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Chapter 1

Introduction

The eXtended Markup Language XML nowadays (2005) is an important standard

in IT industries for the platform and language independent expression of struc-

tured data. In so-called service oriented architectures with business logic encap-

sulated in web services, self describing XML messages are exchanged between a

service provider and a requester. This approach allows building loosely coupled

information systems which tend to be easier to modify and maintain.

Although XML is used mainly for data exchange, there is an emerging need for

enabling the persistent storage of XML data in databases. For example, a clearing

house interacting with member brokers using web services is legally obliged to

store the XML messages for non-repudiation.

When XML data is stored in a database management system many questions

arise: How to express queries and updates? How can XML data be indexed to

speed up frequent queries? How to detect if a modifying operation affects an

established index and must therefore be updated to keep it consistent? And last

but not least: How can indexes that are best for a given application be determined

automatically?

Because of the semistructured (tree-like) model of XML data the usage of rela-

tional databases is mostly not possible or accompanied by severe problems like

many expensive Joins and non-trivial XML to SQL query rewriting. Therefore na-

tive XML database management systems are becoming more and more popular.

In this case native means that the structure of the XML data is not mapped to flat

tables but is reflected in the internal persistent data model.

This thesis introduces an approach for indexing XML data stored in a native XML

database management system. The indexes are used to accelerate XPath based

queries. Only the parts of the XML data that are selected by a given set of XPath

queries are reflected in the materialized indexes. This feature - called selectivity -

reduces the space consumption of all indexes and leads to less update operations

if the original XML data is modified.
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Due to the complex path expressions in XPath that may use structural and value

conditions the decision whether an XML index is affected by an operation that

modifies the underlying original XML data is not trivial. This problem is reduced

to the emptiness of the intersection of two XPath expressions and can be decided

efficiently by an algorithm that relies on finite automata.

The well known Index Selection Problem that searches for an optimal set of in-

dexes for a given set of querying and modifying database operations is extended

and transferred from the relational world to XML indexes. Existing heuristics for

finding a good solution efficiently can be reused in the index selection tool of the

implementation. An autonomous XML database management system is realized

if the index selection tool is called periodically and creates and drops indexes au-

tomatically.

Basically, this work summarizes the publications of the workshops and confer-

ences GVD 2004 [43], DEXA 2004 [44], SMDB 2005 [45], ICEIS 2005 [47], ED-

MEDIA 2005 [48], IDEAS 2005 [46] and two technical reports [41] and [42]. For

a reader with previous knowledge who is only interested in a specific aspect of

this work it may be more efficient to read just the relevant parts in one of these

papers. The abstracts of all publications can be found in the appendix of this

thesis.

First of all the thesis gives a brief introduction to XML and related fundamentals

as deep as required to understand further definitions and realizations. In addi-

tion, an extensive survey with illustrative examples about related work in XML

indexing is provided and compared with the own approach.

The thesis is structured as follows: Chapter 2 introduces the fundamentals re-

quired to understand his thesis; it includes a brief introduction to XML and to

relevant technologies like XML databases and query languages. Chapter 3 de-

fines a formal representation of XML data and path expressions. Related work on

XML indexing is introduced and discussed in the following chapter 4. Our own

approach - called KeyX - is presented in chapter 5. The problem of finding good

indexes for a given database and keeping them consistent when the database is

modified is discussed in chapter 6 and 7. Details about the architecture of the in-

dexing system and its implementation is given in section 8. Section 9 concludes

this thesis.



Chapter 2

Fundamentals

This chapter introduces XML and related technologies that are used within this

thesis as basis for the KeyX index approach. Due to lack of space we do not

provide a full introduction to all technologies but concentrate on the aspects that

are relevant and required to understand this work. For more detailed information

we refer the reader to books or tutorials.

2.1 XML

In this section we give a brief and informal introduction to the eXtended Markup

Language (XML) starting with a retrospection on the roots of XML. Within this

thesis we use sample data of an auction scenario for illustration purposes.

2.1.1 Historical Overview

In 1986 the Standard Generalized Markup Language (SGML) (e.g. [36, 122]) be-

came an ISO standard (ISO 8879) for defining the structure and the content of

electronic documents. The goal of markup languages like SGML is to describe the

logical organization of documents independently from platforms and applications.

Historically, the word markup has been used to describe annotations within a text

intended to instruct a typist how a particular passage should be printed. As the

formatting of texts was automated, the term was extended to cover all sorts of

special markup codes inserted into electronic documents.

There are three characteristics which distinguish SGML from other markup lan-

guages like the scientific text processors LATEX[69] or Troff [109]: it is descriptive

rather than procedural, there is a document type concept and it is independent

of particular hardware and software systems. The three characteristics are de-

scribed in the following:

A descriptive markup system uses markup codes (so-called tags) which categorize

parts of a document. Tags like <book> or <title> simply identify a part of a do-

cument so that it is even readable and in most cases understandable for humans.
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In contrast, a procedural markup system defines what processing has to be per-

formed at particular points in a document. In SGML, the instructions to process

a document are separate from the descriptive markup. Usually, they are collected

outside the document in separate procedures or programs. With descriptive in-

stead of procedural markup the same document can easily be processed by many

different systems with different processing instructions and different results. For

instance, the same content can be processed to an internet page and a paper

manual. SGML does not define the graphical layout or the presentation of these

documents.

Secondly, SGML has introduced the concept of document types, and therefore

document type definitions (DTDs). Documents are regarded as having a type, just

as other objects processed by computers do. Roughly, a DTD defines the tags

that may be used in a document and their structure, e.g. a <book> tag may have

many <author> tags but only one <title> tag. By the use of a validating parser

it can be determined whether a document belongs to a DTD. The main advantage

of the document type concept is that different documents of the same type can be

processed in a uniform way.

A fundamental goal of SGML was to ensure that documents are compatible in all

software and hardware environments without loss of information. The two con-

cepts discussed so far address this requirement at an abstract level; the third

feature addresses it at the level of the encodings of which documents are com-

posed and addresses the notorious inability of different systems to understand

each other’s character sets.

One popular example for the successful usage of SGML are the Linux HOWTO

manuals of the Linuxdoc project [71] describing the Linux operating system. With

SGML the texts can be processed to online documentations in HTML format as

well as printed books.

Another example for the usage of SGML is the CALS - Computer Aided Acquisition

and Logistics Support project of the U.S. Department of Defense. With CALS the

distribution and storage of technical documentation is standardized and relieved.

Suppliers of military products were forced to represent their documentation in

SGML.

The most known application of SGML is the page description language HTML [120]

that is used to send content over the internet and to represent it graphically in

a web browser. The permitted tags of a HTML document and their structure is

well-defined and restricted - a user may not add new tags to express a custom

concept. Most tags deal with visually formatting the page. Therefore, a HTML

document mixes content and structure.

In the mid 1990s there was an emerging need to provide more flexible and cus-

tomized documents over the internet. The visualization-centric approach of HTML

did not suit the demands of distributed enterprise information systems with data



2.1. XML 9

being processed without any graphical aspects.

SGML was judged to be too complex to be used for web-based information pro-

cessing [100]: SGML contains many features that are very rarely used. Its sup-

port for different character sets is weak which causes problems on the web where

people use many different platforms and programming languages. It is also diffi-

cult to interpret a SGML document without having the definition of the markup

language (the DTD) available. These difficulties and the lack of SGML-related

software like editors have condemned SGML to being a niche technology rather

than a mainstream approach in document managing. Indeed some cynics have

renamed SGML to ’Sounds Good Maybe Later’.

To solve the complexity issue the eXtended Markup Language (XML) was designed

to be a simplified subset of SGML. It eliminates the features that make SGML

difficult to learn and parse while retaining most of the power of SGML. XML was

designed by the The World Wide Web Consortium (W3C) to be, in their own words,

”straightforwardly usable over the internet”. The W3C’s XML 1.0 recommendation

was first issued in 1998. The goals of XML as defined by the XML W3C Working

Group in the XML specifications [91] are:

• XML shall be straightforwardly usable over the internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute mini-
mum, ideally zero.

• XML documents should be human-legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

2.1.2 Technical Introduction to XML

For space restrictions this thesis gives only a brief and informal introduction

to the eXtended Markup Language (XML). For more extensive information about

XML the reader is referred to popular online tutorials (e.g. [113]), books (e.g. [49])

and the W3C’s XML Specification [119].

For reasons of understandability XML is motivated and described with sample

documents - taken from the XMark project. XMark models an auction scenario

consisting of items, categories, sellers, and bidders. This way, a particular XMark
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data is somehow similar to a current state of the internet auction eBay. More

information about XMark is given in section 2.1.3.

Elements and Tags

The core of all XML documents are the tags which identify elements. A tag is

just a generic label for an element. An opening tag looks like <element> while

a closing tag has a slash that is placed before the element’s label: </element>.

All contents belonging to an element must be contained between the opening and

closing tags of the element. An element may contain other elements, a text value,

or a mixture of both (so-called mixed content). The following example shows one

element <name> that has the content Sinus MP3 Player.

1 <name>

2 Sinus MP3 Player

3 </name>

Each opening tag must be closed by a corresponding closing tag with the same

name. The resulting nested structure is comparable to the structure of brackets

of mathematical formulas. In this case we speak of a well-formed document. In

general, if a document is not well-formed it is not an XML document and it will

cause errors when read by a software that tries to parse it.

Elements can be nested recursively to express the relationships between them.

In the second example the <name> element is positioned in an <item> element

that contains further elements:

1 <item>

2 <name>

3 Sinus MP3 Player

4 </name>

5 <location>

6 Lübeck , Germany

7 </location>

8 <quantity>

9 25

10 </quantity>

11 <payment>

12 Cash

13 </payment>

14 <payment>

15 Creditcard

16 </payment>

17 <description>

18 <text>

19 This is a portable <emph> MP3 Player </emph> with 512 MB internal memory.

20 </text>

21 </description>

22 </item>

An element a that is located under an element b is called child of b. For instance,

in the example <quantity> is a child of <item>. Analogously, we say that an

element c is a parent of b if b is a child of c. Elements that have the same parent

are called siblings: in the example the elements <payment> and >location> are
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siblings. An element d is a descendant of e if it is a recursive child of e. Analo-

gously, we speak of an ancestor.

It is possible and usual that elements with the same label are siblings, i.e. the two

<payment> elements. Usually their content is different but this is not required.

In XML the label of elements and their structure is not predefined so that a user

can define her own elements corresponding to the given application. In a XML

document the order of the elements matters; this is an important feature that

guarantees that the chapters of an electronic book appear in the right order.

Attributes

Attributes are used to specify additional information about an element. An at-

tribute is assigned to an element if it appears within the opening tag:

1 <item id = ” item0” >

An element may have arbitrarily many attributes but they are not allowed to have

the same label. In addition, attributes have no order. In general, attributes are

replaceable by elements that have a higher expressiveness. For example, the

equivalent XML document without attributes is:

1 <item>

2 <id>

3 item0

4 </id>

5 </item>

The question when to use an element and when to use an attribute is not always

easy to answer. In principle, an attribute cannot be used to express an entity if it

has children or if it may appear more than once per parent or if the order matters.

For all other cases we can choose between an attribute or an element. In most

cases, attributes lead to more compact documents. From the theoretic point

of view, attributes do not enhance the expressiveness of XML documents. Any

document containing attributes can be transformed to an equivalent document

without attributes by creating a new element for each attribute. Therefore, this

work omits attributes and focuses on elements.

References

Basically, with XML it is possible to express tree-like data structures with a node

having multiple children but only one parent node (except the root). For a signif-

icant number of scenarios tree-like data are too restricted. For instance, a book

may have several authors and an author may have written several books. In a tree

representation either the authors or the books must be repeated as done in the

DBLP data [70]. The redundant repetition of data can only be avoided by using

references between nodes.
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XML supports references by the use of ID, IDREF and IDREFS statements: An at-

tribute can be assigned as an identifier or key of the element by adding the ID key

word to the attribute’s definition in the DTD (see next section). The value of this

attribute is a text value that is unique within the whole XML document and iden-

tifies the corresponding element. An attribute that is assigned the IDREF property

may now refer to an element that has an attribute with an ID. The reference is

realized by using the same values for both attributes. Because an attribute with

a given name may only be assigned once to an element, we cannot create mul-

tiple references from one element to several others. Therefore, another keyword

-IDREFS- is needed. An attribute that has the IDREFS property may contain more

than one reference, separated by whitespace characters.

The parser of the document checks whether all elements with an IDREF or IDREFS

attribute are referring to an existing element that has the same attribute value.

Anyhow, with the described reference mechanism it is not possible to restrict the

references to certain types. For instance, let us assume that both books and au-

thors in a document have unique keys and that authors are referencing to books

and books are referencing to authors (bidirectional references). It is not possi-

ble to prevent books from referencing books and authors from referencing other

authors as only the existence of the ID-IDREF pairs is checked and not their type.

2.1.3 XMark Sample Data

XMark is a research project initiated in 2002 by several institutions including

Microsoft, INRIA (France), CWI Amsterdam and FhG-IPSI Darmstadt. The goal of

XMark is to provide scalable XML data that can be used for benchmarks and tests

of XML processing systems like database management systems. XMark comes

with a document generator that produces XML sample documents of custom size.

The documents are valid according to a given schema (see below).

We use XMark data in the examples of this thesis because the structure of the

data is complex enough to express meaningful path expressions in queries and

updates. Additionally, the auction scenario is very demonstrative and motiva-

ting. Other popular XML data like the DBLP [70] could also be used but are less

structured and uniform over larger sections. In contrast to an own unknown

data format that might be optimized for this thesis the queries and results are

checkable.

The most important elements and their relationships are illustrated in figure 2.1.

The figure is taken from [104].

The information about all items that are offered in the auctions are stored below

the regions element. For each continent there is an own region element (e.g.

europe). Each item is assigned to one or more categories that are listed and

described under the categories element. Categories have relations (e.g. con-

vertibles is a sub-category of cars) that are expressed by edges. This information
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Figure 2.1: Relationships between XMark elements

can be found under the catgraph element.

The data of persons are kept under the people element. A person can be a bidder

or a seller.

The auctions are divided into open auctions where the final buyer is not yet found

and closed auctions that do not change anymore. This information can be found

under the open auctions and closed auctions elements.

The references between elements are realized with unique identifiers stored in

attributes values of auctions, persons, and items. For instance, every closed auc-

tion stores the final bidding price and a reference to the sold item. The references

rely on the ID - IDREF mechanism.
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2.2 Document Type Definitions and XML Schema

So far, we made no restriction on the elements’ labels and their structures. For

most applications not every well-formed XML document is understandable and

processable: For example, an auction system that expects XMark data will not be

able to process an XML formatted list of publications. Technically it is possible to

read and parse the elements but semantically the application is not aware how to

deal with it.

Therefore, we need a mechanism to declare a class or type of documents. This

is done by schema languages like Document Type Definitions and XML Schema

documents. The idea is to predefine the allowed element labels and to declare

how they are allowed to be nested. Schemas are comparable to grammars for

programming languages, however, context-free grammars describe sets of words

whereas we need to describe sets of trees. The term ”schema” comes from the

database community.

If an XML document satisfies all constraints of a schema it is valid. Validity

implies that a document is well-formed and is checked by validating parsers.

2.2.1 DTD: Document Type Definition

A significant feature that XML inherits from its predecessor SGML is the concept

of a Document Type Definition (DTD). The DTD is an optional feature which pro-

vides a formal set of rules to define a document structure. It defines the elements

that may be used and states where they may be applied in relation to each other.

Therefore, the DTD defines the document’s hierarchy and granularity.

In the following figure the DTD for an XMark fragment is presented.

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <!ELEMENT item (name, location , quantity , payment+ , description ?)>

3 <!ELEMENT name (#PCDATA)>

4 <!ELEMENT location (#PCDATA)>

5 <!ELEMENT quantity (#PCDATA)>

6 <!ELEMENT payment (#PCDATA)>

7 <!ELEMENT description ( text )>

8 <!ELEMENT text (#PCDATA | bold | emph)∗>

9 <!ELEMENT bold (#PCDATA)>

10 <!ELEMENT emph (#PCDATA)>

11 <!ATTLIST item id ID #REQUIRED>

Figure 2.2: The DTD for an XMark fragment

Line 2 states that the root element is an <item> containing a sequence of <name>,

<location>, <quantity>, <payment> and <description> elements. The + sym-

bol indicates that the payment> element may appear more than once. A ∗ symbol

states that zero to many elements are allowed. The ? symbol indicates that an

element may appear zero times or once. In the example an item may have a de-

scription but it does not need to have one. If no symbol is attached to an element

it may appear exactly once as child.
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The definition of the new elements is carried out in a similar manner: Line 3 states

that a <name> element contains one text value (a string) indicated by #PCDATA. The

same applies in lines 4 − 6.

Line 7 states that a <description> element has exactly one <text> child con-

sisting of a mixed content of strings and text markups. The mixed content is

formally expressed by a sequence of unlimited length (∗) of choices (|).

Line 11 defines an attribute with the name id and assigns it to the <item> ele-

ment. The keyword #REQUIRED states that the attribute is not optional but must

appear in the element.

Validity is checked by a validating parser by a simple top-down traversal of the

particular XML document

At first look the Document Type Definitions look somehow similar to regular or

context-free grammars of formal languages with #PCDATA as terminals and the

element labels as non-terminals. But because the element labels appear in the

XML document they are not equivalent to non-terminals. This is the reason why

DTDs are not closed under union: For two DTDs a and b sharing at least one

identical element label n with different rules there is no third DTD c that defines

all documents which are valid for a or b. The usual approach of formal languages

to rename the ambiguous non-terminals cannot be applied in DTDs because re-

naming changes not only the DTD but also the derived XML documents. This fact

is illustrated by the following example:

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <!ELEMENT book ( t i t l e , author )>

3 <!ELEMENT author (#PCDATA)>

4 <!ELEMENT t i t l e (#PCDATA)>

Figure 2.3: DTD a

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <!ELEMENT book ( t i t l e , author , price )>

3 <!ELEMENT author ( f i r s t , last )>

4 <!ELEMENT f i r s t (#PCDATA)>

5 <!ELEMENT last (#PCDATA)>

6 <!ELEMENT t i t l e (#PCDATA)>

7 <!ELEMENT price (#PCDATA)>

Figure 2.4: DTD b

The first DTD declares a <book> element to have a <title> and an <author>

child. The <book> elements defined by the second DTD have an additional <price>

child and the <author> element is not a single text value but consists of the two

elements <first> and <last>.

When unifying both DTDs to a single DTD something like the following may
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be constructed: In this DTD a book has an optional <title> element and an

<author> may be an atomic text value or a sequence of <first> and <last>.

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <!ELEMENT book ( t i t l e , author , price ? )>

3 <!ELEMENT author (#PCDATA | ( f i r s t , last ) )>

4 <!ELEMENT f i r s t (#PCDATA)>

5 <!ELEMENT last (#PCDATA)>

6 <!ELEMENT t i t l e (#PCDATA)>

7 <!ELEMENT price (#PCDATA)>

Figure 2.5: DTD c

At first sight this DTD c seems to express the union of both DTDs a and b but the

correlation between the elements <price>, <first>, and <last> is lost. There-

fore, the following XML document is valid concerning DTD c although it is not

valid for a and b:

1 <book>

2 <t i t l e > A book t i t l e </t i t l e >

3 <author> An author </author>

4 <price> 4.99 </price>

5 </book>

Beside this more theoretical problem (in practice one can solve the union problem

with two separate validation processes) DTDs lack in many points: The most

significant disadvantage of DTDs is that they are not formatted in XML syntax

themselves. This implies that separate parsers and software tools are required. A

tool that is able to store and visualize XML documents can therefore not support

DTDs if it offers no separate implementation. Second, a learner of XML has to

learn the syntax of XML and the syntax of DTDs. The top 15 reasons for avoiding

DTDs are listed in [5].

2.2.2 XML Schema

XML Schema[127] was introduced as a working draft in 2000 by the W3C to be the

successor of the Document Type Definition. One of the greatest improvements of

XML Schema is the support of data types allowing to specify the values of elements

and attributes. The most common atomic data types are:

• xs:string

• xs:decimal

• xs:integer

• xs:boolean

• xs:date

• xs:time
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With the support for data types it is easier to validate the correctness of data and

to work with data from a database with typed columns. With XML Schema a

user is able to define his own data type by the composition of atomic types. The

inheritance mechanism of XML Schema enables the definition of new types by

enhancing existing ones.

The following listing shows an XML Schema for the XMark sample of figure 2.6:

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <xs:schema xmlns:xs=” http://www.w3. org/2001/XMLSchema” elementFormDefault=”

qual i f ied ” attributeFormDefault=” unqualified ”>

3 <xs:element name=” item ”>

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name=”name” type=” xs :str ing ”/>

7 <xs:element name=” location ” type=” xs :str ing ”/>

8 <xs:element name=” quantity ” type=”

positiveNumber type ”/>

9 <xs:element name=”payment” type=” xs :str ing ”

minOccurs=”1” maxOccurs=”unbounded”/>

10 <xs:element name=” description ” type=”

description type ”/>

11 </xs:sequence>

12 <xs:attr ibute name=” id ” type=” xs :str ing ” use=” required ”/>

13 </xs:complexType>

14 </xs:element>

15 <xs:simpleType name=” positiveNumber type ”>

16 <xs : res t r i c t ion base=” xs:integer ”>

17 <xs:minInclusive value=”0”/>

18 <xs:maxInclusive value=”1000”/>

19 </xs:restr ic t ion >

20 </xs:simpleType>

21 <xs:complexType name=” description type ”>

22 <xs:sequence>

23 <xs:element name=” text ” type=” desc text type ”/>

24 </xs:sequence>

25 </xs:complexType>

26 <xs:complexType name=” desc text type ” mixed=” true ”>

27 <xs:sequence>

28 <xs:element name=”emph” type=” xs :str ing ” minOccurs=”0”

maxOccurs=”unbounded”/>

29 <xs:element name=”bold ” type=” xs :str ing ” minOccurs=”0”

maxOccurs=”unbounded”/>

30 </xs:sequence>

31 </xs:complexType>

32 </xs:schema>

Figure 2.6: An XML Schema document

The <schema> element is the root element of every XML Schema. Like in Do-

cument Type Definitions the root element <item> is defined in the first lines of the

schema. Here the <item> element is defined as a complex type consisting of the el-

ements <name>, <location>, <quantity>, <payment>, and <description>. The

keywords minOccurs="1" and maxOccurs="unbounded" state that the <payment>

element has to appear one to many times in the sequence. If an element has no

minOccurs and maxOccurs attributes the value 1 is assigned implicitly. This im-
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plies that the element has to appear exactly once.

The element <quantity> is assigned to the user-defined type positiveNumber type

that is defined in line 15 as a restriction of the integer type. Another user-defined

type is assigned to the element <description>. A description contains a <text>

element that is of a mixed content type consisting of <emph> and <bold> ele-

ments. Due to the keyword mixed="true" in line 26 an atomic text value can

appear between the elements <emph> and <bold>.

A great strength of XML Schemas is that they are written in XML syntax, so that

existing XML editors and parsers can be reused. XML Schema can be created and

processed by any software that works with XML documents. Especially an XML

Schema can be validated against the XML Schema that defines valid XML Schema

documents.

Because XML Schemas tend to be large XML documents (especially larger than

DTDs) it is difficult to perceive them. Therefore, a graphical representation is often

more comfortable. Figure 2.7 presents XMLSpys [4] visualization of the sample

schema.

Figure 2.7: A graphical representation of an XML Schema

Although it is semantically possible to create an XML Schema c that defines the

union of two XML Schemas a and b this is not processed as expected by the vali-

dating parsers like XMLSpy . Syntactically, c can be defined using the inheritance

feature of XML Schema (see appendix 10.3). Therefore, as DTDs, XML Schema

are not closed under union; details can be found in [86, 87].
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2.2.3 Other Schema Languages

There are a multitude of further schema languages to define types of XML doc-

uments. Examples include Schematron [99], the Document Structure Description

(DSD) [65], the Document Definition Markup Language(DDML) [130], and Schema

for Object-oriented XML (SOX) [131]. Most approaches gained no or only little im-

portance. The current state-of-the-art is XML Schema, although DTD is still very

common because of its more compact form.

2.2.4 XHTML

XHTML [125] is a working draft for the formulation of HTML 4.0 Internet pages

and can be seen as an application of XML and DTDs. The goal of XHTML is to

guarantee that websites are well-formed and valid according to a given XHTML

DTD. XHTML is designed for portability: There will be an increasing use of non-

desktop user agents to access HTML documents. In some cases they will not have

the computing power of a desktop platform, and will not be designed to accommo-

date badly formed HTML as current browsers do. Indeed if these programs do not

receive well-formed XHTML they may simply not display or process the document.

With XHTML the overlapping of elements is banned (e.g. <p>an emphasized

<em>paragraph.</p></em>). A document with overlapping elements can never

be well-formed. Instead the elements have to be nested (e.g. <p>an emphasized

<em>paragraph.</em></p>).

Technically, the author of a static website uses the XHTML DTD and checks his

HTML code with a validating XML parser. If the parser accepts the HTML code the

author may publish it.

For dynamically generated HTML with data coming from a database this approach

is not optimal, because it implies that each data has to be validated before send-

ing it to the user. This may cause high costs of computation and there are few

chances to automatically fix an HTML document that is rated as invalid by the

parser.

The problem of validating dynamic HTML pages is faced in many works including

Xtatic [31], XDuce [53], XAct [64], JWig [18], XJ [50], XOBE[61] and many others.

The XOBE project faces the problem with a static check of the source code that

generates the HTML code. With a positive static check it can be guaranteed that

each run of the program generates a valid HTML page. Therefore, the check at

runtime is avoided.

2.2.5 The Document Object Model

Until now all XML documents were represented as text documents consisting of

lines with a textual representation of the elements and their contents. This facili-

tates the readability for humans but a text file is not appropriate for navigating in
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the structure of the document. Therefore, computer systems usually do not han-

dle an XML document as a string but represent it in a tree-like data structure. The

transformation of the textual representation is done by a parser and implies that

the XML document is well-formed. One common representation is the Document

Object Model (DOM) - a proposal of the W3C for platform-independent access on

XML documents.

In the following figure 2.8 the DOM tree for the XML example is presented.

<description><payment><payment><quantity><location><name>

item

12

@id

Lübeck,

Germany

Sinus

MP3 Player 25 CreditcardCash <text>

This is

a portable <emph>

MP3

Player

with

512 MB...

<item>

Figure 2.8: A DOM-tree

The DOM tree consists of three node types: elements (illustrated as boxes), at-

tributes (rhombus) and the text values (ovals). In object-oriented programming

languages like Java the node types are represented as classes. Each node of the

DOM tree is an object/instance of the corresponding class and offers methods to

access its content. For instance, the W3C’s Java DOM API offers methods like

Boolean hasAttribute(String name), String getTagName() or NodeList

getChildNodes() for elements in the DOM tree. This way a computer program

can easily process and generate XML documents.

2.2.6 Future Perspective of XML

After its introduction in 1999 XML was hyped and considered as the universal so-

lution solving all data related problems. Of course, this is not the case, especially

XML is not replacing the relational data model. However, today (2005) XML is an

important and widespread technology that is mostly used for data interchange.

The success of XML can be seen in the huge amount of XML languages that can be

found in almost every field of knowledge: Besides the usage as exchange format

XML is used to build visualization independent documents in content manage-

ment systems, to express mathematical or chemical formulas [88], MathML [121]

, or in the e-learning context to model learning materials [93], for instance.

Another emerging technology that relies strongly on XML are web services . In this

context XML is used to describe the functionality of web services using the Web

Service Description Language (WSDL) [124], to advertise web service providers us-
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ing the Universal Description, Discovery and Integration (UDDI) registry [110] and

for the communication between a web service consumer and the provider using

the Simple Object Access Protocol (SOAP) [123].

Recapitulating, one can say that the requirements of the XML specification of

1999 were accomplished and that the introduction of XML in real applications

was fruitful.
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2.3 XML Query Languages

The DOM API provides a universal way of accessing an XML document by a pro-

gramming language. However, the explicit navigation to nodes by a programming

language is not very comfortable. For instance, the following Java code selects all

<name> elements of items that have the value ’MP3 Player’ in its description.

1 Document doc = (new DOMBuilder ( ) ) . build (XMLSource) ;

2 Element root = doc . getRootElement ( ) ;

3 Element description = root . getChild ( ” description ” )

4 i f ( description != null ) {

5 Element text = description . getChild ( ” text ” )

6 i f ( text != null ) {

7 Element emph = text . getChild ( ”emph” )

8 i f (emph ! = null && emph. getText ( ) . equals ( ”MP3 Player ” ) ) { // found

9 Element name = root . getChild ( ”name” ) ;

10 return name;

11 }

12 }

13 }

14 return null ; // not found

Figure 2.9: A Java program for accessing the DOM-tree

As one can see quickly the code is not intuitive and descriptive. Rather than defin-

ing which nodes are selected, the programmer has to express how to select them.

For more complex queries with more than one value comparison the code will

quickly become unmanageable. For this reason a more descriptive and compact

query language for XML is needed.

2.3.1 XPath

One common approach is XPath [126] a language for expressing navigational

steps and conditions for selecting nodes (elements and attributes) in an XML do-

cument. XPath 1.0 was introduced in 1999 by the W3C with a definition for the

syntax and the semantics. Specific XPath implementations are offered by third

parties like [4, 7, 101, 108] or are part of a database management system, e.g.

[8, 55].

The following expression motivates XPath: It selects the same nodes as the previ-

ous Java code but is much more compact:

1 \item\name[ . . \ description \ text \emph= ’MP3 Player ’ ]

XPath is a navigation language for selecting parts of an XML document modeled

as a tree of nodes. XPath discriminates between seven types of nodes: The doc-

uments root-node, normal elements, text nodes, attributes and, less important,

comment-nodes, processing instructions, and XML Namespaces .
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XPath Expression

The primary syntactic construct in XPath is the expression. An expression is

evaluated by an XPath engine to yield an object, which has one of the following

four basic types:

• a node-set (an unordered collection of nodes without duplicates)

• a Boolean value

• a number or a floating-point number

• a string

Location Path

The most important expressions are the location paths: A location path selects a

set of nodes relative to the context-node(s). When a location path is evaluated it

returns a node-set containing the nodes selected by the location path. Location

paths can recursively contain expressions that are used to filter the nodes.

There are two kinds of location paths: relative location paths and absolute loca-

tion paths: An absolute location path starts with a / identifying the root element

of the XML document as the context-node. An absolute location path may be op-

tionally followed by a relative location path.

A relative location path consists of a sequence of one or more location steps sep-

arated by axes. The steps in a relative location path are composed together from

left to right. Each step selects a set of nodes relative to a context-node.

Location Step

Each location step has three parts: An axis which specifies the relationship be-

tween the nodes selected by the location step and the context-node, second, a

node test, which specifies the node type and the name of the nodes selected by

the location step, and third, arbitrary many predicates which use expressions to

filter the set of nodes selected by the location step.

The syntax for a location step in the unabbreviated syntax is the axis name and

node test separated by a double colon, followed by the predicates each in square

brackets. For example, in child::para[position()=1], child is the name of

the axis, para is the node test and [position()=1] is a predicate. The axes,

predicates and their semantics are described in the following.
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Axes for navigation

XPath provides a multitude of axes for navigating in an XML document. The initial

point of the navigation is the context-node. For absolute XPath expressions the

context-node is the document’s root element. In the following we present the axes

in the unabbreviated and, if available, in the abbreviated syntax, a description

and an illustration. The context-node is highlighted with bold lines. The selected

nodes are colored in light gray. The idea of this illustration is taken from [60].

Self-Axis:

XPath: self::
Short: .

The self-axis is the simplest step: It just selects the
context-node without further navigation.

Child-Axis:

XPath: child::
Short: /

The most frequently used axis is the child-axis that
contains the children of the context-node.

The attribute axis is comparable to the child-axis with the difference that the at-

tributes of an element are selected. The XPath syntax for this axis is attribute::

or abbreviated @.

Descendant-Axis:

XPath: descendant::
Short: //

The descendant-axis contains the descendants of
the context-node. A descendant is a child or a child of a
child and so on.
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Parent-Axis:

XPath: parent::
Short: ..

The counterpart of the child-axis is the parent-axis
that contains the parent node of the context-node, if
there is one

Ancestor-Axis:

XPath: ancestor::
Short: NA

The ancestor-axis contains the ancestors of the context-
node; the ancestors of the context-node consist of the
parent of the context-node and the parent’s parent and
so on; thus, the ancestor-axis will always include the
root-node, unless the context-node is the root-node.

Preceding-Axis:

XPath: preceding::
Short: NA

The preceding-axis contains all nodes that appear
before the context-node in document order, excluding
any ancestors and excluding any attribute nodes.

Following-Axis:

XPath: following::
Short: NA

Similar to the preceding-axis the following-axis con-
tains all nodes appearing after the context-node in
document order, excluding any descendants and exclud-
ing attribute nodes.

In addition to these axes there are some more that consist of the union of two

axes like descendant-or-self or ancestor-or-self.
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Node Test

Every axis has a principal node type: it is the type of nodes that the axis can

contain. For the attribute-axis, the principal node type is attribute. For most

other axes, the principal node type is element.

A node test is true if and only if the type of the node is the principal node type

and has a name equal to the specified name in the location step. For example,

child::item selects the item children of the context-node. If the context-node

has no item child element, it will select an empty set of nodes.

A node test * is true for any node of the principal node type. For example,

child::* will select all element children of the context-node, and attribute::*

will select all attributes of the context-node.

The node test text() is true for any text node. For example, child::text() will

select all text nodes of the context-node. Similarly, the node test comment() is

true for any comment-node.

Predicates

A predicate filters the node-set that is selected by the location step and drops all

nodes that do not fulfill a condition. The general format of a predicate in a loca-

tion step is [condition] where the square brackets are required, and condition

represents some test resulting in a Boolean true or false value. For each node

in the node-set to be filtered, an expression is evaluated with that node as the

context-node. If the expression evaluates to true for that node, the node is kept

in the node-set, otherwise it is dropped.

