
Aus dem Institut f̈ur Informationssysteme
der Universiẗat zu L̈ubeck

Direktor:
Prof. Dr. rer. nat. Volker Linnemann

Design and Implementation of a Database
Programming Language for XML-based

Applications

Inauguraldissertation
zur

Erlangung der Doktorẅurde
der Universiẗat zu L̈ubeck

- Aus der Technisch-Naturwissenschaftlichen Fakultät -

Vorgelegt von
Henrike Schuhart

aus Geesthacht

Lübeck, M̈arz 2006

ii

Acknowledgements

This work is the result of my research during the last three years. I have been working as a
research assistent at the institute of information systems of the university of Lübeck. It started
with searching for suitable topics in context of the predecessor projectXOBE and proceeded to
finding solutions, implementing the prototype and finally writing this doctoral thesis. During all
this time a lot of people have supported my work and goals. Now I want to express my thanks
to all involved persons.

My special thanks goes to my supervisor Prof. Dr. Volker Linnemann, who is also the
director of the institute where this work has been developed. I appreciate that he always had
time to discuss, criticize and support my research. I thank Prof. Dr. Stefan Fischer for being
the second referee, which is connected with a non negligible amount of time. Likewise I would
like to thank Prof. Dr. Bernd Fischer to be the chair of the examination board.

Many thanks as well to my colleague Beda C. Hammerschmidt for encouraging discussions
in context of my work, in particular reading and improving my publications. Special thanks as
well to Dominik Pietzsch with whom I developed the persistency layer forXOBEDBPL, which
is now going to be an independent project.

I would like to thank Simon Gilbert for proof-reading this work in English.
Finally I want to thank my friend Roberto for supporting me and my work all the time.

Thanks especially to my parents Helmut und Heidi Schuhart for providing me with a smooth
study and education right from the beginning. Moreover they have always encouraged my plans.

Lübeck, June 2006 Henrike Schuhart

iv

Abstract

XML is the de facto standard for data exchange between arbitrary applications. These ap-
plications are written in object-oriented programming languages like Java or C# for example.
Consequently the need arises to integrate XML into existing object-oriented programming lan-
guages. Moreover, many applications have to keep and deal with persistent data and objects.
A lot of frameworks are currently being developed which are trying to solve mismatch prob-
lems between the transient object model and the persistent data model. Due to performance
reasons relational databases are taken in general. Although existing approaches try to mini-
mize the mapping effort, true transparent persistency is not gained at the moment. In this work
transparent persistency means that objects can be stored regardless of type, algorithms remain
unchanged whether they operate on persistent or transient data and finally that programmers,
if at all, deal with persistency on a very high level. In addition many persistence solutions do
not even support the main object-oriented concepts like inheritance and polymorphism. As well
object-oriented databases are limited to a single programming language and are rarely avail-
able. All that the frameworks or approaches mentioned so far have got in common is that the
programmer has to add special code when dealing with persistent objects or classes. The code
includes communication with a so-called persistency manager for example. In the past several
database programming languages have been developed, but they all have tried to integrate the
relational model. Consequently, a holistic and transparent solution is needed that integrates
XML and persistency into an existing object-oriented programming language.

In this work XOBEDBPL (XML OBjEts DataBaseProgrammingLanguage) is developed
as an extension of the object-oriented programming language Java.XOBEDBPL is based on
its predecessor projectXOBE. In XOBE XML and XPath are already integrated and checked
statically at compile time against an XML schema. XML Schemas and DTDs are supported
as XML schema description languages. InXOBEDBPL XML objects can now be manipulated
with the help of updates. Moreover the type checking process ofXOBE is extended to support
updates and more complex queries as well. Additionally, transparent type independent persis-
tency supporting all object-oriented concepts is introduced inXOBEDBPL for the first time. The
prototypical implementation is based on a persistency layer using web services. The persistency
layer keeps persistent objects and data and offers the possibility to exchange data among arbi-
trary languages and applications. Moreover, it is shown that the introduced concepts can also
be realized as a semantical extension of Java. Consequently programmers do not have to learn

v

vi

a new syntax anymore and existing development environments can be used, which supports
efficiency.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals and Organization of this Work .3

2 Basics and Related Work 5
2.1 Java .5

2.1.1 Annotations . 5
2.1.2 The Java Virtual Machine .6
2.1.3 The Byte Code Engineering Library6

2.2 XML . 6
2.2.1 DTD . 9
2.2.2 XML Schema .12

2.3 XPath .15
2.4 XQuery .20
2.5 The Document Object Model .22
2.6 XMark .27
2.7 XML Updates .28
2.8 Web Services .30
2.9 XML in Programming Languages .32
2.10 Persistent XML .33
2.11 Database Programming Languages .34
2.12 Distributed and Persistent Objects .36

3 XML Integration 39
3.1 XML Objects .39
3.2 Static Type Checking .40

3.2.1 XPath Expressions .43
3.3 Extended FLWOR Expressions .47

3.3.1 Query Expressions .48
3.3.2 Update Expressions .51

3.4 Dynamic Type Checking .64

vii

viii CONTENTS

4 Persistency 67
4.1 Syntax and Semantics .67

4.1.1 Creation and Retrieval .70
4.1.2 Deletion .71

4.2 Realization Concepts .72
4.2.1 Consistency .74

5 Transactions 77
5.1 Syntax and Semantics .78
5.2 Classification of Transactions .80

5.2.1 Realization Concepts .81
5.3 Concurrency Control .81

5.3.1 Realization Concepts .82

6 Web Service for Distributed Persistent Objects 85
6.1 Architecture .85
6.2 Interface .88
6.3 Retrieving Objects .93
6.4 Storing Objects .93

6.4.1 Registering Types .94
6.5 Removing Objects .95
6.6 Session and Transactions .96

7 Architecture and Implementation 99
7.1 Preprocessor .99
7.2 Transformation .99

7.2.1 XML Transformation .101
7.2.2 Transaction Transformation .120
7.2.3 Structural Transformation .122

7.3 Runtime Environment .122
7.4 OR Mapping Techniques .122

7.4.1 Mapping Member Variables .123
7.4.2 Mapping Classes .123
7.4.3 Relationships .123

7.5 Performance Aspects .124

8 XOBEDBPL as Semantic Extension 127
8.1 XML Integration .130

8.1.1 XML Schema Import .131
8.1.2 XML Objects .132
8.1.3 Queries in XPath .136

CONTENTS ix

8.1.4 Updates .138
8.2 Persistency .140

8.2.1 Declaration .140
8.2.2 Realization Concepts .141

8.3 Transactions .141
8.3.1 Declaration .142
8.3.2 Realization Concepts .142

9 Experimental Results 143
9.1 XML Updates .143
9.2 Distributed and Persistent Objects .146

10 Conclusions and Future Work 153

x CONTENTS

Chapter 1

Introduction

This work focuses on two main aspects, the seamless integration of XML and persistency con-
cepts into the object-oriented programming language Java.

XML is the de facto standard data exchange format between arbitrary applications. There
have been many efforts to integrate XML into programming languages reaching from the simple
document object model (DOM) to whole XML class generators. These approaches are available
in most popular programming languages.

The integration of persistency into programming languages has been done by database pro-
gramming languages as well as by certain new popular frameworks like Hibernate or approaches
like EJB. Nevertheless, these approaches suffer from certain limitations concerning in particular
transparency and object-orientation. While existing database programming languages integrate
the relational model, Hibernate and EJB 3.x does not support polymorphism in general. EJB
2.x does not even support inheritance. In addition, although they try to, the approaches except
by some database programming languages are not transparent. In this work transparency means
that arbitrary types may become persistent. Moreover, algorithms remain unchanged whether
they are executed on transient or persistent objects. Finally, users can work with persistency on
a very high level.

Since there are so many currently developed frameworks trying to solve the integration prob-
lem of XML and persistency into object-oriented programming languages, the need for a holistic
and transparent object-oriented database programming language seems to be there. The starting
point of XOBEDBPL, which stands forXML OBjEctsDatabaseProgrammingLanguage, is the
predecessor projectXOBE [43]. XOBE concentrates on the integration of XML objects and
XPath as the query language for these objects. The most important feature ofXOBE is that each
XML operation is statically type checked against the declared XML schema. InXOBEDBPL the
XML integration is extended regarding the manipulation of XML objects. Before, XML ob-
jects could only be queried but not updated. The static type checking idea is kept and enhanced
to include updates. WhileXOBE’s intentions lie on the development of web applications, all
objects can remain transient.XOBEDBPL is supposed to deal with persistent objects as well.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

After introducing the context a short motivation for the main topics of this work is given. These
topics are first of all the integration of XML and suitable operations into existing programming
languages. Second, the advantage of static type checking in contrast to dynamic type checking
is presented and finally, the transparent integration of persistency into existing programming
languages is shown. Java is chosen as the source programming language. This is because Java
is popular and many programming tools like development environments are available as open
sources. Moreover, in many ways Java can be seen as deputy for object-oriented programming
languages. Hence concepts and their realization introduced inXOBEDBPL are not limited to
extending Java.

XML in Programming Languages

Since XML is the de facto standard for data exchange, many data is available in XML only.
Moreover, most databases regardless of storing data (object-)relationally or natively in XML,
offer applications an XML view of their data. In contrast to XML as data exchange format,
object-oriented programming languages like Java and C# are today’s de facto standard for ap-
plication development. Consequently the processing of XML data is important for these appli-
cations. There are many approaches that try to integrate XML, either by mapping it to general
models like the DOM or by generating specific XML classes. In fact, XML data cannot be
mapped to object-oriented classes without losing information in general. InXOBEDBPL XML
is integrated as XML into the existing object-oriented programming language Java.

Static Type Checking

Approaches that deal with XML reach from programming languages to XML databases. If at
all, most of them check XML at runtime against the required schema. A schema defines certain
structural and value-based constraints on XML documents. But checking XML documents at
runtime means that this checking process has to be repeated each time the program is executed.
Moreover checking in particular an XML document at runtime often means parsing the whole
document over and over again. More generally spoken, dynamic in contrast to the static type
checking process depends on the data’s size. If the manipulated data is larger, the dynamic type
checking process will take longer. This is an important problem in the context of XML and
updates, since XML databases often consist of a single document.

In contrast, static type checking is done only once at compile time. If a program is checked
statically, it treats any possible document, maybe restricted to a certain XML schema, correctly.
Please notice that Java and most other object-oriented programming languages are statically
type checked for general objects and method invocations anyway. If such a program is checked
it can be run arbitrarily often without the need for checking it anymore. It is guaranteed to
run correctly. Although static type checking is not decidable in general, it can detect most

1.2. GOALS AND ORGANIZATION OF THIS WORK 3

errors in advance and saves a lot of time in program development. InXOBEDBPL the static
type checking concept of its source programming language Java is enhanced to the integrated
XML. In addition, XML data and its corresponding operations are statically type checked in
XOBEDBPL, including XPath for querying and update expressions for updates.

Transparent Persistency

Besides the integration of XML into programming languages another topic for popular program-
ming languages seems to be gaining more and more importance. The topic is called persistency.
When speaking about programs dealing with objects, these objects will normally disappear, if
the program stops. In object-oriented programming languages objects have got a transient life
time. Nevertheless many applications need to keep these objects persistently, meaning that they
exist independently of a program’s execution time. Hence, most approaches and frameworks
provide interfaces to databases. Due to performance reasons, these databases are most often
relational databases. Since relational databases don’t store objects, the programmer is respon-
sible for mapping these objects to the underlying relational model. There are many frame-
works available which try to offer high-level mapping tools. Nevertheless, persistency is not
integrated transparently as defined previously. In particular, communication with a so-called
persistence manager is needed or object-oriented concepts like inheritance are not supported.
Object-oriented databases are out of date, limited to a single programming language and also
effort intransparent communication. In the past some database programming languages were
developed but most of them tried to integrate the relational model into existing programming
languages.XOBEDBPL focuses on true transparent persistency. Persistency is nearly hidden
from the programmer, every type, in particular XML, is accepted and all object-oriented con-
cepts including inheritance are supported.

