select=S2>,
• <xsl:for-each select=S1>,
• <xsl:call-template name=N>,
• <xsl:attribute-set name=N>,
• <xsl:if test=T>,
• <xsl:choose>,
• <xsl:when test=T>,
• <xsl:otherwise>,
• <xsl:processing-instruction>,
• <xsl:comment> and
• <xsl:sort>,
where S1, S2 and M1 contain an XPath expression without
function calls, T is a boolean expression and N is a string constant.

Whenever attribute values are generated by the XSLT stylesheet,
we assume that this is only done in one XSLT node (i.e.
<xsl:text> or <xsl:value-of select=S2>).

We define following terms for later use in Section 2:

Definition: An XPath expression s can be divided into a relative
part rp(s) and an absolute part ap(s) (both of which may be
empty) in such a way, that rp(s) contains a relative path
expression, ap(s) contains an absolute path expression, and the
union of ap(s) and rp(s) is equivalent to s.

Example: The relative part of s=(/E1|E2/E3|E4)/E5 is
rp(s)=(E2/E3|E4)/E5, the absolute part is
ap(s)=/E1/E5.

2. THE QUERY TRANSFORMATION
ALGORITHM
Our goal is to determine a smaller, but sufficient part XP1(D) of
the input XML document D, where the XSLT transformation of
XP1(D), i.e. S(XP1(D)), contains all the information required
to answer the query XP2 correctly, i.e. XP2(S(XP1(D))) is
equivalent to XP2(S(D)).

For this reason, we firstly look at the so called output nodes of the
XSLT stylesheet S. In the example of Figure 1, all the elements
level in S(D) in the right part of Figure 1 are generated by the

node (3) of S (see the middle box of Figure 1), all the elements
worker are generated by node (7). These output nodes (3) and
(7) of the XSLT stylesheet S are reached, after a sequence of
nodes (which we call stylesheet paths) of the XSLT stylesheet S
are executed. In the example, one stylesheet path for the nodes (3)
and (7) is <(1),(2),(3),(4),(6),(7)>.

While executing these stylesheet paths, the XSLT processor also
processes so called input nodes (e.g. node (6)) each of which
selects a certain node set of the input XML document D. When
considering all executed input nodes, the input nodes altogether
select a whole node set of the input XML document D. In the
stylesheet path above, this is the node set described using the
query /employee. When considering our idea to reduce the
amount of data of the input XML document, we notice that all
nodes (but not more nodes!) of the input XML document which
are selected within input nodes along the stylesheet path must be
available for the execution of the stylesheet path in the same way
as all nodes of the input XML document are available. If we can
determine the whole node set (described using a query XP1),
which is selected on all stylesheet paths, which generate output
which is relevant to the query XP2, we can then select a smaller,
but sufficient part XP1(D) of the input XML document D, where
XP2(S(XP1(D))) is equivalent to XP2(S(D)).

In our approach, we search at first for stylesheet paths within the
XSLT stylesheet (see Section 2.1), which generate elements,
attributes and attribute values in the correct order according to the
query XP2.

For each of these stylesheet paths, we determine the so called
input path expression of the XSLT stylesheet (see Section 2.2),
which summarizes the XPath expressions of input nodes along the
stylesheet path. The transformed query XP1 is the disjunction of
the determined input path expressions of each stylesheet path.

2.1 Output path search in the XSLT stylesheet
In order to determine the paths through an XSLT stylesheet,
which may generate output that is relevant to XP2, we search for
so called successful element stylesheet paths (and attached
attribute, filter and loop stylesheet paths), i.e. paths which begin
at the start node and contain so called output nodes (i.e. nodes
<xsl:element name=E> and <xsl:attribute name=
A>) of the XSLT stylesheet which may contribute answering the
query XP2. The search continues from a node S1 to a node S2, if
a. S2 is a child node of S1 within the XSLT stylesheet, or
b. S1 is a node <xsl:call-template name=N> and S2

a node <xsl:template name=N> with the same N, or
c. S1 is a node with an attribute xsl:use-attribute-

sets=N and S2 a node <xsl:attribute-set
name=N> with the same N, or

d. S1 is <xsl:apply-templates select=s/> and S2
<xsl:template match=m> and the template of S2 can
possibly be called from the selected node set s. This is the
case if ap(s)|//rp(s) and ap(m)|//rp(m) are
possibly not disjointed which can be checked by a fast (but
incomplete) tester (e.g. the one in [4]).