The conditions in predicates are expressed by value comparisons and by node-

set functions. For instance, the predicate[name=’MP3 Player’] checks all name

children if their content is equal to ’MP3 Player’. The context-node itself can be

filtered with the self axis, e.g. [.=’MP3 Player’].

Value comparisons are used to check for equality (=) and inequality (6=, <,≤, >,≥)

of textual and numeric values. Conditions can be put together with the Boolean

operators AND,OR and NOT . String functions like starts-with() are provided

for textual comparisons. With node-set functions like last() or count properties of

the node-set an be checked. A complete list of the string functions and node-set

functions can be found in [126] respectively [132].

Predicates can be used recursively in the expressions of a predicate, e.g.

/item[description[text = ’This item is ...’]].
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XPath expression Examples

In this section we describe XPath expressions by examples operating on the
XMark sample document:
/site

This absolute path expression navigates to the root-node (/) and selects the one site

element.

//description
Selects all elements that have the name description without regarding the leading path.

Because of the descendant-axis (//) every node in the XML document is checked whether

it has the requested name.

/site/closed auctions/closed auction
Selects all closed auction elements that are child of closed auctions elements that

are children of the site element that is the root of the document. This path expression

contains no predicates.

//item/@id
Selects the id attributes of every item element.

//item[@id=’item12’]

Selects the one item element that has an attribute id with the value item12.

//item/@id[.=’item12’]

Same as the previous one with the difference that the attribute itself is selected by a com-

parison with the node itself (.).

/site/closed auctions/closed auction[price]

This expression selects all closed auction elements that have a child named price.

The closed auction elements must be children of the nodes selected by the expression

/site/closed auctions . The particular value of the price is not relevant, only the exis-

tence of a price child matters.

/site/closed auctions/closed auction[price>’8.49’]

Similar to the previous expression with the difference that the value of the price must be

greater than 8.49.

/site/regions/*

This expression selects all children of the nodes selected by /site/regions. Due to the

∗ the names of the selected elements is not regarded.

//item/name[../location=’Europe’]
Selects all names of items with the item having a location child with the given value.

Please note the parent-axis that is required for this expression.

//item[contains(name,’MP3’)]

The expression selects all item elements that have a name child whose textual content

contains the string MP3.
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//item[count(incategory)>=3]

Selects all item elements that have at least three incategory children.

2.3.2 XPath Query Types

In the context of databases it makes sense to classify XPath expressions into

different query types. This allows us to compare the possibilities and the power

of the various indexing approaches. We list the most common query types here:

• Structural query or pure-path query:

Pure-path queries navigate in the data without paying attention to element

values; e.g. p1 = /site/people selects all people elements below the site

element.

• Single-key query:

With a single-key query we can select elements fulfilling one condition. For

instance, the query p2 = /site/people/person/[name =′ x′
1] selects all person

elements of a given name with the value x1. In the literature, this query type

is sometimes called predicate query or value query. If the operators > or <

are used for key value comparison we speak of a range query.

• Multi-key query:

A multi-key query is a generalization of a single-key query allowing multiple

key-value comparisons. The expression

p3 = /site/regions/asia/item[name =′ MP3 Player′ and quantity > 10] queries

the data for MP3 Player items with an available quantity greater than 10.

• Wildcard query:

With the wildcard operator * we can select arbitrary elements without testing

their labels. For instance, p4 = /site/regions/∗/item selects all item elements

without regarding their particular region.

• Descendant query:

The self-or-descendant operator // is a generalization of a wildcard and se-

lects elements by its name without paying attention to the leading path. The

following expression p5 = //name selects all elements with the label name

wherever they appear in the data.

• Combinations:

It is possible to combine the different query types as the following self-

explaining valid expressions show:

p6 = //name[. =′ x′]

p7 = //item[name. =′ x′
2 and quantity > 10]
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XPath 2.0

XPath 1.0 was introduced by the W3C in 1999. It is not a full programming

language, in particular it is not Turing-complete because every location step and

function terminates. This is very similar to the SQL language. XPath was de-

signed to be embedded in a host language such as XSLT 2.0 [129] or XQuery [128].

XPath 2.0 was presented as a working draft in 2001 and is a much more powerful

language that operates on a much larger domain of data types. XPath 1.0 sup-

ports only the four expression types node-set, Boolean, number and string. This

solution is very simple but is very limited when processing typed values such as

dates. XPath 2.0 introduces support for the XML Schema [127] primitive types

which immediately gives the user access to 19 simple types, including dates,

years, months, etc. Besides, a number of functions and operators are provided

for processing, casting and constructing these different data types.

Unlike XPath 1.0 that operates with unordered node-sets, XPath 2.0 supports or-

dered sequences of nodes. Sequences may contain duplicates. Sequences can be

unified and intersected by new functions.

Further enhancements of XPath 2.0 are additional functions like min() and max()

for numeric values and string matching with regular expressions. But as XPath

1.0 the successor is no full programming language. A major application of XPath

2.0 is the XML query language XQuery.

2.3.3 XPath Evaluation

For evaluating a particular XPath expression we need an XPath processor that op-

erates on a given XML document. A straightforward (naive) implementation would

evaluate the location steps of the XPath expression step by step. The resulting

nodes of a previous location step are used as context-nodes for the ongoing loca-

tion step. The pseudocode of the naive XPath evaluation algorithm is presented

in figure 2.10.

1 NodeSet evalXPath ( XPathExpr e , ContextNode cn ) {

2 i f ( e . isEmpty ( ) ) return cn ; //no more steps

4 LocationStep step = e . getNextStep ( ) ;

5 e = e − step ; //remove step from expression

7 Axis axis = step . getAxis ( ) ; //extract the axis

8 NodeTest nTest = step . getNodeTest ( ) ; //extract the node tes t

9 Predicate [ ] preds = step . getPreds ( ) ; //extract the predicates

11 NodeSet nodes = cn . eval ( axis ) ; //evaluates the axis

13 for ( n in nodes ) {

14 i f ( nText!=∗ && nTest ! =n. label ) //check the nodes label

15 nodes . remove (n) ; //Node tes t fa i l ed

16 }

18 for ( n in nodes ) { //Check each predicate

19 for ( p in preds ) { //fo r each node

20 NodeSet nodes2 = evalXPath (p ,n) ;
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21 i f ( nodes2. length==0){

22 nodes . remove (n) ; //predicate not f u l f i l l e d

23 break ;

24 }

25 }

26 }

27 NodeSet result = new NodeSet ( ) ; //create empty set of nodes

28 for ( n in nodes ) {

29 result .add ( evalXPath ( e ,n) ) ; //recursive c a l l

30 }

31 return result ; //remaining nodes

32 }

Figure 2.10: A naive evaluation algorithm for XPath expressions

The recursive method gets an XPath expression e and one context-node cn as in-

put and returns a set of nodes that is selected by e when evaluated upon cn. If

the path expression e is empty the context-node is the selected node. This is the

termination case of the recursion. If e is not empty (it contains at least one loca-

tion step) the leading location step is removed from e and stored in the variable

step. This is done in lines 4 and 5.

In lines 7 − 9 the axis, node text, and predicates are extracted from the location

step. The axis is evaluated in line 11 leading to a set of nodes that have a re-

lationship to the context-node specified by the axis. Each of these nodes must

be checked if it fulfills the node test, i.e. if it has the requested name. This is

done in lines 13− 16. If the node test is the wildcard operator * then every node is

accepted.

Each of the remaining nodes in nodes must fulfill all conditions expressed in the

predicates. This selection is done in lines 18 − 26. For reasons of simplicity the

pseudocode concentrates on structural conditions and omits value comparisons

and functions like count. A structural condition is an XPath expression that re-

turns a non-empty set of nodes if evaluated on a node ∈ nodes. This is performed

in line 20. If one node ∈ nodes does not fulfill one condition it is removed from

node nodes.

The remaining nodes ∈ nodes have passed the node test and the predicates. Now

they are used as context-node for the recursive call of the method with the tailing

part of the original XPath expression e. The result of this evaluation is the final

result set.

Gottlob, Koch and Pichler have shown in [34] that this naive algorithm may lead to

an exponential runtime in the length of the query: Each application of a location

step may result in a set of selected nodes with a size linear to the number of ele-

ments. If the method is called recursively with the previously selected nodes the

algorithm ends up in consuming exponential time in the worst case. For example,

let t = <a><\b><\b><\a> be an XML data consisting of an a element with two b

children. We query this XML data with a path expression p of the variable length
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m. p consists of two leading /a/b location steps followed by m − 1 expressions

of the form /../b. The first part selects the two b elements. The remainder of p

is executed for both b. Each /../b step returns the two b elements, so that the

number of b elements is doubled on each execution of the /../b path expression.

The m-th execution step returns 2m b elements. Of course these are redundant

repetitions of the original two b elements.

This naive approach is implemented in most XPath processors like XALAN [7]

and Microsoft Internet Explorer 1 Gottlob, Koch and Pichler propose a more effi-

cient implementation that uses polynomial runtime in the worst case. Details can

be taken from [34, 35].

2.3.4 XQuery

XQuery is a functional programming language that uses XPath expressions for

selecting nodes. More precisely, XQuery is a superset of XPath; this implies that

each XPath expression is already a valid XQuery expression and will return the

same result in both languages. In contrast to XPath that only selects nodes in a

given document XQuery allows to transform the nodes and to create new struc-

tures with XML templates.

XQuery is a proposal of the W3C that is not standardized yet. The latest working

draft was published in April 2005. However, many systems that use an XQuery

implementation are realized. Examples include the Microsoft SQL Server 2005 Ex-

press with XQuery support [79] or the Berkeley DB XML 2.0 [107], an embedded

native XML database with support for XQuery 1.0.

Sequences

The basic construct of XQuery are sequences. All XQuery expressions and func-

tions operate on one or multiple sequences and returns a new sequence. Se-

quences consist of items which can be atomic values or XML nodes. Both types

can be mixed in a sequence. A sequence may not contain another sequence but

can contain nested nodes. The following example shows how a sequence of values

and elements is created syntactically in XQuery:

1 (1 , <a><b/></a> , 2 , 1 , <c/> )

The items in a sequence are ordered and may appear more than once. Therefore,

duplicates are allowed in a sequence. The concept of the sequence is different to

the node-sets of XPath that have no ordered items and no duplicates.

1The Internet Explorer uses XPath in its embedded XSLT engine generating HTML pages from
an XML document and a stylesheet.
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FLWOR-Expressions

In contrast to XPath that only selects existing nodes, XQuery allows the construc-

tion of XML results that have a different structure than the original data. The

central framework of XQuery are the FLWOR-expressions. The acronym FLOWR

stands for for-let-where-order by-return and is pronounced like the word

’flower’. FLWOR-expressions support the binding on variables, the iteration over

sequences and templates that define the structure of the resulting XML data. This

way FLWOR can be compared to SQL in relational databases.

A FLWOR-expression creates a sequence of nodes and values by binding the re-

sults of a path expression to a variable by the use of for and let . The items of

the sequence are filtered by the conditions expressed in the where clause. Op-

tionally, the remaining items can be ordered with order by and returned with

the return statement. This process is illustrated in figure 2.11.

Figure 2.11: Construction of a FLWOR-Expression

The let and for clause bind the results of an XQuery expression (the result is a

sequence) to a specific variable that can be addressed by further processing steps.

The semantic of let and for is different: The let clause binds the sequence as a

whole to the variable. Therefore, the further processing steps are performed once

for the sequence.

The for clause binds all items of the sequence to the variable so that the further

processing is performed with each item separately.

The different semantic of let and for is illustrated in a small example: The

first XQuery expression binds a sequence of three element-nodes to the variable

x. The return statement creates an item element and encloses the content of x.

1 l e t $x : = (<name/> , <location/> , <description/> )

2 return <item> { $x } </item>

The resulting XML data is as follows:

1 <item>

2 <name/>

3 <location/>

4 <description/>

5 </item>
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If we change the let- clause to a for clause each of the three nodes of the se-

quence are enclosed with the item element:

1 <item>

2 <name/>

3 </item>

4 <item>

5 <location/>

6 </item>

7 <item>

8 <description/>

9 </item>

Analogously to predicates in XPath or the WHERE clause in SQL it is possible to

restrict the result of an XQuery expression by using conditions that must be

fulfilled by the sequence or its items. A where clause typically references the

declared variables of let and for.

The following XQuery expression filters all items that are located in the United

States and returns their names in an enclosing <result> tag:

1 l e t $ item : = doc ( ” auctions .xml” )//item

2 where $ item/location = ”United States ”

3 return <result> { $ item/name } </result>

With XQuery it is possible to express more complex queries that produce an XML

output from data that is distributed over the whole original data. The next XQuery

expression creates compact information for each sold item consisting of the item’s

name, the name of the buyer, and the seller and the price. The data is dis-

tributed over three different parts of the original XML data: The name of the

seller and buyer is in the people branch, the item’s name can be found below

the regions element and the final price is a value that can be found under the

closed auctions element.

1 l e t $data : = doc ( ” c :\xml\xmark\out .xml” )

2 for $auction in $data//closed auction

3 for $ item in $data//item

4 for $ se l l e r in $data//person

5 for $buyer in $data//person

6 where

7 data ($ auction/se l l e r/@person ) = data ($ se l l e r /@id ) and

8 data ($ auction/buyer/@person ) = data ($buyer/@id ) and

9 data ($ auction/itemref/@item ) = data ($ item/@id )

10 return

11 <summary>

12 <item>

13 {data ($ item/name) }

14 </item>

15 <se l ler>

16 {data ($ se l l e r/name) }

17 </se l ler>

18 <buyer>

19 {data ($buyer/name) }

20 </buyer>
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21 <price>

22 {data ($auction / price ) }

23 </price>

24 </summary>

Figure 2.12: XQuery expression for selecting information from a closed auction

In line 1 the root of the XML source is bound to the variable data. In lines 2 − 5

separate variables are declared for each (closed) auction, item, buyer, and seller.

The variables of the buyers and sellers are bound to the same XML nodes because

a person can participate in an auction both as seller and as buyer. The where

clause in lines 6 − 9 performs a join-operation and removes all tuples that do not

correspond.

The result of the expression is a sequence of summary elements that contains the

most relevant information of a terminated auction. The data() function returns

the value of an element or attribute. In this example, these are texts for the names

and a float value for the price.

XQuery allows the definition of user-defined functions that can be called recur-

sively. Therefore, XQuery is a Turing-complete programming language. XPath ex-

pressions always terminate (when executed on finite XML documents); this shows

that XPath is not Turing-complete.

Because XQuery is more expressive than XPath it is very likely that XQuery

will gain a significant relevance in the database context. Because XQuery re-

lies strongly on XPath when addressing nodes the performant execution of XPath

expressions is a major issue when optimizing XQuery. For instance, the XQuery

expression of the last example has the computational complexity O(n4) because

every combination of the four variables auction, item, buyer, and seller is

analyzed whether it matches. Even for smaller documents this complexity is pro-

hibitively high if the XPath expression is evaluated in a straightforward manner

(see also 2.3.3). (With a more sophisticated XQuery expression it is possible to

reduce the complexity up to O(n2), see section 10.1 in the appendix).

The popular and commercial XML editor XMLSpy [4] needs minutes of time and

has a memory consumption of roughly 260 megabyte when evaluating the sam-

ple XQuery expression upon an XML document of only 124 kilobyte! This little

experiment proves that optimization is a top-level issue in XML query languages.

With an index that offers logarithmic time to find relevant nodes the complexity

shrinks to O(n · log(n)). Even for a relatively small database with only 1000 auction

elements the execution time with indexes is magnitudes faster than the straight-

forward implementation that has to select and check every combination in the

where clause.
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2.4 XUpdate: XML Modification Language

With XPath and XQuery we are able to select nodes and create an XML output

with content from an XML document. Modifications in an existing document can

be performed neither with XPath nor XQuery. With XSLT [129] we can transform

one document A into a document B and perform some changes to B. But because

XSLT works like a stylesheet the modifications do not take place in the original

document. Furthermore, XSLT is Turing-complete and can be regarded as a cryp-

tic but full programming language that does not allow comfortable ad-hoc queries

like SQL for instance.

In this thesis XUpdate [134] is presented as a proposal for an XML modifica-

tion language comparable to SQL. Although XUpdate relies strongly on XPath it

was not designed by the W3C. The latest XUpdate Working Draft was published

in 2000 by the XML:DB Initiative. No enhancement or updates of XUpdate were

presented recently. Nonetheless, XUpdate is used by some XML database man-

agement systems like XIndice [8]. A successor project of XUpdate is Lexus [6], an

update language also using XML syntax and XPath for navigation and selection.

In this thesis we give a brief and informal introduction to XUpdate - as one repre-

sentative of an ad-hoc XML modification language. Basically, there are six differ-

ent types of modifications that are presented in the following by using examples.

For the reason of simplicity, elements and attributes are summarized to nodes.

Constructing and adding new nodes

XUpdate allows to add one or multiple new nodes to an existing document. The

insert position can be before or after a designated node or the new node(s) may be

appended to a list of existing nodes. This is shown in the next two examples.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate ”>

2 <xupdate:append se lect=”/s i te/categories ” >

3 <xupdate:element name=” category ”>Harddisks</xupdate:element>

4 </xupdate:append>

5 </xupdate:modifications>

Figure 2.13: XUpdate append operation

As one can see XUpdate expressions are well-formed XML documents themselves.

The root-node is an element called modifications that belongs to the namespace

⁀xupdate. The second line selects the /site/categories element and adds one

new category element with the value Harddisks. In this command an implicit

element creation takes place.

The second example inserts a full XML fragment consisting of one item-node with

an attribute and a complex content.
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1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:append se lect=”/s i te/regions/europe ” >

3 <xupdate:element name=” item”>

4 <xupdate:attribute name=” id ”>item505</xupdate:attribute>

5 <name>DVD Recorder</name>

6 <location>Paris , France</location>

7 <quantity>1</quantity>

8 <payment>Cash</payment>

9 <description>

10 <text>This is a brand new DVD Recorder</text>

11 <description>

12 </xupdate:element>

13 </xupdate:append>

14 </xupdate:modifications>

Figure 2.14: XUpdate append operation with complex content

Deletion nodes

The deletion of nodes is performed using XUpdate’s remove command. The node

d to be deleted is selected with a normal XPath expression. Nodes that are descen-

dants of d are deleted as well because without d they cannot be reached anymore

from the document’s root.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:remove se lect=”//item [@id = ’ item101 ’ ] ”/>

3 </xupdate:modifications>

Figure 2.15: XUpdate remove operation

Renaming nodes

Nodes can be assigned a new name using the rename command. This modifica-

tion does not affect the content of an element. In the example all description

elements are renamed to desc.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:rename select=”//description ” >

3 desc

4 </xupdate:rename>

5 </xupdate:modifications>

Figure 2.16: XUpdate rename operation

Changing the content of nodes

In contrast to the previous operation the update command changes the content

of an element without affecting its name. The XUpdate expression in the example

changes the price of all items that cost 14.99.
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1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:update se lect=”//price [ .= ’14 .99 ’ ] ”>

3 12.99

4 </xupdate:update>

5 </xupdate:modifications>

Figure 2.17: XUpdate update operation

Copying and moving nodes

XUpdate allows to bind the result of an XPath expression to a variable. In the

following example a name of an item is bound to a variable i and the variable is

inserted at another place. The value of the variable is addressed with $i. This way

one can copy a node in a document.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:variable name=” i ” se lect=”//item [ @id = ’ item12 ’ ] /name”/>

3 <xupdate:insert−after se lect=”//item [@id = ’ item33 ’ ] ”>

4 <xupdate:value−of se lect=”$ i ”/>

5 </xupdate:insert−after>

7 </xupdate:modifications>

Figure 2.18: XUpdate operation for copying nodes

It is possible to move a node from one position to another if the node is bound to

a variable and deleted before reinserted. This is shown in the next example.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>

2 <xupdate:variable name=” i ” se lect=”//item [ @id = ’ item12 ’ ] /name”/>

3 <xupdate:remove se lect=”//item [@id = ’ item12 ’ ] /name”/>

4 <xupdate:insert−before se lect=”//item [ @id = ’ item33 ’ ] ”>

5 <xupdate:value−of se lect=”$ i ”/>

6 </xupdate:insert−before>

8 </xupdate:modifications>

Figure 2.19: XUpdate operation for moving nodes
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2.5 XML and Databases

The emerging usage of XML technologies by applications in e-business, for in-

stance, demands the close connection to database management systems because

the latter provide a fast, robust, and application-independent way of storing and

accessing data. For example, a clearing house interacting with member bro-

kers using Web services is legally obliged to store the XML messages for non-

repudiation. With the advent of Web services, it is quite common for business

interactions to be processed via XML messages (e.g. SOAP). In such cases, the

message is not only a transaction request but also a business entity like an order

or an invoice. Such messages need to be preserved for many reasons including

auditing, regulatory compliance, and non-repudiation. In addition, search facili-

ties may be required to process the stored data. So, although XML was originally

designed for data interchange, an increasing amount of XML data needs to be

recorded and persistently stored.

In the context of databases the term XML data instead of XML document is more

precise and generic. The term XML document fits better for document centric

applications like content management systems, where documents are generated,

transformed, and visually displayed.

Any software developer who designs an application requiring particular XML data

to endure more than one run of the system has the problem of how to store the

data persistently. As usual the file based approaches have many disadvantages:

storing the XML data in its textual representation means parsing (to a DOM tree)

whenever the data shall be processed. Even if minor changes in the DOM tree

were performed the document has to be updated globally leading to performance

degradation. A system crash in the meantime may lead to a total loss of the data

if the document is not well-formed. And of course, storing XML data in the file

system excludes the traditional database features like the support of a query lan-

guage and multi-user and transactions controls.

Because of these reasons the persistency and database aspect is very important

for applications dealing with larger amounts of XML data. In the following, a

survey of database approaches for storing XML data is presented. In this thesis

there is no basic difference between the storage of a multitude of small XML data

versus the storage of one or few huge XML data.

2.5.1 XML in Conventional Relational Databases

A first approach is to try to store XML data in a relational database management

system like MySQL or PostgreSQL. For this purpose, the XML structure and its

content has to be reflected in a set of relational tables.

If the XML data is restricted by a DTD or an XML Schema one can define a corre-

sponding relational schema and map the XML data into these custom relations.
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The sample DTD of figure 2.2 could be transformed into the following three rela-

tions in a high normal form (3NF, BCNF):

Figure 2.20: Relations representing the XML data

In general, each element that may have a text value is transformed to a column
of a table. Elements with a 1:1 relationship (e.g. <name> and <quantity>) can
be summarized in the same table. Elements with a 1:n relationship must be
distributed over two tables if the second normal form shall not be harmed (no
repetition of values). This applies to the <payment> element: they are stored in
a second table that references the first one by the foreign key item id. Because
we have multiple tables with relations between them we have to add keys; for the
first table we use the value of the attribute which was designed to be a key. But
for the two other tables we have to assign artificial keys. Because the entries in a
table have no order an extra column is needed to capture this information.
The third table expresses the mixed content of text values, <bold> and <emph>
elements by using a flag. Especially in this table the order column is very impor-
tant in order to keep the text structure consistent.

At first sight, this approach seems to be adequate for the storage of XML data
but it has inherent and significant disadvantages: minor changes of the DTD (or
XML Schema) may lead to major changes in the relational schema. For instance,
if an element’s cardinality in the DTD is changed from ? to + or * the corre-
sponding table has to be separated because this element may now appear more
than once. Because the relational schema is now very different all existing SQL
statements have become invalid and therefore must be adapted. Additionally, a
relational schema cannot express exactly a DTD. The difference between + or * is
not expressible.

An issue that is relevant for the performance of a database application is that
the separation of one XML data to multiple tables implies several costly join-
operations, in general. For instance, a relatively simple query that selects all
items with a child <payment> that have the value Cash and a description with
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the value MP3 Player the corresponding SQL statement already has three join-
operations:

SELECT tab1.item_id FROM tab1, tab2, tab3
WHERE tab2.text_value = ’Cash’ AND

tab3.text_value = ’MP3 Player’ AND
tab2.item_id = tab1.item_id AND

tab3.item_id = tab1.item_id;

For large XML data in a relational database the SQL based query evaluation may

be very costly. Besides this, it is difficult and sometimes impossible to express

queries that operate on the structure of an XML data in SQL. A comprehensive

review of methods for XML-to-SQL query translation and their limitations is be-

yond the scope of this thesis and can be found in [67].

Conventional database management systems offer no direct support for XML.

Therefore, the mapping to tables has to be done explicitly by the application. The

same holds for the construction of XML data from values in the tables and for the

generation of appropriate SQL statements.

These issues become even worse if no schema is provided for the XML data. Hav-

ing no schema means that new elements may appear and disappear at any time

during the databases lifetime. For some applications like research databases in

bioinformatics this is a realistic constraint. Without a schema it is not possible to

define relations with columns that correspond to the elements. Therefore, a more

generic approach is required.

One way could be to express the parent-child relationship of all elements in one

huge table. A simple generic table that is capable to keep an arbitrary XML do-

cument could be designed like this:
For each node (element, attribute, text node) of the XML data one entry is inserted
into the table. The type of each node is kept in an extra column. The element’s
name and its content cannot be summarized in one row of the table because XML
allows to express mixed content with an element having multiple text values as
children. Again the position of the elements has to be recorded in an extra col-
umn. The null values are omitted to increase the readability.
This approach is very generic but leads to even more join-operations when pro-
cessing a query. Each parent-child lookup requires a join-operation. Our sample
query would look like this:

SELECT x.id FROM a,b,c,d,e tab
WHERE a.value =’Cash’ AND // a: text value of <payment> element

a.parent_id = b.id AND
b.name = ’payment’ AND // b: <payment> element

b.parent_id = x.id AND // x: requested <item> element

c.value = ’MP3 Player’ AND // c: text value of <text> element
c.parent_id = d.id AND

d.name = ’text’ AND // d: <text> element
d.parent_id = e.id AND
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Figure 2.21: Generic relations for storing arbitrary XML data

e.name = ’description’ AND // e: <description> element

e.parent_id = x.id;

For large data and more complex navigation steps the computation of the join-

operations quickly becomes prohibitively expensive. In SQL transitive closure is

not expressible, therefore we cannot navigate arbitrarily deep into the XML struc-

ture and check all descendants of a node.

Conventional relational database management systems do not support mecha-

nisms to validate the XML data. Therefore, minor changes in the XML data (e.g.

deleting the name of an item) may lead to invalid data. For validation, the XML

data has to be reconstructed from the relations and validated apart; these are ex-

pensive operations so that validity cannot be guaranteed if a performant system

is required.

2.5.2 XML in Extended Relational Databases

In recent years the major relational and object-relational database management

systems (RDBMS) were extended and now include some support for XML data.

Examples include the Microsoft SQL Server 2000 [80], Oracle XML DB [95], and

the IBM XML Extender [73, 54] which is described here. In principle, two ap-

proaches are offered: XML data with a schema is shreddered and mapped into

relations and afterwards processed with SQL statements. The XML Extender calls

this method side tables. The only difference to the self-made tables of the previ-

ous section is that a user may define a Document Access Definition that automates

the creation of suitable tables and the mapping process. The content in the side

tables is accessed with SQL statements only. Compromising one can say that side
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tables are more a convenience function than a new approach.

A second common approach of the extended RDBMS is to provide a column type

for the exclusive storage of XML. In most cases the base of the XML type is a BLOB

or a CLOB (Binary/Character Large Objects). In the XML Extender this column

type is called XMLClob and can be seen more or less as a conventional CLOB

which gets XML in its textual representation as input. When accessing the data

an external parser gets the full data and transforms it to the memory resident

representation. Because of the textual representation in the CLOB the parser al-

ways gets the full document even if only a small portion is processed afterwards.

This approach may suit for a collection of very small XML data but fails if the data

becomes larger. Additionally small modifications in the XML data lead to a full

replacement of the textual representation in the CLOB. In other words the CLOB

approach offers no granularity beside the full data. Therefore, standard database

features like multi-user access on the same data with fine granular locks are im-

possible.

The main advantage of the CLOB approach is the full schema flexibility, as any

XML document, regardless of its schema, can be stored. Because the XML data

is not shreddered to relations but stored in its native form it is possible to ap-

ply XML query languages like XPath (see next section). The XML Extender uses

stored procedures to invoke an external XPath processor which usually gets the

entire XML document before processing. Again, this severely limits the size of the

data and optimization possibilities. As a result, search and retrieval of XML data

in a CLOB is relatively slow.

2.5.3 Native XML Database Management Systems

Summarizing one can say that conventional relations (aka side tables) and CLOBS

are not a fully satisfying and universal solution to store and access XML data in

a database.

In contrast to the relational approaches a new paradigm called native XML database

management systems (XDBMS) was introduced in the last years. This approach is

designed exclusively for the management of XML data. Examples include Tamino

[105], Natix [29, 30], eXist [78], InfonyteDB [55], TIMBER [56], Xindice [8], and

others. Native XDBMS store the XML data persistently in its tree-like structure,

avoiding a costly transformation into relations and vice versa.

In contrast to the CLOB based storage that requires the entire data to be fetched

from the database, native XDBMS offer a finer granularity. In general, single ele-

ments can be selected, changed, or added to the XML data without affecting the

other parts. The parent-child relationship, sibling relationship, etc. is reflected

by the internal storage structure. Simplified, one can think of a native XDBMS as

a persistent DOM tree that resides on the harddisk. Indeed, the PDOM [28] was
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an early step towards an XDBMS.

At least a native XDBMS provides an efficient storage of the XML data, support

of a query language like XPath or XQuery, and an interface for programming lan-

guages like the DOM API [118] or XML:DB [133]. Advanced XDBMS may support

an XML modification language like XUpdate, indexes to improve the query per-

formance, and locking mechanisms to support multi-user interaction.

The technical functionality of native XDBMS is described here on the basis of

Natix [29, 30]: Subtrees of the original XML data are stored together in a single

(physical) record (and, hence, are clustered). Thereby, the inner structure of the

subtrees is retained. The XML segment’s interface allows to access an unordered

set of trees. New nodes can be inserted as children or siblings of existing nodes,

and any node (including its induced subtree) can be removed. The individual

documents are represented as ordered trees with non-leaf-nodes labeled with a

symbol taken from an alphabet. Elements are mapped one-to-one to tree nodes

of the logical data model. Attributes are mapped to child-nodes of an additional

attribute container child node, which is always the first child of the element-node

the attributes belong to. Attributes, PCDATA, CDATA nodes and comments are

stored as leaf-nodes.

Figure 2.22 illustrates how the logical tree (an XML data) is mapped to the phys-

ical tree. The relationships between elements are preserved. The image is taken

from [30].

Figure 2.22: One possibility for the distribution of logical nodes onto records.

2.5.4 Hybrid Approaches

The example of figure 2.22 shows that the storage technique differs significantly

from the relational approach. Therefore, existing implementations of relational

DBMS can be reused (if at all) to a limited extent only. It is feared that native

XDBMS will meet the fate of pure object-oriented databases that never gained
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significant importance in real applications in industrial environments. However,

the object-oriented paradigm lead to the extension of relational DBMS to object-

relational DBMS supporting a multitude of the object-oriented features, like user-

defined types and methods. The same may apply to native XDMBS so that future

relational DBMS may provide a native support of XML storage and access.

A first prototype of a hybrid database can be seen in the System RX [11] from

IBM Almaden Research Center and the IBM Silicon Valley Lab. SystemRX unifies

a native XML storage and indexing and query processing technologies with the

existing relational approaches of the DB2 implementation. The main idea is a

new column type that keeps the XML data in a native form. Conceptually, the en-

try in each row can be interpreted as a reference to the root of a persistent DOM

tree. Path expressions are evaluated directly over the native format; Therefore,

the node of an XML document can be accessed and inserted without reading and

manipulating the whole document. Like in every DBMS the persistent data (here

the nodes) are distributed over multiple pages on the harddisk because the whole

data cannot be kept in the main memory. For an accelerated access to relevant

child-nodes of an element-node SystemRX provides an encoded XML storage and

compression that is comparable to the Natix approach [29, 30].

Basically, because the XML data is stored in its native form any XML index can

be used. SystemRX provides an indexing mechanism that is based on keys stored

in a B+ tree. This approach is discussed more extensively in section 4.

The architecture is presented in figure 2.23. The figure is taken from [11].

Figure 2.23: System Architecture of the hybrid DBMS System RX

With SystemRX existing SQL applications can be augmented with additional XML

data. At this time is is too early to judge the impact of the System RX approach.



Chapter 3

Formal models for XML and

XPath

In this chapter a formal model for XML data and XPath expressions is defined.

The Document Object Model (DOM) of XML is a common model for XML docu-

ments that offers a multitude of node types - some of them, e.g. namespace nodes

and comment nodes are used very rarely. Therefore, we restrict the DOM model

without losing relevant parts of its expressiveness.

XPath expressions may have a very complex structure if multiple predicates are

part of the expression. A special problem is that two XPath expressions that seem

different at the first look may be semantically equal in the sense that the set of

selected nodes is the same for all XML data. Therefore, a restricted model for

XPath with the aspect of normal forms is the second step in this chapter.

3.1 A Model for XML Data

In this thesis a simplified DOM model is used to represent XML data. It is less

expressive but suits well for the majority of use cases. Especially in the context

of XML indexing the restricted model meets all requirements.

XML data are represented naturally in a tree-like data structure consisting of

a set of nodes. We distinguish between two node types: element nodes and text

nodes that are always children of an element node. An element may have one to

many elements and text node children . Attributes are not directly supported in

this model; instead they are transformed into equivalent elements. The model is

defined as follows:
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Definition 1 (Node)

A node n is a tuple

n = (id, type, label, value, parent, children)

with

id A unique id that identifies this node.

type the type of the node n. This can be element or text.

label the name of the node n that corresponds to the XML tag if n is
an element node. If n is a text node then the label is λ, the empty
symbol. The type of label is string.

value The string value of the node n if it is a text node. The value of an
element node is λ.

parent The parent node of n. Every node except the root node has ex-
actly one parent. The root node has the parent λ

children An arbitrary set of nodes that are children of n if n is an element.
For all text nodes children = ∅.