1.2 Goals and Organization of this Work

The main goal of this work is to develop a database programming language providing high-level
and transparent integration of XML and persistency. In contrast to many other approaches this
work focuses on a holistic and consistent solution. Moreover static type checking aspects in the
context of XML are offered. This work is organized as follows: In chapter 2 an introduction to
basics regarding the further chapters and an overview of related approaches are given. Chapter 3
introduces the integration of XML inXOBEDBPL. The focus in this chapter lies on XML update
syntax and semantics and the extended static type checking process. In chapter 4 persistency as
a transparent and type independent concept is explained. Closely connected to persistency are
transactions, which are introduced in chapter 5. Transactions guarantee in particular consistent
access to persistent objects. InXOBEDBPL persistency is achieved by an underlying persistency
layer, which is described in chapter 6. The persistency layer is based on web services and also
provides programming language independent exchange. Chapter 7 demonstrates the architec-

4 CHAPTER 1. INTRODUCTION

ture and implementation of the previously introduced concepts. WhileXOBEDBPL originally
extends the Java programming language syntactically, an alternative approach is introduced in
chapter 8. Once again Java is taken as the source, but this time only its semantics are extended
to realizeXOBEDBPL’s concepts. In chapter 9 some first experimental results regarding the in-
tegration of XML updates and persistency are performed and evaluated. Finally, conclusions
and an outlook on future work are given in chapter 10.

Chapter 2

Basics and Related Work

This chapter introduces important and needed topics in the context of theXOBEDBPL concepts
as well as their realization. Besides, related approaches are also introduced. Most of these ap-
proaches can only be seen as related regarding certain aspects ofXOBEDBPL, concerning the
integration of XML or object persistency in particular. Moreover, the advantages and disadvan-
tages of the introduced related approaches are discussed.

2.1 Java

Java is an object-oriented programming language. Its specification can be found in [84] and
[85] for versions 1.4.2 and 1.5.0 respectively. In Java 1.5 some important features were added,
which are also available in C# and the .Net framework languages [54]. Among them are for
example generic types, varargs, enhanced for-loops and annotations. The latter ones are espe-
cially interesting in the context of this work.XOBEDBPL is originally defined as syntactic and
semantic enhancement of Java. These extensions are explained through the chapters 3 to 7. In
contrast chapter 8 introduces another approach. An approach that tries to keep allXOBEDBPL

concepts but without any syntax extensions to the Java programming language. The following
constituents of Java play an important role for its realization.

2.1.1 Annotations

Annotations are metadata and a new feature in Java 1.5. Annotations are used to mark Java dec-
larations, e.g. classes, methods or fields. An annotation indicates that the declared declaration
should be processed in some special way e.g. by a (post)compiler on byte-code-level. Older
versions of Java have rough annotation functionality. Built-in annotations like@deprecated
have to be placed within a JavaDoc tag and cause the Java compiler to produce warnings. With
Java 1.5, finally, annotations are a typed part of the language. Annotation types are blueprints
for annotations equivalent to classes and objects and may contain arguments as well. The de-

5

6 CHAPTER 2. BASICS AND RELATED WORK

tection and further processing of user-defined annotations have to be written and added, e.g. to
a postcompiler, by the programmer. Otherwise user-defined annotations are ignored by the Java
compiler.

2.1.2 The Java Virtual Machine

The Java Virtual Machine (JVM) is the cornerstone of the Java and Java 2 platforms. It is
the component of the technology responsible for its hardware - and operating system - inde-
pendence, the small size of its compiled code, and its ability to protect users from malicious
programs.

The JVM is an abstract computing machine. Like a real computing machine, it has an
instruction set and manipulates various memory areas at runtime. The JVM knows nothing of
the Java programming language, only of a particular binary format, theclass file format. A
class file contains JVM instructions (orbytecodes) and a symbol table, as well as other
information.

For the sake of security, the JVM imposes strong format and structural constraints on the
code in aclass file. However, any language with functionality that can be expressed in terms
of a valid class file can be hosted by the JVM. Consequently, this generally available and
machine-independent platform can be used by other languages as a delivery vehicle too.

More details about the JVM can be found in [83].

2.1.3 The Byte Code Engineering Library

The Byte Code Engineering Library (BCEL) is intended to give users a convenient possibility
to analyze, create and even manipulate (binary) Java class files. These classes are represented
by objects which contain all the symbolic information of the given class, for example methods,
fields and byte code instructions.

Such objects can be read from an existing file, be transformed by a program and dumped to
another file again. An even more interesting application is the creation of classes or methods
from scratch. This can even happen at runtime.

BCEL is suitable for several projects including compilers, optimizers, code generators and
analysis tools. In this work it is used primarily as a code generator and analysis tool.

More details about BCEL are available in [3].

2.2 XML

The Extensible Markup Language (XML) is derived from the Standard Generalized Markup
Language (SGML), which is already standardized by ISO 8879 and a W3C recommendation
[98]. SGML is originally designed to meet the challenges of large-scale electronic publishing.
The main idea is to strictly separate a document’s presentation from its logical structure. Due

2.2. XML 7

to the propagation of the World Wide Web (WWW) and therefore the Hypertext Markup Lan-
guage (HTML), another application of SGML, a second application task gains more and more
importance, namely the task to exchange data instead of whole documents. This development
finally leads to the XML specification. Today XML is the de facto standard format for data
exchange in the context of the internet. The XML specification gained W3C recommendation
status in 1998 for the first time.

Basically XML consists of a syntax to support data exchange between different applications.
But only the fact that the syntax is standardized and is used in a lot of different areas and by
many programs, makes XML an ongoing standard. Since one demand is human readability,
XML documents and data are represented in text form. XML documents are structured with
the help of elements. The beginning of an element is always marked with a start tag, e.g.
<site > and its end respectively with an end tag, e.g.</site >. These tags are also called
text markups. Within a start and an end tag the element can either contain simple text, other
elements or a mixture of them. Elements that are part of another element’s content are called
subelements. Elements with an empty content can be abbreviated by<site/ >. In this case
the start and corresponding end tag are summarized by one tag. The name given in the start
and regarding end tag together with an element’s content structure define its type. The type of
elements used throughout XML documents is defined by and depends solely on the user. An
additional part of XML documents are attributes. Attributes belong to a certain XML element
and are defined within a start tag. The example<person id=’’123’’ > sets the value
of the person’s attributeid to 123 . Again, attribute names, their value types as well as their
affiliation to a certain element are user defined and make up the type of an attribute. Finally
XML documents can contain comments, e.g.<!-- closed auctions -- >.

Certain conditions have to hold for XML documents. An XML document starts with a cor-
rect prolog followed by a singledocument element . Every element may contain sub or
child elements as well as text data. Therefore the document element is the root of an arbitrar-
ily deep nested hierarchical structure. Each element has to be correctly nested, meaning that
opening and closing tags are enclosing it. Tags of different elements are not allowed to overlap
each other. An element can contain any number of attributes or none. Besides, attribute names
within one tag have to be unambiguous. In contrast to attributes, elements can have several
subelements of the same type and name. Another important aspect is that attribute values are
flat, meaning that their content cannot consist of elements. If all conditions hold, the XML
document is calledwell-formed . Well-formedness is a rather weak condition, since it only
guarantees that these documents can be represented by a tree structure after parsing. Definition
2.2.1 presents a simplified grammar for XML documents. The prolog is omitted.

Definition 2.2.1 An XML document is built up according to the following grammar:

8 CHAPTER 2. BASICS AND RELATED WORK

document → element
element → emptyelementtag |

start tag content endtag
start tag → ’<’ name(attribute)∗ ’>’
attribute → name’=’ attribute value
end tag → ’</’ name’>’
content → (element| char data| comment)∗
emptyelementtag → ’<’ name(attribute)∗ ’/>’
comment → ’<!–’ char data ’–>’

The nonterminal symbolattribute valuestands for a string within single or double quotes,name
represents an element name andchar dataconsists of alpha numerical symbols. 2

Throughout this work an internet auction scenario is used for examples. A more detailed
introduction is given in section 2.6. The most important constituents of an auction site are the
auctions, either still open or already closed, and the items being auctioned as well as the partic-
ipating persons. In 2.2.1 an example auction site XML document is given .

Example 2.2.1
<s i t e>

<r e g i o n s>
<a f r i c a />
<a s i a />
<a u s t r a l i a />
<europe />
<namer ica />
<sa mer i c a />

</ r e g i o n s>
<c a t e g o r i e s>

<c a t e g o r y i d =” c00001 ”>
<name>Sof tware</name>
<d e s c r i p t i o n>Bus iness , e d u c a t i o n and games</ d e s c r i p t i o n>

</ ca tego ry>
</ c a t e g o r i e s>
<c a t g r a p h />
<peop le>

<person i d =” p00001 ”>
<name>Mary Fernandez</name>
<e m a i l a d d r e s s>fe rnandez@xquery . com</ e m a i l a d d r e s s>
<c r e d i t c a r d>123−2345−235</ c r e d i t c a r d>

</ person>
</ peop le>
<o p e n a u c t i o n s />
<c l o s e d a u c t i o n s />

</ s i t e>

The example auctions site document consists of a root element calledsite . Within this root
element is theregions element listing several possible regions e.g.africa or namerica
in form of empty elements. The root child elementcategories contains itself a child el-

2.2. XML 9

ement namedcategory . Thecategory element contains a name element, which has got
simple text content e.g.Software, and a description element also containing simple text content,
e.g. Business, education and games. Another root child elementpeople contains aperson
child element. Theperson andcategory element given in the example include an attribute
namedid , which is used to identify a certain person or respectively a certain category. Finally,
the empty elementsopen auctions andclosed auctions are part of the site’s children.
The given document describes a rather small auction site without running or finished auctions
and only one registered person and category. Nevertheless it gives an impression of XML doc-
uments.
As mentioned before, well-formedness is a weak condition upon XML documents. In most
cases processes extracting or changing data of XML documents need more information about
the element and attribute structure. For this purpose schema languages are available. Schema
languages enable to define structural and value conditions for a certain class of XML docu-
ments. XML documents, which are well formed and obey all rules defined by a certain schema,
arevalid according to this schema .Validity is a much more expressive condition upon
an XML document. In this work it is differentiated betweenstructural validity and
value-based validity . Structural validity refers to conditions limiting the number, oc-
curences and structural aspects of the content of certain elements. Contrastly value-based va-
lidity regards to conditions restricting for example attribute values. In the following the most
common XML schema languages DTD and XML Schema are introduced. There are in fact
many XML schema languages e.g. RelaxNG [92], which are not going to be discussed in this
work. DTD and XML Schema are W3C recommendations and are supported byXOBEDBPL.

2.2.1 DTD

Theoretically each XML application program can check the document structure itself, but this
procedure is error-prone and exhausting. SGML had already noticed this and introduced the
Document Type Definition (DTD) . DTDs can only define conditions regarding document struc-
ture. A reduced and simplified version of these original DTDs is taken over by the W3C [98].
Now, with the help of a DTD, a parser reads the document and is able to check structural con-
ditions. Each DTD can be seen as a description for a class of XML documents, comparable
to classes and instances in the object-oriented paradigm. A document type definition consists
of element types, attribute lists, entities, notations, comments and processing instructions. Ele-
ment types describe element content with the help of regular expressions. Table 2.1 illustrates
these constituents.

Processing instructions give hints to the parser, while comments are supposed for human read-
ers of the DTD. Entities define physical building blocks. Entity references can then be used to
build up documents or DTDs. The entity concept enables reusability of components. In XML
several kinds of entities are mentioned, e.g. general, parameter, external, internal, parsed and
unparsed. Since further details are not important, the most interesting DTD parts, namely ele-

10 CHAPTER 2. BASICS AND RELATED WORK

<!ELEMENT person ...> element type declaration
<!ATTLIST person ...> attribute list declaration
<!ENTITY copyright ”...”> entity declaration
<!NOTATION jpg ... > notation declaration
<!– ... –> comments
<? ... ?> processing instructions

Table 2.1: Constituent parts of a document type definition (DTD)

ment and attribute list declarations are explained.
An element type declaration is used to define structural conditions upon an element and its
content. The DTD offers five different content models. Theempty content model defines
elements without any content, e.g.<!ELEMENT interest EMPTY >. Theany model al-
lows element to have arbitrary content, e.g.<!ELEMENT whatever-you-want ANY >.
Finally there are content models restricting an element’s content exclusively to strings e.g.
<!ELEMENT shipping #PCDATA >, exclusively to elements,
e.g. <!ELEMENT people (person ∗) >, and a mixture of strings and subelements, e.g.
<!ELEMENT text (#PCDATA | bold) ∗ >. Element declarations with element as well
as mixed content are based on additional element type declarations. Final element declarations
are only allowed to have simple string content. String content is abbreviated with#PCDATA,
which stands for parsed character data. In case of complex models the content can be defined
further with the help of regular expressions. Regular expressions contain the sequence operator
(,), the choice operator (|) and the following cardinality operators:?(0..1),+(1..n) and∗(0..n).
In contrast to element type declarations, which define the structure between the start and end tag
of an element, attribute type declarations are used to define attributes for a certain element type.
For example defining an attributeid for the element typeperson looks like <!ATTLIST
person id ID #REQUIRED >. Since attribute values are limited to basic types, the only
valid attribute types in a DTD are predefined, e.g.CDATA, ID and IDREF. CDATAstands
for character data,ID defines an unambiguous XML name within a document, which can be
used as a key andIDREF defines a reference to a key value within this document. The last
position of an attribute list declaration contains the attribute’s usage restriction, which can be
one of#REQUIRED, meaning the attribute must be given,#IMPLIED , meaning the attribute is
optional and#FIXED followed by a certain value, which indicates that the attribute is required
and has to have the given value.
The example 2.2.2 presents the parts of the XMark DTD defining people and open auctions .