For example, for XP2=/level/worker[@family_name=
"Smith"]/@* and the XSLT stylesheet of Figure 1, we search
for the output nodes which generate the elements level (see
node (3)) and then worker (see node (7)). The search can pass

non-output nodes as they do not generate any output, which does
not fit to XP2. The search can also pass any output nodes if we
search next for an element E in arbitrary depth, i.e. for //E.

In order to store information about the search, we define a
stylesheet path as a list of entries of the form (N, XP2r) where
N is a node in the XSLT stylesheet and XP2r is the suffix of XP2
which still has to be processed. We call the stylesheet path, which
contains all the visited nodes of the path from the start node to the
current node in the visited order, the current stylesheet path sp.

While searching for attributes (e.g., for /@* see nodes (8) and (9)
in Figure 1), we branch off the successful element stylesheet path.
In order to allow a sequential (but recursive) computation of the
input path expressions in Section 2.2, we store paths resulting
from a search for attributes separately in attribute stylesheet paths.

We store the filter itself and paths resulting from a search for
filters in filter stylesheet paths (e.g., for [@family_name=
”Smith”] see nodes (8) and (9) in Figure 1). If the attribute
value of the filter is generated by an input node <xsl:value-
of select=S/>, we can transform the filter to a filter in XML
format 1 within XP1 (see Section 2.2), which restricts the node set
of the input XML document more exactly when we apply XP1.

If the value of the attribute of the filter is generated by an output
node <xsl:text>const</xsl:text> within the XSLT
stylesheet, we can currently decide without access to the XML
document that a filter [@A1 = V] will always be
• true, if V is equal to const. In order to be sure, that the

attribute @A1 and its value V will be nevertheless generated by
the XSL processor, we store the suitable information in the set
of attribute stylesheet paths.

• false, if V is not equal to const. We abort the search here.

During the search it may occur, that we revisit a node N of the
XSLT stylesheet without any progress in the processing of XP2r.
For example, we can visit node (1), node (2), then node (5) and
the node (2) again in Figure 1. We call this a loop and we define a
loop as follows: The loop is the current stylesheet path minus the
stylesheet path of the first visit of N. In the example of Figure 1,
the loop contains the nodes (5) and (2). For each loop in the
stylesheet graph, we store the loop itself, the current node N and
XP2r as an entry to the set of loop stylesheet paths, because we
need to know the input which is consumed when the XSLT
processor executes the nodes of a loop (see Section 2.2). In order
to avoid an infinite search, we do not continue the search at the
final node when the loop is detected.

2.2 Computing Input Path Expressions
(Only) when the XSLT processor tracks the successful element
stylesheet paths (and its attached attribute, filter and loop
stylesheet paths) computed within Section 2.1, the XSLT
processor generates output which contributes to the query XP2.
While tracking a successful element stylesheet path (and its
attached paths), the XSLT processor can execute the so called
input nodes
• <xsl:apply-templates select=S/>,
• <xsl:value-of select=S/>,
• <xsl:for-each select=S>,
• <xsl:if test=T> and
• <xsl:when test=T>,

where S occurs in the Boolean expression T. While executing
input nodes, the XSLT processor selects a certain node set called
input node set of the input XML document which is described
using the so called input path expression S. The existence of the
input node set of the input XML document is necessary in order
to execute the successful element stylesheet path (and its attached
paths) in the same way as they are executed when all nodes of the
input XML document are available.

(5) <xsl:apply-templates
select=„employee/responsible_for“>

(7) <xsl:element name=„worker“>

(3) <xsl:element name=„level“>

(4) <xsl:apply-templates select=„employee“>

(1) <xsl:stylesheet …>

loop stylesheet path

(8) <xsl:attribute name=„@family_name“>

(9) <xsl:value-of select=„@surname“>

successful element stylesheet path

filter stylesheet path of filter
[@family_name=“Smith”]

attribute stylesheet path

Successful Element
Stylesheet Path
Loop Stylesheet Path
Filter Stylesheet Path
Attribute Stylesheet Path

current ipe = / | //responsible_for
completed ipe=

current ipe =
completed ipe=

current ipe=employee/responsible_for
completed ipe=

current ipe = (/ | //responsible_for) (/employee/responsible_for)*
completed ipe=

current ipe = (/ | //responsible_for) (/employee/responsible_for)*
completed ipe=

current ipe = (/ | //responsible_for)
(/employee/responsible_for)*/employee

completed ipe=

current ipe = (/ | //responsible_for)
(/employee/responsible_for)*/employee

completed ipe=

current ipe =
completed ipe=

current ipe =
completed ipe=

current ipe = @surname
completed ipe=

current ipe = (/ | //responsible_for)
(/employee/responsible_for)*/employee [@surname=“Smith”]