The set of all nodes is denoted with N . Therefore, it holds that n, parent ∈ N and

∀m ∈ children it holds that m ∈ N .

Having a node n the function n.parent returns the parent node. Analogously,

n.children returns the set of child nodes of n and n.id returns the id that may be

used for indexing the node.

The labels of all nodes are taken from the element alphabet Σ. The text val-

ues can be arbitrary strings without further restrictions. For a given node n its

label can be determined by the use of the function n.label. 2

Definition 2 (XML data t)

An XML data value t is a tuple (nodes, root) with nodes ⊂ N the set of nodes

and root ∈ nodes the root node. It holds that root.parent = λ and ∀ n ∈ nodes \

{root} n.parent 6= λ. The set of all XML data is denoted with T . Because XML data

may have arbitrary many elements T is an infinite set. 2

Example 1 The small XML example

1 <item>

2 <name>

3 Sinus MP3 Player

4 </name>

5 <location>

6 Luebeck , Germany

7 </location>

8 </item>
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has the following representation in the model:

n0 = (0, element, ”item” , λ, λ, {n1, n3})

n1 = (1, element, ”name” , λ, n0, {n2})

n2 = (2, text, λ, ”SinusMP3Player” , n1, ∅)

n3 = (3, element, ”location” , λ, n0, {n4})

n4 = (4, text, λ, ”Luebeck,Germany” , n3, ∅)

The node no is the root node of the tree model; it is the only node with λ as parent

node. 2

Definition 3 (Function t.nodes)

The function t.node : T → P(N) is called on an XML data t ∈ T and returns all

nodes of t. The function is defined as follows:

t.nodes ::= {n ∈ N |n is a node of t} 2

Definition 4 (Function t.root)

For an XML data t ∈ T the function t.root : T → N returns the root node of the

tree model of t. The function is defined as follows:

t.root ::= n with n ∈ t.nodes is the root node 2

Based on this simple model for XML data we define a model for path expressions

as follows:

3.2 A Model for Path Expressions

XPath is an essential fundamental of this thesis that is used at various places, es-

pecially for defining indexes and database operations. In order to analyze theoret-

ical properties of XPath and to implement the index system we need an abstract

and formal model of XPath that is more precise than the semantic description

given in [126].

Because not all features of XPath are required in this thesis, a restricted subset of

XPath is defined formally. This is done to keep the model and the implementation

simple and manageable without loosing most of XPath’s expressiveness.

The restrictions of the XPath fragment are as follows

• The attribute-axis is omitted because attributes are not supported by the

underlying XML model. This is also done because attributes do not signifi-

cantly increase the expressiveness of XML (see 2.1.2).
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• We concentrate on the most important axes for navigating in an XML tree

structure. These are self (.), child (/), parent (..), and descendant

(//).

• Any node functions like count or sum are not part of the XPath fragment

because these functions are not in the focus of the indexing approach.

The restrictions are not chosen by accident but are common in studies that an-

alyze theoretical aspects of XPath. Examples include [81, 82, 90, 117, 106]. In

general, it is possible to extend the fragment by attributes and more axes, al-

though the expressiveness of the restricted model is high enough and supports

the majority of real-world queries.

In the following we define three fragments of path expressions.

Definition 5 (Linear Path Expression)

A linear path expression pl for a given alphabet Σ of element labels is defined by

the following grammar:

pl ::= plrel | /plrel | ../b

b ::= plrel | ../b

plrel ::= plrel/plrel | plrel//plrel | ∗ | n

with / denoting the child axis,// the descendant axis and .. the parent axis. ∗ is

an arbitrary element and n a specific element with the label n ∈ Σ.

Linear path expressions may start with a leading / indicating an absolute path

expression or arbitrary many leading parent axis (..) followed by a relative linear

path expression plrel
. Within plrel

the parent axis is not allowed, because it enables

structural conditions1. The parent axis can only be applied at the beginning of

relative linear path expressions.

The set of all linear path expressions is denoted with Pl . 2

We call this set of path expressions linear because they are built by a sequence of

location steps. Please note that linear path expressions do not have predicates.

Example 2 An example for a linear path expression could be:

../../person/name

The path expression /a/../b is not a linear path expression because the parent

axis is only allowed at the beginning. 2

Based on the definition of linear path expressions we define General path expres-

sions which may include structural conditions and value comparisons in quali-

fiers:

1e.g. /a/b/../c ⇔ /a[b]/c.
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Definition 6 (General Path Expression XP {[],∗,//})

General Path Expressions p extend Pl and are defined as follows:

pg ::= pl | pl[q]

q ::= pl |pl r l | q and q | q or q

r ::= = | 6= | < | > | <= | >=

l ::= string | int | float 2

where pl is a linear path expression and string, int and float are typed literals.

The set of all general path expressions is denoted with XP {[],∗,//} .

Example 3 An example for an expression of XP {[],∗,//} could be:

/site/ ∗ /item[description and name =′ MP3 Player′]

The set XP {[],∗,//} is close to the fragment used within the work of Miklau and

Suciu [81, 82] with the difference that we allow to express conditions upon the

content of a node using so-called key comparisons.

A path expression like /a[b > 0 and b < 0] is satisfiable because the conditions may

be fulfilled by two different b-children of a. The XPath semantic interprets the path

expression as (∃b)(b > 0) and (∃b)(b < 0) and not as (∃b)(b > 0 and b < 0) as one

might think first. The latter can be expressed in XPath with /a[b[. > 0 and . < 0]]

and is not satisfiable because the value of the same b element cannot be larger

and smaller than 0 at the same time.

If we allow the NOT operator in qualifiers we get a more general class of path

expressions.

Definition 7 (General Path Expression XP {[],∗,//,NOT})

The XPath fragment XP {[],∗,//,NOT} has an additional NOT operator in the rules for

q. Therefore, it is possible to express negations inside a qualifier or key compari-

son. 2

Example 4 An example for an expression of XP {[],∗,//,NOT} could be:

/publications/article[NOT (publisher)]

selecting all article elements that have no publisher. 2

It is obvious that: Pl ⊂ XP {[],∗,//} ⊂ XP {[],∗,//,NOT}.
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Definition 8 (Absolute/relative path expressions)

A path expression (linear as well as general) is called absolute if it starts with

a slash (/) that indicates that the document’s root is the context node. Path

expressions without a leading slash are called relative and operate on a previously

selected context node.

The subset of relative general path expressions is denoted by XP
{[],∗,//}
rel , whereas

absolute general path expressions are denoted by XP
{[],∗,//}
abs .

The same denotations are done for linear path expressions; relative respectively

absolute linear path expressions are denoted by Plrel
respectively Plabs

. 2

Please note that only relative path expressions may start with leading parent axes.

Lemma 1 Path expressions that use the descendant axis (//) as first location step

(e.g. //item) cannot be expressed directly with the grammar for Pl. But an equiva-

lent absolute path expression can be expressed with the self-axis (.) and a follow-

ing descendant axis. The example would look like /.//item. In the remainder of

this thesis we use the abbreviated syntax with the leading descendant axis. 2

Definition 9 (Function linearize)

An absolute general path expression can be linearized by function linearize :

XP
{[],∗,//}
abs → Plabs

that transforms an absolute general path expression into a lin-

ear one by removing all keys and qualifiers. 2

Example 5 An example for this function could be

linearize( /a[b]//c[d > 1] ) = /a//c

When evaluating a path expression p on an XML data t ∈ T a set of nodes is

selected in t. This is done by the function p(t).

Definition 10 (Path evaluation p(t) with t ∈ T an XML data)

p(t) :== {n ∈ t.nodes|n is selected when evaluating p on t.root} 2

Analgously we are able to evaluate p on a single node n of an XML data t.

Definition 11 (Path evaluation p(n) with n ∈ t.nodes an XML node)

p(n) :== {n′ ∈ t.nodes|n′ is selected when evaluating p on n, with n ∈ t} 2

We refer to section 2.3.3 for details on how a path expression is evaluated.

A path expression p can be applied to any XML data t ∈ T . But only for some XML

data p selects one or multiple nodes of t. The set of XML data with p selecting a

non-empty set of nodes is called the model of p Mod(p).



3.2. A MODEL FOR PATH EXPRESSIONS 51

Definition 12 (Model Mod(p))

Mod(p) ::=
{

t ∈ T | p(t) 6= ∅
}

It is obvious that Mod(p) ⊆ T .

Lemma 2 Mod(p) = ∅ or Mod(p) is infinite.

If p is not satisfiable (e.g. 1) Mod(p) = ∅. On the other hand, if we have t1 ∈ Mod(p)

we are able to create t2 by adding an arbitrary node (element) to t1. Then t2 will

also be ∈ Mod(p) because p will select the same nodes in t2 as in t1. Therefore, the

set Mod(p) is infinite (without proof). 2

An algorithm that decides whether an XML data t is ∈ Mod(p) is introduced in

section 7.2.2.

In order to process path expressions with automaton theory, in section 7.2.2 we

need access to the nodes of a path expression.

Definition 13 (Function nodes(p) : Pl → NPl
)

The function nodes(p) returns a set consisting of all node tests of the linear path

expression p. The set of all path expression nodes is denoted with NPl
. 2

Analogously to nodes in the XML model the functions

• p.root returns the root node of a linear path expression p;

• n.label with n ∈ NPl
returns the label of n;

• n.children returns the one child node of n if it exists or ∅ otherwise;

• n.descendant returns the one descendant node of n if it exists or ∅ otherwise;

Example 6 p = /a//b/ ∗ /b//a with p ∈ Pl has the following properties:

nodes(p) = {a1, a2, b1, b2, ∗1}

root(p) = a1

a1.label = a

a2.label = a

b1.label = b

b2.label = b

1p=//a[b and not(b)]
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∗1.label = ∗

a1.children = ∅

a1.descendant = b1

b1.children = ∗1

b1.descendant = ∅

b2.children = ∅

b2.descendant = a2

2

Definition 14 (Alphabet Σ(p))

The set Σ(p) consists of all labels of nodes in a linear path expression. The wild-

card symbol is not part of Σ(p).

Σ(p) ::= {n.label|n ∈ nodes(p), n.label 6= ∗}

Example 7 For p = /a//b/ ∗ /b//a with p ∈ Pl, it holds that Σ(p) = {a, b}. 2

Σ(p) is determined by a simple extraction function.

3.2.1 Regular Expressions in Formal Languages

Linear path expressions without leading parent axes can be transformed into a

regular expression of formal languages. A regular expression, often called a pat-

tern, is a string that describes a set of strings without listing them. Instead, it

defines certain syntax rules that match the string.

We create a regular expression preg from a linear path expression p ∈ Pl by a

renaming procedure as follows: each node test with a specific label remains un-

changed; a node test with a wildcard (*) is transformed into a disjunction of sym-

bols. Because the wildcard matches any element label the disjunction would

contain infinitely many symbols.

We avoid this disjunction by the symbols used in the path expression by an extra

symbol called α that is not in Σ. When evaluating the path expression on an XML

data t, α will match all elements with a label /∈ Σ(p).

The descendant axis (//) is treated in a similar way: Basically, // matches any

node below a given node without paying attention to its label. Therefore, the

descendant axis is replaced analogously by a choice of symbols ∈ Σ ∪ {α}. Addi-

tionally, with the Kleene closure it is possible to skip several elements. We denote

the Kleene closure by the symbol ∗k in order to differentiate it from the wildcard

symbol (*).
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The set of all regular expressions that can be built with the symbol alphabet

Σ and α is denoted by REGΣ,α

Example 8 The linear path expression p = /a//b/c/∗/d with Σ(p) = {a, b, c, d} leads

to the following regular path expression:

a (a|b|c|d|α)∗k b c (a|b|c|d|α) d

Definition 15 Any regular expression r ∈ REGΣ,α defines a language Lr consist-

ing of all words that match the pattern of the path expression. 2

We use regular path expressions when building finite automata in section 7.2.2.

The reverse transformation from regular expressions to linear path expressions

is not always possible: for instance, for the regular expressions a(b|c)d there is

no corresponding linear path expression because the choice (b|c) cannot be ex-

pressed. With the wildcard (*) a path expression would accept all symbols and

not only b and c. With a normal node test the choice is not expressible.

Even in full XPath 1.0 a(b|c)d cannot be expressed in a simple way. A workaround

may use a node function called name and looks like /a/∗ [name(.) =′ b′ or name(.) =′

c′]/d.

XPath 2.0 supports a choice in node tests. The corresponding path expression is

/a/(b|c)/d.

3.2.2 Tailing Predicates and Normalization

The grammar for general path expressions allows only one predicate that is al-

ways the last part of a path expression. This raises the question whether these

tailing predicates are expressive enough for realistic queries. With a small exam-

ple we show how a more general path expression with multiple predicates can be

normalized to an equivalent path expression with one tailing predicate:

e1 = //a/b[//c =′ x′]/d[/e =′ y′]/f

The XPath expression e1 returns all elements with the label f that are child of an

element d having another child e that has the value y. In addition, the element

d must be the child of an element b that is ancestor of a c with value x. Finally,

b is child of an element a that appears somewhere in the XML data. The same

semantic can be expressed with path expression e2.

e2 = //a/b/d/f [../e =′ y′ and ../..//c =′ x′]

The normalization process combines all predicates by using AND statements. The

resulting predicate (with multiple value comparisons) is moved to the end while
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adjusting the leading paths. The normalization of XPath expressions relies on the

equivalence of XPath expressions; details can be found in [81, 82, 92, 112].

XPath in general offers functions that consider the order of elements (e.g. posi-

tion(), first(), last()). Expressions containing such a function cannot be normalized

as described above because the order information would be lost. Our model for

path expressions does not reflect order functions, therefore this restriction can be

ignored.



Chapter 4

Introduction to Recent

Approaches in XML Indexing

In this section we classify and describe recent approaches indexing XML and

semistructured data. Some approaches were published before XML gained the

current importance and generally operate on semistructured data. We transferred

these approaches to XML.

The basic idea of an index for semistructured data and XML is to accelerate the

execution of path expressions, for instance XPath. The more complex XQuery

expressions benefit from an index, too, because XQuery relies on the execution of

XPath expressions for addressing the nodes of the sequences.

All indexing approaches have in common that they try to avoid the linear in-

spection of XML nodes when performing node tests or checking predicates. For

instance, when evaluating the XPath expression //item[/name=’MP3 Player’]

every element is treated as if it has the label item or not. Second, for each item

element all children are checked whether they have the label name. Third, for all

name elements the corresponding text value is compared with the given string. For

larger databases this evaluation method leads to unacceptable processing times.

Although all indexing approaches have the same goal, their methodology, the

internal data structures, and the query processing vary significantly. For this

reason we establish some criteria in order to classify and compare the related

work on XML indexing.

Some index approaches index the structure of the XML data without regarding the

value of elements or attributes. These approaches are called structural indexes or

pure-path indexes. On the other hand some indexes cover only the value of el-

ements and attributes without reflecting the leading path to these values; these

approaches are called value indexes. Advanced approaches cover both structure

and values leading to an acceleration of more general and realistic path expres-
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sions; these approaches are itemized as hybrid indexes.

The selectivity on an index states whether it always covers the whole XML data

or is tunable for specific and user-defined fragments. A non-selective index has

to be updated whenever the original data is modified. A selective index consumes

less space and can be tuned for the typical usage of the database leading to less

update operations. A relational index is selective because it is defined upon a

table and a column.

Key-queries may return an element which differs from the key-element(s) that

is/are used for the value comparison. For instance, the general path expression

//item[quantity > x1] returns item elements whereas the value used for the com-

parison belongs to a quantity element. The majority of index approaches can

only return the indexed key-element leading to additional expenses for navigation

if the return element is different. For large paths between key and the return

value this may add significant costs for the query processor. Some approaches

like KeyX and the Refined Path from the Index Fabric are able to directly return

the requested element without further navigation in the XML data.

In order to explain and illustrate the different indexing approaches in a quickly

understandable manner we use some XML data taken from the XMark project

and generate a specific index for each approach to be evaluated. The sample data

consists of two items, one located in Asia and two in Europe. The items have

different child elements describing the properties of the item. Additionally, the

sample data contains two persons with their addresses. The textual representa-

tion of the sample data is presented in figure 4.1.

1 <s i te>

2 <regions>

3 <asia>

4 <item id=” item1”>

5 <location>Singapur</location>

6 <quantity>2</quantity>

7 <name>512 MB USB Stick</name>

8 <payment>Money order</payment>

9 <payment>Cash</payment>

10 </item>

11 </asia>

12 <europe>

13 <item id=” item3”>

14 <location>Hamburg</location>

15 <quantity>1</quantity>

16 <name>Beuys Sculpture </name>

17 </item>

18 <item id=” item4”>

19 <location>Paris</location>

20 <quantity>2</quantity>

21 <name>Louvre Tickets</name>

22 <payment>Cash</payment>

23 </item>

24 </europe>

25 </regions>
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26 <people>

27 <person id=”person0”>

28 <name>Huei Demke</name>

29 <address>

30 <street>95 Grinter St</street>

31 <city>Luebeck</city>

32 <country>Germany</country>

33 </address>

34 </person>

35 <person id=”person1”>

36 <name>Daishiro Juric</name>

37 <address>

38 <street>5 Pinet St</street>

39 <city>Athens</city>

40 <country>Greece</country>

41 </address>

42 </person>

43 </people>

44 </si te>

Figure 4.1: XMark fragment to illustrate the indexing approaches

The corresponding DOM tree is presented in figure 4.2 showing each element and

attribute as a node with an individual ID. The text values are ommitted for space

reasons.

Figure 4.2: XML sample data represented as a DOM-tree

In this section we introduce and compare recent approaches for indexing XML

data.
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Approaches that use an underlying relational DBMS to store and index XML (e.g.

[10]) have in common that they can reuse existing and performant implementa-

tions of the relational world. However, XML queries have to be mapped to SQL

queries leading to many expensive join operations if a multi-key query is exe-

cuted. The problems of rewriting XML to SQL are discussed in [67]. Therefore, we

concentrate on new indexing approaches for the native storage of XML. The fol-

lowing survey of related work begins with techniques which accelerate structural

queries, proceeds with concepts dealing with value queries and ends with hybrid

approaches that support queries containing structural and value conditions.

4.1 Structural Indexes

Structural indexes reflect the structure of the XML data with its element labels.

The values of the elements are not kept in the index structure. Therefore, only

pure path expressions are supported.

4.1.1 The Strong DataGuide

One common approach to index the structure of semistructured data are so-

called Structural summaries that summarize nodes of the original XML data to

extents. One early approach is the Strong DataGuide from the LORE project

[37, 76, 77] providing a general index structure to accelerate structural path ex-

pressions starting at the document’s root. The DataGuide itself is a tree struc-

ture. Elements in the XML data that are reached by the same path expression

are summarized in one node of the Strong DataGuide. This node is called extent.

The parent-child relationship of nodes in the XML data is reflected in the Strong

DataGuide.

Formally, the creation of extents relies on a symmetric binary relation which is

called bisimulation; symbolized by ≈. The bisimulation holds for two nodes u ≈ v

in the XML data if and only if u and v have the same label and secondly, if paru is

the parent node of u and parv is the parent node of v, then paru ≈ parv. Two nodes

are called bisimilar if the bisimulation relation holds.

An extent of the Strong DataGuide collects all nodes that are bisimilar. Bisimilar-

ity in that context implies , that the nodes in one extent cannot be distinguished

by absolute linear path expressions without the descendant axis (//) and the

wildcard node test (*).

Figure 4.3 shows the Strong DataGuide for the given XML sample.

Referring the example, the name elements of all persons are stored together in one

extent because they are selected by the linear path expression

/site/people/person/name.
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Figure 4.3: The Strong DataGuide

This path expression can now be executed by navigating in the Strong DataGuide

to the relevant extent. In contrast to an XML document / DOM-tree where one

element may have several children with the same name, an extent in the Strong

DataGuide may have only one outgoing edge per label. Therefore, the evaluation

of path expressions is done significantly faster, because each child axis leads to

an extent containing references to many elements in the XML data.

For path expressions with the child axis only, the time to find the corresponding

extent is linear to the size of the query. Path expressions containing the de-

scendant axis or a node test with a wildcard lead to full evaluation of the Strong

Dataguide because the results of this query may be distributed over multiple ex-

tents. For instance, the expression //name requires all extents of the DataGuide

to be checked if their label conforms to name. Those path expressions cannot be

executed efficiently with a Strong DataGuide.

The creation of a DataGuide can be compared to the transformation of a nonde-

terministic finite state machine to a deterministic one by the fusion of equivalent

states.

For XML data with references between nodes the underlying structure can be in-

terpreted as a graph and no more as a tree. For this data the Strong DataGuide

can become larger than the original data leading to higher storage costs.

We compare the performance of the Strong DataGuide by measurements for sev-

eral queries of different types in [42].
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4.1.2 1-Index

For tree-like XML data containing no references between nodes the 1-Index[83] is

equivalent to the Strong DataGuide. If references are contained in the XML data

or if we face general semistructured data the Strong DataGuide may lead to a re-

dundant storage of nodes that are reachable by several paths due to the existence

of references.

This problem is faced by the 1-Index which summarizes these nodes in a com-

mon extent. Because the XMark data contains no explicit references we have to

illustrate the differences between the Strong DataGuide and the 1-Index by some

other data presented in figure 4.4. The figure is taken from [83].

Figure 4.4: The XML data (a), its 1-index (b) and its Strong DataGuide (c)

The sample data does not distinguish between parent-child relationships and ref-

erences. The node with the id 7 in the XML data is reached by the path expres-

sions /t/a and /t/b from the root node. Because these two path expressions

are different the Strong DataGuide puts the node 7 in two separate extents. In

particular, the Strong DataGuide for the whole XML data contains more nodes

than the original data.

The 1-Index removes duplicates by combining these different extents into one

with multiple ingoing edges. Therefore, a 1-Index is not always a tree-structure,

it becomes a graph itself. When processing a path expression on a 1-Index it may

happen that multiple extents are selected and must be unified in a further step.

An example may be the path expressions /t/a.

Both the 1-Index and the Strong DataGuides are designed for absolute path ex-

pressions starting at the document’s root. Relative path expressions or path ex-

pressions starting with the descendant axis (//) lead to an evaluation of the full

data structure which eliminates most performance advantages of the index.

4.1.3 2-Index

The 2-Index [83] supports absolute and relative path expressions between nodes

that are connected by parent-child relationships. The 2-Index is also based on

extents that contain nodes that are reachable by similar path expressions.

For two nodes u and v we define a set of paths as follows:
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L(u,v) = {w|w is a path from u to v}

Two pairs of nodes are defined as equivalent (u, v) ≡ (u′, v′) if L(u,v) = L(u′,v′) mean-

ing that both node pairs share the same connecting path. In contrast to the

1-Index and the Strong DataGuide this path must not begin at the root node.

Therefore, the 2-Index can be applied on relative path expressions starting at an

arbitrary node in the data. Figure 4.5 shows the 2-Index for the sample XMark

data omitting the branch with the items for space reasons.

Figure 4.5: The 2-Index for the sample data.

All nodes of the data are in the root extent so that absolute as well as relative

path expressions start at the root of the 2-Index. As one can see the 2-Index may

become larger than the original data leading to higher storage costs. In the worst

case the memory consumption is quadratic in the size of the original data.

The 1-Index, 2-Index, and the Strong DataGuides differ significantly from in-

dexes in RDBMS: Instead of accelerating specific queries very efficiently they try

to improve the evaluation of path expressions in general. In contrast to indexes

in RDBMS where indexes are selected by the database administrator, these struc-

tural summaries are permanently enabled and thus not selective.

For XML data that is often modified (for instance the bidding price of an auc-

tion changes several times during the auction’s lifetime) a structural summary

must be updated whenever a structural modification takes place. This may lead
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to significant performance loss limiting the profit of the index. One solution can

be selective indexing approaches that index only relevant parts of the XML data

and ignore parts that are frequently updated. Of course, such an approach does

not cover all queries with the same performance. In the following, we introduce

selective structural summaries.

4.1.4 T-Index

The T-Index [83] is a generalization and specialization of the 1-Index and the 2-

Index. It is a generalization because the 1-Index and the 2-Index are special cases

of the T-Index. This means, that every 1-Index and 2-Index is a T-Index, too. On

the other hand, the T-Index is a specialization because it is tailored to answer

specific queries whereas the 1-Index and the 2-Index can be used to process any

path expressions.

The main idea of the T-Index is to establish a structural summary that only cov-

ers path expressions fulfilling one specific template. The template describes the

structure of the path expressions by node tests and placeholders. If the index-

ing system shall support multiple path expressions with different structures that

cannot be summarized with one common template, we need several T-Indexes,

one for each template.

A T-Index, in general, supports path expressions with a template

T0x0T1x1...Tkxk.

For each 0 ≤ i ≤ k Ti is either a node test or a linear path expression ∈ Pl of

arbitrary length symbolized by P. P is equivalent to the descendant axis (//) in

the XPath syntax. The variables x0...xk represent nodes in the data.

For instance, the template /site/people x0 person x1 selects all person nodes

that are reached by the path /site/people/person. These nodes are bound to

the variable x1.

The template /site/people/person x0 P x1 selects all nodes that are located

under the nodes selected by /site/people/person and bound to x0.

Because P can be an arbitrary path expression consisting of multiple location

steps all descendants are selected. The corresponding path expression in XPath

syntax is /site/people/person//* with // being the descendant axis.

We omit some more technical details from the T-Indexes that are less relevant

for understanding how T-Indexes work, such as additional nodes needed to sepa-

rate the path expressions. These details can be found in [83]. The T-Index shown

in figure 4.6 is based on the example template from above. There is a single edge

So representing the linear path expression /site/people/person, so that the

node variable x0 is bound to the nodes with the ids 22 and 28. Below these two
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nodes all possible paths are located in a way similar to the 1-Index or 2-Index.

Figure 4.3 shows the Strong DataGuide for the given XML sample.

Figure 4.6: A T-Index for the sample data

Like the Strong DataGuide the T-Index is traversed top-down when evaluating

the query. Because of the non-deterministic structure backtracking may be re-

quired. When evaluating a path expression p it must first be checked if p fulfills

the template. If not, the T-Index cannot be used. Having more than one T-Index

the appropriate one must be determined. This relies on the query rewriting prob-

lem. Intuitively, a query with a prefix matching a template can be rewritten, so

that the first part (the prefix) can be evaluated by a T-Index. The remainder must

be looked up in the original XML data (or another index if available and suitable).

The work [83] does not discuss the updatability of T-Indexes in detail. Because

the T-Index does not pay attention to values in the XML data, only structural

changes must be reflected by the T-Index. There seems to be no incremental up-

date possibility but just the approach of marking some parts of the T-Index as

out-dated. After a multitude of some changes a complete reconstruction of the

index is required in order not to mark the whole index as out-dated.

4.1.5 Apex

The problem of large structural summaries designed to support all queries moti-

vates the Adaptive Path Index (APEX) [19] which has three goals: First and analog

to the T-Index, frequently occurring queries should be accelerated more than gen-

eral queries. Secondly, path expressions starting with the descendant axis (//)

that lead to a full evaluation of most structural summaries should be supported

in an effective manner. Third and different to the T-Index, APEX can be updated

incrementally according to the changes of query workloads.
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Apex was introduced by Chung et al. and consists of two structures, a graph

GAPEX with the structural summary storing references to elements, and a tree

of hashtables HAPEX representing the incoming path to nodes of GAPEX . Each

node of GAPEX corresponds to one extent of nodes of the XML data. HAPEX is a

specific index optimized for frequent queries that must be selected before building

the index. The selection may be made by a database administrator who knows or

estimates the typical usage of the database.

Because it is difficult or even impossible to build an index that is efficient for all

possible path expressions, APEX tries to change its structure according to the

frequently used path expression. In order to determine frequently used path ex-

pressions it is assumed that they are kept by the database system.

The order of the hashtables is inverse to the order of nodes in a DataGuide. This

means that a query is evaluated from the tail to the head. This is the reason why

APEX can easily support descendant queries. The APEX index for the sample data

is illustrated in figure 4.7.

In this picture each extent of GAPEX is identified by an id; for instance, &12

references to the extent containing all nodes selected by the path expression

/site/people/person/name. The hash structure HAPEX in this example is op-

timized for the three path expressions //name, //item/name and /site/people

/person/name. Because path expressions are evaluated in reverse order the

APEX query processor starts with the last node test of the path expressions.

Path expressions of length one with a leading descendant operator are supported

very efficiently: For instance, //payment is looked up in the first hashtable

that references immediately to the extent &9. Path expressions with a length

greater than one are also supported efficiently if they are assigned to be fre-

quent and therefore organized in the hashtables’ structure. For the frequent

path expression //item/name the last node test name is looked up in the first

hashtable that references to a second hashtable, because more than one ex-

tent is affected. For the path expression //item/name we now have to look for

the item entry that references to the extent &5. If the frequent path expres-

sion /site/people/person/name is executed we have to follow the person entry

that references to a third hashtable. The extent of the frequent path expression

//name (&17) is stored as remainder in the second hashtable because no other

element has an outgoing path to the name element.

The publication [19] does not explain whether and how APEX supports queries

containing node tests with a wildcard (*). In general, a wildcard implies that all

children of one extent must be processed leading to performance degradation.

For instance, the path expression /site/regions/*/item querying all items in-

dependently from their continent cannot be supported by the hashtable approach.

We compare the performance of the APEX by measurements for several queries of

different types in [42].
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Figure 4.7: The adaptive path index (APEX) for the sample data.

4.1.6 Numbering Schemes and Tree Signatures

Numbering schemes (e.g. [38],[57]) map each element of the XML data to one or

more numbers that are mostly determined by post/preorder XML-tree traversing

algorithms. The numbers are used for a faster retrieval of relationships between

elements. The work [62] proposes a numbering schema that is optimized for up-

dates leading to less number recalculation when the XML data is modified. In

general, numbering schemes are not selective and do not cover key-queries. On

the other hand, they are comparable to a structural summary because the struc-

ture is implicitly expressed in the numbers.
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Approaches that use tree signatures to process XML queries (e.g. [135]) can be

compared to the numbering schemes with the difference that the function cre-

ation signatures from XML data is not bijective. Therefore, signatures may lead

to wrong hits that have to be filtered in a further step.

4.1.7 Further Structural Summaries

Structural summaries are the main data structure in further works, including

the Forward-and-Backward-Index [2], the D(K)-Index [17], Covering Indexes [58],

and HOPI [103], a so-called connection index . HOPI is tailored for queries with

long paths especially with wildcards and the XPath axes descendant and ancestor

which cannot be supported efficiently by several structural summaries.

All structural summaries have in common that they require navigation with sev-

eral steps in their internal data structure when evaluating a query. A major disad-

vantage is that structural summaries ignore the values of elements and attributes,

so that path expressions with value conditions cannot be executed efficiently.

4.2 Value Indexes

4.2.1 Inverted Lists

Some XML index approaches only index the value of elements without paying at-

tention to the full leading path. Those indexes can only support very restricted

XPath queries like //*[.=’Dan’]. Because any structural conditions are ignored

the relevance of these approaches is questionable. Nevertheless we list some

works here.

Accelerating key value queries for XML data by information retrieval techniques

is one popular proposal that reuses known implementations like Inverted Lists

or Tries. An inverted list enumerates all values appearing in the XML data in a

search structure and references the position of their appearance. The inverted

list for the XMark sample data is shown in figure 4.8.

For the reason of readability only the first 5 references into the original XML data

are drawn. In reality, each item of the inverted list has at least one reference.

An inverted list offers logarithmic time to retrieve an element if the element’s value

is known.

4.2.2 Lore Value Index

The Value Index of the Lore Database Management System [76] is a selective in-

verted list for element values. Selective means that the label of an element is

reflected and that a set of labels to be indexed can be defined by a database ad-

ministrator. For instance, the DBA assigns all name elements to be indexed by
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Figure 4.8: The inverted list for the XMark sample data.

their values. But because the path to the elements is ignored the Lore Value In-

dex cannot distinguish between elements with the same label but different paths,

e.g. the name of an item and the name of a person.

4.2.3 SEQL

A more sophisticated approach is presented by SEQL (Search Engine Query Lan-

guage) [89], managing an additional inverted list for the element labels. Never-

theless, because SEQL regards XML data as a text document and not as a tree

of nodes, it returns text positions instead of nodes, so that further navigation is

uncomfortable.

4.3 Hybrid Approaches

We think that XML indexes that support both structural queries and value queries

are the most relevant indexes because they cover most XML query capabilities.

Even a simple XPath query like //people/person[name=’Jan’] cannot be sup-

ported efficiently by the structural indexes and value indexes. Structural sum-

maries may return all //people/person nodes more or less efficiently depending

on how the descendant axis is dealt with. A value index cannot distinguish be-

tween a person’s name Jan and an item’s name Jan.

4.3.1 Structural Summary plus Inverted List

An obvious approach to support both structural and value queries is to combine

two separate data structures like a structural summary and an inverted list. This
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is done in the work of [9, 40, 59]. A query is separated into the structural part

processed by the structural summary and the value part that is executed by use

of an inverted list . Both data structures return relevant nodes that have to be

intersected at runtime to retrieve the final result set. In general, this intersection

operation may produce enormous costs for removing wrong hits.

4.3.2 Content-Aware DataGuide

The problem of the expensive intersection operation is faced in the Content-Aware

DataGuide (CADG) [115, 116] by Weigel et al. where a content/structure join

is precomputed and leads up to a 400 times faster execution compared to the

conventional DataGuide .

Weigel et al. introduce two approaches: The naive content - centric approach

where a separate DataGuide is established for each value (i.e. content). A content

- centric DataGuide is presented in figure 4.9.