Example 2.2.2
<!ELEMENT s i t e (r e g i o n s , c a t e g o r i e s , ca tg raph , peop le , o p e na u c t i o n s , c l o s e da u c t i o n s)>

. . .

2.2. XML 11

<!ELEMENT peop le (pe rson∗)>
<!ELEMENT person (name , e m a i l a d d r e s s , phone ? , a d d r e s s ? ,

homepage ? , c r e d i t c a r d ? , p r o f i l e ? , watches ?)>
<!ATTLIST person i d ID #REQUIRED>
<!ELEMENT e m a i l a d d r e s s (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT a d d r e s s (s t r e e t , c i t y , coun t ry , p r o v i n c e ? , z i pcode)>
<!ELEMENT s t r e e t (#PCDATA)>
<!ELEMENT c i t y (#PCDATA)>
<!ELEMENT p r o v i n c e (#PCDATA)>
<!ELEMENT z ipcode (#PCDATA)>
<!ELEMENT c o u n t r y (#PCDATA)>
<!ELEMENT homepage (#PCDATA)>
<!ELEMENT c r e d i t c a r d (#PCDATA)>
<!ELEMENT p r o f i l e (i n t e r e s t∗ , e d u c a t i o n ? , gender ? , b u s i n e s s , age ?)>
<!ATTLIST p r o f i l e income CDATA # IMPLIED>
<!ELEMENT i n t e r e s t EMPTY>
<!ATTLIST i n t e r e s t c a t e g o r y IDREF #REQUIRED>
<!ELEMENT e d u c a t i o n (#PCDATA)>
<!ELEMENT income (#PCDATA)>
<!ELEMENT gender (#PCDATA)>
<!ELEMENT b u s i n e s s (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT watches (watch∗)>
<!ELEMENT watch EMPTY>
<!ATTLIST watch o p e n a u c t i o n IDREF #REQUIRED>

<!ELEMENT o p e n a u c t i o n s (o p e na u c t i o n∗)>
<!ELEMENT o p e n a u c t i o n (i n i t i a l , r e s e r v e ? , b i d d e r∗ , c u r r e n t , p r i v a c y ? ,

i t e m r e f , s e l l e r , a n n o t a t i o n , q u a n t i t y , type , i n t e r v a l)>
<!ATTLIST o p e n a u c t i o n i d ID #REQUIRED>
<!ELEMENT p r i v a c y (#PCDATA)>
<!ELEMENT i n i t i a l (#PCDATA)>
<!ELEMENT b i d d e r (da te , t ime , p e r s o n r e f , i n c r e a s e)>
<!ELEMENT s e l l e r EMPTY>
<!ATTLIST s e l l e r pe rson IDREF #REQUIRED>
<!ELEMENT c u r r e n t (#PCDATA)>
<!ELEMENT i n c r e a s e (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT i n t e r v a l (s t a r t , end)>
<!ELEMENT s t a r t (#PCDATA)>
<!ELEMENT end (#PCDATA)>
<!ELEMENT t ime (#PCDATA)>
<!ELEMENT s t a t u s (#PCDATA)>
<!ELEMENT amount (#PCDATA)>

As one can see thepeople element describes an optional sequence ofperson elements.
A person element’s content itself contains a sequence of name, email address, phone, address,
homepage, creditcard, profile and watches element types. Whereas only name and emailaddress
are required constituents, the others are optional. The example DTD also defines an attribute
list for theperson element, which consists of one single required attribute calledid of type
ID.
A document can be associated with a DTD by a document type definition within the document’s

12 CHAPTER 2. BASICS AND RELATED WORK

prolog, e.g.<!DOCTYPE auction SYSTEM ’’auction.dtd’’ >. A document’s pro-
log can contain at most one document type definition.
DTDs are rather easy to write and read and often used in practice. Nevertheless DTDs possess
some important drawbacks. First DTDs only allow for the two basic data types #PCDATA in
the context of elements and #CDATA in the context of attributes. Especially basic data types
derived from integers are missing. Another aspect is that element types can only be declared
globally, which makes it impossible to define local element types with the same name but dif-
ferent content models. Last it is not possible to limit key references to keys of a certain element
type. In the following section another W3C schema language is introduced, which is more
expressive than the DTD but also much more complicated.

2.2.2 XML Schema

The XML Schema gained W3C recommendation status on May 2nd, 2001. The specification
consists of three parts [100], [101] and [102]. In the following only the most important aspects,
which are part of the first specification partition, will be given. While DTDs are written in
a proprietary format, XML Schemas are written themselves in XML. In contrast to the DTD
XML Schema predefines a larger number of basic data types, e.g. integer, double, time, date
among many others. Additional user defined basic data types can be added. Like in most
programming languages XML Schema allows to define list and union types from basic data
types. Also element cardinalities can be defined more precisely with the help of minimum
and maximum attributes. XML Schema defines a certain kind of inheritance, which is rather
limited compared to the object-oriented understanding. In XML Schema types can only be
restricted or extended by certain parts. Elements and types are clearly separated and namespaces
are supported optimally. Due to namespaces different XML Schemas or parts of them can be
composed to new schemas.
Since XML Schema definitions are themselves well-formed and valid XML documents, they
contain a single root element calledxsd:schema . The basic structure of an XML Schema
describing the auction site is given in listing 2.1.

Listing 2.1: Basic XML Schema structure
<?xml v e r s i o n =” 1 .0 ” encod ing =”UTF−8”?>
<!− An XML Schema f o r t h e a u c t i o n s i t e−>
<xsd : schema xmlns : xsd=” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”

ta rge tNamespace =” . . . ”
. . . >

<!− Auct ion XML Schema d e c l a r a t i o n s−>
. . .

</ xsd : schema>

The namespacexmlns:xsd=’’http://www.w3.org/2001/XMLSchema’’ is used
in XML Schema definitions, while the namespace
xmlns:xsi=’’http://www.w3.org/2001/XMLSchema-instance’’
is used in XML document instances, which are validated in reference to a declared XML

2.2. XML 13

Schema.
XML Schema differentiates between simple and complex types. In contrast to simple types
defining attributes and elements with simple content and without attributes, complex types de-
fine elements with at least one attribute or content containing subelements. For example the
simple type elementname is defined as follows
<xsd:element name=’’name’’ type=’’xsd:string’’ / > and the previously
mentioned attributeid is defined by
<xsd:attribute name=’’id’’ type=’’xsd:ID’’/ >.
Attributes as well as elements can be declared to have either a default or a fixed value. As men-
tioned before cardinalities known from the DTD are replaced and extended byminOccurs
andmaxOccurs attributes. The DTD cardinality operator(?) for example can be expressed
in XML Schema syntax for the persons optional subelementcreditcard as<element
name=’’creditcard’’
minOccurs=’’0’’ maxOccurs=’’1’’ >... </element >. The literalunbounded
stands for an arbitrary element occurence. In XML Schema complex types are needed to define
elements with attributes or content containing subelements. Any complex type declaration is
enclosed by tags namedxsd:complexType . Complex types can be named or unnamed. In
the latter case these types are defined anonymously inside an element declaration. In the first
case the complex type can be defined globally and can be reused for different element con-
tent types. The content models of complex types are mostly equivalent to those of the DTD.
Thexsd:anyType model does not restrict element content in any way. Anempty element
content model is rather difficult to define in XML Schema, an example will be given later in
this section. Finally there are four most used content models, namelyxsd:sequence for
the sequence operator,xsd:choice for the choice operator,xsd:all allowing to order
subelements arbitrarily and finally a mixed content model can be defined by setting themixed
attribute of thexsd:complexType element to true.
XML Schema also introduces some non-object-oriented concepts like restrictions. Restrictions
in XML Schema subtract some facets of the regarding super type. More common to program-
mers might be inheritance by extension. In this case attributes as well as subelements can be
added to super types. The XML Schema attributesfinal , abstract andblock complete
this part.
Reusability is achieved by the definition of so calledxsd:group elements to reuse groups of
elements and respectivelyxsd:attributeGroup elements to reuse groups of attributes.
Besides supporting the simple typesID , IDREF and IDREFS known from the DTD, XML
Schema also introduces a concept to define and reference composite keys. Thexsd:unique
element allows to define uniqueness constraints. Thexsd:key andxsd:keyref elements
define primary and foreign keys analogously as known from databases.
As a conclusion a part of the auction DTD given in section 2.2.1 in example 2.2.2 is presented
in XML Schema syntax in the example 2.2.3 .

Example 2.2.3

14 CHAPTER 2. BASICS AND RELATED WORK

<xsd : schema . . .>

. . .
<xsd : e lemen t name=” o p e na u c t i o n s ” t ype =” o p e na u c t i o n s T y p e ”/>

<xsd : complexType name=” o p e na u c t i o n s T y p e ”>
<xsd : sequence>

<xsd : e lemen t name=” o p e na u c t i o n ”
t ype =” open auc t i onType ”
minOccurs=”0 ”
maxOccurs=” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>
<xsd : complexType name=” openauc t i onType ”>

<xsd : sequence>
<xsd : e lemen t name=” i n i t i a l ” t ype =” xsd : doub le ”/>
<xsd : e lemen t name=” r e s e r v e ” t ype =” xsd : boo lean ”

minOccurs=”0 ”/>
<xsd : e lemen t name=” b i d d e r ” t ype =” b idderType ”

minOccurs=”0 ” maxOccurs=” unbounded ”/>
<xsd : e lemen t name=” c u r r e n t ” t ype =” xsd : doub le ”/>
<xsd : e lemen t name=” p r i v a c y ” t ype =” xsd : boo lean ”

minOccurs=”0 ”/>
<xsd : e lemen t name=” i t e m r e f ” t ype =” i t emre fType ”/>
<xsd : e lemen t name=” s e l l e r ” t ype =” s e l l e r T y p e ”/>
<xsd : e lemen t name=” a n n o t a t i o n ” t ype =” a n n o t a t i o n T y p e ”/>
<xsd : e lemen t name=” q u a n t i t y ” t ype ” xsd : i n t ” />
<xsd : e lemen t name=” t ype ” t ype =” xsd : s t r i n g ”/>
<xsd : e lemen t name=” i n t e r v a l ”>

<xsd : complexType>
<xsd : sequence>
<xsd : e lemen t name=” s t a r t ” t ype =” xsd : t ime ”/>
<xsd : e lemen t name=” end ” t ype =” xsd : t ime ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” i d ” t ype =” xsd : ID”

use=” r e q u i r e d />
</ xsd : complexType>

. . .

</ xsd : schema>

Example 2.2.3 focuses on the XML Schema definition of theopen auctions element
containing a sequence of open auction elements. The element is declared to be of the named
global complex typeopen auctionsType . If neither theminOccurs nor maxOccurs
attribute is explicitly specified, the element’s cardinality is implicitly set to one. In other words,
the default value for both cardinality attributes is one. In contrast to the named
open auctionsType complex type, the complex type of the element namedinterval is
defined anonymously and locally inside the interval element’s start and end tag. In this example
all complex types rely on the sequence content model, e.gopen auctionType and the com-

2.3. XPATH 15

plex type of the interval element. The cardinality of the bidder subelement is set to unbounded
and the open auction’s attributeid is defined to be of typexsd:ID . The id attribute is re-
quired for every open auction element by setting the attributeuse to required.
So far the construction of XML documents and the definition of certain classes of XML doc-
uments have been discussed. Now it is going to be introduced how required information can
be extracted from an XML document. Section 2.3 presents the most important aspects of the
XML query language XPath, while section 2.4 goes on with the XML programming language
XQuery. XQuery is based on XPath. Furthermore both query languages are recommended by
the W3C.

