CITESEERX DATA: SEMANTICIZING SCHOLARLY PAPERS

Jian Wu, IST, Pennsylvania State University Chen Liang, IST, Pennsylvania State University Huaiyu Yang, EECS, Vanderbilt University C. Lee Giles, IST & CSE Pennsylvania State University

The International Workshop on Scholarly Big Data (SBD 2016)

Self-Introduction

CiteSeer*

Dr. C. Lee Giles David Reese Professor PI and Director of CiteSeerX

Dr. Jian Wu Postdoctoral scholar Tech leader of CiteSeerX

2

Chen Liang PhD student Pennsylvania State University

Huaiyu Yang Undergraduate student Vanderbilt University

Outline

- Scholarly Big Data and the Uniqueness of CiteSeerX Data
- Data Acquisition and Extraction
- Data Products
 - Raw Data
 - Production Database
 - Production Repository
- Data Management and Access
- Semantic Entity Extraction From Academic Papers

Scholarly Data as Big Data

"Volume"

- About 120 million scholarly documents on the Web – 120TB or more [1]
- Growing at a rate of >1 million annually
- English only factor of 2 more with other languages
- Compare: NASA Earth Exchange Downscaled Climate Projections dataset (17TB)

4

[1] Khabsa and Giles (2014, PLoS ONE)

Scholarly Big Data Features

- "Variety"
 - Unstructured: document text
 - Structured: title, author, citation, etc metadata
 - Semi-structured: tables, figures, algorithms, etc.
 - Rich in facts and knowledge
 - Related data
 - Social networks, slides, course material, data "inside" papers
- "Velocity"
 - Scholarly Data is expected to be available in real time
- On the whole, scholarly Data can be considered an important instance of big data.

Digital Library Search Engine (DLSE)

Crawl-based vs. submission-based DLSEs

	Crawl-based	Submission-based
Data Source	Internet	Author upload
Metadata Source (majority)	Automatically Extracted	Author input + Automatically Extracted
Data Quality	varies	high
Human Labor (relatively)	Low	High
Accessibility	Open (or partially)	Subscription

 Crawl-based DLSEs are important sources of scholarly data for research tasks such as citation recommendation, author name disambiguation, ontologies, document classification, and Science of Science

The Uniqueness of CiteSeerX Data

Open-access Scholarly Data sets

Datasets	DBLP	MAG*	CiteSeerX
Documents	5 million	100 million	7 million
Header	У	У	У
Citations	n	У	у
URLs	y (publishers)	y (open + publishers)	y (open)
Full text	n	n	у
Disambiguated author names	n	n	У

* MAG: Microsoft Academic Graph

Data Acquisition

Metadata Extraction

Figures/Table/Barchart Extraction

- Data: CiteSeerX papers
- Extraction:
 - Extract figures + tables from papers
 - Extract metadata from figures + tables
- Large scale experiment
 - 6.7 Million papers in 14 days with 8 processes

10

Ingestion

- Ingestion feeds data and metadata to the production retrieval system
 - Ingestion clusters nearduplicate documents
 - Ingestion generate the citation graph (next slide)
 - Relational database
 - File system
 - Apache Solr

paper cluster 2

Type 1 node: clusters with both in-degrees and outdegrees, containing papers, may contain citations

2 Type 2 node (root): clusters with zero in-degree and non-zero out-degrees, only containing papers, i.e., papers that are not cited yet.

Type 3 node (leaf): clusters with non-zero in-degree and zero out-degrees, only containing citation records, i.e., records without full text papers.

Characteristics:

- Directed
- No cycles: old papers cannot not cite new papers

Name Disambiguation

- Challenging due to name variations and entity ambiguity
- Task 1: distinguish different entities with the same surface name
- Task 2: resolve same entities with different surface names

User Correction

Web-	crawling reliability (2004)	
by Viv C	othey	Save to List
Venue:	JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND	Add to Collection
	TECHNOLOGY	Correct Errors
Citations:	10 - 1 self	Monitor Changes

Figure: user-correction link on a paper summary page.

- Users can change almost all metadata fields
- New values are effective immediately after changes are submitted
- Metadata can be changed multiple times
- Version control
- About 1 million user corrections since 2008.