Figure 4.9: A content-centric Content-Aware DataGuide.

For each element value of the sample data the content-centric Content-Aware

DataGuide contains one conventional DataGuide that refers to all nodes that con-

tain this value. Figure 4.9 contains the first DataGuides, in total there are more

than a dozen - one for each value. When processing a path expression p one has

to extract its value, take the corresponding DataGuide (if available) and check if

the path of p is evaluated to the leaf node of the DataGuide.

Beside the fact that this approach wastes a lot of space it is only suitable for single

key queries. Path expressions with more than one value comparison or a range of

values are supported less efficiently and require join-operations.

The authors that are aware of these severe disadvantages propose a second ap-

proach that is structure - centric. It takes a conventional DataGuide and enriched

extents with content information. This information is taken to prune irrelevant
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paths when processing a path expression. Two functions may be evaluated for

an extent e: The first Boolean function governs(e, v) responds if the extent or one

of its descendant contains an element with the requested value v. The second

Boolean function governs(e, v) returns only true, if e itself contains v. In the sam-

ple data only the node with the id 5 contains an element with the value Singapur,

but all nodes with ids 0 to 5 govern the value.

The authors propose two methods to capture the content in the extents: The first

approach assigns a unique id to every value in the XML data and puts it into

the extents that contain/govern this value. Because an own id for each values

increases the size of the DataGuide dramatically the second proposal uses binary

signatures of a restricted length. A non-bijective function assigns values to sig-

natures. If an extent governs or contains more than one value the corresponding

signatures are unified bitwise to a single signature that represents all values. This

process is not lossless, leads to false positives and therefore requires postprocess-

ing when evaluating a path expression.

A major issue of the CADG is its limited capability to deal with updates. When

adding/deleting a node or when changing the value of a node the corresponding

signatures/ids must be identified and recalculated respectively deleted. In gen-

eral, an update implies that all extents of the Content-Aware DataGuide must be

touched. This is a linear complexity in the size of the database.

4.3.3 ViST

With the Virtual Suffix Tree (ViST) [114] Wang et al. introduce an approach that

encodes and represents XML data and path expressions as structure-encoded

sequences. XML data is represented by the preorder sequence of its tree struc-

ture produced by a depth-first traversal of the XML data. The value of elements

and attributes and the labels of all elements are combined to one large sequence.

Therefore, ViST is comparable to a numbering schema. Since isomorphic trees

may produce different preorder sequences an order among sibling nodes is en-

forced using the lexicographic order of the labels. Multiple siblings with the same

label (e.g. the payment element in the XMark sample data) are ordered randomly.

In order to motivate the ViST approach we use the following DOM-represented

XML fragment in figure 4.10.

ViST transforms an XML data into a sequence of (symbol, prefix) pairs - the so-

called structure-encoded sequence D. The XML fragment of figure 4.10 leads to

the following structure-encoded sequence D:

1 D=

2 (<s i te> , ) ,

3 (<regions>,<s i te>) ,

4 (<asia>,<s i te><regions>) ,

5 (<item>,<s i te><regions><asia>) ,

6 (<location>,<s i te><regions><asia><item>) ,
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Figure 4.10: A fragment of the XML sample data used for ViST.

7 ( Singapur ,<s i te><regions><asia><item><location>) ,

8 (<quantity>,<s i te><regions><asia><item>) ,

9 (2 ,<s i te><regions><asia><item><quantity>) ,

10 (<name>,<s i te><regions><asia><item>) ,

11 (512 MB USB Stick ,<s i te><regions><asia><item><name>) ,

12 (<payment>,<s i te><regions><asia><item>) ,

13 (Money Order ,<s i te><regions><asia><item><payment>) ,

14 (<people>,<s i te>) ,

15 (<person>,<s i te><people>)

16 (<name>,<s i te><people><person>) ,

17 ( Huei Demke,<s i te><people><person><name>) ,

18 (<address>,<s i te><people><person>) ,

19 (<street>,<s i te><people><person><address>) ,

20 (95 Grinter St ,<s i te><people><person><address><street>) ,

21 (<city>,<s i te><people><person><address>) ,

22 ( Luebeck ,<s i te><people><person><address><city>) ,

23 (<country>,<s i te><people><person><address>)

24 (Germany,<s i te><people><person><address><country>)

Figure 4.11: The structure-encoded sequence of the XML fragment.

A path expression is transformed analogously into a sequence. For instance,

the query /site/people/person[name=’Huei Demke’] is tranformed into the

following query sequence.

1 (<s i te> , ) ,

2 (<people>,<s i te>) ,

3 (<person>,<s i te><people>) ,

4 (<name>,<s i te><people><person>) ,

5 ( Huei Demke,<s i te><people><person><name>)

The purpose of introducing structure-encoded sequences is to model XML queries

through sequence matching to the structure-encoded sequence D: Querying XML
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becomes equivalent to finding subsequence matches. The wildcard operator *

matches any single symbol and the descendant axis // with any portion of the

path in D. Through sequence matching, the query is matched as a whole against

the XML data without splitting it up into sub-queries of paths that must be joined.

Without any further data structures the subsequence matching requires the whole

structure-encoded sequence D to be processed when evaluating a query. This

would raise time costs linear to the size of the database. Therefore, ViST provides

a unified index on structure and content that captures the ancestor-descendant

relationship of XML nodes. The index’s data structure is a B+tree , so that ex-

isting implementations of disk-resident search structures may be reused. Range

queries on the index structure are performed for the fast retrieval of child nodes.

Afterwards the returned nodes are taken for matching the remaining part of the

query. In general, the evaluation of a path expression with ViST requires a multi-

tude of range queries performed by the index.

ViST is not selective, meaning that the whole XML data is indexed and consulted

for the sequence matching of queries - this may lead to performance degradation

if the XML data or parts of it are often modified. For structural modifications

the preorder of subsequences in the sequences may rise additional maintenance

costs: ViST faces similar problems as the numbering schemes: If the structure

of the document changes, for instance by adding a new item, all elements af-

ter this new node need to be reorganized as their preorder position may have

changed. Queries containing a wildcard(*) or the descendant axis (//) are sup-

ported but with less performance, as a lot more sequence matching has to be

done. In addition, the sequence matching algorithm has a higher complexity than

the logarithmic key retrieval operation of KeyX.

4.3.4 Index Fabric

The Index Fabric [22] is an indexing approach that generates keys by the con-

catenation of the values of elements and attributes and the elements labels of the

leading paths. For instance, ’siteregionseuropeitemnameLouvre Ticket’ is

the key that references the name element of the third item in the XMark sample

data. So-called designators are applied to shorten the length of the keys. A desig-

nator is a symbol representing a step of the path. The designators’ symbols may

not be a character of the XML data in order to prevent ambiguities. The above

example can be shortened by the use of designators to ’αβγδǫLouvre Ticket’

with α denoting ’site’ and so on.

The keys for all leaf nodes with values of the XML data are stored in a balanced

tree structure offering logarithmic key retrieval time. This index structure is called

the Raw Path index. The data structure is a Patricia Trie[85]. In contrast to search

trees, like a red-black-tree or a B-tree, the Patricia Trie does not store the full key



72 CHAPTER 4. INTRODUCTION TO RECENT APPROACHES IN XML INDEXING

but skips prefixes that are identical. By performance measurements[75] we have

shown that for representative XML data the Patricia Trie does not perform better

than other search trees like the Java TreeMap, for example. This may be due to

the reason that the designators remove already the redundant part of the keys.

This Raw Path is tailored to answer single-key queries starting from the document

root and contain one value comparison at the end of the queries’ path expression.

Structural queries (with no value comparison) or queries containing a wildcard

(*) or the descendant axis (//) cannot be supported. The Raw Path index is not

selective, this means that it indexes all leaf nodes with a value.

The Raw Path requires additional navigation if the indexed element is not the re-

quested one. For example, if we are interested in the author of a book with a given

title, the index returns the title element. From this element we have to navigate

in the original XML data to the author element(s).

The second approach of the Index Fabrics is the so-called Refined Path index

which is selective to specific queries. The path expressions to be supported by the

Refined Path index have to be manually preselected by the database administra-

tor. Each Refined Path is represented by a designator and may include multiple

keys .

For instance, it is possible to index a person by its name and city values. This

refined path would cover queries of the type

/site/people/person[name =x1 and address/city=x2].

A special designator symbol is assigned to this refined path, let’s say ξ. The keys

for the XMark data would be ’ξHuei DemkeLuebeck’ and ’ξDaishiroJuricAthens’

referencing the nodes with the id 22, respectively 28. These keys are stored in the

same Patricia Trie used for the Raw Path index keys. The Index Fabric with all

Raw Paths and the one described Refined Path is illustrated in figure 4.12.

The designator dictionary (a) keeps the abbreviations of all label names. All keys

of the Raw Path are stored in a Patricia Trie. We list all keys and their refer-

ences to nodes of the XML data in b). For the reason of readability only not all

references are drawn. The Refined Path leads to the last two entries of b) and

references non-leaf nodes of the XML data.

Range queries are supported by the Index Fabric - but only for single key indexes.

Before a range query can be executed all strings in the Patricia Trie represent-

ing numeric values have to be normalized to the same length. For example ’2’ is

normalized to ’002’. This has to be done because the trie is ordered lexicograph-

ically (’2’ is greater than ’10’ whereas ’002’ is smaller than ’010’. The Refined Path

supports multi-key indexes and avoids the navigation from an indexed key value

to the return value. As described in [22] range queries cannot be executed upon

multi-key indexes as all keys are concatenated to one atomic artificial key. In the

above example it is not possible to separate a person’s name from its city. Queries
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Figure 4.12: The Index Fabrics for the XMark sample data

with a wildcard may be supported by the Index Fabric Refined Path if the wildcard

is part of the path expressions that defines it.

We compare the performance of the Index Fabric’s Raw Path and Refined Path

by measurements for several queries of different types in [42].

4.3.5 System RX Index

The hybrid XML database management system System RX [11] also provides an

index for queries containing both structural and value conditions. As in KeyX, the

Index Fabric indexes nodes that are selected by an (X)path expression. The index

is implemented with two B+Trees. The path index maps each distinct reverse path

(revPath) to a generated path identifier (pathId). A reverse path (revPath) is a list

of node labels from leaf to root - compressed into a vector of label identifiers. To

make an analogy with relational systems, the path index is like a dynamic ver-

sion of the COLUMNS catalog that slowly changes as documents are inserted. The

paths are stored from leaf to root for efficient processing of descendant queries

such as //name which only bind the tail of the path. This approach is similar to

the inverse order of hashtables in APEX.

The value index consists of the keys storing the pathId, the value and a nodeId.
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The nodeId identifies a node within the document and can provide quick access

to a node. The order of the keys in the value index is again a trade-off. Placing

the pathId first allows for quick retrieval of specific path queries. For example,

if we create an index on //name, which might match many paths, then a query

on /book/author/name still has consecutive index entries. The path index plus

placing the pathId first in the value index gives us some structural index support

as well. But the tradeoff is that a query like //name=’Maggie’ will need to examine

every location in the index per matching path.

The paper [11] introduces System RX in general, but is not providing enough in-

sight into the indexing aspect. Therefore, the description of System RX’s indexing

approach in this thesis must be somewhat superficial.

4.4 XML Indexes and Updates

An index is a data structure that reflects parts or the total indexed data. There-

fore, an index a is highly dependent on the original indexed data b. Whenever b

is modified the modification has to be performed on a, too in order to guarantee

consistency. If there is a difference between a and b the results of queries per-

formed on the index and on the original data are not the same. If an index is

created once an and the indexed data is never modified in lifetime of the database

this problem is not raised - but this is an unrealistic assumption.

In the context of XML databases we face two problems: first, for indexes that are

selective and cover only parts of the indexed data (e.g. Index Fabric, T-Index) it

has to be checked whether the index is affected by a modification or not. Chap-

ter 7 is dedicated to this topic and presents an algorithm that decides this problem

for given path expressions. Non-selective indexes like the structural summaries

are affected by every modification. Therefore, the problem of checking the affec-

tion is not relevant for these approaches. Non-selective approaches raise huge

maintenance costs if they are used in a database application that has many up-

dates. For instance, in an auction scenario it is likely that the price of an item

changes very often. A selective indexing approach can be tuned not to index the

price elements whereas the non-selective structural summaries raises many up-

dates.

Whenever an index is affected its underlying data structure must be updated.

This is a technical problem that is highly dependent on the data structure of the

index. For structural summaries, like the Strong DataGuide and the 1/2-Index

it is required to find the affected extents and their content. For updates with a

pure navigational path expression (e.g. delete all books) it is relatively easy to find

the corresponding extent and to process it as a whole (e.g. delete it). For updates

that contain a value condition (e.g. delete all books written before 1999) the full

content of the affected extents have to be checked. Because the structural sum-

maries usually store no value information this may raise exhaustive costs, if all

references in the extents have to be dereferenced to XML elements, retrieved from
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the database and checked if they fulfill the condition. A path expression with a

wildcard or a descendant axis makes the problem even worse because multiple

extents may be affected. All in one, indexing approaches that are not selective

and that have no value information seem to be unsuitable for applications that

have frequent value-centric updates. Unfortunately, the mentioned publications

do not address this problem in particular.

4.5 Conclusion

The multitude of approaches that we introduced in this section raises the ques-

tion why we need another XML index structure like KeyX. First, we think that

only approaches that support both structure and content are relevant for real-

world applications (e.g. find a customer by its customer number). Second and

analogously to RDBMS, a broad support of query types including queries with

multiple keys and ranges is not less important (e.g. find all customers with a ZIP

between 23000 and 23999 who ordered items for more than e100). All introduced

approaches lack more or less in one or more characteristics.

We collect the characteristics of the surveyed index approaches in table 1.

Sel PPQ SKQ RQ DQ WQ MKQ K 6=V Nav
Strong Data Guide (Lore) ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
1-Index ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
2-Index ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
T-Index ⊕ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
APEX ⊕ ⊕ ⊖ ⊖ ⊕ ⊕ ⊖ ⊖ O(n)
Numbering Schemes ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
Tree Signature ⊖ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ O(n)
Value Index (Lore) 2 ⊖ 1 1 1 ⊕ ⊖ ⊖ −
SEQL ⊖ ⊖ ⊕ ⊕ ⊕ ⊖ ⊖ ⊖ −
CADG ⊖ ⊕ ⊕ ⊖ ⊕ ⊕ ⊖ ⊖ −
ViST ⊖ ⊕ ⊕ ⊕ ⊕ ⊕ ? ⊖ −
Raw Paths (Index Fabric) ⊖ ⊕ ⊕ ⊖ ⊖ ⊖ ⊖ ⊖ −
Refined Paths (Index Fabric) ⊕ ⊕ ⊕ 3 ⊕ ⊖ ⊕ ⊕ −
System RX ⊕ ? ⊖ ? ⊕ ? ? ? −
KeyX ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ −

⊕: feature supported,
⊖: feature not or not efficiently supported,
?: not clarified in publication
Sel: index is selective and optimizes frequent queries
PPQ: pure path query (e.g. /dblp/inproceedings/author)
SKQ: single-key query (e.g. /dblp/book/author[.=’Suciu’])
MKQ: multi-key query (e.g. /dblp/book[author=’Suciu’ AND year=2004])
RQ: range query (e.g. /dblp/article/year[.<2004])
DQ: descendant query (e.g. //title)
WQ: wildcard query (e.g. /dblp/*/title)
K 6=V: return value does not have to be the key value (reduces navigation)
Nav: navigation complexity in index structure (n is length of query, m the number of indexed nodes)

Table 4.1: Comparison of different XML index approaches

1Provided if the path has exactly one step.
2Provided, but elements with same name but different paths are not distinguishable.
3Range queries are supported as single-key queries, but not as multi-key query.
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Chapter 5

The Key-Oriented XML Index

KeyX

In this chapter we introduce a new approach for indexing XML data formally and

by examples. Our approach - called KeyX - is motivated by the selective index

structures used within the relational world. Relational indexes are defined upon

a specific table and one (or multiple) columns. Only queries that operate on these

columns can be accelerated with this index. Therefore, a relational index is selec-

tive to specific queries.

Like relational indexes, KeyX is based on keys - the values of elements and at-

tributes which are accessed by a specific path expression. The path expression

can be part of an XQuery or XUpdate operation.

For a set of frequent queries1 the relevant keys are extracted from the original

XML data and stored in a search structure optimized for efficient key retrieval.

Those search structures include hashtables, tries, binary search trees, B+Trees

for disk resident indexes, or any other data structure that is capable of storing

and retrieving keys.

An index is defined by the ’shape’ of the path expression to be optimized. Af-

ter materializing the index, further queries with a matching shape are processed

by the index - with logarithmic instead of linear complexity. For real databases

with a size of several megabytes a set of suitable indexes implies an acceleration

factor of many magnitudes.

KeyX can also be used to accelerate specific navigational queries. In contrast to

structural summaries like Strong DataGuides and APEX our indexing approach

is defined for a set of frequent navigational queries1. A selective structure index

consumes less space and can be tuned for update issues.

In the following we introduce KeyX formally and by examples. We prove the qual-

ity of this approach by performance measurements.

1Frequent queries can be defined by a database administrator or by tools that analyze the work-
load of the database.
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5.1 KeyX Formally

An index in KeyX consists of a declaration describing the shape of the covered

path expressions and the index’s content which depends on the XML data to be

indexed. An index declaration is used to create an index and is derived from a

general path expression p ∈ XP {[],∗,//} to be optimized.

5.1.1 Index Declaration

Definition 16 Formally, an Index Declaration d for a general path expression

p ∈ XP {[],∗,//} is defined as a triple i = (K,Q, v) where K is a list of n linear path

expressions referring to the n keys of p:

K = (k1, k2, ..., kn), with k1, ..., kn ∈ Pl.

Analogously, Q is a list of m linear path expressions referring to the m qualifiers

of p:

Q = (q1, q2, ..., qm), with q1, ..., qm ∈ Pl.

Finally, v ∈ Pl is a linear path expression referring to the return value of p.

We can regard an index declaration as a mathematical function I : (k, q) → v

with (k, q) the domain and v the range. The set of all index declarations is denoted

by D. 2

Informally, one can say that an index declaration consists of the information

about the paths to its keys, qualifiers, and return value. The qualifiers are a

structural property that must be fulfilled by all indexed nodes.

In contrast to the content of an index, its declaration d is independent of the

concrete XML data.

Example 9 The general path expression p1 ∈ XP {[],∗,//} with

p1 = /publications/book[isbn][author = x1 and year = x2]

returns all book elements that have an author child and a year child with given

values and a child isbn. Because isbn is a qualifier its value is not relevant.

Based on p1 we determine

K = {/publication/book/author, /publication/book/year}

Q = {/publication/book/isbn}

v = /publication/book

by the use of path extraction functions defined in the following. 2
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5.1.2 Path Extraction Functions

The linear path expressions to the keys, the predicates, and the return value are

extracted from a path expression p ∈ XP {[],∗,//} that defines the index declaration

d. We use three functions to extract the key paths, the qualifier paths and the

value path.

Definition 17 (Value Node Path)

The function value : XP
{[],∗,//}
rel → Pl extracts a linear path expression to the value

nodes of a general path expression and is defined as follows:

value(p1 α p2) = value(p1) α value(p2) (5.1)

value(p[q]) = value(p) (5.2)

value(s) = s (5.3)

with p, p1, p2 ∈ XP
{[],∗,//}
rel , s ∈ Pl and α ∈ {/, //, ..} denoting the axis. 2

Line 5.1 separates the location steps of the path expression. Line 5.2 removes all

predicates. The remaining path expressions are linearized so that possible parent

axes are removed.

The extension of XP
{[],∗,//}
rel to absolute path expressions XP

{[],∗,//}
abs is given by:

value(/p) = /value(p)

Example 10 The value node path of

p1 = /publications/book[isbn][author = x1 and year = x2]

is extracted as follows:

value(p1) = value(/publication/book[isbn][author = x1 and year = x2])

= /value(publication/book[isbn][author = x1 and year = x2])

= /value(publication)/value(book[isbn][author = x1 and year = x2])

= /publication/value(book)

= /publication/book 2

In a similar manner a function can extract the key node paths of a given path ex-

pression. Because we can have multiple key values given in the path expression,

the operation returns a set of linear path expressions.



80 CHAPTER 5. THE KEY-ORIENTED XML INDEX KEYX

Definition 18 (Key Node Path)

The function key : XP
{[],∗,//}
rel → P(Pl)

1 extracts a set of absolute linear path ex-

pressions to the key nodes of a path expression and is defined as follows:

key(p1 α p2) = key(p1) ∪ {value(p1) α x |x ∈ key(p2)} (5.4)

key(p[q]) = key(p) ∪ {value(p)/x | x ∈ key(q)} (5.5)

key(q1 and q2) = key(q1) ∪ key(q2) (5.6)

key(q1 or q2) = key(q1) ∪ key(q2) (5.7)

key(not q) = key(q) (5.8)

key(s r l) = value(s) (5.9)

key(s) = ∅ (5.10)

with p, p1, p2 ∈ XP
{[],∗,//}
rel , s ∈ Pl and α ∈ {/, //, ..} denoting the axis; r is the operator

used to compare the value of an element with r ∈ {=, 6=, <,>,≤,≥}; l is the literal

used for the comparison. See also section 6. 2

The extension of XP
{[],∗,//}
rel to absolute path expressions XP

{[],∗,//}
abs is given by:

key(/p) = {/x|x ∈ key(p)}

Example 11 The key node path of /publications/book[isbn][author = x1 and year =

x2] is extracted as follows:

key(p) = key(/publication/book[isbn][author = x1 and year = x2])

= /key(publication/book[isbn][author = x1 and year = x2])

= /key(publication) ∪

{ value(publication /x | x ∈ key(book[isbn][author = x1 and year = x2]) }

= /

(

∅ ∪ {publication/x| x ∈ key(book[isbn][author = x1 and year = x2]) }

)

= /

(

publication/x | x ∈
{

key(book[isbn]) ∪

{value(book[isbn]/x | x ∈ key(author = x1 and year = x2))}
}

)

= /

(

publication/x | x ∈
{

key(book) ∪ {value(book)/x|x ∈ key(isbn)} ∪

{value(book[isbn]/x | x ∈ key(author = x1 and year = x2))}
}

)

1
P denotes the power set
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= /

(

publication/x | x ∈
{

∅ ∪
{

book/x|x ∈ ∅} ∪

{value(book[isbn]/x | x ∈ {key(author = x1) ∪ key(year = x2)}
}

}

)

= /

(

publication/x | x ∈
{

∅ ∪

{

value(book[isbn]/x | x ∈ {value(author) ∪ value(year)}
}

}

)

= /
(

publication/x | x ∈ {value(book[isbn]/x | x ∈ {author, year}
)

= /
(

publication/x | x ∈ {value(book[isbn]/author), value(book[isbn]/year)}
)

= /
(

publication/x | x ∈ {book/author, book/year}
)

= /publication/book/author, /publication/book/year 2

The function to extract the qualifier set Q is almost the same. The only difference

is in the rules 5.9 and 5.10 discriminating the linear path expressions of qualifiers

from the value comparisons of the keys.

Definition 19 (Qualifier Node Path)

The function qualifier : XP
{[],∗,//}
rel → P(Pl) extracts a set of absolute linear path

expressions to the qualifier nodes of a path expression and is defined as follows:

qualifier(p1 α p2) = qualifier(p1) ∪ {value(p1) α x |x ∈ qualifier(p2)}(5.11)

qualifier(p[q]) = qualifier(p) ∪ {value(p)/x | x ∈ qualifier(q)} (5.12)

qualifier(q1 and q2) = qualifier(q1) ∪ qualifier(q2) (5.13)

qualifier(q1 or q2) = qualifier(q1) ∪ qualifier(q2) (5.14)

qualifier(not q) = qualifier(q) (5.15)

qualifier(s r l) = ∅ (5.16)

qualifier(s) = linearize(value(s)). (5.17)

with p, p1, p2 ∈ XP
{[],∗,//}
rel , s ∈ Pl and α ∈ {/, //, ..} denoting the axis; r is the operator

used to compare the value of an element with r ∈ {=, 6=, <,>,≤,≥}; l is the literal

used for the comparison. 2

The qualifiers are determined in a similar manner as the keys. The qualifier node

paths of /publications/book[isbn][author = x1 and year = x2] are

{/publication/book/isbn}
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5.1.3 KeyX Search Structure

KeyX stores key-value tuples in a data structure s that is optimized for fast key

retrieval. The values are references to nodes (elements) in the XML data. In gen-

eral, any data structure that offers efficient key retrieval (e.g. B-Trees, B+Trees,

binary search trees, or tries and hashtables) can be applied.

If a KeyX index contains multiple keys (e.g. it indexes books by an author and

year) the search structure is nested like in relational indexes. The reader is re-

ferred to [13] for an overview of query optimization in relational systems. Nesting

means that keys are arranged in different layers. Keys of one layer (e.g. the au-

thors) point to relevant keys in the subjacent layer (e.g. the years). This approach

is adopted from search trees within the relational world and does not combine

multiple keys and paths to one artificial key like the Index Fabric does. That is

the reason why KeyX supports range queries easily.

For memory-resident indexes we use a Red-Black tree guaranteeing an average

log(n) time for key retrieval. Disk-resident indexes may rely on search structures

that have proven their efficiency within the relational world. Examples include

B-Trees or B*-Trees loading multiple tuples at once in order to limit the number

of hard disk accesses.

Because KeyX abstracts from the underlying search structure it is possible to use

the one that performs optimal for a given application. This includes the very spe-

cial search trees like the Patricia Trie, for instance. As one can see, KeyX is not a

new data structure but an index approach that may reuse existing implementa-

tions. By performance measurements [42, 75] we have shown that standard data

structures like the binary search tree (implemented in the Java TreeMap) is not

outperformed by more special data structures like the Patricia Trie when applied

in the indexing context.

For the performance measurements in this paper we used memory-resident in-

dexes in order to minimize the influence of the hard disk and the operating sys-

tem.

5.2 Index Creation Algorithm

The creation procedure of a single-key index is based on a given path expression

p ∈ XP
{[],∗,//}
abs and a given XML data t. p can be an XPath or XQuery based query

operation as well as the selecting part of an XUpdate operation.

The algorithm that creates a KeyX index works as follows:

• First, the one given key path pk ∈ Pl is evaluated on the XML data returning

the key elements. The text values of these elements are interpreted as keys.
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p has exactly one key path because it is a single-key query (see section 2.3.2).

• Second, for each key node we navigate to the corresponding return value

leading to a set of (key, return value) tuples. For each of these tuples we test

whether the conditions expressed by the qualifiers are fulfilled. If we have

no qualifiers this step can be omitted.

• The last step stores the remaining tuples in a new search tree dedicated to

executing queries of the shape of p.

The creation procedure of a multi-key index is a little more complex because

the keys of the different key paths are arranged in levels. Therefore, we use a

recursive algorithm that nests search trees for the key paths in different levels.

The (key, return value) tuples are stored in the last level. We present a Java

derived pseudocode of the creation algorithm for single-key and multi-key indexes

in Listing 5.1:

1 void createIndex (XMLNode context ,

2 SetOfKeyPaths Kp,

3 SetOfQualifierPaths Qp,

4 ReturnValuePath rp ,

5 SearchTree tree ) {

6 i f ( |Kp| == 1 ) { //Kp has only 1 key path

7 keyP = Kp[ 1 ] ; //get path to this keys

8 relKeyP = keyP−context ; //re la t i ve path to the keys from context node

9 relValP = rp−keyP ; //re la t i ve path to the return value

11 KEYS = eval ( context , relKeyP ) ; //re t r i eve the key elements

12 f o ra l l ( k in KEYS) {

13 val = eval (k , relValPath ) ; //re t r i eve the return value

14 i f ( testQual i f ier ( val , Qp) ) { //tes t qua l i f i e r

15 int id = val . getId ( ) ; //get id of return node

16 tree .add(k . getText ( ) , id ) ; //add key−value tuple

17 }

18 }

19 }

20 else { //build a multikey index

21 keyP = Kp[ 1 ] ; //take f i r s t KeyPath

22 Kp = Kp \ Kp [ 1 ] ; //and remove i t from Kp

23 relKeyP = keyP−context ; //re la t i ve path to keys from context

25 KEYS = eval ( context , relKeyP ) ; //re t r i eve the key elements

26 f o ra l l ( k in KEYS)

27 SearchTree tree2 = new SearchTree ( ) ; // create empty search tree

29 createIndex (k , Kp, Qp, rp , tree ) ; // recursive c a l l of method

31 tree .add(k. getText ( ) , tree2 ) ; //nest the second tree

32 }

33 }

34 }

Figure 5.1: Pseudocode to create a single-key or multi-key index

The algorithm assumes that the path expressions to the keys, qualifiers, and the

return value have been extracted from a given XPath query. These path expres-

sions are extracted by the use of the functions key, qualifier, and value that are
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defined in the previous section. The algorithm starts with an empty search tree

by createIndex(/, Kp, Qp, rp, new Searchtree()) with / the root node of the

XML data.

In line 6 the algorithm tests if there is only one key path. Until now all path

expressions are absolute, meaning that they refer to the root node. For the fur-

ther processing we need relative path expressions to the key and the return value.

This computation takes place in lines 7 to 9. In line 14 the key path is evaluated

on the context node by the database management system and returns the key

nodes (XML elements) in the XML data. For each of these key nodes we evalu-

ate the relative path to the return value in order to get the corresponding return

value (line 13). Afterwards, we have to check if all qualifiers are fulfilled for the

return value; this is done in line 14 by the method testQualifer. The code of this

method can be found in the Appendix 10.2. If there are no qualifiers the method

returns always true. The remaining return values and the values of the keys are

stored in the search structure in line 16. Of course, we cannot store XML nodes

directly; instead we use their id as a reference. An example for a single-key index

is presented in figure 5.4.

When creating a multi-key index the algorithm extracts the first key path from

the set of all key paths in lines 21 and 22. Afterwards the relative path to the

keys from the context node i is determined in line 23. By evaluating this path

expression in line 34 we get all key nodes (XML elements) from the XML data. A

new search tree is created for each of these key nodes (line 27) and a recursive call

with the key node as context and the new tree as search structure takes place in

line 29. In order to construct the nested search structure the newly created trees

are added to the initial one recursively in line 31. An example for a multi-key

index is presented in figure 5.5.

For some applications the scenario of one huge XML document representing the

database (like the DBLP or XMark) is unrealistic - instead they propagate an XML

database to be a collection of smaller XML fragments. The KeyX approach can

easily be extended to support collections by adding a document id to the node

id. Instead of storing two ids it is possible to unify both into one common id that

can be divided again if required. In this thesis we concentrate on indexing one

document/data.

5.2.1 Structural Indexes in KeyX

Pure path queries are structural queries ∈ Pl with a path expression without any

value comparison. Therefore, a pure path query operates on the structure of the

XML data ignoring the text values of elements. An example could be

p3 = /site/regions/ ∗ /item
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selecting all item nodes. Pure path queries are supported by KeyX by interpreting

the whole path as one unique key and storing it in one index dedicated to pure

path queries only. The creation algorithm for structural indexes as shown in

listing 5.2 is very simple.

1 void createIndex ( LinearPathExpression p ) {

2 i f ( ppIndex == null ) ppIndex = new SearchTree ( ) ;

3 String key = p. toString ;

4 NodeSet VALUES = eval (p ) ;

5 f o ra l l ( v in VALUES)

6 ppIndex .add( key , v . getId ( ) ) ;

7 }

Figure 5.2: Pseudocode to create a structural index

All structural indexes are stored in one search tree called ipp. The linear path

expression p to be covered by the index is interpreted as key and evaluated after-

wards. The ids of the returned nodes are added to the key and stored in ipp.

When evaluating a linear path expression with the help of ipp the corresponding

key is looked up and the attached ids can be dereferenced instantly. Therefore,

exhaustive navigation to all relevant nodes in the XML data is avoided. Addi-

tionally, KeyX needs no navigation in the index structure like APEX and Strong

DataGuide. We want to emphasize that the KeyX pure path index is not a struc-

tural summary because it does not reflect all elements and possible paths of the

XML data. Instead it can be applied selectively for specific queries leading to

less space consumption and less update expenses. Figure 5.6 shows a pure path

index.

5.3 KeyX by Examples

In this section we introduce the KeyX indexes by examples. For the examples

in this section and later on at the performance measurements we refer to the

well-established computer science bibliography DBLP [70] that is available as one

huge XML document consisting of approximately 600,000 publications, mainly

articles, inproceedings and books. The different publication types are organized

under one common root node called dblp. In contrast to the XMark data the

DBLP data is not artificial but comes from a real database. It is less structured

than the XMark data and contains less element types - this makes the DBLP data

more clear in our examples.

The sample data consists of two inproceedings and one book:

1 <dblp>

2 <inproceedings>

3 <author>Mary F . Fernandez</author>

4 <author>Dan Suciu</author>

5 <t i t l e >A Query Language for XML.</t i t l e >

6 <year>1998</year>
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7 <ee>http://www.w3. org/TandS/QL/QL98/pp/att−position−paper . html</ee>

8 </inproceedings>

9 <inproceedings>

10 <author>Dan Suciu</author>

11 <t i t l e >Semistructured Data and XML.</t i t l e >

12 <pages>0−</pages>

13 <year>1998</year>

14 <url>db/conf/fodo/fodo98 . html#Suciu98</url>

15 </inproceedings>

16 <book>

17 <author>Serge Abiteboul</author>

18 <author>Peter Buneman</author>

19 <author>Dan Suciu</author>

20 <t i t l e >Data on the Web</t i t l e >

21 <year>1999</year>

22 <isbn>1−55860−622−X</isbn>

23 </book>

24 </dblp>

the Book and inproceeding elements share some elements (e.g. author and

title) and differ in others (e.g isbn).

The corresponding DOM-tree [118] representing the XML data as a tree is dis-

played in figure 5.3. The nodes are numerated and labeled with the element

name. The text nodes of the elements are omitted to keep the DOM-tree readable.