2.3 XPath

XPath is an expression language proposed by the W3C [99] that allows to address and select
values or nodes of an XML document. Originally XPath was designed as a part of another
XML processing language. The result of an XPath expression may be a selection of nodes
from the input document, or an atomic value, or more generally, any sequence allowed by the
XML data model. The nameXPathderives from its most significant feature, the path expres-
sion, which provides a facility of hierarchically addressing the nodes in an XML tree. As a
first approximation an XPath expression can be compared to a directory path in a file system.
XPath expressions are often used as attribute values in other XML vocabularies, e.g. defining
composite keys in XML Schema.
In XPath an XML document is considered as a tree consisting of several different node types,
which are listed in table 2.2.

Table 2.2: XPath node types
node type explanation
root node the whole XML document

not to be confused with the document element
element node represent an element
text node represents textual content (character data) in an element

or attribute
attribute node represents an attribute
namespace node represents a namespace
processing instruction noderepresents a processing instruction
comment node represents a comment

The root node as defined in XPath has got the document element, comment nodes and pro-
cessing instruction nodes as direct subelements. Each XML document node in the XPath data

16 CHAPTER 2. BASICS AND RELATED WORK

model is characterized by the following set of features: node type (see table 2.2), name, e.g. an
element’s or attribute’s name, content, e.g. for an attribute node it’s the attribute’s value, parent
and child, e.g. only the root node and some element nodes might have child nodes. Attribute
nodes especially are not child nodes of the regarding element node. Throughout this section the
example XML document 2.3.1 is used to demonstrate the effect of different XPath expressions.
This document is a slightly extended version of the XML document given in section 2.2 exam-
ple 2.2.1.

Example 2.3.1

<s i t e>
<r e g i o n s>
<a f r i c a />
<a s i a />
<a u s t r a l i a />
<europe />
<namer ica />
<sa mer i c a />

</ r e g i o n s>
<c a t e g o r i e s>

<c a t e g o r y i d =” c00001 ”>
<name>Sof tware</name>
<d e s c r i p t i o n>Bus iness , e d u c a t i o n and games</ d e s c r i p t i o n>

</ ca tego ry>
<c a t e g o r y i d =” c00002 ”>

<name>DVD</name>
<d e s c r i p t i o n>movies</ d e s c r i p t i o n>

</ ca tego ry>
</ c a t e g o r i e s>
<c a t g r a p h />
<peop le>

<person i d =” p00001 ”>
<name>Mary Fernandez</name>
<e m a i l a d d r e s s>fe rnandez@xquery . com</ e m a i l a d d r e s s>
<c r e d i t c a r d>123−2345−235</ c r e d i t c a r d>

</ person>
<person i d =” p00002 ”>

<name>Jim Gray</name>
<e m a i l a d d r e s s>j im@gray . com</ e m a i l a d d r e s s>

</ person>
<person i d =” p00003 ”>

<name>Ed Roman</name>
<e m a i l a d d r e s s>ed@roman . com</ e m a i l a d d r e s s>
<c r e d i t c a r d>1246−334−845748</ c r e d i t c a r d>

</ person>
</ peop le>
<o p e n a u c t i o n s />
<c l o s e d a u c t i o n s />

</ s i t e>

To address the open auctions element that is a child element ofsite the XPath location path
/child::site/child::open auctions would apply. XPath location paths always re-

2.3. XPATH 17

sult in a single node or value or in a list of them. Furthermore each location path consists of
an arbitrary sequence oflocation steps . Location steps are separated from each other
by slashes (/). Location paths may be relative or absolute. An absolute location path starts by
addressing the document’s root node, e.g./location step 1/.../location step n.
Contrastly relative location paths are formulated in reference to a context node,
e.g. location step 1/.../location step n. Each location step consists of three
constituents at maximum:

• axis specifier, selection by navigating the tree structure

• node test, selection by node type or name

• predicate, selection by testing specific node characteristics

These constituents are connected as followsaxis specifier::node test[predicate] ∗
within each location step. The following table 2.3 lists and demonstrates the axis specifiers de-
fined in XPath for the given example auction document . For this purpose the auction document
of example 2.3.1 is represented as a tree in figure 2.1.
Text nodes are left out for readability. The context node is marked.

Figure 2.1: The example auction XML document represented as tree

0

e : emailaddress
c : creditcard

d : description

id id id id id

1

site

regions categories closed_auctionscatgraph people open_auctions

personpersonpersoncategorycategory

n e cnn en dd n e c

7654

8

2 3

13 15

29

9 10 11 12 14 16 17

18 19 20 21 22 23 24 25 26 27 28

/ (root node)

n : name

Following the axis specifier in a location step, the node test filters the selected nodes of an
XML document further. The existing kinds of node tests are listed in table 2.4. Finally pred-
icates can be given to select specific nodes. Each location step can have an arbitrary number

18 CHAPTER 2. BASICS AND RELATED WORK

Table 2.3: XPath axis specifiers

axis selected nodes selected nodes
in general in example

self context or current node 5
child direct child elements 12,14,16
parent direct ancestor 1
descendant descendant nodes including children,

grandchildren etc. 12,14,16,22,23,24,25,26,27,28,29
descendant-or-selfdescendant nodes and current node 5,12,14,16,22,23,24,25,26,27,28,29
ancestor ancestor nodes including parent,

grandparents etc. 1,0
ancestor-or-self ancestors and current node 5,1,0
following all nodes following the current

node in document order 6,7
following-sibling all following nodes, which are siblings

of the current node 6,7
preceding all nodes preceding the current

node in document order 2,3,8,9,10,11,18,19,20,21,4
preceding-sibling all preceding nodes, which are siblings

of the current node 2,3,4
attribute the attributes of the current node none
namespace the current node’s namespace none

of predicates. The evaluation happens from left to right. The value of each predicate and node
either results in true or false. XPath offers several abbreviations for the most frequently used
axis specifiers or respectively location paths as listed in table 2.5. In addition XPath provides
some functions working on node sets, single nodes or strings.Number,boolean ,string ,
node-set andobject are supported as data types. For example in case of node sets the
functionsname(node-set) , delivering the name of the first node, andposition() , re-
turning the position of the current node, are provided.

Example 2.3.2The following XPath location path evaluated upon the context node in 2.1

child::person[@id=”p0001”]/child::name

returns the name element of the person with the idp 00001 . As can be seen in the document
representation in 2.3.1 this is<name>Mary Fernandez </name >.

2.3. XPATH 19

Table 2.4: XPath node tests

node test description
comment() filters comment nodes
text() filters text nodes
processing-instruction() filters processing instructions nodes
node() arbitrary nodes, e.g. elements, attributes.
∗ the wildcard, depending on the corresponding axis specifier,

e.g.attribute - filters all attribute nodes otherwise all element nodes
a name filters all nodes with the given name

Table 2.5: Abbreviations for axis specifiers and location steps

detailed syntax abbreviated syntax
child:: (default, can be left out)
attribute:: @
/descendant-or-self::node()///
self::node() .
parent::node() ..

Any XPath expression in this work is built up according to the grammar given in definition
2.3.1.

Definition 2.3.1 (XPath Grammar) The grammar for an XPath expression is defined as fol-
lows:

20 CHAPTER 2. BASICS AND RELATED WORK

location path → relative location path
relative location path → step|relative location path ’/’ step
step → axis specifier nodetest predicate∗
axis specifier → axis name’::’
axis name → ancestor| ancestor-or-self| attribute

| child | descendant| descendant-or-self
| following | following-sibling | parent
| preceding| preceding-sibling| self

nodetest → nametest|nodetype’(’’)’
predicate → ’[’ predicateexpression ’]’
predicateexpression → expression
nametest → ’∗’ | name
nodetype → comment| text | node

The nonterminalexpressiondenotes a boolean expression as it is known in many programming
languages and therefore not defined in more detail. The nonterminalname represents an ele-
ment name. 2

XPath expressions working upon an XML document are formulated independently of its corre-
sponding XML language description. In the next section XQuery, which is based on XPath, is
introduced. In contrast to XPath, XQuery is a full, functional programming language.

2.4 XQuery

XQuery has gained working draft status in the W3C [105]. XQuery is a declarative query lan-
guage for XML documents and XML data repositories and can be compared with the Structured
Query Language (SQL) for relational databases. XQuery 1.0 uses a sub set of the node selection
functionality included in XPath 2.0. Although XQuery is a powerful XML query language any
update capability of XML documents or data is missing so far. There exist many proposals for
updating XML. Details upon XML updates are given later in sections 2.9 and 3.3.2. The latter
section describes the solution realized inXOBEDBPL.
XQuery offers several kinds of expressions, namely variables, path expressions, constructors,
embedded expressions and FLWOR expressions. Since path expressions are explained in sec-
tion 2.3 and variables, constructors and embedded expressions are well known from other pro-
gramming languages, this section will concentrate on FLWOR expressions. FLWOR expres-
sions are analogously defined to SQL expressions. FLWOR expressions support iteration and
binding of variables to intermediate results. This kind of expression is often useful for comput-
ing joins between two or more documents and for restructuring data. The nameFLWOR, pro-
nounced ”flower”, is suggested by the keywordsfor , let , where , order by andreturn .
FLWOR expressions are constructed according to the grammar given in the definition 2.4.1.

2.4. XQUERY 21

Definition 2.4.1 (FLWOR grammar) FLWOR expressions in XQuery are built according to
the following grammar:

flwor expression → (for clause| let clause)+
whereclause?
order by clause?
RETURN expr single

for clause → FOR ’$’ var name
typedeclaration? positional var?
IN expr single
(’,’’$’ var nametypedeclaration?
positional var IN expr single)∗

let clause → LET ’$’ var name
typedeclaration?
’:=’ expr single
(’,’’$’ var nametypedeclaration?
’:=’ expr single)∗

typedeclaration → AS sequencetype
positional var → AT ’$’ var name
whereclause → WHERE expr single
order by clause → (ORDER BY | STABLE ORDER BY) order speclist
order speclist → order spec(’,’ order spec)∗
order spec → expr single ordermodifier

The nonterminalvar namedesignates a variable name. The nonterminalorder modifierdefines
an order constraint upon the result tuples, e.g. ascending or descending. With the exception
of the special typevoid() , a sequencetypeconsists of an item type that constrains the type
of each item in the sequence, and a cardinality that constrains the number of items in the se-
quence. The nonterminalexpr singledenotes an expression that does not contain a top-level
comma operator. The comma operator offers one way to construct a sequence. Despite its
name, anexpr singlemay evaluate to a sequence containing more than one item. 2

The purpose of thefor andlet clauses in a FLWOR expression are to produce a tuple stream
in which each tuple consists of one or more bound variables. Unlike afor clause, alet clause
binds each variable to the result of its associated expression without iteration. The following
simple example 2.4.1 demonstrates the different semantics. The optionalwhere clause pro-
vides a filter for the tuples of variable bindings generated by thefor andlet clause. Only if
the effective boolean value of the where expression istrue the tuple is retained and its vari-
able bindings are used in an execution of thereturn clause. With the help of the optional
order by clause tuples in the tuple stream can be reordered. Areturn clause of a FLWOR
expression is evaluated once for each tuple in the tuple stream. The results of these evaluations

22 CHAPTER 2. BASICS AND RELATED WORK

are concatenated, as if by a comma operator, to form the FLWOR expression’s result.

Example 2.4.1In this example a given node sequence consisting of the empty elementsone ,
two and three is bound to a let variable and to a for variable. The characteristic results
reflecting their different bindings are shown as well.