Data Products

- Raw Data
 - Crawl repository
 - 24TB PDFs
 - Crawl database

PDF

homepage <

26 million document URLs

parent URL

- 2.5 million parent URLs
- 16GB

other page

Document Collection of CiteSeerX

Data Products

Crawl website http://csxcrawlweb01.ist.psu.edu/

What Documents Have We Crawled

 Manually label 1000 randomly selected crawled documents

17

- Crawl repository can be used for documents classification experiments to improve web crawling
- Crawl database can be used to generate whitelists and schedule crawl jobs

Production Databases

• citeseerx

 metadata directly extracted from papers

•csx_citegraph

- paper clusters
- citation graph

database.table	description	rows
citeseerx.papers	header metadata	6.8 million
citeseerx.authors	author metadata	20.6 million
citeseerx.cannames	authors (disambiguated)	1.2 million
citeseerx.citations	references	150.2 million
citeseerx.citationContext	citation context	131.9 million
csx_citegraph.clusters	citation graph (nodes)	45.7 million
csx_citegraph.citegraph	citation graph (edges)	112.5 million

* Data are collected at the beginning of 2016.

What Does Citation Graph Look Like

In-degree and out-degree distribution of CiteSeerX Citation Graph. Plots made by SNAP. Data are collected at the beginning of 2016.

Production Repository

- 7 million academic documents (beginning of 2016)
- 9TB
 - PDF
 - XML (metadata)
 - body text
 - reference text
 - full text
 - version metadata files

Classification Accuracy

Production Repository

- False Negatives
 - Documents mis-classified as non-academic documents

others	70.7%		
paper	12.3%	\backslash	
slides	5.7%		
report	0.7%		
resume	0.7%	academic documents	28.3%
thesis	0.3%		
abstract	0.3%		
non-en	0.3%		
poster	0%	//	
book	0%		

- Improving Classification Accuracy
 - Classifier based on Machine Learning and Structural features (<u>Caragea et al. 2014</u> <u>WSC; Caragea et al. 2016</u> <u>IAAI</u>)
 - Accuracy > 90%

Estimate Near-duplication Rate

- Directly evaluating deduplication is non-trivial.
- Infer and derive the nearduplication rate indirectly from two samples
 - Sample A: 100 clusters, S = 2, 200 documents
 - Sample B: 100 clusters, S > 2, 430 documents
 - Ground truth: manually extract titles, authors, years, and venues
 - Metrics:
 - Sample A: true duplication rate
 - Sample B: partial duplication rate

22

Sample	S	NC	%True	D-ratio
А	2	100	84%	1.16
В	>2	100	70%	2.26

S: Cluster size

NC: Number of clusters in a sample %True: Percentage of true clusters in a sample

Number of distinct documents D-ratio = -----

Near-duplication Rate of CiteSeerX Data

Cluster Sizes	1	2	3	4	>4
NC (million)	5.08	0.45	0.10	0.03	0.03
Percentage	92.8%	7.91%	1.76%	0.53%	0.53%

Total number of distinct documents = $5.08+0.45\times1.16+0.16\times2.26 \simeq 5.96$

Near-duplication rate = $(1 - 5.96/6.70) \times 100\% = 11\%$

Number of clusters = 5.08+0.45+0.10+0.03+0.03=5.69 < 5.96

Improve de-duplication accuracy:

- Cleansing metadata: GROBID [1]
- Alternative algorithms: e.g., simhash [2]

[1] Jian Wu, Jason Killian, Huaiyu Yang, Kyle Williams, Sagnik Ray Choudhury, Suppawong Tuarob, Cornelia Caragea, and C. Lee Giles. "PDFMEF: A Multi-Entity Knowledge Extraction Framework for Scholarly Documents and Semantic Search." In: Proceedings of The 8th International Conference on Knowledge Capture (K-CAP 2015), Palisades, NY, USA

[2] Kyle Williams, Jian Wu, and C. Lee Giles. "SimSeerX: A Similar Document Search Engine." In:The 14th ACM Symposium on Document Engineering (DocEng 2014), Fort Collins, CO, USA

Data Management and Access

- Master database: 2x replication VMs hosted in a local private cloud; 2x copies of database dumps
- Search index: Apache Solr 4.9 replicated on a pair of twin VMs.
 Successfully indexed data on *SolrCloud*
- Production Repository: 2x sync'ed virtual servers; 2x snapshots; accessed via a RESTful API
- Public accessibility: Amazon S3, updated every 2-3 months
- Please contact us if you are interested in using CiteSeerX data

Most Cited: Documents , Citations , Authors , Venue Impact Rating

About CiteSeerX

Submit and Index Documents

Privacy Policy

Help Data

Source

Semantic Scholarly Entity Extraction

Motivation

- Traditional search
 - Indexing metadata
 - Itemizing results
- Intelligent Semantic Search
 - Answer questions
 - Recommendation
 - Summarization
 - Comparison