We use the DOM-tree to illustrate our index structure.

book

dblp

0

1

inproceeding inproceeding

title url

9 10 11 12

8

authoryeartitleauthor

3 4 5 6 7

2

author ee title isbnauthor

14 15 16 17 18

13

author author

19

year year

Figure 5.3: XML sample represented as a DOM-Tree

5.3.1 Single-Key Indexes

The path expression p2 = /dblp/inproceedings[author =′ x′] compares all author names

with the given value ’x’. For this reason the values of all author elements are

regarded as keys which are extracted from the XML data by evaluating the key

paths. Each key references one or more corresponding nodes (elements or at-

tributes) in the XML data. For instance, the key ’Dan Suciu’ in the index structure

for p2 references all inproceedings which are written by this author. The key(s) k
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and the value v of an index may be different. For instance, in p2 the keys are the

values of the element author whereas the values are the corresponding inproceed-

ings. Of course, it is possible that the indexed key k is the returned value v of

a query. This concept avoids costly navigation from a key to the return value in

the XML data. This navigation is only performed once when creating the index or

adding new keys. The index structure for p2 is shown in figure 5.4.

Mary F. Fernandez

...

Index i

Key path: /dblp/inproceedings/author
Value path: /dblp/inproceedings

p4

book

dblp

0

1

inproceeding inproceeding

title url

9 10 11 12

8

authoryeartitleauthor

3 4 5 6 7

2

author ee title isbnauthor

14 15 16 17 18

13

author author

19

year year

Dan Suciu

...

............ ... ............

Figure 5.4: Established index ip2

Please note that this index is specific for queries p2 indexing all authors of inpro-

ceedings. The key ’Dan Suciu’ in the index structure references the inproceedings

of this author but not his book.

The path expressions of queries may also contain the self-or-descendant (//) and

wildcards (*) axis shown in the next example. Therefore, it is possible to keep

both the authors of books and the authors of articles in one index structure.

5.3.2 Multi-Key Indexes

If a query involves more than one key we need a multi-key index. For example,

the query p7 = /dblp/ ∗ /title[../author. =′ x′ and ../year > y] looks for titles of any

publication (*) written by a given author and a year. This path expression con-

tains the two keys author and year.

A multi-key index in KeyX is constructed like in RDBMS: The index’s tree struc-

ture is ordered by a first key (e.g. author), the values of this key are indexes

which are built upon the next key (year) and so on. Our approach does not com-

bine multiple keys and paths to one artificial key like the Index Fabric’s approach

does (see section 4.3.4). That is the reason why KeyX supports range queries eas-

ily. As our tree implementation differentiates between texts and numbers it does

not have to normalize numeric values. Figure 5.5 shows the index for p7; it is a

tree consisting of trees; the second tree’s values reference the XML data. Due to

the wildcard operator in this query both inproceedings and books are indexed.
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Peter Bunemann

Multi-Index i

Key path: /dblp/*/author AND
Value path: /dblp/*/title

p7
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book
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Figure 5.5: Established index ip7

5.3.3 Selective Structural Indexes

Pure path queries or navigational queries are queries with a path expression

but without any predicate. An example is p1 = /dblp/inproceedings selecting all

inproceedings nodes. Pure path queries can easily be supported by KeyX if we

interpret the whole path as a key and store it in an index dedicated to pure path

queries only. In p1 the path expression is one key and returns all inproceedings

instantly. Therefore, exhaustive navigation to all relevant nodes in the XML data

is avoided. Additionally, KeyX needs no navigation in the index structure like

APEX and Strong DataGuide. This is because the whole path expression consist-

ing of several steps is regarded as one unique key.

We want to emphasize that the KeyX pure path index is not a structural sum-

mary because it does not reflect all elements and possible paths of the XML data.

Instead it can be applied selectively for specific queries leading to less space con-

sumption and less update operations in the index structure. Figure 5.6 shows

the pure path index for four specific queries.

...

Pure Path Index i

(Selective structural summary)

pp

book

dblp

0

1

inproceeding inproceeding

title url

9 10 11 12

8

authoryeartitleauthor

3 4 5 6 7

2

author ee title isbnauthor

14 15 16 17 18

13

author author

19

year year

...

/dblp/inproecedings

/dblp/book/isbn /dblp/*/year

//author

Figure 5.6: Established index ipp
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5.4 Query Processing

Executing a query without an index implies a sequential search in the full XML

data leading to linear complexity in the size of the XML data. For larger data, e.g.

a list of available books in a bookstore, this implies a prohibitive query execution

time.

5.4.1 Query Execution with matching KeyX Indexes

The query optimizer extracts the keys of a given query q and looks for an appro-

priate index. In the following an index j is defined by its declaration consisting of

the linear path expressions to the keys, qualifiers and the return value. Formally,

j is the tuple (Kj , Qj , vj) see section 5.1.1 for details). An XPath based query q

consists of analogous path expressions; q = (Kq, Qq, vq).

If the path expressions of the query q and an index j are exactly the same then

the index matches best and can instantly be used. The key(s) are searched in the

tree structure of the index; like in relational indexes this is done in logarithmic

time. If the key is found the attached value is either the reference to the corre-

sponding return value in the XML data (single-key index) or a search tree of a

lower level (multi-key index) so that further (recursive) key retrieval is performed.

The references to the return values in the XML data are returned as the result of

the query.

5.4.2 Index Usage with Deviating Return Values

If the path expression of the keys and the qualifiers of the index j and the query

q are the same (Kq = Kj , Qq = Qj ) but the path expressions to the return value

differ (vq 6= vj) then the index might still be used in some cases with additional

postprocessing:

If the elements requested by vq are reachable from vj by a linear relative path

expression p△ = vq − vj that contains no wildcard or descendant operator we can

evaluate p△ on each node that is referenced by the index j through vj.

Example 12 Lets say we have an index j that indexes item elements by their

name value. The corresponding XPath expression is //item[name=’x’] with

Kj = {//item/name}, Qj = ∅ and vj = //item.

The query q = //item/location[../name =′ Sinus MP3 Player′] has the same key

as the index j but the return value differs: //item 6= //item/location. The relative

linear path expression p△ describes the path from the elements that are refer-

enced by the index to the elements that are requested by the query. In this case

p△ = //item/location − //item = /location navigates to the location children of

each item element. 2
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The postprocessing raises additional costs but if the set of elements referenced by

vj is small the total costs of the query evaluation with the index will still outper-

form the exhaustive evaluation over the whole document.

If there is a wildcard operator in the path expressions of the query the index

may not be suitable anymore because it does not cover all requested elements.

For instance, the index defined by /site/regions/asia/item[name=’x’] in-

dexes all items located in asia. The query /site/regions/*/item[name=’Sinus

MP3 Player’] does not have a regional restriction. We could calculate the path

expression p△ = ../∗ that navigates from the item elements in asia to all children

of its parent but this would not lead to success because the index does not cover

the values of name elements that do not belong to asia. The decision whether

we can use an index or not relies on the subset relationship (containment) of the

corresponding keys.

5.4.3 Containment Problem

In general, a selective index covers all queries with a result set being a subset of

the query that defined the index. For instance, an index that is designed to accel-

erate queries of the form /dblp/ ∗ [author =′ x′] is also capable of evaluating queries

like /dblp/book[author =′ x′] or /dblp/article[author =′ x′] because the selected keys

are a subset of the keys of the index.

When using an index that covers a superset of the elements that are selected by

the query an additional postprocessing step has to filter wrong hits: A simple

node test checks if the selected nodes are of the requested element type (e.g. an

element selected by ∗ is checked if it has the label book). Like in the previous case

the postprocessing requires linear complexity in the size of the elements that are

returned by the index.

If an index is defined with a non-empty set of qualifiers (e.g. only books with an

isbn child) it cannot be used to process a query that ignores the qualifier because

the index does not cover all requested elements. In contrast, a query that poses

more qualifiers than the index can be processed by the index with additional post-

processing because the query’s result is a subset of the elements that are indexed.

The decision whether the selected nodes of one XPath expression p are a subset

of the result set of a second expression p′ (p ⊆ p′) can be solved using the contain-

ment algorithm presented by Miklau and Suciu [82]. This algorithm constructs

tree patterns for the path expressions p and p′ and creates two (alternating) tree

automata A and A′ accepting XML data that can be queried by p and p′. Con-

tainment holds (p ⊆ p′) if lang(A) ⊆ lang(A′). A third automaton A′′ accepting the

complement of lang(A′) (lang(A′)) is built on the base of A′ by exchanging all ac-

cepting states with the non-accepting states. If the product automaton B = A x A′′

has no reachable accepting state it holds, that lang(A)∩lang(A′) = ∅. This is equiv-
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alent to lang(A) ⊆ lang(A′).

The containment algorithm is significantly more complex because A and A′ must

be transformed into deterministic automata, the tree automata must be ranked

and several optimization steps are performed. We implemented the Miklau and

Suciu approach in [39].

5.4.4 Rating of Indexes for the Query Execution Plan

If we have more than one index that may be useful for the execution of a query q

the question is raised which one is the best for q.

Example 13 Given are the indexes i1 and i2 defined by the following path expres-

sions:

i1 := /dblp/book[title =′ x′]

i2 := /dblp/book[year = y]

The query q = /dblp/book[title =′ XML′ and year = 2005] asks for books with given

values for the title and year element. The indexes i1 and i2 are not matching

the query exactly because one key is missing for both indexes. Anyhow, the

indexes can be used if additional postprocessing (filtering the second key) takes

place. When using i1 one has to filter the resulting elements by their year value.

Analogously, when using i2 one has to filter the resulting elements by their title

value. 2

When the query optimizer receives q the containment algorithm indicates that

both i1 and i2 can be used but it does not answer the question which of the

indexes is better. The best index leads to the least cost for post processing. For

the reader it may be obvious that i1 performs considerably better because one can

assume that there are less books with the title XML than books written in 2005.

But from the syntactical and structural point of view i1 and i2 are identical with a

minor variation in one label. The size of the results returned by the indexes that

is necessary to estimate the postprocessing expenses cannot be derived from the

indexes’ definition. Therefore, the decision which index to use cannot be made

without further information of the indexed data.

Statistic DataGuide

In order to solve this problem we extract statistical information of the frequency

of elements and the distribution of their values. This information is used by the

query optimizer to determine the number r of elements that are selected by a path

expression. The selectivity sl is the rate of different elements that share the same

value. For elements with unique values sl is 1
r . For elements that have no unique

values (e.g. year) we assume an equal distribution leading to sl = 1
d with d the
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number of different values. This is a first approximation that may lead to inac-

curacies if the distribution is unbalanced. A better but more space consuming

approach would use histograms to model the distribution of elements values.

The product sl · r calculates the expected value of the number of elements that

are returned by a key-query. For an element with a unique value it holds that

sl · r = 1
r · r = 1.

With different cost models the query optimizer is able to estimate the query exe-

cution time with an index (logarithmic) and without an index (linear) and choose

a plan with minimal total costs.

The basic data structure that we use to store the required statistic informa-

tion r and sl is close to a Strong DataGuide, i.e. it builds extents of elements

that are reachable by the same linear path expression. In contrast to the Strong

DataGuide we do not store elements or references to elements in the extents but

a tuple < r, sl > consisting of the average number of this element per parent and

its selectivity. The selectivity is nil if the element has no values.

Figure 5.7 shows the statistic DataGuide for a randomly selected 10MB fragment

of the DBLP data.

Figure 5.7: A statistic DataGuide for a DBLP fragment.

The /dblp extent indicates that its root (the document root) has exactly one child

with the label dblp. Because the dblp element has no values its selectivity is nil.

The dblp element has 540 children with the label book. This is reflected in the ex-

tent for the path expression /dblp/book. Each of these book element has one title

child, in the average 1.26 author children, one year child and in the average 0.18

children with the label url. These values can be taken from the corresponding

extents. The selectivity of the title values is very low (0.002) indicating that most

books have different titles. In contrast, the selectivity of the year values is rela-

tively high (0.924) indicating that the 540 books share most values for years. In
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particular there are only 41 different values for the year element of the books.

The selectivity of 1.0 for the /dblp/article/year path expression indicates that all

values are the same. The selectivity for the other elements that have values in

this DBLP fragment can be seen in the figure.

The values r and sl are used when estimating the number of elements that cor-

respond to a path expression to be evaluated. This number is the result of a

multiplication of all r values on the path to the selected element. If the path

expression contains a key comparison the value for its selectivity is multiplied

additionally.

Example 14 The path expression /dblp/article/author will lead to 1 · 535 · 1.69 = 904

selected elements.

The same path expressions with a value comparison (/dblp/article/author[. =′ x′])

leads to 904·0.621 = 561 selected elements. This number is relatively high because

the 535 articles in the selected DBLP fragment are written by only 342 different au-

thors.

The similar path expression /dblp/article/title[. =′ x′] leads to only 1 · 535 · 1 ·

0.002 = 1.07 hits. Therefore, querying an article by its title is more than 300

times faster than querying it by the authors.

If the query contains a wildcard (*) or the descendant axis (//) multiple extents

must be regarded. The values for r can be summarized in order to get the final

result. With a key in the path expression the r values of the different affected

extents have to be weighted by the selectivity sl before summarizing them.

Example 15 The path expression /dblp/ ∗ /url affects three url extents of books,

articles and inproceedings. We calculate their numbers independently and sum-

marize them afterwards. Therefore, the result of this path expression has the

expected cardinality 1 · 540 · 0.18 + 1 · 535 · 0.04 + 1 · 26565 · 1.0 = 26684. 2

The statistic DataGuide is a relatively simple but in most cases sufficient and

efficient approach to estimate the cardinality of selected elements of a path ex-

pression. The particular value can be used in cost models for indexes and con-

ventional XPath evaluation.

The approach assumes statistical independence between elements in the XML

data. If we have elements that are statistically dependent, for instance they are

mutually exclusive the statistic DataGuide will lead to reduced precision: For

instance, an element X has two children a and b. Half of the X elements have

exactly one a child and the other half has exactly one b child. Therefore, no X el-

ement has both an a and b child. The statistic DataGuide would assign r = 0.5 for

the a and b extent. The path expression //X[a and b] would lead to an estimated

cardinality of |X| · 0.5 · 0.5 = |x|
4 indicating that a quarter of the X elements have

both an a and b value.
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For this reason the statistic DataGuide is an early approach that needs further

refinement. An important question is the updatability of this approach when the

underlying XML data is modified. Anyhow, the problem of rating different indexes

with additional statistical information occurs only if we have multiple indexes that

are able to execute the query. Therefore, a huge amount of database application

will probably perform well even without any statistical ranking of indexes.

5.4.5 Algorithm for the Query Execution

The process of the query execution is organized in three phases: the selection of

indexes, the key retrieval and the optional postprocessing. Figure 5.8 illustrates

these phases. In the following we describe the phases with pseudo code.

Figure 5.8: The three phases of the KeyX query execution

1. Phase 1: Index Selection

The first phase is responsible for determining an index j that matches with

the query q. First, the algorithm extracts the path expressions for the keys,

qualifiers and return values of the index declaration and the query. If all

path expressions are equal an optimal index is found and returned. If no

such index exists the algorithm tries to find indexes that can be used due to

the containment relationship. If only one subset index is found it is returned

instantly. If multiple indexes are found the algorithm requests an advise

from the statistic DataGuide.
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1 Index getIndex ( IndexCollection indexes , Xpath q , StatDataGuide sdg ) {

2 subsetIndexes = new List ( ) ;

4 Kq = q . getKeyPaths ;

5 Qq = q . getQualifierPaths ;

6 vq = q . getReturnValuePath ;

8 f o ra l l index j indexes{

9 indexdecl = index . getDeclaration ( ) ;

10 Kj = indexdecl . getKeyPaths ;

11 Qj = indexdecl . getQualifierPaths ;

12 v j = indexdecl . getReturnValuePath ;

14 i f (Kq==Kj AND Qq==Qj AND vq==vj )

15 return j ; // Exactly matching index found

17 else i f ( Kj subset Kq AND Qj subset QQ)

18 subsetIndexes .add( Kj ) ;

19 }

21 i f ( subsetIndexes . s ize ==1)

22 return subsetIndexes [ 1 ] ;

23 else

24 return sdg . findBestIndex ( subsetIndexes ,q ) ;

25 }

Figure 5.9: Phase 1: Index Selection

2. Phase 2: Key Retrieval

In the second phase the key(s) are searched in the tree structure of the

index; like in relational indexes this is done in logarithmic time. If the key

is found the attached value is either the reference to the corresponding node

in the XML data (single-key index) or a search tree of a lower level (multi-key

index) so that further (recursive) key retrieval is performed. The references

are dereferenced to XML nodes and returned as the result of the query.

1 public XMLNOdeList evaluateQuery ( Index i , XPath q , XMLData t ) {

3 tree = i . getSearchTree ( ) ;

4 keys = q . getKeyValues ( ) ;

5 int ids = re tr i eva l ( tree , keys ) ;

7 nodes = new List ( ) ;

8 f o ra l l id in ids{

9 node = t .getXMLNodeByID ( id ) ;

10 nodes .add(node ) ;

11 }

12 return nodes ;

13 }

17 private IDList re t r i eva l ( SearchTree tree , keys k ) {

19 i f ( isEmpty (k ) ) {

20 i f ( tree is single node) return tree . id ;

21 else return getAl l Ids ( tree ) ;

22 }
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24 else{

25 i t2 = tree . findKey (k [ 1 ] ) ;

26 return re t r i eva l ( i t2 , k−k [ 1 ] ) ;

27 }

28 }

Figure 5.10: Phase 2: Key Retrieval

3. Phase 3: Postprocessing

Phase three receives XML nodes that may require postprocessing if the index

j is not fully matching the query q. First, if the query contains more keys

than the index, the corresponding values are fetched and filtered from the

XML data. The same happens if the query contains additional qualifiers that

must be fulfilled by the XML nodes. Finally, if the return value of q has a

different path expression than the nodes that are returned by the index, the

difference path expression pδ is computed and evaluated on each node.

1 public XMLNodeList PostProcessing ( XMLNodeList input ,

2 XPath q ,

3 XMLData t ,

4 Kj , Qj , v j ) {

5 XMLNodesList out = new List ( ) ;

6 f o ra l l node in input{

8 i f ( Kj subset Kq) { // Check fo r addit ional keys

9 remainder = Kq−Kj ;

10 i f ( ! node . f u l f i l l ( remainder ) input . remove ( node ) ;

11 }

13 i f ( Qj subset Qq) { // Check fo r addit ional qual i fers

14 remainder = Qq−Qj ;

15 i f ( ! node . f u l f i l l ( remainder ) input . remove ( node ) ;

16 }

18 i f ( vq==v j )

19 out .add ( node ) ;

20 else{

21 pdelta = vq−v j ;

22 out .add(node. evaluate ( pdelta ) on t ) ;

23 }

24 }

25 return out ;

26 }

Figure 5.11: Phase 3: Post Processing
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5.5 Performance Measurements

In this section we compare KeyX with implementations of APEX, the Strong Data-

Guide, Index Fabrics Raw Path, and Refined Path by performance measurements.

All index implementations run on top of the native XML database management

system Infonyte DB [55] storing the XML data persistently. Basically, any XDBMS

offering an XPath query engine and a unique id for each XML node can be used.

Examples include Xindice and Natix.

All implementations are realized in Java; the measurements were performed on

an Intel P4 with 2,66 MHz and 1GB RAM. All index implementations provide an

XPath interface that processes the queries.

Instead of testing one random database application we measured the impact of the

indexes on the execution of different query types separately. For each type (single-

key, multi-key, range, pure-path, descendant) we executed several representative

queries on a fragment of the DBLP data. With the separate results for each query

type it is possible to infer the impact of an index approach on a full application if

the distribution over the query types is known. In order to obtain precise values

we executed all queries up to 2.5 million times measuring the total time which is

afterwards divided to get an average value for each query. The evaluated queries

are presented in table 1.

Type XPath Expression #Results
Q1 Pure-path /dblp/inproceedings 26565
Q2 Single-key /dblp/inproceedings/author[.=’X’] 1
Q3 Multi-key /dblp/inproceedings[author=’X’ AND year > y] 1
Q4 Range /dblp/inproceedings/title[../year > y] 4508
Q5 Descendant //isbn 488
Q6 Partially matching /dblp/inproceedings/title[../author=’X’] 10
Q6 /dblp/inproceedings/title[../author=’X’] approx. 10

Table 5.1: Path expressions used for the performance measurements

In the following scenario we assume that the selective indexes Refined Path and

KeyX created optimal indexes for the queries Q1 - Q5. With query Q6 we want

to measure the performance of KeyX with partially matching queries. Therefore,

there is no specific index for q6; instead we use the indexes for q2 and q3 to exe-

cute q6. With query Q6 we want to measure the performance of KeyX with partially

matching queries. Therefore, there is no specific index for q6; instead we use the

indexes for q2 and q3 to execute q6. The non-selective approaches Raw Path, Apex

and Strong DataGuide created their structural summaries. For every query that

has a key we selected a multitude of values in order to get realistic measurements.

In the following figures we present and discuss the measurements of each query:

The pure path query Q1 has a result set of 26565 nodes. They have to be fetched

from the database by their ids. As this database access is the most expensive

process the query execution times are similar for all approaches. Because Q1 has
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no predicate it cannot be executed by a Raw Path. For a query with a huge re-

sult set (e.g. all publications written after 1975) it makes no significant difference

whether we use an index or not.

Figure 5.12: Performance measurements of query Q1

The query Q2 returns only one node that has a defined unique key. The struc-

tural summaries cannot use the key directly and have to check all author nodes

whether they contain the required value. This linear complexity leads to an exe-

cution time which may exceed the execution time without index. The key-based

approaches retrieve the key from their internal data structure and can therefore

execute the query significantly faster. Please note the logarithmic scale in some of

the following figures. The two Index Fabrics approaches are a little bit slower than

KeyX because they need to look up the designator of the path and concatenate

it with the predicate. Additionally, the resulting key has to be encoded to binary

format for the lookup operation in the Patricia Trie.

Figure 5.13: Performance measurements of query Q2
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Query Q3 is a multi-key query with one key comparison and a range query upon

the second key. The structural summaries have the same disadvantage as in

query Q2 leading to poor results. Both Index Fabric approaches cannot support

a multi-key query with a value range directly; our Index Fabrics implementa-

tion executes such queries universally by splitting a multi-key query in multiple

single-key queries. The results have to be intersected afterwards to find the rele-

vant nodes. KeyX can naturally support Q3 by its internal data structure that is

based on nested trees.

Figure 5.14: Performance measurements of query Q3

A range query upon a single-key is performed by Q4. The Refined Path is close

to KeyX but like in Q1 the high cardinality of the result set leads to a significant

deceleration for both approaches. The Raw Path is significantly slower because it

has to navigate to the sibling node title for all of the 4508 year elements of the

result set.

Figure 5.15: Performance measurements of query Q4



100 CHAPTER 5. THE KEY-ORIENTED XML INDEX KEYX

The descendant query Q5 selects all isbn nodes without regarding their leading

path. Because Q5 has no key it cannot be executed by a Raw Path. The other

approaches provide similar results. Due to the medium size of the result set the

process of finding relevant nodes is more expensive than fetching them from the

database. On the other hand, the navigation inside the structural summaries is

performed so fast that there is no significant difference between APEX and the

Strong DataGuide. As the DBLP data is relatively high structured it contains only

few element types (e.g. inproceedings, title, isbn). Thus, the extent of one element

type can quickly be retrieved.

Figure 5.16: Performance measurements of query Q5

Partially matching queries are evaluated by the query q6 that is executed upon the

indexes iq2 for q2 and index iq3 of q3. In both cases the execution time lasts a bit

longer than by using an optimal index. When executing q6 upon iq2 the relative

navigation step ../title is executed on the elements which are referenced by the

result of iq2.

Figure 5.17: Performance measurements of query Q6
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Executing q6 upon iq3 means that the subtree of year-references below the author

key have to be unified. Because iq3 returns references to inproceedings- ele-

ments the additional navigational step /title has to be performed on the database.

This explains why iq3 performs poorer than iq2 for q6. But compared to the exe-

cution without any index it still makes sense to use existing indexes for partially

matching queries.

Queries containing the wildcard operator are supported by KeyX like descendant

queries resulting in equivalent query execution times. As our implementations of

Index Fabric, Apex and the Strong DataGuide do not support wildcard queries,

currently we cannot present measurements at this place. Theoretically, if the

wildcard query contains no predicate the structural summaries will perform well

as they can find the relevant extents quickly. For queries with a predicate they

will have to compare all nodes with a value leading to poor times. The Raw Path

cannot support wildcard queries as the total path is encoded to one string. The

Refined Path idea allows the definition of a specific index for this query with an

expected profit comparable to Q5.

Figure 5.18 shows the KeyX query execution time of Q2 in dependency of the

document size. These measurements were performed upon randomly selected

inproceedings of the original DBLP data. A query over 30,000 inproceedings

takes roughly 0.5 seconds without an index. This response time is unacceptable

for huge databases like the DBLP containing 500,000 publications. The execu-

tion time of KeyX grows logarithmically as the underlying data structure (a Java

TreeMap) provides logarithmic key retrieval time.

Figure 5.18: KeyX complexity measurements
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.

Figure 5.19: Picture taken from [72].



Chapter 6

The Index Selection Problem

Today’s larger business applications with an underlying database cannot exist

without indexes covering the most frequent queries. Recently, relational database

management systems (RDBMS) are dominant although XML database manage-

ment systems (XDBMS) are becoming more and more relevant for real world ap-

plications.

Defining suitable indexes is a major task when optimizing the database. Usu-

ally, a human database administrator (DBA) defines a set of indexes in the design

phase of the database. This can be done manually or with the help of so-called

index wizards or index adviser tools that analyze predefined or collected database

operations. In both cases the typical usage of the database has to be known in

advance.

But, even having an optimal set of indexes when setting up a database there

is no guarantee that these indexes will suit future demands. Rather, it is realis-

tic that the typical usage of the database will change after a while because new

queries appear, for instance. In consequence, the existing indexes are suboptimal.

The typical approach to face this problem is that a database administrator main-

tains the database permanently: she logs the workload, analyzes the performance

of the database and the existing indexes, and redefines indexes when necessary.

These tasks are time-consuming and require a skilled expert.

In XML database management systems (XDBMS) this problem becomes even

worse. In relational databases (in first normal form 1NF) only the atomic val-

ues of specified columns are reflected in an index; in contrast, XML indexes have

to cover both the structure of the data and the values of elements and attributes;

queries and modifying operations may contain structural and content properties.

Therefore, the number of possible queries and indexes is significantly higher than

in relational databases.

Additionally, for XML data without a schema like a DTD or XML Schema, queries

and indexes cannot be defined finally in advance because elements may appear



104 CHAPTER 6. THE INDEX SELECTION PROBLEM

and disappear at any time. Both facts tend to result in higher maintenance costs

for XML indexes compared to relational indexes. For large databases with a com-

plex structure where a multitude of queries is expressible (e.g. DNA databases) it

may be impossible to determine the best indexes manually.

Beside these more technical issues there are more good reasons for self opti-

mizing and self configuring DBMS. Studies have shown that the cost to manage

storage is typically twice the cost of the actual storage system [33, 98, 97]. In

the field of databases 81% of the costs are people costs [1]. Figure 6.1 shows the

distribution of the total costs of ownership.

Figure 6.1: Costs of running a DBMS

With the help of a self-optimizing and self-configuring DBMS these costs can be

cut to a great extent.

In this chapter we show how a native XDBMS enriched by KeyX indexes can find

good indexes for a workload of database operations. Additionally, we present how

KeyX can be used to turn a DBMS into an autonomous and adaptive database

management system that analyzes its workload periodically and creates/drops

XML indexes automatically. This approach guarantees a high performance over

the total life-time of a database. Although we present our index system KeyX, the

idea and the main results in this chapter are transferable to other XML indexing

approaches.

6.1 Introduction to the Index Selection Problem

In this section we introduce the well-known Index Selection Problem (ISP). The

selection of optimal indexes is an important task in physical database design

to improve the performance of a database system. Indexes reflect the values of
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specified attributes (e.g. columns in a RDBMS) in a data structure, like B-trees,

optimized for fast key retrieval.

In a relational database, the indexed attributes are columns, whereas in a semistruc-

tured or XML database attributes are marked tree nodes or XML elements.

The optimal index configuration is the one with minimal query processing time

for the whole workload. Defining an index upon all columns leads to fast re-

trievals but increases the execution time of modifying database operations like an

insert. Additionally, such an index configuration would lead to exhaustive storage

costs.

By workload, we mean a set of operations accessing and modifying the database,

such as SQL statements, for instance. Each built index requires a maintenance

time if the database is modified, while each query is accelerated if performed upon

an index. An index can only improve data retrievals of the specific attributes that

the index is built upon.

The main goal is to minimize the overall time needed to process the whole work-

load. An important constraint of the ISP is that the consumption of memory of

all realized indexes must not exceed a predefined limit. In this vein the ISP is

comparable to the Knapsack problem.

The ISP is an inherently computationally difficult problem belonging to the class

of NP-complete problems which was proven in [20]. The ISP is a generalization of

the Uncapacitated Facility Location Problem (UFLP), which is known as NP-hard.

The reader is referred to [3] for details of NP-complete problems. Simplified, one

can say that there is no deterministic algorithm to solve this problem in less than

exponential time (under the assumption NP 6= P ).

In a database consisting of n columns there are 2n possible index configurations

for single column indexes as every column may be indexed or not. If multi col-

umn indexes are possible there are a lot more configurations. This shows that the

computation of an exact solution is mostly too expensive or impossible for larger

n. Approximative algorithms like heuristics or other approaches are required to

find a (suboptimal) approximation of the exact solution.

6.2 Index Selection in Relational DBMS

In this section we describe how commercial database products have integrated

tools or features to optimize the query execution time by suggesting index con-

figurations. This is mostly done by implementing a heuristic solution for an ISP

because an exact algorithm cannot be computed in appropriate time because of

the inherent complexity of the problem. The fact that all important database

manufacturers have implemented index tuning tools shows that the ISP is well
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understood for relational databases, although different approaches have been re-

alized in the implementations.

The Microsoft Index Tuning Wizard (a.k.a Autoindex selection tool) [14, 15, 16] is

a tool for the SQL Server which automates the task of selecting suitable indexes

for a database and a given workload. The workload is provided by a database ad-

ministrator who can either collect real database operations or create an artificial

workload which represents typical database operations. Based on this workload

the Tuning Wizard calculates an ISP solution and suggests a set of indexes to

be created. Expected changes of the database performance and storage conse-

quences are reported as well. The tool evaluates the estimated costs of an index

using so-called what-if indexes. What-if indexes are indexes that are not yet cre-

ated but are already known to the query optimizer of the SQL Server. As the tool

is used in productive use, the authors have invested a lot of efforts in efficient

heuristics to solve the ISP and to determine the costs of an index configuration.

To minimize the set of index candidates in the configuration, in a first step the

Tuning Wizard determines the best indexes for each query independently. Other

indexes are abandoned as they are unlikely part of the optimal index configura-

tion for the whole workload. Additionally, the heuristic starts with single column

indexes (having only one key attribute) and increases the number of key attributes

step by step.

IBMs DB2 advisor [111] for the DB2 Universal Database utilizes a component

in the optimizer that recommends indexes for a given workload. The ISP is inter-

preted as a 0-1 integer linear programming problem with the indexes by 0-1-flags

indicating if an index is selected (1) or not (0). The solution of the ISP is a sequence

of 0-1-flags determining the index configuration. As long as the user’s time budget

is not exhausted DB2 creates new random configurations and memorizes the one

with minimal costs calculated yet. This approach allows the user to define a time

restriction to the ISP solving algorithm.

Oracle’s Tuning Pack [94] has a component called Index Tuning Wizard which

has comparable functionalities. Based on an SQL workload, changes on existing

indexes are proposed. Unfortunately, we could not find details about the imple-

mentation and the used heuristics.

In the last decades a multitude of heuristics for the ISP where presented in

academia: In [12] two solutions are presented to determine an optimal index

configuration for relational databases. The first approach generates an exact so-

lution and is based on a branch and bound tree algorithm reducing the set of

index configurations considered to be part of the optimal solution. The exact so-

lution of the ISP is a sequence of 0-1-flags indicating which index is selected (1) or

not (0). The ISP is interpreted as a 0-1 integer linear programming problem and
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a solution is computed in polynomial time using Khachian’s algorithm [63]. The

solution is a sequence of values between 0 and 1. If some values in this sequence

are exactly 0 or 1 they are transfered to the final optimal solution. Fractional

values different from 0 and 1 cannot be part of the final solution as they do not

indicate whether the affected index is selected or not. These values have to be

fixed to 0 or 1 by evaluating both possibilities. This leads to a decision tree which

grows exponentially in the number of fractional values. This approach performs

well if the linear programming algorithm generates a solution with only few values

different from 0 and 1.

The second approach discussed in the same paper uses a suitable knapsack

heuristic to find a suboptimal solution. Suboptimal means that the approach

does not find the best index configuration but one which comes very close to it.

The initial point is the solution of the 0-1 integer linear programming problem de-

scribed above. A value differing from 0 and 1 is interpreted as the likelihood of an

index to be part of the best index configuration. These indexes are sorted accord-

ing to decreasing values of the likelihood. The indexes which are most likely to be

part of the best index configuration are selected until the required space exceeds

the available space. This approach is faster than the decision-tree algorithm as it

can be computed in polynomial time.

A more or less exotic approach to solve the ISP using a polynomial genetic al-

gorithm is introduced in [66]. Genetic algorithms are stochastic search methods

that are motivated by the biological evolution. A suitable index configuration for

each query of the workload is interpreted as an individual with its time gain as

fitness factor. The fittest individuals are randomly recombined (to simulate a bi-

ological crossover) in order to find better index configurations. A random change

of a selected index in an index configuration represents a mutation and leads to a

modified individual which may have a better fitness. As only the best index con-

figurations survive there will be good solutions of the ISP after some generations.
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6.3 Index Selection Problem Applied to KeyX Indexes

In this section we describe the Index Selection Problem applied to KeyX indexes.