LET $s := (<one/>,<two/>,<three/>) FOR $s IN (<one/>,<two/>,<three/>)
RETURN<out>{$}</out> RETURN<out>{$}</out>

results in:
<out> <out><one/><out/>
<one/> <out><two/><out/>
<two/> <out><three/><out/>
<three/>
</out>

The next FLWOR example 2.4.2 could be formulated upon the example XML document
given in section 2.3 example 2.2.1.
Example 2.4.2The following FLWOR expression

FOR $p IN fn:doc(”auction.xml”)//person
WHERE fn:exists($p/creditcard)
RETURN<member> {$p/name}</member>

selects all persons of the auction site with a registered creditcard number. Each name of these
selected persons is then returned enclosed betweenmember tags. Applied to the example auc-
tion XML document in 2.2.1, the result is:

<member><name>Mary Fernandez</name></member>
<member><name>Ed Roman</name></member>

In contrast to XPath XQuery offers the possibility of statically type checking programs
in reference to declared XML Schema or DTD instances. Static type checking of XQuery is
described in section 3.2 in more detail.

2.5 The Document Object Model

The Document Object Model (DOM) gained W3C recommendation status on October 1st,
1998 and consists of several levels. The DOM levels denote certain versions. In this work it is
focused on the core DOM level [97]. There exist two basic models for an XML programming

2.5. THE DOCUMENT OBJECT MODEL 23

language interface. On the one hand the Simple API for XML Parsing (SAX) [110] , which
uses event driven parsing. A SAX parser is instantiated with an XML document and started.
Then the XML document is read as a data stream from the beginning to its ending. During the
processing the parser notifies all registered listeners via a uniform interface upon the occurence
of XML document specific parts, e.g. the beginning of the document, the beginning and ending
of an element. The advantages of the SAX model are a thin and easy to use API, as well as
a fast XML document processing with minimum main memory usage. Since no parts of an
XML document are kept in memory, this processing model of the SAX API may also be its
disadvantage. By contrast the DOM provides a language-neutral interface that allows programs
to dynamically access and update the content, structure and style of an XML document. The
DOM is a model for tree-oriented XML document processing and representation. Any XML
document is represented as a hierarchical structure consisting of nodes with exactly one root
node. XML documents can be read in and offered to application programs for navigational
processing including reading and writing operations. Furthermore DOM trees can be created
by application programs and converted into XML documents. DOM trees can be transformed
into other DOM trees. An important concept of the DOM is that everything is a node. Thus each
more specific interface extends the most generalNode interface. TheNode interface provides
methods to navigate and manipulate a DOM tree and is given in listing 2.2.

Listing 2.2: The DOM Node interface

pub l i c i n t e r f a c e Node{
. . .
/ / n a v i g a t i o n a l methods
pub l i c Node ge tParen tNode () ;
pub l i c NodeL is t ge tCh i ldNodes () ;
pub l i c Node g e t F i r s t C h i l d () ;
pub l i c Node g e t L a s t C h i l d () ;
pub l i c Node g e t P r e v i o u s S i b l i n g () ;
pub l i c Node g e t N e x t S i b l i n g () ;
/ / m a n i p u l a t i n g methods
pub l i c Node i n s e r t B e f o r e (Node newChild , Node r e f C h i l d) . . . ;
pub l i c Node r e p l a c e C h i l d (Node newChild , Node o l d C h i l d) . . . ;
pub l i c Node removeChi ld (Node o l d C h i l d) . . . ;
pub l i c Node appendCh i ld (Node newChi ld) . . . ;
. . .

}
The DOM’s most important interfaces to represent an XML document as a tree are illustrated
in figure 2.2. With the help of the interfaces listed in figure 2.2 the XML auction document in
example 2.2.1 section 2.2 is represented as a DOM tree as shown in figure 2.3. In contrast to the
SAX model, which uses stream based XML document processing, the DOM model represents
an XML document as a tree in memory. With increasing size of XML documents the DOM

24 CHAPTER 2. BASICS AND RELATED WORK

model might become inefficient. In this case SAX processing may be more suitable for XML
applications.

2.5. THE DOCUMENT OBJECT MODEL 25

Figure 2.2: The DOM’s interfaces for representing XML documents

Node

Document

Element

Attr

CharacterData

Text

DocumentFragment

Notation

Entity

EntityReference

DocumentType

ProcessingInstruction

CDATASection

26 CHAPTER 2. BASICS AND RELATED WORK

Figure 2.3: Example XML auction document represented as a DOM tree

"id"

"site"
"auction.dtd"

Element
"site"

Element
"regions"

Attr
"id=c00001"

Element
"people"

Element
"person"

Element
"name"

Element
"emailaddress"

Element
"creditcard"

Attr
"id=p00001−2

Text
"123−2345−235"

Text
"fernandez@xquery.com"

Text
"Mary Fernandez"

Element
"open_auctions"

Element
"closed_auctions"

Element
"australia"

Element
"africa"

Element
"asia"

Element
"category"

Element
"categories"

Element
"samerica"

Element
"namerica"

Element
"europe"

Element
"name"

Text
"Business, education and games"

Text
"Software"

Element
"description"

Document

NamedNodeMap

NamedNodeMap

"id"DocumentType

2.6. XMARK 27

2.6 XMark

Throughout this work the XMark XML language description [67] is used for examples and later
on for experimental results. The aim of the XMark project is to provide a benchmark suite that
allows users and developers to gain insights into the characteristics of their XML repositories.
The XMark tool kit for evaluation consists of a workload specification, a scalable benchmark
document and a comprehensive set of characteristic queries. The structure of the benchmark
document, which is modeled after a database deployed by an internet auction site, is defined by
theauction DTD already shown in example 2.2.2 in section 2.2.1. The main entities come in
two groups:person , open auction , closed auction , item andcategory on the
one side andannotation anddescription on the other side. While the first entity group
belongs to a data centric XML model, the second group concentrates on natural language and
contains document centric element structures.
The semantics of the mentioned entities is as follows.Items represent objects, which are on
sale or have already been sold. Each item consists of a unique identifier and properties like
payment, e.g. credit card, money order, a reference to the seller and a description. This infor-
mation is all coded as element. In addition each item is assigned to a certain region, e.g. africa,
asia, europe, by its parent.Open auctions are currently ongoing auctions. Properties of
open auctions are for example the bid history along with references to the bidders and the seller,
the current bid, the time interval within bids are accepted and a reference to the item being
sold. Contrastlyclosed auctions are auctions that are already finished. Closed auctions
contain references to the bidder and seller, which are both persons. Furthermore information
like the reference to the regarding item, the final price, the number of sold items, the closing
date and several annotations made during and after the bidding process are included.Persons
are registered with their name, email address, credit card number and the possibly empty set
of open auctions they are interested in among others. With the help ofcategories items
are classified. Thecategory graph links all categories in a network. Several subelements
can occur optionally or arbitrarily often. By this, the XML document structure is not fully
predictable. In the document centric partannotation anddescription elements are de-
fined such that the length of strings and the internal structure of subelements varies enormously.
Among others the markup contains itemized lists, keywords and even formatting instructions.
Any XML document that is valid according to the auction DTD covers the full range of kinds
of XML instances, from marked up data structures to traditional text. Nevertheless in this work
the focus rather lies on the data centric parts of the auction DTD.
The XMark benchmark data generatorxmlgen produces XML documents, which are valid
according to the auction DTD. The sizes of generated XML documents can range from MBs to
several GBytes. Even the generation process of large XML documents only needs low mem-
ory requirements. The number and type of elements are chosen according to a template and
parameterized with certain probability distributions. The words of text paragraphs are taken
from Shakespeare’s plays. For simplicity the user can solely adjust the size of generated XML
documents.

28 CHAPTER 2. BASICS AND RELATED WORK

2.7 XML Updates

For the relational data model SQL is the standard query language including update operations.
As mentioned before in sections 2.3 and 2.4 high level query languages like XQuery and XPath
for XML data do not provide update operations explicitly. One might argue that XQuery might
not need any update capability since it is possible to transform any given input document into
an arbitrary output XML document. Even if by this procedure one might be able to simulate any
update operation, the overhead is enormous. Low level updates for XML are provided by the
DOM as described in section 2.5 . This section about XML updates is going to be twofold. On
the one hand several characteristic high level approaches are introduced that make proposals for
XML update syntax and semantics. On the other hand the problem of checking the validity of
XML updates is discussed. An update upon an XML document is valid if the XML document
always remains valid according to the declared XML schema. For the most significant syntac-
tical and semantical approaches in the context ofXOBEDBPL an insert and a delete example
are shown. Both operations are performed upon the example XML auction document shown in
2.2.1 section 2.2. The first update inserts a new category into the auction’s categories element.
The second update deletes an existing person from within the people element.
The W3C itself made some unpublished proposals to extend XQuery to support updates in [94].
The new functional XML language introduced in [87] is based upon it and tightly coupled with
XQuery itself. Validity checking is done during the update execution phase. The corresponding
insert and delete example can be seen in 2.7.1.

Example 2.7.1The example insert and delete operation in the XML language introduced in
[87]:

insert
<category id=”c00002”>

<name>DVD</name>
<description>movies</description>

</category>
as last into
document(”xmark.xml”)//categories;

delete
document(”xmark.xml”)//person[@id=”p00001”];

Another declarative XML update language is proposed in [50]. At the time of writing, an-
other W3C working draft is available concerning XQuery update facility requirements [106].
The status of this document is work in progress. Another approach for XML updates in the

2.7. XML UPDATES 29

context of the XQuery language that is often cited is [89]. Parts of the syntactical proposals
made in [89] are adopted in this work, for details see section 3.3.2. The corresponding insert
and update operations can be seen in the example 2.7.2.

Example 2.7.2The example insert and delete operation in the extended XQuery update syntax
made in [89]:

FOR $p IN document(”auction.xml”)//categories
UPDATE $p
INSERT
<category id=”p00002”>

<name>DVD</name>
<description>movies</description>

</category>

FOR $p IN document(”auction.xml”)//people
UPDATE $p
DELETE $p/person[@id=”p00001”]

Basically [89] deals with the mapping of these update expressions to SQL. Any validation
is omitted. Finally XML updates in XML syntax are proposed in theXUpdate project [109] .
The corresponding insert and update operations can be seen in the example 2.7.3.

Example 2.7.3The example insert and delete operation formulated in the XUpdate [109] XML
language:

Listing 2.3: The example insert operation

<xupda te : m o d i f i c a t i o n s v e r s i o n =” 1 .0 ”
xmlns : xupda te =” h t t p : / / www. xmldb . org / xupda te ”>

<xupda te : append s e l e c t =” document (’ a u c t i o n . xml ’) / / c a t e g o r i e s ”>
<xupda te : e lemen t name=” c a t e g o r y ”>
<xupda te : a t t r i b u t e name=” i d ”>c 00001</ xupda te : a t t r i b u t e>
<name>DVD</name>
<d e s c r i p t i o n>movies</ d e s c r i p t i o n>

</ xupda te : e lement>
</ xupda te : append>

</ xupda te : m o d i f i c a t i o n s>

30 CHAPTER 2. BASICS AND RELATED WORK

Listing 2.4: The example delete operation

<xupda te : m o d i f i c a t i o n s v e r s i o n =” 1 .0 ”
xmlns : xupda te =” h t t p : / / www. xmldb . org / xupda te ”>

<xupda te : remove
s e l e c t =” document (’ a u c t i o n . xml ’) / / pe rson [@id= ’ p0001 ’] ” />

</ xupda te : m o d i f i c a t i o n s>

All approaches have got in common that they offer update operations like insert, delete,
rename and replace. While the XML language described in [87] supports the validation of
updates, the others do not. Several approaches in the context of XML updates solely concen-
trate on the validation aspect of updates. In [10] updates are checked before execution, but
this happens at runtime. In [77] updates as defined in [89] are rewritten at compile time, but
validity checking is also done at runtime. In [45],[63] and [111] validity is checked upon the
resulting XML documents or respectively the resulting XML data. In contrast to all approaches
mentioned in this section,XOBEDBPL integrates high level XML updates into the existing pro-
gramming language Java and checks their structural validity at compile time. Details about
updates and their validiation inXOBEDBPL are given in section 3.3.2.

2.8 Web Services

In this work web services denote SOAP based web services only. Related technologies are for
example CORBA [59], DCOM [53] and Java RMI [81]. XML plays an important role in the
context of web services. Furthermore the realization ofXOBEDBPL’s persistency layer is based
on web services, for details see chapter 6. Web services can be described by two definitions. On
the one hand web services provide a powerful architecture to dynamically integrate heteroge-
neous applications across networks using open internet technologies. On the other hand, from
a more technical point of view, web services consist of the following elements:

XML formats, for details see section 2.2

HTTP the Hyper Text TransferProtocol. HTTP is a protocol used to transmit web pages
between internet servers and browsers [93].