Structural entities	Semantic entities
Title	People
Authors	Locations
Year	Concepts
Venue	Tools
Figures	Methods
Tables	Datasets

what	t is seman	tic entity				
All	Videos	Images	News	Shopping	More •	Search tools
About	t 1,720,000 r	results (0.47 s	seconds)			
An I www. Oct 7 prese	ntroduction slideshare. 2013 - An in Intation as a	on to Enti net/David-Ar ntroduction to keynote S	ties in S merland/ar what entities EO in the a	emantic Se n-introduction-t tles are in sema age of the sema	earch - Sli o-entities antic search, antic web SM	deShare based upon my IX East 2013
Confe	erence Prese	entation in NY	C AN INTE	RODUCTION TO	D ENTITIES	David Amerland
Esser	ntially that"s I	how Entities	work in Go	ogle"s		

Semantics - Wikiversity https://en.wikiversity.org/wiki/Semantics -

what	t is entity li	inking					ries fideas
All	Videos	News	Images	Shopping	More -	Search tools	
About	t 30,000,000	results (0.6	7 seconds)				unity
In i dis (NI the	natural lan ambiguati ERD) or na e identity o	iguage pr on (NED) amed ent f entities	ocessing, , named e ity normal mentioned	entity linkin ntity recogn ization (NEN d in text.	ig, named ition and d I) is the tas	entity isambiguation sk of determining	e La
En http	t ity linkin bs://en.wikip	g - Wiki p edia.org/w	oedia, the iki/Entity_li	free encyc nking Wikip	clopedia ∋edia √		nceptua

Scholarly Semantic Entities

- A Scholarly Semantic Entity (SSE) is a semantic entity that appears and/or is described in an academic document that delivers domain specific knowledge including a concept, a tool, a method, or a dataset.
- Examples:
 - IPv6 (concept)
 - NLTK (tool)
 - Conditional random field (method)
 - WebKB (dataset)

- Keyphrases in general constitute a subset of SSEs, but SSEs include a broader range of words and phrases.
- Entity linking can resolve a fraction of SSEs, e.g., using Wikifier (UIUC), but there are more to be discovered.
- Few research articles on extracting SSEs.

Entity Linking Experiments

- 24859 papers randomly selected from CiteSeerX repository
- UIUC Wikifier [1,2]
- 21300 are successfully processed
- Outputs: Wikipedia terms + link score (S)
- Empirical cut-off of S=0.8 to remove less meaningful terms and single character symbols

Curve drops down due to lack 10^{1} of low frequency terms $10^{0}_{10^{0}}$ 10^{4} 10^{6} 10^{2} 10^{3} 10^{1} 10^{5} Rank Examples of high frequency terms: Algorithm, Cell (biology), Matrix (mathematics), Protein, United States, Energy, Temperature,

One half, Need To, Theorem

[1] X. Cheng and D. Roth. Relational inference for wikication. In EMNLP, 2013.

[2] L.-A. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for disambiguation to wikipedia. In ACL, 2011.

On-going Work on Extracting SSEs

- Knowledge base independent
- Applying lexical semantic tools such as NLTK and Stanford CoreNLP tools. Will try Google SyntaxNet
- Supervised Machine Learning
- Focusing on Computer and Information Sciences and Engineering (CISE) papers, e.g., WWW, VLDB, ACL conferences/journals

- Examples of Tagged SSEs
 - Digital Library Search Engine

29

- DB Entity Model
- XML Beans
- XML Query Language
- Microsoft SQL Server
- WCF
- Loosely Type XML object
- LINQ Query Translator
- XML Schema Types
- HUB4

Future Work

CiteSeerX Data

- Scale-up to 30 million academic documents
- Improve metadata quality
- More open access entities, e.g., figures+tables
- Integrate extraction, ingestion, and indexing; goal: process 1 million docs in 2 days

SSE Extraction

- Increase labeled sample sized and quality
- Develop more efficient features
- Start with basic ML models
- Make it scalable

Summary

- CiteSeerX *actively* crawls researcher homepages on the web for scholarly papers, formerly in computer science
 - Converts PDF to text
 - Automatically extracts OAI metadata and other data
 - Automatic citation indexing, links to cited documents, creation of document page, author disambiguation
 - Software open source can be used to build other such tools
 - All data shared

- 7 M documents
- 150 M citations
- 21 M authors
 - 1.2 M disambiguated
- 3 M hits per day on average
- 1 M page views/month
- 200k documents added monthly
- 150 million documents downloaded annually
- 1 M individual users
- ~40 TB