Given a workload of path expression based database operations we extract possi-

ble indexes and define an optimization problem to find the best index configura-

tion for the whole workload.

A database operation is an operation for querying, updating, deleting, and in-

serting data stored in a database.

Definition 20 (Database Operation)

A database operation o is a tuple (p,t,i) consisting of a path expression p ∈

XP {[],∗,//} a type t and additional information i if it is a modifying operation1.

The set of all database operations is denoted by O. 2

The path expression p of a database operation o can be extracted using the func-

tion path : O → P . Analogously, the type t of an operation o is determined by the

function type : O → {query, insert, change, delete}.

All database operations which shall be relevant for the Index Selection Problem

are collected in a bag called workload.

Definition 21 (Workload)

The workload is a finite bag of database operations. In our work we assume that

there are n operations in the workload W .

W = {o1, o2, . . . , on | oj ∈ O ∧ 1 ≤ j ≤ n}

A database administrator may create a workload that represents the typical usage

of the database application. Another way is to collect all database operations that

occur in a given time period.

6.3.1 Index Candidates

The following function enumerates every possible index declaration d ∈ D in a set

that can be built upon the key and value nodes (index declarations are defined in

section 5.1.1).

The key, qualifiers, and value paths of a database operation oj ∈ W are deter-

mined by calling the path extraction functions introduced in section 5.1.2.

1For instance, if t is an insert operation, i contains the nodes to be inserted.
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Definition 22 (Index Candidates)

The index candidates are defined as a function ican : P → P(D) returning a set

containing all possible index declarations for a given path expression p. The fol-

lowing definition combines and permutes the key nodes:

ican(p) = {([k1, k2, . . . , km], value(p)) | kj ∈ key(p) ∧

1 ≤ j ≤ m ∧ 1 ≤ m ≤ |key(p)|} 2

In total we have to consider
∑m

n=0
m!

(m−n)! − 1 different possible indexes. As most of

these indexes are dropped during ISP calculation, we call them index candidates

of the path expression p. Index candidates are virtual and not materialized in the

database.

Example 16 A query o with the path expression

p5 = /dblp/article[author = ”X” and title = ”Y ”]

has the following key and value nodes:

key(p5) = {/dlbp/article/author, /dlpb/article/title}

value(p5) = /dlbp/article

All index candidates are listed below. As the order of key nodes matters, the first

two index candidates of ican(p5) are not equivalent.

ican(p5) = {i1p5
, i2p5

, i3p5
, i4p5

} with

i1p5
= ([/dblp/article/author, /dblp/article/title], /dblp/article)

i2p5
= ([/dblp/article/title, /dblp/article/author], /dblp/article)

i3p5
= ([/dblp/article/author], /dblp/article)

i4p5
= ([/dblp/article/title], /dblp/article) 2

The two multi-key indexes i1p5
and i2p5

constitute the best suitable indexes for p5

as they reflect both key nodes. In contrast the two indexes i3p5
and i4p5

require

additional processing of the referenced nodes, but are still more efficient than an

evaluation of the plain path expression without an index. Please notice that the

number of index candidates grows exponentially with the number of key nodes

of a path expression and increases the costs of solving the ISP dramatically. A

path expression with 4 key nodes will lead to 64 index candidates! Heuristics to

decrease the computational expense have to start at this point by reducing the

number of index candidates.

To consider the whole workload we need to regard the index candidates of all

database operations o ∈ W . This is done by unifying the index candidates of all

operations to the total index candidate set.
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Definition 23 (Total Index Candidates)

The index candidates of all database operations of the workload W are unified to

the total index candidates set TICW :

TICW =
⋃

o∈W

ican(path(o))

The set TIC consists of all (l) possible index declarations d1, . . . , dl ∈ D which are

relevant for the workload W .

TIC = {d1, d2, . . . , dl} with dj ∈ D and 1 ≤ j ≤ l

The set TIC is constant for a given workload and stays unchanged while exploring

the ISP. The number of index candidates in TIC may be less than the sum of all

index candidates in all sets of ican(o) as they may contain duplicates. Nonetheless

the number of indexes in TIC grows exponentially.

|TICW | ≤
∑

oj∈W

|ican(path(oj))|

6.3.2 Index Configuration

A lot of the index candidates of TIC are dropped when calculating the set of

indexes of TIC which is optimal for the workload. A set of indexes is called index

configuration.

Definition 24 (Index Configuration)

An index configuration c points out which index declarations of TIC are material-

ized and available when executing the workload. A configuration c is a vector of

flags identifying which index candidates from TIC are selected or not.

c = (f1, f2, . . . , fl) with fj ∈ {0, 1} and 1 ≤ j ≤ l

The j-th flag fj identifies if the j-th index ij from TIC is selected (fj = 1) or not

(fj = 0). The set of all possible index configurations is denoted by CONFTICW
. 2

Example 17 The configuration c1 = (1, 0, 0, 1, 1) indicates that the first and the

last two indexes are materialized while the second and third are inactive. 2

Because every combination of indexes is a different index configuration it is obvi-

ous that

|CONFTIC | = 2|TIC|

6.3.3 Cost Functions

In order to find the best index configuration for the workload W we have to com-

pare the costs and profits of all index configurations. Materializing each index
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declaration and executing the whole workload for each index configuration will

lead to enormous space consumption and prohibitively high computational ex-

penses. Therefore, the costs of an index configuration have to be estimated.

When evaluating a path expression p with the help of an index i, we first have

to find the requested keys. In a data structure like a Red-Black-Tree search tree

or a B∗Tree this time depends logarithmically on the number n of stored keys.

The corresponding function is

costtkey
(i) = αl · log |ik| + βl

with |ik| denoting the number of keys in i and αl, βl two constants that depend on

the underlying system. The number of keys can be extracted from the XML data

or it can be computed with the statistic DataGuide, a statistical summary of the

XML data introduced in section 5.4.4. The constants are determined by test runs

and do not change significantly until the underlying hardware is modified (e.g. a

faster processor).

Having an index i and the cost function costtkey
(i) it is possible to estimate the

time to find a key in i. This key contains one or multiple references to nodes in

the original XML data stored in the database. Because the result of a path expres-

sion contains these nodes we have to retrieve them from the database. In general,

this includes read operations from the harddisk leading to higher expenses. The

corresponding function is

costtderef
(i) = αa ·

|in|

|ik|
+ βa

with |ik| denoting the number of keys in i, |in| denoting the number of referenced

nodes in i. Again, αa and βa are system-dependent constants that are determined

once by initial test runs. In this function we assume that each key has an aver-

age of |in|
|ik|

references. Again, the estimated number of references per key can be

extracted from the statistic DataGuide.

The total costs of an index are raised by retrieving the key and dereferencing

the key’s content. Therefore, it holds that

costtime(i) = costtkey
(i) + costtderef

(i)

When evaluating a path expression without an index the execution time can be

measured and does not need to be estimated. Anyhow, the statistic DataGuide

that summarizes the frequency of elements can be applied to calculate the esti-

mated number of elements selected by a path expression. Without an index we

have to use a linear cost model instead of a logarithmic one.
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The storage costs of an index is linear to the number of stored keys and their

content. Therefore, we estimate the storage costs of an index by the function

costspace(i) = αd · n + βd · k

with αd the required space to store a reference and βd the space to store a key.

Again, αd and βd are system-dependent constants. When installing the XDBMS,

indexes of different sizes are created, queried, and stored to determine the con-

stants. Particular values for the system-dependent constants can be found in [32].

6.3.4 Costs of a configuration

The evaluation of costs for a given configuration is performed by the query opti-

mizer. The costs of a configuration relies on costs of some selected indexes in the

configuration. The query optimizer calculates them with function costtime : P ×I →

R defined on a path expression p and a selected index i. Note that a selected in-

dex does not mean that the index is established and filled with values. Therefore,

the query optimizer needs the ability to ‘simulate’ the presence of indexes in the

database.

In addition the query optimizer is responsible for the execution of a database

operation. A query execution plan is prepared for each query including the choice

of the best suitable index. This decision is made by a function named best :

P × CONF → I, determining the best suitable index for a path expression and

a given index configuration. A second function called aff : P × CONF → P(I)

identifies the set of all affected indexes for the path expression of a given modifying

operation. Both functions depend on the containment relation for simple path

expressions.

Using these functions the query optimizer can determine the costs of a configu-

ration.

Definition 25 (Costs of a Configuration)

The evaluation time cost for a given database operation o and a given configuration

c is defined as follows:

costtime(o, c) =















costtime(path(o), best(path(o), c)) if type(o) = query
∑

i∈aff(path(o),c) costtime(path(o), ii) if type(o) ∈ {insert,

update, delete}

with o ∈ O, c ∈ CONF 2

A query operation o is served by the best selected index best(path(o), c)) that is

available in the current index configuration. Other selected indexes which may

accelerate the query less than the best index can be ignored as it suffices to

serve the query by one index. On the other hand, operations that modify the
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database (insert, update, and delete) lead to an update of all affected indexes in

the configuration.

Example 18 Assume we have an index configuration with 3 selected indexes i1,

i2, i3 with:

i1 = ([/dblp/article/author], val),

i2 = ([/dblp/article/title], val) and

i3 = ([/dblp/article/author, /dblp/article/title], val)

where val ∈ P is an arbitrary path to a value node.

The path expression p = /dblp/article/autor has i1 as best index and {i1, i3} as set

of affected indexes if changes occur to a node with path p. 2

6.3.5 Index Selection Problem

The Index Selection Problem looks for the best index configuration csolution ∈ CONF .

The workload is executed for each index configuration while the one with minimal

costs is memorized. Configurations which exceed the space limit maxspace are

dropped.

Definition 26 (Index Selection Problem)

The configuration with minimal costs of time that fits the space restrictions csolution

is defined by:

csolution = min
c∈CONF

[

∑

o∈W

costtime(o, c)

]

,

costspace(csolution) ≤ maxspace.

Given k indexes in the candidate set TIC we have 2k different possible index

configurations which have to be regarded to find the exact optimum. As we have

at least
∑m

n=0
m!

(m−n)! − 1 index candidates in TIC a naive algorithm solving the ISP

has to evaluate 2
∑m

n=0
m!

(m−n)!
−1

configurations to find the exact solution. 2

6.3.6 Exact Algorithm and Heuristics

The equation of the Index Selection Problem can easily be transformed into a

naive algorithm which finds the exact solution in exponential time.

The algorithm, shown in figure 6.2 is split into three parts. The first loop gen-

erates the total index set TIC by extracting the key and value nodes from the

database operation of the workload W . These nodes are used to generate all pos-

sible index candidates which are unified to the set TIC. In the following step all

configurations are enumerated in CONF by permuting the indexes in TIC. The

last step walks through all configurations in CONF and compares the costs and
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1. TIC = {},W 6= {}
for all o ∈ W {
p = path(o);
k = keys(p);
v = val(p);
TIC = TIC

⋃

ican(p);
}

2. Create CONF by permuting all indexes ∈ TIC
3. Set csolution = nil; costsolution = ∞

for all c ∈ CONF {
ct = costtime(conf)
cs = costspace(conf)
if (ct < costsolution and cs ≤ Maxspace) update csolution and costsolution

}

Figure 6.2: Naive ISP Algorithm finding the exact solution.

the space restriction. The algorithm terminates with the best index configura-

tion csolution for which the costs are minimal for the whole workload. Notice that

the execution of all three steps costs exponential time; therefore, this algorithm

performs poor for larger workloads with various operations.

We have implemented this naive algorithm to determine the exact solution for an

ISP. In order to get a quick suboptimal solution of the ISP we have implemented

the following simple greedy algorithm:

Our heuristics are similar to the approach introduced in [14]. We determine the

best index ij for each database operation oj of the workload independently. Al-

though this is exponential in the number of key nodes of each operation oj this

can be done quickly as most operations use less than a few keys. In a second

step we calculate a profit profit(ij) for each index ij by subtracting the execution

time without indexes from the execution time performed upon ij. The profit states

what we gain in time if the index is realized. The profits of queries are positive

while modifying operations have a negative profit as they lead to time-consuming

index maintenance. For each index ij having a positive profit profit(ij) > 0 we add

all the negative profits of database operations affecting the same index ij. This

way we calculate the total profit of an index by considering the modifying oper-

ations. If after this, the profit is still positive this index accelerates the workload

execution time and may be part of the final index configuration csolution. Indexes

with negative total profit can be dropped as their maintenance costs exceed the

query acceleration.

To include the storage restrictions we divide the positive profits of each index ij
by its storage costs costspace(ij). These ratios are ordered in a descending list. The

final index configuration csolution is created by taking indexes from the top of the

list until the space limit is reached. This means that indexes which have a good

profit with only small space requirements are selected first.
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6.3.7 Evaluation and Experiments

In order to evaluate and judge our auto index approach we set up a testing envi-

ronment with the general architecture illustrated in figure 6.3.

KeyX Index

Storage

Query Optimizer

Xpath Engine

Data Storage (native XDBMS)

Workload
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Tool XDBMS with KeyX Indexes
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Figure 6.3: Architecture of prototypical system

The system consists of two main components: the XML database management

system extended by KeyX indexes and the index selection tool. Our KeyX in-

dex enabled XDBMS [32] contains the three subcomponents data storage, index

storage, and query optimizer. The data storage, which stores the XML data persis-

tently, is realized by the native XDBMS Infonyte DB [55] providing an embedded

XPath query engine. The query optimizer examines the path expression to be

evaluated and checks if a suitable index exists in the index storage.

The index selection tool finds a good index configuration for a given workload

by using ranking heuristics. For the heuristic Hrank we calculate the profit of

each index candidate and choose the most profitable ones until the space restric-

tion is reached. The heuristic Hdiv ranks the indexes by the quotient profit
spacecosts.

The ISP tool communicates with the query optimizer to determine the evalua-

tion costs of a given path expression and an assumed index configuration. After

calculating an optimal index configuration the index selection tool triggers the

creation of this index configuration passed to the index storage.

In order to determine the quality of our index selection tool we set up a sce-

nario with 24 different database operations. The ratio of querying and modifying

operations differs in two workloads: W1 contains only queries whereas W2 has

33% modifying operations requiring the index to be updated. The indexes and

their profits for the workloads W1 and W2 are shown in table 6.1. The optimal so-

lution would suggest eight indexes with a space consumption of 28.3MB. A space

restriction of 10 MB prevents all indexes from being materialized.

We calculated an exact solution of the ISP with exponential complexity by analyz-

ing all configurations. Because this scenario consists of only eight index candi-
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dates and small workloads this can still be done in acceptable time.

n k d p1 p2 p1/d p2/d

I1 1,088 1,337 60.2 248.3 233.4 4.125 3.877
I2 11,057 50,035 975.8 481.8 456.4 0.494 0.468
I3 1,004 1,004 53.2 1,016.1 1,001.2 19.100 18.820
I4 122,305 305,806 8,317.2 411.3 390.6 0.049 0.047
I5 41 1,337 15.1 548.6 454.1 36.331 30.073
I6 147,668 151,268 7,862.4 567.9 552.2 0.072 0.070
I7 51 30,806 3,060.3 1,136.3 824.5 0.371 0.269
I8 150,264 150,264 7,964.0 1,546.4 1,530.6 0.194 0.192

Σ 28,307.6

Table 6.1: Characteristics of the index candidates (n: number of keys, k : number
of return values, d: space consumption in kilobytes, pi : profit of workload Wi)

A comparison between the gained profits of the exact solution and both heuristics

Hrank and Hdiv is presented in table 6.2.

Exact
selected Indices pΣ dΣ

W1 I1, I2, I3, I5, I8 3,841.2 9,068.3
W2 I1, I2, I3, I5, I8 3,675.7 9,068.3

Hrank

selected Indices pΣ dΣ

W1 I8, I3, I5, I2, I1 3,841.2 9,068.3
W2 I8, I3, I2, I5, I1 3,675.7 9,068.3

Hdiv

selected Indices pΣ dΣ

W1 I5, I3, I1, I2, I7 3,431.1 4,164.6
W2 I5, I3, I1, I2, I7 2,969.6 4,164.6

Table 6.2: Comparison of exact solution and heuristics Hrank and Hdiv (pΣ: total
profit, dΣ: total space consumption)
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6.4 Autonomous XML Indexing

Most of the introduced relational systems for solving the ISP like IBM’s DB2 Ad-

visor and the Microsoft Index Tuning Wizard have in common that they do not

operate ’online’. This means that they have an operation phase and a design

phase. The workload might be collected in the operation phase but all ’wizards’

and ’advisors’ have to be activated by a database administrator which decides if

the index suggestions are realized.

The approach of [102] extends the functionality of the relational DBMS DB2 by

automatically creating indexes without the interaction of a DBA. The system is

query driven, meaning that all occurring database operations are stored in the

workload which is periodically analyzed. Indexes are built, dropped, and changed

during query processing so that the underlying database does not have to be

stopped or switched into design mode. Changes of the query patterns are fol-

lowed by changes in the index configuration of the database.

This section introduces our prototypical implementation of an adaptive XML database

management system with KeyX indexes. We present scenarios and performance

measurements in order to evaluate the characteristics and the ability to optimize

itself. Because the indexes are created and dropped autonomously and at run-

time the XDBMS becomes adaptive and optimizes itself in the background.

The basis for this is a heuristic that analyzes the current workload of XML database

operations and finds a good approximation for the Index Selection Problem. This

approach guarantees a high performance over the total life time of a database

without the interaction of a human database administrator.

6.4.1 Architecture and Implementation

The architecture of our testing environment is basically the same as in the previ-

ous experiments as illustrated in figure 6.3. The index selection tool is now trig-

gered periodically during the life-time of a database and tries to find a good index

configuration for a changing workload of collected database operations. There-

fore, we log the database queries passed to the query optimizer in a workload file.

This file serves as input to the index selection tool.

In order to evaluate the introduced approach we have set up different scenar-

ios with sample XML data that is stored persistently in the native XML database

management system Infonyte DB V3. The measurements were performed on an

Intel P4, 2.66 GHz with 256 Megabyte RAM, a 40 Gigabyte hard disk and Win-

dows XP as operating system. All indexes were kept in main memory to exclude

the time to access the hard disk. Of course, the indexes may reside on the hard

disk if their size exceeds the main memory. All measurements include the time to

parse the XPath based database operations, their execution and the creation of

the result set consisting of corresponding nodes from the Infonyte database.
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For the first two measurements we set up artificial workloads based on XMark

data [104]. XMark produces scalable and highly structured data so that a multi-

tude of different and reasonable queries are expressible. The test document has

a size of 11 MB.

Test Scenario 1

For the first set we created two different classes of querying database operations:

The first class A contained person-based queries while the second class B con-

sisted of queries that operate on the items to be sold at the auction. Afterwards,

we constructed several workloads with different distributions of the operations

from A and B. The first workload only had operations from class A while the

ongoing workloads have a growing percentage of operations from B. The last

workload consists analogously of operations from B only. This scenario simulates

a change in the typical usage of the database. All workloads have 100 operations

in total.

In figure 6.4 we present the time measurements for execution of the workloads

without an index and an index that is optimized for the first workload (only op-

erations from A). The figure shows that the index suits well for the first time but

becomes more and more useless because it cannot accelerate the operations from

class B.

Figure 6.4: Test 1: Measurements without an index and with one initial set of
indexes.
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In test 1 we have applied the Index Selection Tool of KeyX to the workloads and

triggered the Index System to create suitable indexes for each workload. In fig-

ure 6.5 we show the results of this test:

Figure 6.5: Test 1: Measurements with adaptive indexes having different space
restrictions.

The first curve of figure 6.5 shows the execution time of the workloads without

restricting the number of established indexes. In this case, each query from

A and B has a covering index leading to a very good overall performance of the

indexes for all workloads. Having no restrictions to the number of indexes is quite

an unrealistic assumption. For this reason we started another run with a space

constraint: Only 75% of the required indexes are allowed to be created. The results

are shown in the second curve of figure 6.5. The index performs excellently for

the workloads where A or B are dominant. For workloads with operations from A

and B the index performs poorer but the execution time of the workloads is still

significantly less than having no indexes.

Test Scenario 2

In the previous scenario we tested how our KeyX index system adapts itself when

changes in the typical usage appear. In the second scenario we evaluated the

consequences of a change in the ratio of querying and modifying operations of a

constant workload.

An inevitable side affect of any index is that changes in the original data must

be followed by the index’s data structure in order to keep them consistent. This

produces additional maintenance costs. Therefore, there is no profit in indexing

data that is modified often.
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For the test we have set up one workload of 100 database operations with 10 differ-

ent path expressions. The first version of this workload consists only of querying

operations; afterwards we increased the percentage of modifying operations. For

this test it makes no difference whether the modification is an insert, update, or

delete because the affected index has to be updated in each case. Figure 6.6

shows the results of this experiment:

Figure 6.6: Test 2: Change of the query/update ratio of the workload’s operations

Like in the previous scenario the first curve shows the execution time of the work-

load without any index. The initial workload consists only of queries so that the

initial index configuration established all 10 indexes.

The second curve shows the performance of theses 10 active indexes if the per-

centage of modifying operations grows. The execution time of the workload in-

creases because modifying operations operate on both the original data and the

index. Finally, the query execution time with the 10 indexes exceeds the execution

time without any index because all indexes have to be maintained.

The third curve shows that an adaptive system with less indexes performs better.

The Index Selection Tool of KeyX switches more and more indexes off, if their

query/update ratio is too small to gain a profit from an index. The difference

between both graphs depends on the costs of updating disturbing indexes. In our

test only few keys were affected by the modifying operations. For other data and

operations the difference may become larger. The graphs do not grow linearly be-

cause the different indexes have a varying influence on the workload’s execution

time.
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Test Scenario 3

The previous two scenarios were constructed to evaluate isolated characteristics

of the KeyX auto index system and operated on artificial data. In order to deter-

mine the overall performance of KeyX we set up a more realistic test using real

XML data from the DBLP project [70] - the well-known computer science bibliogra-

phy. The full DBLP data consists of approximately 500,000 publications, mainly

articles, inproceedings, and books.

Our concrete test data is an extract of the full DBLP of roughly 26 Megabyte

and consists of 586546 element nodes, attribute nodes and text nodes, more pre-

cisely 534 articles, 57000 inproceedings and 1024 proceedings.

For the test we set up 27 different XPath based queries. Each operation o has

one index candidate of class ican1(o) which supports the query to the best. We

created an initial workload by randomly selecting 25 of these database operations.

In general, some operations are selected multiple times and others are not part of

the workload. Additionally, the operations in the workload are assigned as query-

ing or modifying at random using a predefined ratio.

Further workloads are created by a delta algorithm that exchanges one opera-

tion from the workload with a new one that is selected randomly from the set of

27 operations. The total size of the workload stays unchanged.

The delta algorithm guarantees small and random changes in the workload -

both in the contained path expressions and the ratio of querying and modifying

operations. This should simulate a real database application that changes over30

time. Due to the slowly changing workload the ISP Tool is able to adapt the KeyX

index system: The index selection tool is called periodically (every 30 runs) and

finds a new index configuration that suits better for the changed workloads. Of

course, each run of this non-deterministic algorithm generates different results.

The costs to drop and create new indexes are not taken into account because

in realistic scenarios with less fast changing workloads the index selection tool

would be called less frequently and index updated can be done in times when the

CPU is less used. We present the measurements of a representative test run in

figure 6.7.

The first four workloads are executed without any index. Then, the index se-

lection tool is called and creates indexes that accelerate ongoing workloads. The

delta algorithm changes the workload more and more so that the established in-

dexes are performing poorer. Each 30th there is seen an edge in the curve that

indicates that the index selection tool has updated the index configuration. The

sawtooth pattern is typical for this test.
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Figure 6.7: Test 3: Long-running evaluation of the ISP tool that optimizes the
database to a permanently changing workload.

The pseudo code for this test scenario including the delta algorithm is presented

below.

1 /∗∗

2 ∗ Pseudo code fo r scenario 3 :

3 ∗ This method creates , modifies and

4 ∗ executes a workload continuously .

5 ∗ The ISP Tool is cal led to optimize

6 ∗ the workload ’s execution time .

7 ∗/

9 int counter = 0;

10 int ispFrequency = 30;

11 double queryModifyRatio = 0.75;

12 int workloadSize = 25;

13 Workload w =

14 createRandomWorkload ( workloadSize )

16 while ( true ) {

17 // create new database Operation

18 Operation op = new Operation ( ) ;

19 op . path = createRandomPathExpr ( ) ;

20 op . type = getType ( queryModifyRatio ) ;

22 // swap op with random op from w

23 int index =

24 ( int ) random. nextDouble ( ) ∗workloadSize ;

25 w[ index ] = op ;

27 // execute and log the workload

28 w. log ( ) ;

29 w. execute ( ) ;

31 // c a l l ISP too l each ispFreq ’ th run

32 i f ( counter % ispFrequency == 0)

33 ispTool . createSuitableIndexes (w) ;

35 counter++;

36 }



Chapter 7

The XML Index Update Problem

In contrast to relational DBMS, where indexes and index structures are well-

known since decades, indexes in XDBMS are still an active field of research with

no standards established yet. A lot of approaches have been introduced in recent

years dealing with indexes for querying XML data. The problem of updating an

index is a minor focus of most publications. If at all, the authors describe how

their data structure can be updated from a technical point of view. To the best

of our knowledge, the problem whether an XML index i is affected by a modifying

operation o has never been faced before. We call this problem the XML Index Up-

date Problem (XIUP).

In this chapter we give an algorithm that is based on finite automata theory and

decides whether an XPath-based database operation affects an index that is de-

fined universally upon keys, qualifiers, and a return value of an XPath expression.

Although we focus on the KeyX indexing approach the general idea and the algo-

rithms are transferable to other selective indexing approaches for semistructured

data. If an approach is non-selective (it covers all data) it is affected by any mod-

ification.

We present an efficient intersection algorithm for the XPath fragment XP {[],∗,//}

containing path expressions without the NOT operator. The algorithm is based

on finite automata. For the XPath fragment XP {[],∗,//,NOT} containing path ex-

pressions with the NOT operator the intersection problem becomes NP -complete

leading to exponential computations in general. With an average case simulation

we show that the NP -completeness is no significant limitation for most real-world

database operations.

In addition, we provide algorithms for updating our KeyX indexes efficiently if

they are affected by a modification. The Index Update Problem is relevant for all

applications that use a secondary XML data representation (e.g. indexes, caches,

XML replication/synchronization services) where updates must be identified and

realized.
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7.1 Introduction

We assume that an index is selective; i.e. it is defined to accelerate a specific query

and not all queries in general. Index approaches that are not selective (e.g. struc-

tural summaries like the Strong DataGuides ) reflect the whole XML data and are

affected by every modifying operation leading to an update of the index structure.

Therefore, the Index Update Problem for non-selective indexes is trivial. More

about the characteristics of selective and non-selective index approaches can be

found in chapter 4.

We motivate the XML Index Update Problem (XIUP) by two examples that operate

on data from the DBLP project :

Example 19 The index i1 is defined to accelerate XPath expressions of the shape
of query q1:

1 q1 = /dblp/book [ author= ’x ’ ]

Index i1 indexes all book elements by the value of their author child which is
interpreted as a key for this query. In our index approach KeyX all keys are
stored in a search tree offering logarithmic retrieval time. Thus, if an author’s
name is given, we find the corresponding books efficiently.
The XUpdate operation o1 deletes all books that are written by the author Kempa.

1 o1 = <xupdate:remove

2 se lect=/dblp/book [ author= ’Kempa ’ ] >

3 </xupdate:remove>

Obviously one can see that the index i1 is affected by o1 because after executing

o1 there is no book author ’Kempa’ anymore in the data. The key ’Kempa’ has to

be removed from the index to keep it consistent. 2

At first glance, it seems easy to determine the affection by comparing the con-

tained XPath expressions which are equal in this example. But because XPath

expressions may contain more complex navigational steps the decision can be-

come more difficult; this is shown in the following example.

Example 20 Index i2 indexes all child elements of the dblp element which have
a title child that is used as a key.

1 q2 = /dblp/∗[ t i t l e = ’ x ’ ]

The modifying operation o2 deletes all children of all article elements.

1 o2 = <xupdate:remove

2 se lect=/dblp/a r t i c l e/∗/>

3 </xupdate:remove>

First, one can remark that the contained XPath expressions are not equal. Sec-

ond, without any schema information like a DTD or XML Schema we do not know

if the dblp element is allowed to have an article element and that the article

element may have a child named title. Due to the wildcard operator (*) it is not

sufficient to perform a string comparison of both XPath fragments. With one or

more descendant axis (//) this problem becomes even more complex.
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7.2 Intersection of Two Path Expressions

In this section we introduce the XML Index Update Problem formally and reduce it

to the Intersection Problem of two XPath expressions.

An index i covers a query q if the nodes returned by the index structure are the

same as the nodes returned by the database itself. Because the index is defined

upon a return value, a set of keys, and a set of qualifiers, the index may be out-

dated if one of these nodes has changed. The key of an index is a structural and a

content property. Therefore, we have to update the index if a key appears, disap-

pears, or its value changes. Qualifiers and the return values are only structural

properties - their values are not reflected by the index. Therefore, the modifica-

tion of these values does not affect the index. For instance, if we index the title of

books by their autors the index would consist of the values of authors and refer-

ences to title elements. The current value of a title does not influence the index

and can therefore be ignored.

As described in chapter 3, T denotes the set of all XML data; any well-formed

XML document is in T . The evaluation of a path expression p upon an XML do-

cument t ∈ T is denoted by p(t) and returns the nodes of t that are selected by

p. We denote Mod(p) ⊂ T the set of all XML data where p returns a non-empty

result set.

Basically, the index that is defined upon p is affected by a modifying operation p′

if the return sets of the evaluation of p and p′ share at least one mutual node in an

XML data t. Formally, this means that the intersection of p and p′ is not empty:

p(t) ∩ p′(t) 6= ∅

We call this problem the XPath Intersection Problem (XIP). It is relevant for all ap-

plications that use a secondary XML data representation (e.g. indexes, caches,

XML replication/synchronization services) where updates must be identified and

realized.

The work of Miklau and Suciu [81, 82] provide an algorithm for the containment

(subset) relation of XPath expressions detecting if

p(t) ⊆ p′(t).

If the containment holds for both directions then p and p′ are semantically equiva-

lent (p ≡ p′). In theory, the algorithm for containment could be applied to calculate

the existence of an intersection because it holds that

p(t) ∩ p′(t) = ∅ ⇔ p(t) ⊆ p′(t)c.

with p′(t)c denoting the complement of p′(t). The complement p′(t)c is a path ex-

pression that selects all nodes that are not selected by p′(t) for all t ∈ T .
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For three reasons the algorithm from Miklau and Suciu cannot be applied:

• First, the complement of an XPath expression cannot be expressed in gen-

eral using only one path expression. One possibility is to enumerate all

path expressions that build the complement. But because the alphabet Σ of

XML element names is infinite in the XPath fragment of the algorithms this

enumeration has no end.

• Second, for a multitude of path expressions the path expressions that build

the complement may contain the NOT operator that is not supported by the

XPath fragment of the containment algorithm.

• Third, the containment problem is co-NP complete leading to an exponential

runtime of the deterministic implementation of the algorithm. The intersec-

tion problem for the same XPath fragment has polynomial complexity (O(n2))

and our algorithm may even have nearly linear complexity for typical path

expressions.

7.2.1 Formalization

Having a concrete XML data t the intersection problem can be computed easily by

evaluating both p and p′ to the sets p(t) and p′(t). Afterwards, we can calculate the

intersection by comparing all nodes of both sets. This can be done in O(n · log(n))

complexity 1. In the context of databases n is the number of elements that are

selected by the path expressions. For a real application n is usually too big, lead-

ing to prohibitive long computations: for a database storing thousands of books

(e.g. amazon.com) we cannot check whether each book is affected by a modifying

operation or not.

Second, in some cases we do not have a concrete XML data t so that the eval-

uation of the path expressions is not possible. For both reasons the decision

whether the intersection is empty or not has to be made exclusively upon the

path expressions.

Our approach works without any schema like DTD or XML Schema. This is

an important demand for XDBMS. In schemaless XML data element types may

appear or disappear during the lifetime of the database.

The XPath Intersection Problem for schemaless XML data is defined as follows:

1We need 2 · O(n · log(n)) steps to order the nodes of both result sets into ordered lists. With a
linear search (O(n)) we can determine the elements that are contained in both lists.



7.2. INTERSECTION OF TWO PATH EXPRESSIONS 127

Definition 27 (XPath Intersection Problem)

Is there an XML data where p and p′ select at least one mutual node? Or formally,

is the following logic formula satisfiable:

∃ t ∈ T : p(t) ∩ p′(t) 6= ∅

with p, p′ ∈ Plrel
∪ XP

{[],∗,//}
rel ∪ XP

{[],∗,//,NOT}
rel

1. 2

We abbreviate this formula by p ∩ p′ 6= ∅.

Next, we want to show that the keys and qualifiers of an expression in XP {[],∗,//}

do not influence the intersection. We use the function linearize : XP
{[],∗,//}
abs → Plabs

as defined in definition 9.

Theorem 1 For p, p′ ∈ XP {[],∗,//} it holds that:

p ∩ p′ 6= ∅ ⇔ linearize(p) ∩ linearize(p′) 6= ∅.

The theorem states that two path expressions from XP {[],∗,//} have a non-empty

intersection if and only if their linearized path expressions have a non-empty

intersection.

PROOF (by contradiction):

1) Let us assume that linearize(p(t)) ∩ linearize(p′(t)) 6= ∅ and p(t) ∩ p′(t) = ∅.

We illustrate the idea of this proof by a simple example in figure 7.1. Because

the linearized expressions have an intersection there is at least one node ñ that is

selected in an XML data t̃. From the root node of t̃ there is a path to ñ consisting

of an arbitrary sequence of nodes root, n1...nr, ñ. The linearized path expressions

do not request any conditions to these nodes while p and p′ do.