SOAP a protocol that enables method invocations across single computers and systems [95,
96]. For example SOAP provides an XML schema describing the format of method
invocations and parameter passings. Furthermore it defines the connection to HTTP or
SMTP.

2.8. WEB SERVICES 31

WSDL stands forWebServiceDescriptionLanguage and is another XML schema language
describing the interface of a web service instance [103, 104]. Parts of the interface de-
scription refer for example to the provided methods and parameter types.

UDDI stands forUniversalDescription,Discovery andIntegration and is a registry service
supporting the publication, search and binding of web service instances [57, 56].

The following table 2.6 lists the web service constituents as levels with their appropriate inter-
net protocols.

Table 2.6: Web service layers and protocols
web service layer protocol
service discovery and publication UDDI
service description WSDL
XML based messaging and packagingSOAP
internet transfer protocols HTTP/SMTP
internet network protocol TCP/IP

As can be derived from the first definition, web services enable applications written in an ar-
bitrary language to communicate and exchange information. This is because every message is
passed in XML format (SOAP) and the corresponding application interfaces are described in
XML (WSDL) as well.
An XML message in SOAP format consists of an envelope, an optional header and a body
containing the data. SOAP distinguishes between three different kinds of messages: requests,
responses and fault descriptions. Passing complex objects or data via SOAP means nothing
else than that these objects or data are serialized. SOAP messages are not written manually but
rather generated automatically by software tools. Further details can be found in the W3C’s
SOAP specifications.
As mentioned before a WSDL description enables an application to integrate a web service just
in time. For this purpose WSDL defines the following central parts of a web service, e.g. the
interface of the provided methods, the data types of the submitted messages, including both
responses and requests, information concerning the specific protocol, addresses of the specific
services.
UDDI is itself a web service. Its functionality can be explained very well in the context of the
three participants, which are in general the UDDI web service, the web service provider and
the web service user. As can be seen in figure 2.4 UDDI offers two basic service methods. A
web service provider can publish its web service instance via UDDI and a web service user can
query UDDI for a desired web service instance. If UDDI finds a suitable web service instance,
it passes a reference to the user. The user can then bind to the web service instance. The web
service registry plays an important role in UDDI and works analogously to the yellow, white
and green pages.

32 CHAPTER 2. BASICS AND RELATED WORK

Figure 2.4: UDDI triangle

search

(WSDL)

communicate
(SOAP)

UDDI
registry

web service
provider

publish

user
web service

describe

2.9 XML in Programming Languages

The most elementary way to deal with XML fragments is to use ordinary strings without any
structure, e.g. Java Servlets [108]. Java Server Pages [64] provide an improvement by allowing
to switch between XML parts and Java using special markings. All these approaches share the
disadvantage that not even well-formedness is checked at compile time.
Low-level-binding approaches like the DOM or Java DOM (JDOM) [40] provide classes for
nodes in an XML document, thus allowing to access and manipulate arbitrary XML fragments
by object-oriented programming. Low-level bindings ensure well-formedness of dynamically
generated documents at compile time, but defer validation until runtime. The ECMAScript lan-
guage extension for XML [19] integrates the construction and manipulation based on a tree-like
navigation of XML objects into ECMAScript [18], but validation against an XML language
description is not supported.
High-level bindings [11] like Sun’s JAXB, Microsoft’s .Net Framework, Exolab’s Castor , Del-
phi’s Data Binding Wizard and Oracle’s XML Class Generator [86, 54, 21, 9, 60] assume that
all processed documents follow a given schema. This description is used to map the document
structure onto language types or classes reproducing directly the semantics intended by the
schema. Apache’s XML Beans [4] offer a DOM-like tree navigation API to underlying XML
documents or additionally generate a set of Java classes and interfaces corresponding to XML
schemas, if XML schemas are compiled. A third API supports XQuery. Validity at compile
time is only supported up to a limited extent depending on the selected language mapping.
Recently, the aspect of guaranteeing the validity of XML structures at compile time gained some
interest. The XDuce language [34], [33] is a special functional language developed as an XML
processing language. XML elements are created by specific constructors. The content can be
accessed through pattern matching. XDuce supports type inference and performs a subtyping

2.10. PERSISTENT XML 33

analysis to ensure validity of XML expressions at compile time. The subtyping algorithm is im-
plemented on the basis of a regular tree automaton. The Xtatic project [26] is the successor of
XDuce. The main purpose of Xtatic is to couple the concepts of XDuce with the object-oriented
programming language C#. Xtatic has similar goals likeXOBEDBPL. However, Xtatic is still
in an early stage and, in contrast toXOBEDBPL, Xtatic does not support XPath. BigWig [12] is
a special programming language for developing interactive web services. JWig [17] is the suc-
cessor of BigWig integrating the XML-specific parts of BigWig into Java. JWig is quite close to
XOBEDBPL. The main difference in JWig is that there is only one XML type. Typed XML doc-
ument templates with gaps are introduced. In order to generate XML documents dynamically,
gaps can be substituted at runtime by other templates or strings. For these templates JWig vali-
dates all possibly dynamically computed documents according to a given abstract DTD by data
flow analysis. This data flow analysis is rather time consuming. In the Xact project [46] JWig’s
validation algorithm is extended to the problem of static analysis of XML transformations in
Java. Like inXOBEDBPL, XPath is used for expressing XML transformations. XJ [31] , a new
project by IBM research, integrates XML into Java concentrating on traversing XML structures
by using XPath. The distinguishing characteristic of XJ is its support for in place updates. Xen
[52] is an integration of XML into popular object-oriented programming languages such as C#
or Java currently under development at Microsoft Company. Xen uses XML constructors sim-
ilar to XOBEDBPL’s XML object constructors. XL [23] is a special programming language for
the implementation of web services. It provides high-level and declarative constructs adopting
XQuery. Additionally imperative language statements are introduced making XL a combination
of an imperative and a declarative programming language.

2.10 Persistent XML

For storing XML structures persistently several approaches exist. One approach is to map XML
structures to relational tuples or blobs and store them in an object-relational database. For ex-
ample Oracle [61, 55] and DB2 [35, 16] belong to this group of systems. HyperJAXB [38] is
an add-on for Sun’s reference implementation of JAXB (Java Architecture for XML Binding)
[86]. It provides JAXB objects with a relational persistence layer using Hibernate [32] . Hiber-
nate is an object-relational mapping solution for Java environments. Although Oracle extends
SQL to provide support for XPath, application programs work with the provided structures by
using conventional tools like Java Database Connectivity (JDBC). JDBC does not provide any
facilities to guarantee that the application program works only with valid XML structures. This
means that either there is no validation or validation has to be performed on demand at runtime
for the whole document. In contrast toXOBEDBPL this means that validity cannot be guaran-
teed at each step of the XML generation and manipulation. The same holds for the case when
the application program does not work with tables, but uses exported XML structures. In this
case, conventional tools like DOM or SAX are used. DOM and SAX do not allow to check the
validity of XML structures at compile time, thus runtime validation is necessary.

34 CHAPTER 2. BASICS AND RELATED WORK

Another group of approaches is known as the group of native XML database systems. Promi-
nent examples are Tamino [69], Xindice [4] , Infonyte DB [36] and Natix [22]. These systems
do not use relations or objects, instead, they store XML structures directly. Most systems use
application programming interfaces that base on DOM or SAX, e.g. there is no validity check-
ing at compile time. Moreover, DOM and SAX are rather low level interfaces requiring a lot of
programming. An exception is Xindice [4] which supports XUpdate [109]. To the best of our
knowledge, there is no system with an application programming interface that allows checking
the validity of XML structures statically at compile time of the application program.

2.11 Database Programming Languages

A number of attempts have been made to construct programming languages with completely in-
tegrated database management systems. These languages are calleddatabase programming
languages . Important topics of any useful and consistent database programming language
are persistence, inheritance, polymorphism, modules, implementation, transaction handling and
concurrency.
In programming languages objects normally have a well-defined lifetime. A variable declared
in a block or method will persist during the activation of that code segment and thereafter be
inaccessible. If an object is created as part of another data structure, its persistence, from the
programmer’s point of view, is the duration for which it remains accessible. In contrast to these
transient objects, the treatment of data required to last longer than a single program execution
is less uniform. Especially the set of types that may persist is often a small subset of, or even
different from, the types available for transient objects, e.g object-oriented programming lan-
guages and relational databases.
A first definition of a database programming language is given in [14] and shown in 2.11.1.

Definition 2.11.1 In addition to data, data flow and concurrency abstractions provided by third
generation programming languages (3GL), database programming languages offer transparent
persistency. In contrast to fourth generation programming languages (4GL) persistency is or-
thogonally integrated into the language. 2

The complete set of requirements for a database programming language is not clearly defined.
Nevertheless a basis can be found in [6]. The following list of requirements given in 2.11.2 is
slightly revised and extended.

Definition 2.11.2 The majority of features commonly used in programming languages might
be inherited except some important differences mentioned below.

data model integration

type checking Besides dynamic binding and incremental type checking, static and strong type

2.11. DATABASE PROGRAMMING LANGUAGES 35

checking is particularly important due to the possible long lifetime of data.

type independent persistencyThe type system must be entirely consistent for persistent as
well as for transient data. In particularly persistence must be independent of type.

consistent naming A consistent naming system for objects, program components and types is
required independent of longevity.

polymorphism and inheritance The type system must support polymorphism and inheritance.

orthogonal persistencePersistence must be orthogonal to type, and it should be possible to
write programs without taking into account the longevity of data.

transparent persistency The programmer should not have to organize placement or movement
of data but should be provided with operations to copy, protect and secure data.

transparent transactions Transparent notations and support for transactions should be pro-
vided.

transparent concurrency hides that resources might be used by several users simultaneously.
Transparent concurrency should be supported.

transparent distribution hides the location of ressources. Transparent distribution mecha-
nisms for data and programs should be provided.

2

Traditionally the database and programming language communities have taken different ap-
proaches to concurrency control. In programming languages, concurrency control is based
upon the concept of the co-ordination of a set of co-operating processes by synchronisation.
Language constructs such as for example semaphores, monitors and mutual exclusion have
been provided to support this concept. Contrastly, in databases, concurrency is viewed as a sys-
tem efficiency activity allowing parallel execution and parallel access to the data. Nevertheless
each database process may be aborted to keep the illusion of non interference. In databases the
key concept is serializability [20] leading to the notion of atomic transactions [20, 47]. Atomic
transactions are realized by locking [20] or optimistic concurrency control methods [47]. Trans-
actions, concurrency and their support inXOBEDBPL are discussed in more detail in section 5.
As can be derived from above, the concept of a database programming language includes espe-
cially transparent and type independent persistency as well as a transaction concept. Persistency
in XOBEDBPL is introduced in detail in chapter 4. In this work we will concentrate on object-
oriented programming languages that are extended with the requirements listed in definition
2.11.2. A good survey on existing database programming languages can be found in [6] and
[49]. These works concentrate on comparing the type systems and persistency mechanisms.
Design principles for persistent object systems and a motivation for orthogonal persistency is

36 CHAPTER 2. BASICS AND RELATED WORK

reviewed in [7]. Among the approaches which integrate the relational model is DBPL [68] and
its successor project Tycoon [51] . In the DBPL project Modula-2 is extended by parametric
bulk types for relations. Its successor project Tycoon is based on an object-oriented program-
ming language. To the best of our knowledge there is no database programming language which
integrates the XML data model into an object oriented language like Java. Section 2.12 intro-
duces the concept of distributed and persistent objects along with some selected approaches.

2.12 Distributed and Persistent Objects

Distributed Objects. CORBA [59] is an OMG specification and basis to develop distributed
applications, which can exchange messages independant of hardware, operating system, pro-
gramming languages. Besides incompatibility, it lacks of an own object oriented programming
language interface. In contrast to CORBA Java Remote Method Invocation (Java RMI) [81] was
developed for a heterogeneous Java environment. It does not need a new interface description
language like CORBA since Java already includes interfaces. CORBA as well as RMI do not
support persistency aspects explicitly, they both realize distributed object architectures.