completed ipe= (/ | //responsible_for)
(/employee/responsible_for)*/employee[@surname=“Smith”]
/@surname

current ipe = (/ | //responsible_for)
(/employee/responsible_for)*

/employee[@surname=“Smith”]
completed ipe=

current ipe =
(/ | //responsible_for) (/employee/responsible_for)*
/employee[@surname=“Smith”] /@surname

completed ipe=

current ipe = (/ | //responsible_for)
(/employee/responsible_for)*
/employee[@surname=“Smith”]

completed ipe=

Resulting Input Path ExpressionsResulting Input Path ExpressionsResulting Input Path ExpressionsResulting Input Path Expressions

(2) <xsl:template match=“/|responsible_for“>

(6) <xsl:template match=„employee“>

(8) <xsl:attribute name=„@family_name“>

(9) <xsl:value-of select=„@surname“>

 Figure 2: Computing Input Path Expressions for
XP2=/level/worker[@family_name=„Smith“]/@*

The XSLT processor does not select the whole input node set of
the input XML document immediately. In fact, the XSLT
processor selects the input node set step by step in different input
nodes of the XSLT stylesheet which are described by their input
path expressions in the successful element stylesheet path and its
attached paths. For this reason, we have to combine all these input
path expressions along a successful element stylesheet path (and
its attached paths).

For this purpose, we use two different variables:

The current input path expression (current ipe) contains the
whole input path expression of the successful element stylesheet
path up to (and including) the current node. The current ipe
describes a superset of the node set of the XML document with
which the XSLT processor processes this node while executing
the successful element stylesheet path.

The completed input path expression (completed ipe)
contains all such input path expressions, which are selected within
the stylesheet path before the current node, but which will not be
used further in the computation of a current ipe.

Figure 2 shows the computation of the current input path
expressions and the completed input path expressions of the
example of Figure 1 and a given query XP2 = /level
/worker[@family_name=„Smith“]/@*.

The XSLT processor starts executing the successful element
stylesheet path with the node set described by the match attribute
m of the first template <xsl:template match=m> within the
successful element stylesheet path. The template could match
nodes of the node set rp(m) in arbitrary depth of the XML
document because of built-in templates. Therefore, we initialize
current ipe with ap(m)|//rp(m). For the example within
Figure 2, the current ipe is initialized with
/|//responsible_for. The completed ipe is initialized with
the empty set.

We mainly iterate through each successful element stylesheet path
and we
• compute new path expressions of the current ipe (current

ipenew) and the completed ipe (completed ipenew) from
the input path expression of the current node (ipe) and the
old input path expressions of the current ipe (current
ipeold) and the completed ipe (completed ipeold).

• recursively compute and combine current ipes and completed
ipes of attached attribute stylesheet paths, filter stylesheet
paths, and loop stylesheet paths. For this purpose, at first we
initialize current ipe (current ipeinit) and completed ipe
(completed ipeinit), then recursively compute along the
attached path as before and get the current ipe (current
ipepath) and completed ipe (completed ipepath) after
the last node of the attached path. At last we compute
current ipenew and completed ipenew of the node
with the attached path.

Figure 3 lists the different computing steps depending on the
current node and example nodes of the different computing steps
within Figure 2.

The complete input path expression which is used as query XP1
on the input XML document is the union of all the completed ipes
and the current ipe of the last node of each of the n successful
element stylesheet paths (1..n),

XP1 = completed ipe1 | current ipe1 | … |
 completed ipen | current ipen.

If there is no entry in the set of successful element stylesheet
paths, i.e. n=0, XP1 remains empty.

In the example of Figure 2, we get
XP1=(/|//responsible_for)(/employee/responsi
ble_for)*/employee[@surname=”Smith”] |
(/|//responsible_for)(/employee/responsible_
for)*/employee[@surname=”Smith”]/@surname

3. SUMMARY AND CONCLUSIONS
In order to reduce data transformation and data transportation
costs, we compute from a given query XP2 and a given XSLT
stylesheet a transformed query XP1 which can be applied to the
input XML document in order to retrieve a smaller fragment F1

Current Node Computation of current ipe and completed ipe Example
Nodes

Non-input nodes
without attached paths

current ipenew = current ipeold
completed ipenew = completed ipeold

(3), (6),
(8)