Because p and p′ contain no negations (NOT-operator not allowed in this frag-

ment) there are two XML data t ∈ Mod(p) and t′ ∈ Mod(p′) with p selecting at least

one node n in t. The node n′ of t′ is selected analogously by p′. The nodes n and

n′ have the same path from the root because the linearized path expression select

both ñ.

In t and t′ all nodes of the paths root, n1...nr, n and root, n1...nr, n
′ fulfill the condi-

tions that are expressed in p respectively p′

Now we construct a data ˜̃t that extends t̃ by unifying all nodes of t, t′ and t̃.

This way,˜̃t fulfills the qualifiers and key conditions of both p and p′.

But then p(t) ∩ p′(t) cannot be empty because both path expressions select ñ; this

is a contradiction to the assumption.

1The union of the three fragments Pl, XP {[],∗,//} and XP {[],∗,//,NOT} is XP {[],∗,//,NOT}. We list the
three fragments separately to show that p and p′ can be of any of them.
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Example 21 :

p = /a/b[c]//d[x > 5] → linearize(p) = /a/b//d

p′ = /a/b/d[e and x < 4] → linearize(p′) = /a/b/d 2
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Figure 7.1: Example to illustrate the idea of the proof

2) Conversely, let us assume that linearize(p(t))∩linearize(p′(t)) = ∅ and p(t)∩p′(t) 6=

∅. Because qualifiers and key conditions act both as filters cutting down the result

sets of p and p′ they can never generate an intersection if the unfiltered sets have

no intersection. �

The theorem holds because we can unify the nodes that fulfill the qualifiers. For

instance, let p = /a/b[x < 2] and p′ = /a/b[x > 2]. If the selected b node has two x

nodes with the values 1 and 3 then both p and p′ select b.

This is not possible if key comparisons touch the selected node; for instance

p=/a[. > 5] and p′ = /a[. < 5] have no intersection because the value of a cannot

be larger and smaller than 5 simultaneously. First, by the definition of XP {[],∗,//}

those path expressions cannot be expressed and second, they are still decidable

if we check their satisfiability as described in 7.3. The same holds for attributes

which are not part of the XPath fragments of this work.

As we have shown the XIP for XP {[],∗,//} is equivalent to Pl. Therefore, it suffices to

define an algorithm deciding the emptiness of the intersection of two expressions

from Pl.
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7.2.2 Automaton for Mod(p)

The general idea of the intersection algorithm is to build two finite automata A

and A′ with A accepting Mod(p) and A′ accepting Mod(p′) with p, p′ ∈ Plabs
two ab-

solute linear path expressions.

Having A and A′ we build the product automaton B . The emptiness of the inter-

section of p and p’ is a property of B.

Unfortunately, finite automata are defined on the basis of a finite alphabet. In

contrast, path expressions operate on XML data with an infinite alphabet be-

cause the node labels are not limited.

In section 3.2.1 we showed that a linear path expression p ∈ Plabs
can be trans-

formed into a regular expression r ∈ REGΣ,α with Σ = Σ(p) and α 6∈ Σ an arbitrary

new symbol.

Lemma 3 For any regular expression r ∈ REGΣ,α, respectively its language Lr, one

can construct a finite automaton A that decides whether an input string is a word

of Lr or not. 2

The proof of the lemma is omitted here because it is basic knowledge in theory of

finite automata. The proof can be found, for instance, in [52].

When reading an XML data as input for a finite automaton we have the following

problem: The automaton expects a string of several symbols in a defined order.

In tree-like XML data a node may have several children so that the next symbol

(element label) is not defined unambigiously.

Therefore, we define a function pathleaf : T → P(string) that extracts all paths

(sequences of nodes) from the root node to each leaf element node in the XML

data. Text nodes are ignored as they are not affected by linear path expressions.

The paths are returned as strings built from the labels of the contained nodes.

The function is defined as follows:

Definition 28 (Function pathleaf)

pathleaf(t) = path(t.root)

path(n) =

{

n.label : n.children = ∅

n.label + ”; ” + {path(c)|c ∈ n.children} : otherwise

with t ∈ T and n ∈ N ; + denotes the concatenation of strings with a + ”; ”{b, c, d} =

{a; b, a; c, a; d}. The semicolon is a delimiter used to distinguish different element

label (e.g. a; b 6= ab). 2
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Example 22 The XML data t1 with t1 =

1 <a>

2 <b>

3 text

4 </b>

5 <c>

6 <d/>

7 <c>

8 </a>

has the following paths to leaf element nodes: pathleaf(t1) = {a; b, a; c; d}. 2

Lemma 4 n.label with n ∈ t.nodes appears at least once in a path ∈ pathleaf(). 2

PROOF (by contradiction)

We assume that n is a node of t not appearing in any path in t. Because pathleaf(t)

contains the paths to leaf nodes, n cannot be a leaf node. Therefore, n must have

at least one child node c. c or one descendant of c is a leaf node because t is finite

and a tree without circles. This leaf is called l. Because each node in t has exactly

one parent, n is in the path from l to t.root and reverse from t.root to l. �

Now we are able to extract all paths from the root node to leaf nodes as strings

of symbols ∈ Σt = {n.label|n = t.nodes}. But because Σt may contain symbols that

are not in Σ(p) the automaton that is defined by the regular expression REGΣ,α

has no transitions for symbols s ∈ Σt\Σ(p).

With a further function rename : P(string) → P(string) we change all symbols

s ∈ Σt\Σ(p) of the strings in pathleaf to α.

Definition 29 (Renaming function)

rename(S,Σ, α) = {rename(s)|s ∈ S}

rename(s) = renames(s1) + renames(s2) + ... + renames(sn)

renames(s) =

{

s : s ∈ Σ

α : otherwise
2

with S a set of strings, s one string consisting of the sequence of n symbols

s1,s2...sn.

Technically, the function rename is a homomorphism that substitutes a particu-

lar string for each symbol.

The resulting strings have an alphabet restricted to Σ(p) ∪ {α} and can be pro-

cessed by a finite automaton. Next, we show that an XML data t is in Mod(p) if

and only if at least one path of t is a word of Lr. Formally this means:



7.2. INTERSECTION OF TWO PATH EXPRESSIONS 131

Theorem 2

t ∈ Mod(p) ⇔ ∃ tp ∈ rename(pathleaf(t), Σ(p), α) with tp ∈ Lr

PROOF If there is a t ∈ Mod(p) then there is a node n ∈ t.nodes with n ∈ p(t).

Because of lemma 4 there is a path tp ∈ pathleaf(t) containing n. As a selected

node, n fulfills the conditions expressed by the path expression p; the equivalent

regular expression will therefore match tp. Conversely, if t /∈ Mod(p) there is no

node in t.nodes that is selected by p. Therefore, the regular path expression defined

by p matches no String in pathleaf(t). �

We have shown that the question whether a linear path expression p selects a

node in an XML data t is solvable with the help of formal languages and automata

theory. In principle, this approach can be used to evaluate path expressions (see

also section 2.3.3). But because the numbers of paths pathleaf(t) grows linearly

with the number of nodes this approach is not very efficient. Surprisingly, we will

never have to process any XML input string to decide the intersection of two path

expressions!

In the next part we show how a finite automaton that accepts Lr is built:

A finite automaton is defined by its states and transitions. The transitive closure

of a state s is the set consisting of all states that are reachable from s by using

the transitions recursively. See [52] for details about finite automata theory.

Definition 30 (Automaton accepting Mod(p))

We build a finite automaton A accepting Mod(p) as follows:

A is a tuple (Q,Σ, σ, q0, F ) with

• Q = NODES(p) a set of states,

• Σ = Σ(p) ∪ Σ(p′) a finite alphabet consisting of all node labels of p and p′.

• σ is a function Q × Σ → Q defining the set of transitions.

• q0 is the initial state whereas

• F is the set of final states.

For each node n ∈ nodes(p) we create a corresponding state qn. A further state q0

is used as starting point for A.

1. ∀x ∈ nodes(p) : x.children = y ∧ x.label 6= ∗, A has a transition (qy; x.label)

→ qx

2. Otherwise, ∀x ∈ nodes(p) : x.children = y ∧ x.label = ∗, A has |Σ(p) ∪ α|

transitions (qy; s) → qx for all s ∈ Σ(p) ∪ α.
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3. ∀x ∈ nodes(p) : x.descendant = y , A has |Σ(p) ∪ α| transitions (qy; s) → qy for

all s ∈ Σ(p) ∪ α. These transitions build loops on qy

4. A has one transition (q0, e.label) → qe with q0 the bottommost state that has

no incoming transition.

These transitions lead to a nondeterministic finite automaton. The terminal state

is qp.root. The initial state is q0. 2

Example 23 The linear path expression p = /a/ ∗ //c//d leads to an automa-

ton A with Q = {qa,q∗,qc,qd,q0} and σ = {t0 ... t14 }. The alphabet is Σ(p) = {a, c, d}

The following transitions are built:

t0 = (q0; ”d”) → qd,

t1 = (qd; ”a”) → qd,

t2 = (qd; ”c”) → qd,

t3 = (qd; ”d”) → qd,

t4 = (qd; ”α”) → qd,

t5 = (qd; ”c”) → qc,

t6 = (qc; ”a”) → qc,

t7 = (qc; ”c”) → qc,

t8 = (qc; ”d”) → qc,

t9 = (qc; ”α”) → qc,

t10 = (qc; ”a”) → q∗,

t11 = (qc; ”c”) → q∗,

t12 = (qc; ”d”) → q∗,

t13 = (qc; ”α”) → q∗,

t14 = (q∗; ”a”) → qa,

t15 = (q0; ”a”) → q0,

t16 = (q0; ”c”) → q0,

t17 = (q0; ”d”) → q0,

t18 = (q0; ”α”) → q0. 2

Figure 7.2: Automaton accepting Mod(p) with p = /a/ ∗ //c//d

For an XML data t A processes all strings of the set rename(pathleaf(t)) bottom-up,

i.e. from a leaf node to the root. A visual representation of A is on the right side

of figure 7.2. The initial state is q0; qa is the one final state. Please note that the

transitions are not deterministic (e.g. t2, t5). Analogously to tree-automata the

finite automaton processes the XML data bottom-up. Basically, it is possible to

build an equivalent automaton that processes the input top-down.
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Now we are able to build two automata A and A′ that accept Mod(p) and Mod(p′)

independently. A standard product automaton B of A and A′ accepts if and only if

both A and A′ accept. The reader is referred to [52] on the definition of a product

automaton. Informally, one can say that B simulates the simultaneous execution

of A and A′. Based on the product automaton the following algorithm checks the

emptiness of the intersection of p and p′:

1. p = linearize(p);
2. p′ = linearize(p′);
3. create automaton A accepting Mod(p);
4. create automaton A′ accepting Mod(p′);
5. create product autom. B accepting Mod(p) ∩ Mod(p′);
6. < q0A

× q0
A′

> = initial state of B;
7. < qFA

× qF
A′

> = final state of B;
8. CLOSURE = transitive closure of < q0A

× q0
A′

>
9. if ( < qFA

× qF
A′

>∈ CLOSURE) return true
else return false;

Figure 7.3: Pseudo code of the algorithm that detects the intersection

In the first two steps, we linearize the path expressions because eventually ex-

isting qualifiers do not affect an intersection. The algorithm creates an automa-

ton A accepting all XML data where p returns non-empty result sets in step 3.

Analogously, step 4 creates an automaton A′ for path p′. In step 5 the product

automaton B of A and A′ is created. B accepts all XML data where both path

expressions p and p′ evaluate to a non-empty result set. In the last steps of the

algorithm it is checked if there is a path from the initial state to a final state of

B by calculating the transitive closure of the initial state of B. If this path exists

there is an XML data t that is both accepted by A and A′; this implies that the

intersection is not empty for this t.

Please note that the emptiness of the intersection is a property of the product

automaton. It is determined without processing any concrete XML input.

When we build a product automaton the complexity of the algorithm becomes

quadratic (O(|STATESA| · |STATESB |)). This is because the states of B are built

by combining all states of A and B. An improved algorithm avoids the construc-

tion of the full product automaton by a lazy evaluation of reachable states in A

and A′. This optimized algorithm can be found in [52] and performs better in

general (see section 7.5) but has a quadratic worst case complexity, too.

7.3 NP-Completeness for Path Expressions with NOT

The XPath Intersection Problem for the XPath fragment XP {[],∗,//,NOT} including

the NOT-operator is more complex. We call this special case of the problem XIPNOT.

With the NOT-operator it is possible to express contradictory XPath expressions
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like

p3 = /a[b]; p4 = /a[NOT(b)].

Expression p3 selects all a nodes that have a b child while p4 selects a nodes that

have no b child. Although both expressions select a nodes they are mutually ex-

clusive. This implies that p3 and p4 can never share one same node.

Theorem 3 The XPath Intersection Problem for the fragment XIPNOT is NP-complete.2

PROOF First, we show that XIPNOT is NP-hard, i.e. every NP-complete problem can

be reduced on XIPNOT in polynomial time. We show the NP-hardness by reducing

3-SATISFIABILITY (3SAT) [3, 21]. It was proven in 1971, by Cook, that 3SAT is

NP-complete.

Definition 31 3SAT is defined as follows: Given a Boolean formula F = F1∧...∧Fk,

Fj = zj,1 ∨ zj,2 ∨ zj,3 and the literals zi,j ∈ {x1, x1, x2, x2, ..., xr , xr, }.

Question: Is there an assignment of true/false values to the r variables x1, ..., xr

so that F can be satisfied? 2

F is in 3-conjunctive normal form (3-CNF) because each clause has exactly three

distinct literals. The basic idea of the reduction is to create two formulas FA and

FB that are always satisfiable independently. By the construction of FA and FB

we guarantee that they are only satisfiable simultaneously if and only if F is sat-

isfiable. Having the two formulas we create two expressions p, p′ ∈ XP {[],∗,//,NOT}

that have an intersection if and only if F is satisfiable. The reduction is done in

polynomial time. We build FA and FB as follows:

1) We take r new variables a1, a2, ...ar. FA is structured like F with the differ-

ence that all negated xis are replaced by a corresponding negated ai variable.

Formally, this means that FA = F̃1 ∧ ... ∧ F̃k with F̃j = ˜zj,1 ∨ ˜zj,2 ∨ ˜zj,3 and

˜zi,j =

{

xl if zi,j = xl or

al if zi,j = xl

This way, FA is trivially satisfiable by assigning true to all remaining (non-negated)

x-variables and false to all (negated) a-variables.

2) The second formula FB is created as follows:

FB =
(

(x1 ∧ a1) ∨ (x1 ∧ a1)
)

∧ ... ∧
(

(xr ∧ ar) ∨ (xr ∧ ar)
)

FB is satisfiable if and only if every xi = ai independent of whether they are both

true or both false.
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Now we build two path expressions p and p′ corresponding to FA and FB as follows:

Both p and p′ have the same prefix, for instance /a. The formulas are attached

as a qualifier to the a node. The logical operators ∧ and ∨ are translated to AND

and OR operators from XPath. Each positive variable of FA respectively FB is in-

terpreted as the existence of a matching child element. Each negative variable is

covered by a NOT operator.

Because FA and FB are always satisfiable individually Mod(p) and Mod(p′) are

not empty.

If p(t)∩ p′(t) 6= ∅ it means that there is an a node that fulfills the two qualifiers of p

and p′. But this means that FA and FB are satisfied simultaneously. Hereby, the

reduction 3SAT ≤pol XIP is finished; the conversion from a Boolean formula to a

path expression can be done in polynomial (even linear) time.

Finally, XIPNOT is in NP because a nondeterministic Turing-machine may guess a

satisfying assignment if it exists. Because the XIPNOT is NP-hard and belongs to

NP it is NP-complete. �

7.3.1 Algorithm and Complexity of XIP
NOT

Our algorithm solving XIPNOT for two path expressions p, p′ ∈ XP {[],∗,//,NOT}is

based on the introduced algorithm checking the intersection of linearized path

expressions (see figure 7.3). If the linearized path expressions of p and p′ have

an intersection we now have to check if their additional qualifiers and keys are

mutually exclusive. This implies that we have to check the satisfiability of p ∧ p′.

Because of the NP-completeness of XIPNOT this step has an exponential worst

case complexity: every permutation of true/false that is assigned to the variables

in the qualifiers has to be generated and checked if it satisfies p ∧ p′. If we find

no satisfying configuration the intersection remains empty.

The algorithm uses a simple optimization step that reduces the number of vari-

ables that have to be checked: A variable may only be responsible for mutual

exclusiveness if it appears negated and non-negated in the set of qualifiers of p

and p′. Therefore, we can remove all variables from the expressions that are only

negated or non-negated. This simple optimization has a similar aim as the Davis

Putnam algorithm [23] for deciding 3SAT. The extended algorithm is presented in

figure 7.4:

In the first step the algorithm checks whether the linearized path expressions

have an intersection. If this is not the case the algorithm stops and returns false.

In lines 2 to 4 we reduce the numbers of relevant variables by removing the triv-

ial ones. The function getNegVars returns all variables from a path expression

that appear negated. The function getPosVars is defined vice versa. In step 5 the

algorithm iterates over all possible true/false values for the remaining variables
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1. if (!intersection(linearize(p), linearize(p)′)) return false;
2. NEG = getNegV ars(p) ∪ getNegV ars(p′);
3. POS = getPosV ars(p) ∪ getPosV ars(p′);
4. NonTrivialV = NEG ∩ POS;
5. forEach permutation of vars ∈ NonTrivialV

if (is satisfiable(p ∧ p′,vars)) return true;
6. return false;

Figure 7.4: Pseudo code of the intersection algorithm for XIPNOT

and checks their satisfiability. If we find no satisfying configuration the algorithm

returns false because the expressions are mutually exclusive.

The optimization steps lead to a substantial acceleration as we show in the next

section. Anyhow, the algorithm still has an exponential complexity leading to

exhaustive computations in general. In the context of real world’s XPath based

database operations with a limited number of variables and qualifiers the satisfia-

bility of path expressions can be decided in acceptable time: With an average case

simulation (see next section) we determined an expected value of 155 milliseconds

for testing the satisfiability of XPath expressions with 100 qualifiers and up to 150

variables.

7.4 Evaluation

In this section we present performance measurements for the introduced algo-

rithms that decide the intersection and satisfiability of two path expressions. The

implementations were done in Java; the tests were performed on a Pentium 4 with

2.66 GHz and 1 GB main memory.

7.4.1 Evaluation of Intersection

The first evaluation tests the intersection algorithm of figure 7.3 for path expres-

sions p, p′ ∈ XP {[],∗,//}. We increased the length of the path expressions p and p′

from 1 to 20; the location steps of the expressions were created randomly from

a finite alphabet Σ. The time measurements include the parsing of the path ex-

pressions, the creation of the three automata and the analysis whether the final

state is reachable. In order to obtain stable values we executed the algorithm

some thousand times with path expressions of the same length. The measured

total time is divided afterwards to get a stable average execution time for one run.

As the diagram in figure 7.5 shows the execution time of the optimized algorithm

increases almost linearly.

The optimized algorithm that avoids the construction of the full product automa-

ton has an average runtime of less than 1 millisecond for the largest path expres-

sion.
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Figure 7.5: Measurements of the intersection algorithm

7.4.2 Evaluation of Satisfiability

In a second scenario we evaluated the more complex algorithm checking the sat-

isfiability of two path expressions p, p′ ∈ XP {[],∗,//,NOT}. The algorithm has an

exponential runtime because all variables must be checked in order to satisfy

the qualifiers. In order to show that the exponential complexity is no significant

limitation in the database context we determine the expected value for the times

expenses for typical operations with an average case simulation.

In general, the expected value EX of a random variable X : Ω → R is

EX =

∫

ω∈Ω
X(ω) · p(ω) dω

with Ω = XP {[],∗,//,NOT} the set of all path expressions, X(ω) is the runtime of the

algorithm for a specific path expression ω ∈ Ω and p(ω) its probability.

There are three variables for a path expression: the length lp of the path linearize(p)

which affects the intersection algorithm. Because intersection is determined very

quickly (see previous experiment) lp has only a little effect. The second and third

variables are the number of qualifiers and element names in a path expression.

The element names correspond to the variables in 3SAT. Because Ω is infinite in

general we have to restrict it to a reasonable boundary: We think that 100 quali-

fiers in a path expression provide a realistic upper value for database operations

(comparable to a SELECT statement with 100 WHERE clauses in SQL). Second,

because we have no distribution function for the probabilities of path expressions

we assume an equal distribution.
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With these assumptions and the fact that Ω is discrete the expected value EX can

be approximated by the average value:

EX ≈
1

|Ω|

∑

ω∈Ω

X(ω)

In the experiment we iterated the number of variables in the qualifiers up to

n = |Ω| = 150. With a probability of 40% a variable is used in negated form in a

qualifier. This means that nearly half of the variables are negated - this is close

to a worst case scenario.

Having very few variables means that only few variables have to be permuted.

If we increase the number of variables the execution time increases exponentially

up to a certain point where the optimization begins to take effect: for a bigger

number of variables in p and p′ it becomes more and more likely that some of

them are only used non-negated or negated. These variables are not regarded

when checking the satisfiability.

These measurements are near to some work evaluating SAT problems (e.g. [84]);

the major difference is that we use Boolean formulas in XPath syntax. We present

the measurements in figure 7.6.

Figure 7.6: Measuring the satisfiability for a path expression with 100 qualifiers

For this experiment we measured an expected value for the duration of the algo-

rithm of 155 milliseconds - this is the time that is spent on average to determine

whether two path expressions are satisfiable. We think that this is still acceptable

for most database applications - especially if the complexity of typical database

operations does not come close to 100 qualifiers.
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7.4.3 Evaluation of Satisfiability II

In the previous experiment we changed the numbers of variables to 100 qualifiers.

In the next experiment we increased the number of variables and the number of

qualifiers so that the path expressions become more and more complex. The vari-

ables and qualifiers have a ratio of 1 : 2 - this is the worst case as you can see in

figure 7.6. For this ratio the optimization has only a restricted influence. Because

the XIPNOT is NP-complete the deterministic algorithm has an exponential com-

plexity leading to more exhaustive computations of up to 420 milliseconds. But

also in this scenario the expected value is significantly less: For expressions with

up to 100 qualifiers and 50 variables we have an expected value of 36 milliseconds.

The measurements of this experiment are shown in figure 7.7.

Figure 7.7: Measuring the satisfiability for expressions of growing complexity

With the three experiments we showed that the intersection algorithm for the

XPath fragment XP {[],∗,//} is very efficient. For the fragment XP {[],∗,//,NOT} the

check of satisfiability requires exponential expenses. Because the expected values

for the runtime of the algorithms are acceptable for path expressions in database

environments they can still be applied.

7.5 Related Work

In this section we give an overview over related work on analyzing the character-

istics of path expressions. To the best of our knowledge the intersection of two

XPath expressions (p ∩ p′) has not been treated yet. The intersection of p and p′

is the set that contains all XML nodes that are selected both by p and p′. In the

context of indexes in XML databases the emptiness of the intersection of p and p′

is a major issue when updating the index.
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7.5.1 XPath 2.0

In XPath2.0 [132] it is possible to express the intersection using the operator

intersect that intersects the result sets of two path expressions. But because

this method operates on the result set we cannot check the intersection without

any concrete XML data. Additionally, the evaluation of the two path expressions

may take prohibitively long for huge XML data. In contrast to the intersect

operator of XPath 2.0 our algorithm operates only on the path expressions them-

selves.

7.5.2 Containment and Satisfiability of XPath Expressions

The containment relation of XPath expressions is analyzed in a multitude of re-

cent work [24, 74, 81, 82, 90, 106, 117]: Deutsch and Tannen [24] analyze the

complexity of the containment relation for some XPath fragments. They give tight

NP bounds for the disjunction-free fragment and show that containment remains

decidable for more complex fragments.

The work of Miklau and Suciu [81, 82] provides an algorithm deciding the con-

tainment relation for two path expressions without accessing concrete XML data.

The algorithm can also be used to check semantic equality if containment holds

for both directions. Although possible in theory, we cannot use this algorithm to

check the intersection (see Introduction).

Neven and Schwentick [90, 106] extend the work of Miklau and Suciu by ana-

lyzing the containment relation in the presence of disjunction and DTDs. They

prove that the containment problem is hard for EXPTIME and DTDs complicate

the problem.

A similar work is done by Wood [117] analyzing the decidability of the contain-

ment problem under DTD constraints.

In the context of XML indexes the containment relation is important for the query

optimizer in order to find appropriate indexes for a given query. In general, an

index covers all queries with a result set being a subset of the query that defined

the index.

The satisfiability of path expressions is evaluated by Hidders [51] showing that

it is NP-complete for various XPath fragments. The work [68] proves that the

satisfiability of a path expression can be determined in polynomial time for some

cases in the absence of a DTD or XML schema.

In contrast to [51, 68] we do not ask for the satisfiability of one XPath expression.

Instead, we have two path expressions that are satisfiable independently. If we

allow the NOT operator the question is whether they are both satisfiable with the

same assignments of variables.
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7.6 Updating KeyX Indexes

The intersection algorithm decides if a path expression of an update operation

affects an index that is defined by the linear path expressions to its keys, quali-

fiers and the return value (see section 5.1.1). Therefore, the intersection has to be

checked for all these path expressions because an affection may be caused by any

of them. This section refines the update problem for XML indexes and describes

how the underlying search trees that contains the keys and references to nodes

in the XML data are maintained.

As defined in definition 20 in section 6.3 a database operation o is a tuple (p,type,i)

consisting of a path expression p ∈ XP {[],∗,//} , a type ∈ {query, insert, change, delete},

and optional information i containing a new node n and/or a value vn if the oper-

ation is an insert or a change. It may happen that the path expression p selects

multiple nodes p1...pm. In this case the database operation is executed for each of

the selected node. For instance the path expression //article[year = 2005] selects

a large set of article nodes. If the operation is a delete all of theses nodes are

removed. If o is an insert the new node n (with an optional value vn) is added to

each of the nodes p1...pm.

In the following algorithms we concentrate on atomic database operations that

operate on exactly one node n selected by p. If p selects more than one node, the

algorithms are called for each pi ∈ {p1...pm}.

The following atomic modifying database operations are supported:

• insert: insertion of a new node n that may have an optional value vn,

• delete: deletes a node n,

• change: changes the value vn of an existing node n.

If a node n is deleted its value does not matter because it cannot exist without n.

Before deleting a node n that is selected by p we have to delete all descendants

of n. This is done by calling a delete with the descendant operator added to p.

For example, if p = //book[year = 1999] deletes all books from a given year all ele-

ments that are attached under book are also removed. An index that covers the

authors of books is therefore affected and must remove the 1999 entries. Before

deleting the books we first remove all its descendants by calling a delete with

p′ = p + //∗ = //book[year = 1999]//∗.

A replace operation that exchanges one node n by another node m is executed

in two steps: A deletion of the n node followed by an insertion of the m node.

Therefore, we can concentrate on update operations that handle only one node at

a time.
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7.6.1 Update Algorithm

The first step of the algorithm checks if an index affection has happened or not

and calls the corresponding sub-routines. The intersection is analyzed for p and

all path expressions that define the established indexes. If the operations is an

insert or delete, the keys, qualifiers and the return value of each index must be

checked because these two operations change the structure and the content of

the XML data. A change operation changes only the content, therefore only the

keys have to be checked whether an existing value has been modified. The pseudo

code in listing 7.8 shows the first step:

1 f o ra l l i in indexes { //check a l l indexes

2 K = i . getKeyPaths ( ) ; //extract the path expressions

3 Q = i . getQualiferPaths ( ) ; //that define an index

4 v = i . getReturnPath ( ) ;

6 i f ( type==insert | | type == delete ) {

8 i f ( type == insert )

9 execute o on XML data ; // modify the XML data

11 f o ra l l key in K{ //check a l l keys

12 i f intersection ( key , p ) !=ø

13 maintain ( type , i ,p , ” keyAff ” ) ;

14 }

15 f o ra l l qual in Q{ //check a l l qua l i f i e rs

16 i f intersection ( qual , p ) !=ø

17 maintain ( type , i ,p , ” qualAff ” ) ;

18 }

19 i f intersection ( v , p ) !=ø //check the return value

20 maintain ( type , i ,p, ” re tA f f ” ) ;

22 i f ( type==delete )

23 execute o on XML data ; // modify the XML data

24 }

26 else i f type==change ) {

27 f o ra l l key in K{ //check a l l keys

28 i f intersection ( key , p ) !=ø

29 maintain ( type , i ,p , , ” keyAff ” ) ;

30 }

31 execute o on XML data ; // modify the XML data

32 }

33 }

Figure 7.8: Pseudocode of the update algorithm

Besides maintaining the indexes the modifying database operation must be per-

formed on the underlying XML data as well. If o is a delete or a change this

operation is performed after maintaining the indexes because we need access to

the information that is going to be deleted/changed. For an insert o is performed

before maintaining the indexes because we need the context of the new node.
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7.6.2 Index Maintenance Algorithms

In the following we introduce the three algorithms that maintain the index’s

search tree after an insert, delete or change operation. These methods are called

with the path expressions p, an index i that is affected by p and the optional new

node n and/or its value vn. Even if an index is affected it may be possible that

it stays unchanged: If a delete operation addresses a non-existing node there are

no entries in the index to be deleted. All relevant entries have to be found and

maintained by the algorithms. For adding, removing or changing a value in a

search tree like the B+-Tree we refer to the literature, e.g.[26].

Insert Operation

Given a particular node n (that is reached by p) to be inserted we create a node set

that consists of n plus its corresponding keys, qualifiers and return value. This

is done by calculating the relative path expressions from p to the keys k1...kn, the

qualifiers q1...qm and the one return value v. These path expressions are evaluated

on n leading to a set of nodes kn1 ...knn representing the keys, respectively qn1...qnm

representing the qualifiers and vn representing the return value. Because the

index is affected, one of the nodes {kn1 ...knn} ∪ {qn1...qnm} ∪ vn is the node n. If

one path expression has an empty result set the corresponding node is denoted

with λ.

If n shall lead to a new entry in the index, all qualifiers must be fulfilled. Formally

this means that all qn1...qnm 6= λ. If this is the case the tuple of the keys and the

return value is inserted into the index.

Example 24 An XML data t consists of two books and one article. One book

node has no children; the second book has one isbn child. The article has one

author child. An insert operation with the path expressions p = /dblp/book adds

an author node to both books. The corresponding DOM-trees and the XUpdate

statement are presented in figure 7.9.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate ”>
2 <xupdate:append se lect=”/dblp/book” >
3 <xupdate:element name=”author”>Jim</xupdate:element>
4 </xupdate:append>
5 </xupdate:modifications>

Figure 7.9: Adding an author node to the book nodes.



144 CHAPTER 7. THE XML INDEX UPDATE PROBLEM

The one article node remains unchanged. Let us assume that an index i is de-

fined by the path expression p′ = /dblp/book[isbn][author =′ x′]. The path expression

p selects the two book nodes with the id 2 and 4. Starting from p the qualifiers

are reached by /dblp/book/isbn − /dblp/book = /isbn and evaluated on the nodes 2

and 4 return the node 6 (the book with the id 2 has no isbn child). Analogously

the keys are evaluated to the nodes with the ids 7 and 8. The path to the return

values is the self axis (.) and therefore 2 and 4 are the two return values. The

corresponding node sets N1 and N2 are:

N1 = {7} ∪ {λ} ∪ 2, N2 = {8} ∪ {6} ∪ 4.

Because the first node set N1 has a λ value for a qualifier the corresponding entry

is not part of the index. The second node set has no λ values therefore a tuple

consisting of the value of the key (8) and a reference to the return value (4) is

inserted to the index i. 2

A formal definition of the insert algorithm can be found below. The algorithm

stops for a given n ∈ p(t) whenever it is sure that a new entry for i is not necessary.

Given:

a) Database operation o = (p, insert, i) with i = (n, vn),

b) Affected index i with declaration D = (K,Q, v) ,

c) XML data t.

Output: Index consistent to t after execution of an insert operation o

Algorithm:

1 ∀n ∈ p(t)

2 keyNodes = ∅;

3 qualNodes = ∅;

4 ∀q ∈ Q

5 qualPath = (q − n);

6 qualNode = qualPath(n);

7 if (qualNode == λ) break;

8 else qualNodes = qualNodes ∪ qualNode;

9 valPath = (v − n);

10 returnNode = valPath(n);

11 if (returnNode == lambda) break;

12 ∀k ∈ K

13 keyPath = (k − n);

14 keyNodes = keyNodes ∪ keyPath(n);

15 if (K == ∅) break;

16 else i.add(keyNodes.value, returnNode);

17 return i;
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Delete Operation

For a delete operation that removes a node n from the XML data t we will analo-

gously determine the node set {kn1 ...knn}∪{qn1...qnm}∪vn containing the qualifiers,

keys and the return value. If p selects no nodes at all, n and all other nodes are λ

and there is no entry affected in the index i to be maintained.

Having the node set {kn1 ...knn} ∪ {qn1 ...qnm} ∪ vn we now look at the type of affec-

tion: If a qualifier is affected the tuple of the keys and the return value can be

immediately deleted because all qualifiers must be fulfilled by each entry of the

index. Analogously, if p selects a return value of the index, the tuple is removed,

because each entry need a reference to the return value. If p affects a key of i it

makes a difference whether i is a single-key or multi-key index: For a single-key

index the corresponding entry can be deleted because each entry needs a key. For

a multi-key index the deleted key value is changed to null without affecting the

other keys or the return value. A reorganization of this entry might be necessary.

Example 25 An example is illustrated in figure 7.10.

1 <xupdate:modifications xmlns:xupdate=” http://www.xmldb. org/xupdate”>
2 <xupdate:remove se lect=”/dblp/book/isbn ”/>
3 </xupdate:modifications>

Figure 7.10: Deleting the isbn node.