Persistent Objects.JDO [80] and Java Beans [85] provide a framework for persistent ob-
jects in Java. More recent versions include web service capabilities and try to reduce program-
ming difficulties and the exception overhead. JDO supports client-side application development
for persistent Java objects. Once again programmers are forced to write Java classes that are
limited. Persistence capable classes must be enhanced and persistent object manipulation im-
plies connecting to a persistence manager explicitely. Mapping of persistent classes to relational
databases is defined in XML files analogous to the approaches mentioned so far.

Hibernate [32] is an object-oriented mapping program in Java. Hibernate provides a three
layered model to map Java bean classes to relational databases. The first step of this process is
to write a Java class keeping all bean rules. This implicates for example that the class must be
directly derived fromjava.lang.Object . Moreover a standard constructor and getter and
setter methods for each persistent attribute must be available. In a second step the programmer
has to formulate mapping rules with the help of an XML file. The class’s attributes are mapped
to columns of the database in example. Tools like XDoclet [76] generate these files for simple
cases. The third step consists of the generation process of data access classes. These classes
then provide operations to create, read, actualize and delete persistent objects.

Distributed and Persistent Objects. The Java Spaces project, which has been developed
in context of the Jini network technology [82], provides a distributed storage for Java objects,
in particular for message exchange. The idea is based on Tuple Spaces [27]. Accordingly, a
distributed storage offers operations to read, write and store an object. Additionally, the take
operation loads and deletes an object from the storage. Java Spaces stores objects persistently
and keeps their identity. An important limitation is that an object can only be retrieved by its
object id. All objects of the storage have to be Java serializable.

EJB [79] supports server-side application development for distributed and persistent Java

2.12. DISTRIBUTED AND PERSISTENT OBJECTS 37

objects . In EJB 2.x there are three bean types. Session beans represent behaviour and function-
ality. Message beans are used in message-oriented systems and entity beans represent data. In
EJB 3.x entity beans are replaced by plain old Java bean classes. EJB 2.x seems to have become
too complex for most developers. It is interesting to notice that EJB 3.x tries to integrate the
most successful parts of JDO and Hibernate as well. Nevertheless EJB is not developed as a
database programming language. Therefore, the EJB programmer is forced to make objects
persistent and to connect to a central persistency instance explicitly by writing specific code
for this task. The most important limitation regarding this work is that in the case of EJB 2.x
entity beans (persistence capable classes) do not support inheritance and in the case of EJB 3.x
inheritance for attributes of persistent classes is not fully supported. If an attribute of such a
class is defined to have an interface type it can only be mapped to a blob in the database.

38 CHAPTER 2. BASICS AND RELATED WORK

Chapter 3

XML Integration

3.1 XML Objects

In this section the syntax and semantics of XML objects already defined inXOBE are briefly
summarized in an informal manner.XOBEDBPL is based uponXOBE . A more detailed intro-
duction can be found in [43] and [42].XOBE extends the object-oriented programming lan-
guage Java by language constructs to process XML fragments in particular XML documents.
XPath expressions are used for traversing XML objects.
In XOBE XML fragments, e.g. trees corresponding to a given schema, are represented by XML
objects. Therefore, XML objects are first-class data values that may be used like any other data
value in Java. DTDs as well as XML Schemas are supported schema languages inXOBE. The
declared schema is used to type different XML objects.
Listing 3.1 introduces the most important features ofXOBE. Again the XML objects are typed
with the help of the auction DTD, for details see the sections 2.2.1 and 2.6.

Listing 3.1:XOBE methodcreatePerson

1 pe rson c r e a t e P e r s o n (S t r i n g pname , S t r i n g pemai l , S t r i n g p i d){
2 pe rson p ;
3 xml<person∗> p l i s t = $ a u c t i o n S i t e / / pe rson [/ @id={ p i d }] $;
4 i f (p l i s t . s i z e ()>0) re turn n u l l ; / / pe rson a l r e a d y e x i s t s
5
6 / / new person i s c r e a t e d
7 p = < pe rson @id={ p i d}>
8 <name>{p name}</name>
9 <e m a i l a d d r e s s>{p e m a i l}</ e m a i l a d d r e s s>

10 </ person>;
11
12 re turn p ;
13 }

39

40 CHAPTER 3. XML INTEGRATION

In line 7 an XML object of typeperson is created with a so-called XML constructor. The
type declarationperson of variablep in line 2 is an abbreviated version. In general the
type declaration of an XML variable starts with the keywordxml followed by square brackets.
Within the brackets an arbitrary regular expression is used to type the XML variable. XML
objects can be accessed by an XPath expression. In line 3 a previously declared XML object
auctionSite of typesite is searched to determine whether the new person already exists.
Only if the result is negative, the new XML object person is created and returned. After this
short introduction intoXOBE, we come to the most important aspect inXOBE as well as
XOBEDBPL regarding the integration of XML. This aspect is static type checking for XML
objects, queries and updates and is the topic of section 3.2.

3.2 Static Type Checking

To explain howXOBEDBPL statically checks the validity of XML objects, queries and updates,
we need to explain its type system first.
XOBEDBPL’s type system is an extension of theXOBE type system, which is described in
detail in [42]. It is built on top of the standard Java type system. Checking type correctness of
aXOBEDBPL program consists of three parts .

Formalization translates the declared schema description into a more formal representation.

Type inference is used to determine XML types and differs for XML constructors, query and
update expressions in aXOBEDBPL program.

Subtype algorithm checks if the inferred XML types are valid according to their formalized
schema description. The explanation of the subtype algorithm is not part of this work, but
is in fact part of the work in [42, 43].

In XOBEDBPL we formalize and represent types as regular hedge expressions representing reg-
ular hedge languages [13]. Consequently a schema is formalized and represented internally by
a regular hedge grammar.
It is important to notice that any resulting regular hedge grammar inXOBEDBPL solely covers
structural constraints on XML types. In particular this means that the value-based constraints
implied for example by IDs or IDREFs in DTDs as well as ID/IDREFs and key/keyrefs con-
straints in XML Schemas are not preserved by the formalization process. SinceXOBEDBPL

intents to check static validity, this is not a limitation. In general such value-based constraints
cannot be checked at compile time at all.
Regular hedge expressions and regular hedge grammars are used inXOBEDBPL like in XOBE
[43, 42]. For readability, the corresponding definitions are repeated here.

Definition 3.2.1 A regular hedge grammar is defined byG = (T, N, s, P) with a setT = B∪E

3.2. STATIC TYPE CHECKING 41

andB ∩E = ∅ of terminal symbols, consisting of simple type namesB and a setE of element
names (tags), a setN of nonterminal symbols (names of groups and complex types), a start ex-
pressions and a setP of rules or productions of the formn → r with n ∈ N andr is a regular
hedge expression overT ∪N andT ∩N = ∅. We restrictr to be recursive in tail position only.
This ensures regularity. 2

The definition of regular hedge expressions, referred to in short as regular expressions, is simi-
lar to the notation used in [105].

Definition 3.2.2 Given a set of terminal symbolsT = B ∪ E and a setN of nonterminal
symbols, the setReg of regular hedge expressions is defined recursively as follows:

∅ ∈ Reg the empty set,
ε ∈ Reg the empty hedge,
b ∈ Reg the simple types,
n ∈ Reg the complex types,
e[r] ∈ Reg the elements,
r | s ∈ Reg the regular union operation,
r; s ∈ Reg the concatenation operation and
r∗ ∈ Reg the Kleene star operation.

for all b ∈ B, n ∈ N, e ∈ E, r, s ∈ Reg. 2

Attributes are treated as element types with simple content having a name prepended by ’@’.
Disorder constraints of attributes can be simulated by generating a choice type of all possible
sequences. However, this is implemented more efficiently inXOBEDBPL.
The formalization step applied to the XMark auction DTD given in 2.2.2 yields the following
regular hedge grammar shown in the example 3.2.1.

Example 3.2.1As explained above only structural constraints of schemas are formalized. Ele-
ment names and simple types areboldfaced, nonterminal symbols areitalic. An ’@’ marks an
attribute. The start expressions is auctiondtd.

42 CHAPTER 3. XML INTEGRATION

auctiondtd → document[site]
site → site[regions;categories;catgraph;people;openauctions;closedauctions]
people → people[(person)∗]
person → person[@id[string];name;emailaddress;(ε | phone);

(ε | address);(ε | homepage);(ε | creditcard);(ε | profile);(ε | watches)]
name → name[string]
emailaddress → emailaddress[string]
phone → phone[string]
... → ...
openaucions → open auctions[(openauction)∗]
openauction → open auction[@id[string];initial ;(ε | reserve);

(bidder)∗;current;(ε | privacy);
itemref;seller;annotation;
quantity;type;interval]

initial → initial [string]
reserve → reserve[string]
bidder → bidder[date;time;personref;increase]
current → current [string]
privacy → privacy[string]
itemref → itemref[@item[string]]
seller → seller[@person[string]]
annotation → annotation[string]
quantity → quantity [string]
type → type[string]
interval → interval [start;end]
start → start[string]
end → end[string]
date → date[string]
time → time[string]
personref → personref[@person[string]]
increase → increase[string]
... → ...

The regular expression type of the start expressions is implicitly defined by the schema. The
auctiondtd type represents the condition that each element, which is defined as a direct child
of the schema root element, can be used as a valid root element within a corresponding schema
instance (document). The XMark auction schema defines a single document root elementsite,
thereforeauctiondtd is derived todocument[site]. If more root elements are defined, the con-
tent type becomes a choice type, e.g.document[root type1|...|...root typen].

3.2. STATIC TYPE CHECKING 43

In a next step after the formalization process XML types in aXOBEDBPL program are in-
ferred.
In XOBEDBPL all variables have to be declared, therefore type inference of variables is simple.
In listing 3.1 variablep is declared of typepersonas well as the result type of the method
createPerson . The variablesp email , p nameandp id are declared to be of typestring.
Based on variable and result types, types of whole XML constructors on the right hand side of
an assignment can be inferred quite intuitively. In the XML constructor of listing 3.1 line 7 it
is:
person[@id;name[string];emailaddress[string]]
After inferring the types of the left and right hand side, theXOBEDBPL type system checks if the
type on the right hand side is a subtype of the type on the left hand side. In this caseXOBEDBPL

has to check if:
person[@id;name[string];emailaddress[string]]
is a valid subtype ofpersonaccording to the formalized XMark auction DTD given in example
3.2.1.

3.2.1 XPath Expressions

As introduced by an example in the last section, type inference for XML object constructors
in XOBEDBPL can be understood quite intuitively. XPath expressions inXOBEDBPL are con-
structed according to the grammar given in definition 3.2.3.

Definition 3.2.3 In XOBEDBPL an XPath expression is always formulated upon a predefined
context variable, except if the path expression is part of a predicate. In the latter case the context
variable can be left out, since it is implicitly defined to be the selected node list of the step the
predicate belongs to.

expression → ... | xpathexpression
xpathexpression → name? ’/’ location path

The nonterminallocation path is defined according to the W3C’s XPath grammar already de-
fined in 2.3.1. 2

Type inference for XPath expressions inXOBEDBPL always starts with the context variable
and proceeds by inferring recursively the types of selected nodes by each step. This is slightly
different for XPath expressions within a predicate or update operation. In this case the context
variable is implicitly given. It is the currently selected node list of the step the predicate belongs
to or the target variable of the update operation. The final type is inferred after the last XPath
expression step is handled. An example of the XPath type inference rules applied to the expres-
sion in listing 3.1 line 3 is given in example 3.2.2.

44 CHAPTER 3. XML INTEGRATION

Example 3.2.2The type of the XPath expression in listing 3.1 line 3:
auctionSite//person[/@id={p id}]
is inferred as follows. The context variable is declared to be of typesite. In this case the location
path consists of one further step selecting all descendant elements with tag nameperson. Thus
the result type is inferred asperson∗, which is of course not the best type. SinceXOBEDBPL’s
type system is limited to structural validity, the predicate filtering at most one person element
by its unique id cannot be taken into account.

