
1

Big Linked Data ETL Benchmark

on Cloud Commodity Hardware
iMinds – Ghent University

Dieter De Witte, Laurens De Vocht,

Ruben Verborgh, Erik Mannens, Rik Van de Walle

Ontoforce

Kenny Knecht, Filip Pattyn, Hans Constandt

2

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

3

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

4

Introduction

 Facilitate development of semantic federated query engine

 close the (semantic) analytics gap in life sciences.

 The query engine drives an exploratory search application: DisQover

 Approach to federated querying by implementing ETL pipeline

 indexes the user views in advance.

 Combine Linked Open Data with private and licensed (proprietary) data

 discovery of biomedical data

 new insights in medicine development.

5

DisQover: which data?

6

 Ensure minimal knowledge about data linking or annotation is required

to explore and find results.

 Write SPARQL directly

 detailed knowledge of the predicates is required

 might require first exploring to determine the URIs.

 Scaling out to more data

 Search queries are complex because search spans two distinct domains:

1. the ‘space’ of clinical studies;

2. ‘drugs/chemicals’.

Challenges

7

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

8

Approach

How to do federated search with

minimal latency for end-user?

Which RDF stores support the

infrastructure?

What aspects should the design of a

reusable benchmark take into

account?

9

The scaling-out approach relies on low-end commodity hardware but

uses many nodes in a distributed system:

1. Specialized scalable RDF stores, the focus of this work;

2. Translating SPARQL and RDF to existing NoSQL stores;

3. Translating SPARQL and RDF to existing Big Data approaches such

as MapReduce, Impala, Apache Spark;

4. Distributing the data in physically separated SPARQL endpoints over

the Semantic Web, using federated querying techniques to resolve

complex questions.

Note: Compression (in-memory) is an alternative for distribution. RDF

datasets can be compressed (e.g. “Header Dictionary Triples” – HDT).

Scaling out: techniques

10

ETL in instead of direct querying

Direct ETL

11

 Typical DisQover queries introduce much query latency when directly

federated.

 Facets consist of multiple separate SPARQL queries and serve both as filter

and as dashboard.

 Data integration in DisQover:

Facets filter across all data originating from multiple different sources.

Why?

12

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

13

ETL
Design of benchmark focus:

 ETL part needs to be optimally cost efficient.

 SPARQL queries for indexes maximally aligned with front-end.

 What is are the tradeoffs for each RDF store?

Benchmark

14

 What is the most cost-effective storage solution to support Linked Data

applications that need to be able to deal with heavy ETL query workloads?

 Which performance trade-offs do storage solutions offer in terms of scalability?

 What is the impact of different query types (templates)?

 Is there a difference in performance between the stores based on the structural

properties of the queries?

Note: not taken into account implicitly derived facts, inference or reasoning.

Questions the benchmark answers

15

WatDiv provides stress testing tools for SPARQL

existing benchmarks not always suitable for testing systems in diverse

queries and varied workloads:

 generic benchmark + not application specific;

 covers a broad spectrum

 result cardinality

 triple-pattern selectivity

ensured through the data and query generation method;

 Benchmark is repeatable with different dataset sizes or numbers of queries.

Data and Query Generation

16

The RDF store should be capable of serving in a production environment with

Linked Data in Life Sciences.

The initial selection was made by choosing stores with:

• a high adoption/popularity as defined by DB-Engines.com ranking for RDF stores;

• enterprise support;

• support for distributed deployment;

• full SPARQL 1.1 compliance.

The four stores we selected all comply with these constraints.

Note: The names of two stores we tested could not be disclosed.

They are being referred to as Enterprise Store I and II (ESI and ESII)

RDF Store Selection

17

The benchmark process consists of a data loading phase, followed by

running the SPARQL benchmarker:

1. The data is loaded in compressed format (gzip).

2. The benchmarker runs in multi-threaded mode (8 threads),

runs a set of 2000 queries multiple times.

3. These runs consists of at least one warm-up run which is not counted.

4. In order to obtain robust results the tail results (most extreme) are

discarded before calculating average query runtimes.

5. The benchmarker generates a CSV file containing the run times and

response times etc. of all queries which we visualized.

Process

18

Query Driver

“SPARQL Query Benchmarker” is a general purpose API and CLI that is

designed primarily for testing remote SPARQL servers.

By default operations are run in a random order to avoid the system under test

(SUT) learning the pattern of operations.

Hardware

Executed all benchmarks on the Amazon Web Services (AWS) Elastic Compute

Cloud (EC2) and Simple Storage Solutions (S3).

Used the default (commercial) deployments of the SUT for the results to be

reproducible:

 both the hardware and the machine images can be easily acquired.

 more generally, cloud deployments offer the advantage of not requiring

dedicated on-premises hardware.

Infrastructure

19

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

20

Cost

Scalability

Behavior (Different Query Types)

Errors and Time-outs

Results

21

Cost Cost

22

Scalability: 0.01 B – 0.1 B – 1 B

23

Scalability: 1B

300

24

Behavior: different query types

S F L

Combinations of those

C

C

25

Behavior: different query types

26

Errors and time-outs

Every runtime > 300s is a time-out.

If the run-time reaches a maximum of < 300s we detect an internal set time-out.

This was in particular the case voor ESII (3 nodes)
60

27

Scalability: 1B revisited

60
ESII-3 still outperforms ESII-1

when looking at queries that did

not time-out

28

Issues in the followed approach

 Choose for virtual machine images in the cloud (AWS) for reproducibility;

but cloud solutions might not always be best suited for production.

 The results of different benchmark studies might depend on many (hidden)

configuration factors leading to different or even contradicting results.

 The difference in performance between the stores might be attributed to

the use of commodity hardware in the cloud.

 Differences partially attributed to the quality of the recommended

configuration parameters as provided by the virtual machine images.

29

Introduction

Approach

Benchmark

Results

Conclusions & Next Steps

30

Conclusions & Next steps

 Compared enterprise RDF stores

 default configuration

 without the intervention of enterprise support.

 Run stores in their optimal configuration (reflecting a production setting)

 with more instances (> 3).

 Repeat the benchmark with DisQover data and queries.

 Create overview of RDF solutions for different

 use cases, configurations and real-world (life science) datasets.

 Investigate whether the WatDiv results are confirmed when running the

benchmark with other queries and data.

 Release tools for repeating the benchmark with new storage solutions.

31

Contact Details

laurens.devocht@ugent.be

E-MAIL:

@laurens_d_v TWITTER:

SLIDES: slideshare.net/laurensdv