The one existing isbn node n with the id 6 is removed by the a delete operation

with the path expression /dblp/book/isbn. The intersection algorithm indicates that

a qualifier of an index i defined by the path expression p′ = /dblp/book[isbn][author =′

x′] is affected. After building the node set N3 = {8} ∪ {λ} ∪ 4 one can see that a

qualifier is λ. Therefore, the corresponding entry must be removed from i. The

removal of n in the XML data is performed after maintaining all affected indexes.

This is done as the last step because we need n to determine its corresponding

nodes. 2

A formal definition of the delete algorithm can be found below.
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Given:

a Database operation o = (p, delete, i) with i = (n, vn),

b Affected index i with declaration (K,Q, v) ,

c XML data t.

Output: Index consistent to t after execution of a delete operation o

.

Algorithm:

1 ∀n ∈ p(t)

2 keyNodes = ∅

3 qualNodes = ∅

4 ∀q ∈ Q

5 qualNodes = qualNodes ∪ n.eval(q − n)

6 ∀k ∈ K

7 keyNodes = keyNodes ∪ n.eval(k − n)

8 returnNode = n.eval(v − n)

9 i.remove(keyNodes.value, returnnode)

10 if key is affected AND i is a multi-key index

11 i.add(keyNodes.value\n.value, returnnode)

12 return i

Change Operation

The algorithm for maintaining the index for a change operation is only called

if a key is affected. The return value and the qualifiers are not affected by a

change operation. This is because both are structural conditions that needs only

attention if a node is deleted or added. The modification of value does not change

the existence of a node.

If p selects at least one node n there must be an entry in i with a key that is not

valid anymore. Therefore, the key value of the old entry is replaced by the new

value vn. The return value of the entry stays unchanged. The qualifier nodes need

no attention, as they are not affected by value modification.



Chapter 8

KeyX Implementation Details

This chapter provides an overview of the architecture of the KeyX indexing system

and gives some implementation details. KeyX with all its modules is implemented

in over 110 Java classes, interfaces and exceptions that cannot be completely in-

troduced in this thesis. Therefore, we concentrate on the most important aspects,

methods and paradigms. The implementations were mainly done in the software

developing environment Eclipse[25].

8.1 Architecture

KeyX is an application that works on top of a native XML database management

system (XDBMS) and uses services that are provided through defined interfaces.

This layered architecture abstracts from the particular implementation of the XML

persistency and makes the exchange of the underlying modules a lot easier as all

communication uses the interfaces. We have chosen the XDBMS Infonyte DB [55]

because it comes with all required standardized interfaces like DOM or XPath.

The architecture of Infonyte DB is shown in figure 8.1.

Figure 8.1: The basic architecture of the Infonyte DB XDBMS

KeyX is an application on top of Infonyte DB that may use any of the provided

interfaces. Basically, all XML data are represented in the tree-structure DOM

that is stored persistently as a PDOM document in the file system. Persistency is
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a task of the XDBMS Infonyte DB so that the developer of an application has not

to regard any persistency aspects like invoking serializations, etc.

Compared to highly sophisticated commercial database products, Infonyte DB is a

rudimentary database management system. Infonyte DB does not offer advanced

features like multi-user control mechanisms or transactions. In particular, it

cannot be guaranteed that some stored XML data is always valid concerning a

given schema, because elements can be inserted or deleted in the DOM without

consistency controls. Validation is always performed on demand and then on

the whole XML data so that it is too expensive to validate the data after each

modification. Infonyte comes with no satisfying indexing approach; it supports

some structural queries in a rudimentary way. The performance measurements

of section 5.5 show that the query execution time of Infonyte DB without a KeyX

index can become very long. Infonyte offers no XML update language like XUP-

date. Therefore, all manipulations must be performed in a low level manner on

the DOM tree. Recapitulating, one can say that Infonyte’s state of development is

not comparable to commercial relational products, so a company typically would

not use it in productive environments. But this holds for most XML DBMS that

are often initiated as research projects. An exception could be Tamino from the

Software AG that is a fully commercial XDBMS. Anyhow, because Infonyte DB

offers all features required for KeyX and the Software AG published only very few

technical informations about Tamino the choice to use Infonyte DB was no fault.

KeyX uses the Infonyte DB interfaces DOM and XPath. The XPath engine is

used to evaluate queries when building an index or when no index is available for

processing a query. For a selected node in the DOM tree Infonyte can return a

unique id. The time to dereference an id is constant and not dependent on the

size of the XML data or the position of the element. Any XDBMS that offers these

two features may be used with the KeyX implementation in principle. The XPath

interface of the XDBMS is handed over to the database applications of the highest

layer with the difference that covered queries are executed upon an index. The

database application is not aware if an index is used or not because it still sends

XPath queries and gets XML nodes. This architecture makes it easy to integrate

an indexing system in existing applications. Therefore, the results of this thesis

may be used universally for native XDBML; they do not dependent on the spe-

cific DBMS Infonyte DB. A block diagram of the KeyX system can be found in

figure 8.2.

The architecture consists mainly of three parts: the query engine with the query

optimizer as the central part, the ISP Tool that analyzes the workloads and opti-

mizes the index configuration and a collection of the XML data, the workload and

statistics. These data have to be stored persistently in order to survive system

restarts. In a realistic environment it makes sense to log the workload for sev-

eral weeks or months to get an impression of the typical usage of the database.

The workload is a compressed file logging all occurred database operations in a
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Figure 8.2: Block diagram of the KeyX indexing system

given period of time: Instead of logging each database operation independently,

the workload extracts the path expression, creates an entry for each unique path

expression and keeps some counters for their frequency and type. This way the

workload has a moderate size. The indexes are Java classes that consist mainly

of the Java HashMap as tree structure with the entries and some information

about the index’s declaration. The indexes are collected in the Index Container

being a collection of indexes. In order to store all indexes persistently the Index

Container and its content - the indexes - can be serialized into a stream and de-

serialized from the stream. The serialization uses standard Java technologies, i.e.

the Index Container and the Index classes must implement the Serializable

interface. The stream is redirected to the harddisk, so that it survives a system

restart. The same holds for the statistic DataGuide. All theses persistent Com-

ponents plus the XML data in the Infonyte DBMS are organized in a further layer

- the KeyX Persistency Layer. Due to the layered architecture of KeyX it is

possible to exchange or modify parts of the implementation while reducing side

effects and costs that global changes would effect. The Persistency Layer is shown

in figure 8.3.

Figure 8.3: Architecture of the persistency layer of KeyX components
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8.2 XPath expressions

Infonyte DB comes with an XQuery engine that supports XPath 1.0 expressions

given by a String object. The internal representation of XPath expressions in

Infonyte DB that is necessary to normalize or analyze path expression is not

available (as open source) for developers and can therefore not be adopted or cus-

tomized. Therefore, we defined own classes that represent database operations

and path expressions for the XPath fragments used within this thesis. Addi-

tionally, XPath supports no modifying database operations. XPath expressions

given by a String are parsed into our representation. A simplified UML diagram is

shown in figure 8.4

Figure 8.4: Simplified UML-diagram representing an XPath based database oper-
ation

Basically, the implementation follows the structure of path expressions as defined

in section 2.3.1. An expression consists of one to many Steps with an axis and

each step may contain predicates. Unary predicates have only one argument; they

are used to express structural conditions (qualifiers) or to negate other predicates.

Binary predicates have three arguments: The key, value for the comparison and

the type of comparison (=; 6=, <,>,≤,≥). Unary predicates and binary predicates

both implement the PredicateIF interface. Because one predicate may contain

others we have a recursive data structure. The evaluation of the path expressions

with and without indexes is introduced extensively in section 5.4. The KeyX query

engine offers an XPath interface used by database applications.
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8.3 The Index Selection Tool

The module that finds a good index configuration and creates and drops them

in the index container is a major part of the KeyX indexing approach. It can be

called from a database administrator or automatically by a scheduler. In order

to estimate the costs the ISP Tool needs access to the XML data, the workload

and the statistic DataGuide. By the use of interfaces we again abstract the gen-

eral functionality from its specific implementation. The ISP tool calls methods

of the AbstractISPSolver that are implemented in an inheriting class that has

a specific way of finding a solution for the optimization problem. We have im-

plemented three approaches: an exact solution, that needs exponential time and

two heuristics (see section 6.3.6 for algorithms). Due to the AbstractISPSolver

it is possible to implement new heuristics without changing the remainder of

the code. An interface to an IndexCreator allows the automatic creation of new

indexes. An UML diagram of the ISP tool is shown in figure 8.5

Figure 8.5: UML-diagram the index selection tool

8.4 Index Update Problem

In the context of the Index Update Problem that is reduced to the intersection of

path expressions (see section 7) and solved by finite automata it is advantageous

to use Tree Patterns as used in theoretical publications like [82]. Tree patterns are

tree representations of path expressions, that can be parsed from and to strings.

A Tree Pattern consists of a set of nodes (the node tests of XPath) and a set of

edges (XPath axes) that connect the nodes. One node is marked to be the root

of the tree. The nodes are denoted by TPVertex, the edges are TPEdge objects.

Their UML diagrams are presented in figure 8.6.

Because we concentrate on linear path expressions when analyzing the inter-
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Figure 8.6: UML-diagram for the tree pattern and its components

section problem the nodes of a Tree Pattern have one child at most. A non-

deterministic final automaton is created for each Tree Pattern. The automaton is

non-deterministic because the descendant axis in a Tree Pattern leads to multiple

transitions for the same symbol.

Figure 8.7: UML-diagram the finite automaton

The two automata A and A′ representing the two path expressions to be analyzed

for an intersection are the starting point for a product automaton. The product

automaton can rely on the same implementation as the non-deterministic finite

automaton with the difference that each input consists of two symbols and the

number of states and transitions is significantly higher. A simple optimization

waives the expensive construction of the full product automaton and processes

an input on both automata A and A′ if they have outgoing transitions for the same

symbol. The UML diagrams are taken from [27].
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8.5 XDLT - A Graphical User Interface for KeyX

A database management system is usually an underlying component that pro-

vides persistency services for applications of a higher level. Therefore, the core

functions of a DBMS have no graphical user interface (GUI). Most commercial

database products offer user GUIs for a more convenient configuration of set-

tings. We use simple text files to define a few settings like temporary folders and

input files. Output messages like errors are written to a log file that can be read

with a text editor. One could create GUIs to facilitate these issues but the impact

would be of minor value because these files are not touched very often.

KeyX offers an XPath interface to higher Java applications. Basically it is the

task of this application to create XPath based queries and to process the results.

In order to have a convenient interface that allows ad-hoc queries supported by

an index we integrated KeyX into the XML Distance Learning System (XDLT) [48].

XDLT is a web based application for teaching and learning XML and major related

technologies. It is based on Java Servlets (e.g. [96]) creating HTML pages to be

viewed in a web browser.

The aim of XDLT is to facilitate and accelerate the learning and teaching of XML.

The usual approach to study XML is to use a book or an interactive online tuto-

rial. Both approaches use fixed examples that may be far away from the learner’s

context, requiring additional time to determine relevant parts. This may be a dis-

couraging process and runs counter to instant success. A student who consults

different books or tutorials has to integrate and transfer the examples him/her-

self. Lastly, there is usually no feedback for a teacher who wants to monitor the

learning progress of the students in conventional approaches.

Figure 8.8: The file management of XDLT

With XDLT a teacher can provide his students an arbitrary XML data that cover

the instructional scope the best. The same data can be used in exercises of

adjustable granularity and scope. Currently, an exercise can be expressed upon

the following XML technologies: XML itself, XPath, Document Type Definitions

(DTD) and KeyX Indexes. Figure 8.9 illustrates how a teacher can manage his/her

courses.
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Figure 8.9: Managing lectures with XDLT

The teacher groups exercises to courses and assigns them to students. The learn-

ing progress can be monitored because exercises passed by an individual student

are tracked and stored on the web server. An exercise based on XPath is shown in

figure 8.10. This exercise has a task description that is not part of the figure. The

selected nodes are highlighted and compared with a predefined correct solution.

A context-sensitive assistance is offered by the system if the students proposed

answer is not fully correct. For further details on this educational system we refer

to [48].

Figure 8.10: The XDLT query interface

The XPath interface of KeyX and its established indexes are accessed by a servlet

that generates HTML pages to create new indexes and to use them in order to

execute ad-hoc queries. The queries can be performed with and without a suit-

able index in order to see the difference in execution time. Additionally, XDLT

measures the time needed for the query execution. Therefore, XDLT can be seen
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as a basic interface to the KeyX indexing system. Figure 8.11 shows the HTML

page used to create or drop indexes whereas figure 8.12 shows an ad-hoc query

with some measurements.

Figure 8.11: Maintaining KeyX indexes

Figure 8.12: Ad-hoc query supported by KeyX

XDLT is currently developed in a student research project (Studienarbeit). Be-

cause it is not finished yet further features and improvements are likely.
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Chapter 9

Conclusion and Future Work

This thesis has introduced a new approach -called KeyX- for indexing semistruc-

tured XML data in a native XML Database Management System. A KeyX index is

defined using keys that express a condition on the content and qualifiers express-

ing structural conditions. This approach supports the major path expressions of

the XML query language XPath including queries with one to multiple keys, range

queries, queries with wildcards or the descendant axis and structural queries

without any value comparisons. Because the returned value of a path expres-

sion can directly be referenced by an index’s entry, further costly processing in

the XML data can be omitted. With structural qualifiers it is possible to demand

further conditions that must be fulfilled by indexed elements; for instance it is

possible to index only books that have an ISBN without paying attention to its

particular value.

KeyX is selective to specific queries, this means that frequent queries are covered

by indexes whereas less frequent queries are evaluated conventionally. This ap-

proach consumes less space, behaves better concerning updates and is tunable

for specific workloads. For instance, in an auction scenario, it is advantageous

to index the items’ names and keywords but not their current price, that may

change very often. Very often, the return value of a query that is wanted by a

user or an application is not the indexed element, e.g. when querying a book by

its title or an auction item by its keywords. The index entries in the KeyX search

structure pay regard to this fact: The path to the return value of an index may

differ from its key. Of course, it is possible that the return value and the indexed

element are the same.

Performance measurements have proven the quality of KeyX for many query

types.

In contrast to many other XML indexing approaches, KeyX needs no schema in-

formation of the data. This is an important requirement for semistructured data,

where new element types may appear and disappear at runtime.

The problem of finding good indexes for a given workload consisting of querying

and modifying database operations - the so called Index Selection Problem - was
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transferred from the relational world to XML databases. Because XML database

operations contain structural and content conditions the number of index can-

didates to be evaluated is significantly higher than in relational database man-

agement systems. Anyhow, it was shown that existing relational methods and

heuristics can still be used with some XML specific adoptions.

Todays larger business applications with an underlying database cannot exist

without indexes covering the most frequent queries. Usually, a human database

administrator analyzes the current usage of the database and defines the in-

dexes manually. Even having an optimal initial set of indexes when setting up

a database, there is no guarantee that these indexes will suit future demands.

Rather, it is realistic that the typical usage of the database will change after

a while because new queries appear, for instance. In consequence, the exist-

ing indexes are suboptimal. The typical approach to face this problem is that

the database administrator logs the workload, analyzes the performance of the

database and the existing indexes and redefines indexes when necessary. These

tasks are time consuming and require a skilled expert. In XML database manage-

ment systems (XDBMS) this problem becomes even worse: Because XML queries

cover both content and structure the number of possible queries and indexes

is significantly higher. Additionally, for XML data without schema information,

queries and indexes cannot be defined in advance, because the structure and the

content of the data is not restricted. Both facts tend to result in higher mainte-

nance costs for XML indexes compared to relational indexes. For large databases

with a complex structure where a multitude of queries is expressible (e.g. DNA

databases) it may be impossible to determine the best indexes manually.

We turned the KeyX-enriched XML database management system into an adap-

tive self-optimizing system that drops/creates indexes autonomously. With per-

formance measurements in different scenarios we have shown that our approach

adapts well to a changing usage of the database. This is a significant contribution

to self-optimizing software systems that require less manual interaction and lead

to lower costs of operation.

Whenever changing the indexed data in the database, the corresponding indexes

must be updated in order to keep both data structures consistent. In relational

databases where an index is defined upon a table and one or multiple columns the

question whether an SQL update command affects an index is trivial: Whenever

an indexed column receives a modification the corresponding index is affected.

For XML indexes this problem is more difficult because path expressions may

contain additional structure information with wildcards and the descendant axis.

It is possible that an indexed node is affected that is not explicitly selected by

the path expressions. We formalized this problem and introduced an algorithm

based on finite automaton theory. The index affection problem is reduced to the

intersection of two path expressions.
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The implementations of this work operate on top of the native XML database

management systems Infonyte DB [55], that can be interpreted as a persistent

DOM with a Java API interface so that it can be used by any Java class. Be-

cause the KeyX implementation uses only the XPath engine of Infonyte DB and

its capability to assign unique identifiers to XML nodes, any other XML database

management system that offers the same functionality can be used in principle.

Therefore, the KeyX approach is independent of any particular database product.

The results of this work have been published on four international conferences [44,

46, 47, 48], two workshops [43, 45] and two technical reports [41, 42] and can be

used for the development of next-generation database management systems. Ex-

amples include new hybrid systems that unify relational and native XML paradigms

like the SystemRX [11] from IBM.

Although the aims of this project were achieved there are a multitude of points

where further work can start:

• So far only value comparisons with the operators =, 6=, <,>,≤,≥ are sup-

ported. For a lot of scenarios a value comparison with substrings or regular

expressions would make sense. For instance it might be useful to find all

books with XML appearing somewhere in the title. In principle full text

indexing methodologies from the relational world can be reused within the

KeyX structure.

• The intersection algorithms and the index maintenance algorithms may profit

from the existence of schema information of the indexed data if available.

We did not focus on data with a schema because XML database manage-

ment systems have to support schemaless data in order not to restrict the

capabilities and the expressiveness of the semistructured XML model. Hav-

ing a schema information like a DTD or an XML schema the intersection

problem may be easier because some combinations that cause an intersec-

tion are not enabled by the schema. On the other hand, a schema allows

to define dependencies between elements (e.g. each book, that has a price

has also a currency). If these dependencies are taken into account it is likely

that the intersection problem is not getting easier. For XML data without a

schema one could try to create a schema for the statistic DataGuide, that is

a summary of the data

• The statistic DataGuide is a first approach to summarize the frequency

of elements and the selectivity of their values. In particular, the statistic

DataGuide assumes that all elements are statistically independent. If some

elements are statistically dependent (see example above) the estimation of

the query execution time may lead to inaccuracies. Basically, statistic de-

pendencies can arise for any two elements a and b, and even worse for any
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combinations of arbitrary many elements a1...ak. Therefore, there are expo-

nentially many combinations to be checked for statistic dependency. Even if

one is willing to spend this computational expenses there is the problem of

storing the exponential many results - the factors that express the statistic

dependence between elements. A first improvement may be to restrict the

analysis on two elements and to store the factors only if a given threshold is

exceeded. The time consuming analysis could take place when the database

has a low working load.

• So far, KeyX directly supports a major fragment of XPath expressions that al-

low to express most relevant queries. Advanced XPath features like functions

(e.g. count(), sum()) are not supported. XQuery expressions rely strongly on

XPath for navigation and selection purposes, so that the KeyX approach can

also be applied for the accelerated execution of XQuery expressions. Any-

how, because XQuery has a higher expressiveness than XPath, it might be

interesting if and how KeyX can be extended in order to support XQuery

more efficiently. For instance, XQuery has the concept of XML constructors

embedding the selected element in a newly created XML structure. For fre-

quently occurring Query expressions it might be profitable to precompute

the embedding and store it in the KeyX search tree as return value. This

way, KeyX would not only return the referenced element, but also its sur-

rounding elements that are usually created by the XQuery constructors.
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Appendix

10.1 XQuery Example

1 l e t $data : = doc ( ” c :\xml\xmark\out .xml” )

2 for $auction in $data//closed auction

3 return

4 <summary>

5 <item>

6 { $data//item [ @id=$auction/itemref/@item]/name }

7 </item>

8 <se l ler>

9 { $data//person [ @id=$auction/se l l e r /@person ]/name }

10 </se l ler>

11 <buyer>

12 { $data//person [ @id=$auction/buyer/@person ]/name }

13 </buyer>

14 <price>

15 {data ($auction / price ) }

16 </price>

17 </summary>

10.2 Method testQualifier

1 void createIndex (XMLNode context ,

2 SetOfKeyPaths Kp,

3 SetOfQualifierPaths Qp,

4 ReturnValuePath rp ,

5 SearchTree tree ) {

6 i f ( |Kp| == 1 ) { //Kp has only 1 key path

7 keyP = Kp[ 1 ] ; //get path to this keys

8 relKeyP = keyP−context ; //re la t i ve path to the keys from context node

9 relValP = rp−keyP ; //re la t i ve path to the return value

11 KEYS = eval ( context , relKeyP ) ; //re t r i eve the key elements

12 f o ra l l ( k in KEYS) {

13 val = eval (k , relValPath ) ; //re t r i eve the return value

14 i f ( testQual i f ier ( val , Qp) ) { //tes t qua l i f i e r

15 int id = val . getId ( ) ; //get id of return node

16 tree .add(k . getText ( ) , id ) ; //add key−value tuple

17 }

18 }

19 }

20 else { //build a multikey index

21 keyP = Kp[ 1 ] ; //take f i r s t KeyPath

22 Kp = Kp \ Kp [ 1 ] ; //and remove i t from Kp
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23 relKeyP = keyP−context ; //re la t i ve path to keys from context

25 KEYS = eval ( context , relKeyP ) ; //re t r i eve the key elements

26 f o ra l l ( k in KEYS)

27 SearchTree tree2 = new SearchTree ( ) ; // create empty search tree

29 createIndex (k , Kp, Qp, rp , tree ) ; // recursive c a l l of method

31 tree .add(k. getText ( ) , tree2 ) ; //nest the second tree

32 }

33 }

34 }

Figure 10.1: Pseudocode to create a single-key or multi-key index

10.3 XML Schema

1 <?xml version=”1.0 ” encoding=”UTF−8”?>

2 <xs:schema xmlns:xs=” http://www.w3. org/2001/XMLSchema” elementFormDefault=”

qual i f ied ” attributeFormDefault=” unqualified ”>

3 <xs:element name=”books”>

4 <xs:complexType>

5 <xs:sequence>

6 <xs:element name=”book” type=” author base typ ”/>

7 </xs:sequence>

8 </xs:complexType>

9 </xs:element>

10 <xs:complexType name=” author base typ ”>

11 <xs:sequence>

12 <xs:element name=” t i t l e ” type=” xs :str ing ”/>

13 </xs:sequence>

14 </xs:complexType>

15 <xs:complexType name=”author1 type ”>

16 <xs:complexContent>

17 <xs:extension base=” author base typ ”>

18 <xs:sequence>

19 <xs:element name=”author” type=” author typ ”/>

20 <xs:element name=” price ” type=” xs:integer ”/>

21 </xs:sequence>

22 </xs:extension>

23 </xs:complexContent>

24 </xs:complexType>

25 <xs:complexType name=”author2 type ”>

26 <xs:complexContent>

27 <xs:extension base=” author base typ ”>

28 <xs:sequence>

29 <xs:element name=”author” type=” xs :str ing ”/>

30 </xs:sequence>

31 </xs:extension>

32 </xs:complexContent>

33 </xs:complexType>

34 <xs:complexType name=” author typ ”>

35 <xs:sequence>

36 <xs:element name=” f i r s t ” type=” xs :str ing ”/>

37 <xs:element name=” last ” type=” xs :str ing ”/>

38 </xs:sequence>

39 </xs:complexType>

40 </xs:schema>
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10.4 List of Publications

All publications of the KeyX project are listed here in chronological order.

Title: KeyX: ein selektiver schlüsselorientierter Index für das Index Selection

Problem in XDBMS

Authors: Beda Christoph Hammerschmidt

Abstract: In relationalen Datenbank-Management-Systemem (RDBMS) werden In-

dizes verwendet, um spezifische und häufig wiederkehrende Anfragen zu beschleunigen.

Die Auswahl von passenden Indizes ist ein wichtiger Prozess beim Anlegen und Opti-

mieren der Datenbank, der meist von einem Administrator oder einem Index-Auswahl-

Tool durchgeführt wird, welches eine Menge von passenden Indizes vorschlägt. Für die

Indizierung von XML-Datenbanken/Dokumenten existieren zur Zeit noch keine Stan-

dardverfahren sondern verschiedene Ansätze in der wissenschaftlichen Literatur, die

oft rein Pfad-basiert sind und keine oder wenig Auswahl bezüglich der indizierten Ele-

mente zulassen. Ansätze, die das gesamte Dokument indizieren - sogenannte Structural

Summaries- haben zwangsläufig einen hohen Speicherplatzbedarf und garantieren keine

Leistungssteigerung, wenn häufig Änderungen am XML-Dokument vorgenommen wer-

den, da Änderungen der Datenbank immer auch an der Indexstruktur vorgenommen

werden müssen.

In dieser Arbeit wird das Konzept von spezifischen Indizes auf native XML-Datenbank-

Management-Systeme (XDBMS) übertragen. Es wird eine Implementierung präsentiert,

die frühere Anfragen nutzt, um die Datenbank zu optimieren, indem sie automatisch

passende Indizes erstellt. Mit KeyX stellen wir einen Indizierungsansatz vor, der XML-

Element- und Attributwerte mit spezifischem Pfad als Schlüssel interpretiert und die

dazugehörenden oder benachbarten Knoten im Original-Dokument als Rückgabewert ref-

erenziert. Da sich Schlüssel und Wert unterscheiden können, entfällt der Aufwand, der

für navigierende Pfadverfolgung zwischen beiden benötigt wird.

Wir transferieren das in der relationalen Welt wohlbekannte Index Selection Problem (ISP)

auf XDBMS. Das ISP wird verwendet, um eine Menge von Indizes zu bestimmen, für die

die Ausführungszeit eines Workloads von Datenbankoperationen minimal ist. Da der

Workload periodisch analysiert wird und durch das ISP günstige Indizes automatisch

angelegt und ggf. aufgelöst werden, garantiert die KeyX-Implementierung eine hohe Leis-

tung über die gesamte Lebenszeit der Datenbank. Experimentell bestimmte Ergebnisse

der auf einem nativen XDBMS basierenden prototypischen Implementierung zeigen, dass

unser Ansatz die Ausführungszeit von Anfragen signifikant beschleunigt.

Published: in [43]
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Title: On the Index Selection Problem applied to Key oriented XML Indexes

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: In the world of Relational Database Management Systems (RDBMS) indexes

are used to accelerate specific queries. The selection of indexes is an important task in

database-tuning which is performed by a database administrator or an index selection

tool which suggests a set of suitable indexes. In this paper we transfer the concept of

specific indexes to XML Database Management Systems (XDBMS) and present an imple-

mentation that uses occurring queries to optimize the performance of an XML database

system by automatically creating suitable indexes . We introduce an index approach,

called key oriented XML index, that uses specific XML element values and attribute val-

ues as keys referencing arbitrary nodes in the data. We transfer the wellknown Index

Selection Problem (ISP) to XDBMS. Solving the ISP, a workload of database operations

is analyzed and a set of specific indexes that minimizes the total execution time is sug-

gested. Because the ISP is an NP complete problem, we apply heuristics to find a solution

with reduced complexity. Experimental results of the prototypical implementation of the

key oriented XML indexes on top of a native XDBMS demonstrate that our approach

significantly improves the query execution time with only moderate additional storage

requirements. Because the workload is analyzed periodically and suitable indexes are

created or dropped automatically by solving the ISP, our approach guarantees high per-

formance over the total life time of a database.

Published: in [41]

Title: A selective key-oriented XML Index for the Index Selection Problem in

XDBMS

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: In relational database management systems indexes are used to accelerate

specific queries. The selection of indexes is an important task when tuning a database

which is performed by a database administrator or an index propagation tool which sug-

gests a set of suitable indexes. In this paper we introduce a new index approach, called

key-oriented XML index (KeyX), that uses specific XML element or attribute values as

keys referencing arbitrary nodes in the XML data. KeyX is selective to specific queries

avoiding efforts spent for elements which are never queried. This concept reduces mem-

ory consumption and unproductive index updates.

We transfer the Index Selection Problem (ISP) to XDBMS. Applying the ISP, a workload

of database operations is analyzed and a set of selective indexes that minimizes the total

execution time for the workload is suggested. Because the workload is analyzed period-

ically and suitable indexes are created or dropped automatically our implementation of

KeyX guarantees high performance over the total life time of a database.

Published: in [44]
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Title: Comparisons and Performance Measurements of XML Index Structures

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: Indexes are used to accelerate queries in database management systems

(DBMS). In relational DBMS indexes are broadly explored whereas indexes in XML DBMS

are still an active field of research. A multitude of approaches with different character-

istics were introduced in the past. Approaches that are not selective to specific queries

require the whole XML data to be indexed and may lead to enormous space consumption

and poor performance if changes to the XML data occur often.

With KeyX we have introduced a selective and key-oriented approach for indexing only

relevant parts of XML data in a database. This work provides qualitative comparisons

and performance measurements of recent approaches in XML indexing. We motivate why

key-oriented indexing that is derived from the relational world performs as well in the

XML context.

Published: in [42]

Title: Autonomous Index Optimization in XML Databases

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: Defining suitable indexes is a major task when optimizing a database. Usu-

ally, a human database administrator defines a set of indexes in the design phase of the

database. This can be done manually or with the help of so called index wizard tools

analyzing predefined database operations. Even having an optimal initial set of indexes

when setting up a database, there is no guarantee that these indexes will suit future

demands. Rather, it is realistic that the typical usage of the database will change after

a while because new queries appear, for instance. In consequence, the existing indexes

are suboptimal. The typical way to handle this problem is that a database administrator

maintains the database permanently.

In XML database management systems (XDBMS) this problem becomes even worse: Be-

cause XML queries cover both content and structure the number of possible queries and

indexes is significantly higher. Additionally, for XML data without schema information,

queries and indexes cannot be defined in advance, because the structure and the content

of the data is not restricted. Both facts tend to result in higher maintenance costs for

XML indexes compared to relational indexes.

In this paper we show by performance measurements that an adaptive XDBMS that ana-

lyzes its workload periodically and creates/drops XML indexes automatically guarantees

a high performance over the total life time of a database. Although we present our index

system called KeyX the idea and the results are transferable to other XML indexing ap-

proaches.

Published: in [45]
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Title: The Index Update Problem for XML Data in XDBMS

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: Database Management Systems are a major component of almost every infor-

mation system. In relational Database Management Systems (RDBMS) indexes are well

known and essential for the performant execution of frequent queries. For XML Database

Management Systems (XDBMS) no index standards are established yet; although they are

required not less. An inevitable side effect of any index is that modifications of the indexed

data have to be reflected by the index structure itself. This leads to two problems: first it

has to be determined whether a modifying operation affects an index or not. Second, if

an index is affected, the index has to be updated efficiently - best without rebuilding the

whole index. In recent years a lot of approaches were introduced for indexing XML data

in an XDBMS. All approaches lack more or less in the field of updates. In this paper we

give an algorithm that is based on finite automaton theory and determines whether an

XPath based database operation affects an index that is defined universally upon keys,

qualifiers and a return value of an XPath expression. In addition, we give algorithms how

we update our KeyX indexes efficiently if they are affected by a modification. The Index

Update Problem is relevant for all applications that use a secondary XML data represen-

tation (e.g. indexes, caches, XML replication/synchronization services) where updates

must be identified and realized.

Published: in [47]

Title: XDLT: A Distance Learning Tool for consistent teaching of XML and re-

lated Technologies

Authors: B. C. Hammerschmidt, P. Stursberg, J. Jungclaus and V. Linnemann

Abstract: The eXtended Markup Language (XML) has become an important data for-

mat in the e-learning world during the past years. A multitude of e-learning systems take

advantage of XML for various purposes: to represent knowledge or content, for informa-

tion exchange between distributed applications or just for platform-independent storage

of data. Although XML reflects a technical issue of data representation and application

architecture in most cases, an emerging need for students and teachers to learn XML and

XML related technologies can be observed. For instance, a person who describes entities

of a given domain with an XML-based ontology needs domain-specific knowledge and a

certain degree of XML skills to express the knowledge. Current approaches to learn XML

such as tutorials and XML editors lack in the field of guidance, monitoring of the learning

process and interoperability of different XML related technologies like XML data modeling

(DTD), XML transformation and query as well as update languages (XPath, XUpdate).

With this paper we introduce a web-based distance teaching and learning system teach-

ing fundamentals of XML and major XML related technologies. In contrast to interactive

tutorials that operate mostly with fixed XML examples and XML editors which offer no

guidance for the learner, our approach enables a student to learn XML and related tech-

nologies based on custom data and exercises that can be defined and monitored by a

teacher.

Published: in [48]



10.4. LIST OF PUBLICATIONS 167

Title: On the Intersection of XPath Expressions

Authors: B. C. Hammerschmidt, M. Kempa and V. Linnemann

Abstract: XPath is a common language for selecting nodes in an XML document. XPath

uses so called path expressions which describe a navigation path through semistructured

data. In the last years some of the characteristics of XPath have been discussed. Exam-

ples include the containment of two XPath expressions p and p′ (p ⊆ p′). To the best of

our knowledge the intersection of two XPath expressions (p ∩ p′) has not been treated yet.

The intersection of p and p′ is the set that contains all XML nodes that are selected both

by p and p′. In the context of indexes in XML databases the emptiness of the intersection

of p and p′ is a major issue when updating the index. In order to keep the index consistent

to the indexed data, it has to be detected if an index that is defined upon p is affected by

a modifying database operation with the path expression p′.

In this paper we introduce the intersection problem for XPath and give a motivation for its

relevance. We present an efficient intersection algorithm for XPath expressions without

the NOT operator that is based on finite automata. For expressions that contain the NOT

operator the intersection problem becomes NP -complete leading to exponential compu-

tations in general. With an average case simulation we show that the NP -completeness

is no significant limitation for most real-world database operations.

Published: in [46]
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