Input node

current ipenew = if (rp(ipe) is empty) ap(ipe)
 else current ipeold / rp(ipe) | ap(ipe)
completed ipenew = if(ap(ipe) is empty) completed ipeold
 else completed ipeold | current ipeold

(5), (4),
(9)

Attached attribute
stylesheet path

current ipeinit = current ipeold
completed ipeinit = completed ipeold
current ipenew = current ipeold
completed ipenew = current ipepath | completed ipepath

(7)

Attached filter
stylesheet path

according to a filter
[@A=const]

current ipeinit =
completed ipeinit = completed ipeold
current ipenew = current ipeold[current ipepath=const]
completed ipenew = completed ipepath

(7)

Attached loop
stylesheet paths 1.. n

current ipeinit =
completed ipeinit =
current ipenew = (current ipeold|
 ap(current ipepath1) |…|ap(current ipepathn))
 (/rp(current ipepath1)|…|/rp(current ipepathn))*
completed ipenew = completed ipeold|
 current ipenew / (rp(completed ipepath1) |…|
 rp(completed ipepathn))|
 (ap(completed ipepath1)|…|ap(completed ipepathn))

 2

(2)

Figure 3: Computation of current ipe and completed ipe

2 If rp(completed ipepath1),…,rp(completed ipepathn) are empty, we can optimize the equation to
completed ipenew = completed ipeold |(ap(completed ipepath1) | … | ap(completed ipepathn))

which contains all the relevant data. F1 can be transformed by the
XSLT stylesheet into F2, from which the query XP2 selects the
relevant data.

We expect our approach to queries on transformed XML data to
have considerable advantages over the standard approach which
transforms the entire XML document, particularly when querying
for single entries, for queries on very large XML documents and
for queries on remote XML data. Our approach enables the
seamless incorporation of XSL processing into database
management systems, which in our opinion will become
increasingly important in the very near future.

For technical reasons, we restricted our presentation to a subset of
XPath and a subset of XSLT. However, the approach is not
limited to these subsets, and we consider it to be promising to
extend it to a larger subset of XPath and XSLT.

4. ACKNOWLEDGEMENTS
This work is funded by the MEMPHIS project (IST-2000-25045).

5. REFERENCES
[1] S. Abiteboul, On views and XML. In PODS, pages 1-9, 1999.
[2] S. Abiteboul, S. Cluet, and T. Milo, Correspondence and

translation for heterogeneous data. In Proc. of the 6th ICDT,
1997.

[3] M. Altinel, and M. J. Franklin, Efficient Filtering of XML
documents for Selective Dissemination of Information, In
Proceedings of 26th International Conference on Very Large
Databases, Cairo, Egypt, 2000.

[4] S. Böttcher, and A. Türling, Checking XPath Expressions for
Synchronization, Access Control and Reuse of Query Results

on Mobile Clients. Workshop: Database Mechanisms for
Mobile Applications, Karlsruhe, Germany, 2003.

[5] R. Bourret, C. Bornhövd, and A.P. Buchmann, A Generic
Load/Extract Utility for Data Transfer Between XML
Documents and Relational Databases. 2nd Int. Workshop on
Advanced Issues of EC and Web-based Information Systems
(WECWIS), San Jose, California, 2000.

[6] C.-C. K. Chang, and H. Garcia-Molina, Approximate Query
Translation Across Heterogeneous Information Sources. VLDB
2000, 2000.

[7] S. Cluet, C. Delobel, J. Simon, and K. Smaga, Your mediators
need data conversion! In Proc. of the 1998 ACM SIGMOD
Conf., 1998.

[8] S. Cluet, P. Veltri, and D. Vodislav, Views in a Large Scale
XML Repository. In Proceedings of the 27th VLDB
Conference, Roma, Italy, 2001.

[9] G. Gottlob, C. Koch, and R. Pichler, The Complexity of
XPath Query Evaluation, In Proceedings of the 22th ACM
SIGMOD-SIGACT-SIGART symposium of Principles of
database systems (PODS 2003), San Diego, California, USA,
2003.

[10] S. Groppe, and S. Böttcher, Querying transformed XML
documents: Determining a sufficient fragment of the original
document. 3. International Workshop Web Databases
(WebDB), Berlin, 2003.

[11] G. Moerkotte, Incorporating XSL Processing Into Database
Engines. In Proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002.

[12] W3C, Extensible Stylesheet Language (XSL).
http://www.w3.org/Style/XSL/., 2001.

[13] W3C, XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath/, 1999.