Although XPath type inference rules can be found in [42] in detail, the most important ones
are repeated here, because the type inference rules for complex queries and updates described
in section 3.3.1 and 3.3.2 are based on them.
In case of XPath expressions, types possess the specific characteristic that they are always of
the form (e1[r1] | e2[r2] | ... | en[rn]), with ei ∈ E andri ∈ Reg. This is because by definition
XPath expressions return a list or rather a set of nodes. In the following the regular union of
element types within a Kleene star operator is also calledXPath type.
To define the type inference rules for XPath expressions inXOBEDBPL several auxiliary func-
tions have to be defined. The auxiliary functionnodeTest 3.2.4 is used to infer the XPath
type of a node test. Furthermore we need functions for every XPath axis, e.g.self 3.2.5,
child 3.2.6,descendant 3.2.7 andparent 3.2.8.

Definition 3.2.4 The functionnodeTest : E × Reg → Reg yields for a given element
namee ∈ E those types from an XPath typer ∈ Reg that have got the element namee. The
function is defined recursively:

nodeTest(e,∅) = ∅
nodeTest(e,f[r]) =

{
e[r] if e = f
∅ else

nodeTest(e,r| s) = nodeTest(e,r)| nodeTest(e,s)

2

Definition 3.2.5 The functionself : Reg → Reg yields the XPath type of a regular ex-
pressionr ∈ Reg and is defined by a two parameter auxiliary functionself :

self(r) = self(r,{})

The two parameter auxiliary functionself : Reg × P (N) → Reg is recursively defined
as:

3.2. STATIC TYPE CHECKING 45

self(∅,Nv) = ∅
self(ε,Nv) = ∅
self(b,Nv) = ∅
self(n,Nv) =

{ ∅ if n ∈ Nv

self(r,Nv ∪ {n})with n → r ∈ P else

self(e[r],Nv) =

{
e[r] if e 6= @f
∅ else

self(r|s,Nv) = self(r,Nv) | self(s,Nv)
self(r;s,Nv) = self(r,Nv) | self(s,Nv)
self(r∗,Nv) = self(r,Nv)

with b ∈ B, n ∈ N, e, @f ∈ E, r, s ∈ Reg andNv ⊂ N . 2

The auxiliary functionself derives the element types of a given regular expression. These
element types are then combined by the regular union operator to form the required XPath type.
The setNv collects the names of nonterminals that have already been processed. Only if a
non processed nonterminal is discovered the production rules of the formalized XML schema
grammar are used to apply theself function recursively. The setNv helps to avoid endless
loops. Attribute types, basic types as well as the regular concatenation and Kleene star operator
remain unconsidered.

Definition 3.2.6 The functionchild : Reg → Reg yields the XPath types of the child
nodes of an XPath typer ∈ Reg and is defined recursively:

child(∅) = ∅
child(e[r]) = self(r)
child(r|s) = child(r)| child(s)

2

Definition 3.2.7 The functiondescendant : Reg → Regyields the XPath types of the
descendants of a regular expressionr ∈ Reg and is defined recursively:

descendant(∅) = ∅
descendant(e[r]) = descendantOrSelf(r,{})
descendant(r|s) = descendant(r)| descendant(s)

for all e ∈ E andr, s ∈ Reg. The auxiliary functiondescendantOrSelf : Reg×P (N) →
Reg is defined analogously to the two parameter auxiliary functionself except:

descendantOrSelf(e[r],Nv) =

{
descendantOrSelf(r,Nv) | e[r] if e 6= @f
descendantOrSelf(r,Nv) else

2

46 CHAPTER 3. XML INTEGRATION

Definition 3.2.8 The functionparent : Reg → Reg yields the XPath types of the par-
ent nodes of a regular expressionr ∈ Reg and is defined with the help of the four parameter
functionparent :

parent(t) = |ni∈N parent(t,Ns,∅,ri) with ni → ri ∈ P

andNs = {n | t is subtype of self(r) with n → r ∈ P}.
The auxiliary funtionparent : Reg × P (N) × Reg × Reg → Reg is recursively defined as
follows:

parent(t,Ns,p,∅) = ∅
parent(t,Ns,p,ε) = ∅
parent(t,Ns,p,b) = ∅
parent(t,Ns,p,n) =

{
p if n ∈ Ns

∅ else

parent(t,Ns,p,e[r]) =

{
parent(t, Ns, e[r], r) | p if t is subtype of e[r]
parent(t, Ns, e[r], r) else

parent(t,Ns,p,r|s) = parent(t,Ns,p,r) | parent(t,Ns,p,s)
parent(t,Ns,p,r;s) = parent(t,Ns,p,r) | parent(t,Ns,p,s)
parent(t,Ns,p,r∗) = parent(t,Ns,p,r)

with b ∈ B, n ∈ N, e ∈ E, p, r, s, t ∈ Reg andNs ⊂ N . 2

The functionparent is based on the four parameter auxiliary function. The parametert is
the element type for which the parent element types are searched. The setNs consists of the
nonterminal symbols thatt encloses as subtypes in the XPath type of the self axis. The pa-
rameterp accumulates the current parent type, whiler is the currently examined regular hedge
expression.
The idea of the parent type computation is that each nonterminal symbol being part of the for-
malized hedge grammar is checked whether its production contains the given element type as
subtype. If such a nonterminal is found, the regarding accumulated parent type is returned.
Thus nonterminal symbols are not examined recursively. Instead it is checked if a nonterminal
symbol is in the setNs, which is created before.
Finally, with the help of these functions the type inference rules for XPath expressions in
XOBEDBPL can be formulated. The complete set of rules can be found in [42]. Definition
3.2.9 only lists some examples.

Definition 3.2.9 The following XPath type inference rules are only a subset of the complete
list given in [42].

3.3. EXTENDED FLWOR EXPRESSIONS 47

variable : r∈ Reg
variable :self (r)∗ (VAR)

ls : r∗
ls/child : child (r)∗ (CHILD)

ls : r∗
ls/descendant :descendant (r)∗ (DESC)

ls : r∗
ls/parent :parent (r)∗ (PAR)

e∈ E, ls/axis : r∗
ls/axis::e :nodeTest (e,r)∗ (TEST)

2

Since predicates in an XPath expression only work as a filter upon the selected nodes, they
must not be taken into account for type inference. The type of an arbitrary XPath expression,
without taking into account any predicates, is always a super type of its exact type. Now the
basis for static type checking, in particular type inference and the type inference rules for XPath
expressions inXOBEDBPL, is given. The next sections will introduce syntax, semantics and
type inference rules for complex queries and updates inXOBEDBPL which are also the topic of
[72]. It is important to notice that the subtype algorithm explained in [42, 43] can be transferred
without any modification.

3.3 Extended FLWOR Expressions

Simple queries upon XML objects can already be formulated as XPath expressions inXOBE.
In XOBEDBPL extended FLWOR (xFLWOR) expressions supporting complex queries as well
as updates for XML objects are added. xFLWOR expressions inXOBEDBPL adopt syntactical
proposals of [89] to extend XQuery’s well-known FLWOR expression construct, for details see
sections 2.7 and 2.4 respectively. In this approach any return clause can optionally be replaced
by an update clause. The corresponding part of theXOBEDBPL grammar is given in definition
3.3.1.

Definition 3.3.1 An xFLWOR expression can be derived from an expression and is defined by
the following grammar:

48 CHAPTER 3. XML INTEGRATION

expression → ...|xpathexpression|xflwor expression
xflwor expression → (let clause|for clause)+

whereclause?
((order by clause? return clause) |updateclause)

let clause → LET var name’:=’ (var name| xpathexpression)
for clause → FOR var nameIN (var name| xpathexpression)

2

The nonterminalswhereclauseandorder by clauseare defined exactly like in the FLWOR ex-
pression grammar given in definition 2.4.1. The grammar forreturn clauses andupdateclauses
is given in definitions 3.3.3 and 3.3.5. Since anorder by clausegenerates a certain order of the
resulting tuples, it does not make much sense in the context of anupdateclause. Updates do
not produce any return values.
Type inference rules for the type of a let as well as for a for clause variable can be given without
further auxiliary functions. The rules presented in definition 3.3.2 solely rely on those for XPath
expressions given in definition 3.2.9.

Definition 3.3.2 The type inference rules for variables in a let and a for clause are:

variable : r∈ Reg
for variable : r

xpath expression : r∗ ∈ Reg
for variable : r

(FOR)

variable : r∈ Reg
let variable :self (r)∗

xpath expression : r∗ ∈ Reg
let variable : r∗ (LET)

2

According to the semantics of for and let variables in XQuery (see section 2.4 for more de-
tails) a let variable is always bound to an XPath type of either the assigned variable or the
XPath expression. On the contrary a for variable that is iterated is always bound to the variable
type itself or respectively to the XPath’s inner choice type.
In section 3.3.1 complex query expressions inXOBEDBPL that are formulated as xFLWOR ex-
pressions containing a return clause are explained in more detail. In section 3.3.2 the same is
done with update expressions inXOBEDBPL expressed by xFLWOR expressions with an update
clause.

3.3.1 Query Expressions

In XOBEDBPL xFLWOR expressions containing a return clause are called flwor expressions.
Up to now, XML objects can only be queried with the help of simple XPath path expressions.
Flwor expressions enable the formulation of complex queries including joins across several

3.3. EXTENDED FLWOR EXPRESSIONS 49

objects and the construction of complex query results. Query results are constructed by the
result clause. A result clause inXOBEDBPL is mainly based on XPath expressions and XML
object constructors. The syntax of a return clause is given in definition 3.3.3.

Syntax and Semantics

Definition 3.3.3 A return clause inXOBEDBPL is defined by the following grammar:

return clause → RETURN return expression
return expression → (xml object|xpathexpression|var name)+

with the nonterminalsvar namestanding for a variable name,xpathexpressionas defined in
the grammar 3.2.3 andxml objectstanding for an XML object constructor as defined in [42].2

The grammar states that a return clause is initiated by the keywordRETURN followed by a
sequence consisting of XML object constructors, XPath path expressions or variable names. At
least one XML object constructor, path expression or variable name must be given. A variable
that is used within a return clause must be formerly defined and has to be of an XML type in-
cluding lists, single XML objects and basis types. Return clauses inXOBEDBPL can be nested
implicitly if a variable name is used that references another flwor expression.
Listing 3.2 gives an impression how flwor expressions can be used in aXOBEDBPL program.

Listing 3.2: An exampleXOBEDBPL method using a flwor expression

1 pub l i c vo id p r i n t C u r r e n t S e l l e r I t e m s (){
2 / / L i s t s t h e names o f pe rsons and t h e q u a n t i t y o f i t e m s t h e y
3 / / a re c u r r e n t l y s e l l i n g
4 xml <(name ; q u a n t i t y∗)∗> namesAndNumbers =
5 $FOR i IN a u c t i o n S i t e / / pe rson
6 LET j : = a u c t i o n S i t e / / o p e na u c t i o n [/ s e l l e r / @id= i / @id]
7 RETURN i / name j / q u a n t i t y $;
8
9 / / P r i n t s t h e query r e s u l t on t h e s c r e e n

10 f o r (i n t i = 0 ; i <namesAndNumbers . s i z e () ; i ++){
11 System . ou t . p r i n t l n (” name of s e l l e r and q u a n t i t y o f i t e m s ”) ;
12 System . ou t . p r i n t l n (” c u r r e n t l y s o l d a t a u c t i o n : ”) ;
13 System . ou t . p r i n t l n (namesAndNumbers . g e t (i)) ;
14 }
15 }
TheXOBEDBPL methodprintCurrentSellerItems in listing 3.2 searches for names of
sellers and the quantity of items that they are currently selling at auction. The xFLWOR query
in lines 4-8 is similar to the Q8 query described in the XMark paper [67]. In our example the

50 CHAPTER 3. XML INTEGRATION

query joins persons with open auction elements. Finally in lines 10-13 the query result is printed
on the screen.
The next paragraph introduces type inference rules to statically type check these flwor expres-
sions.

Type Inference Rules

In this section we will concentrate on type inference of xFLWOR expressions containing a
return clause. Such an expression consists of one to many let and for clauses defining local
variables, their corresponding types can be inferred with the known rules 3.2.9 and 3.3.2. Con-
sequently a new rule is merely needed for the return clause itself. Finally the type of the whole
result clause is defined to be the result type of the whole expression. The type inference rule
for a result clause is given in definition 3.3.4. Analogously to predicates in XPath expressions,
neither where nor order by clauses have got influence on the type inference process.

Definition 3.3.4

∀ci, 0 ≤ i ≤ n ∈ var name∪xml object∪xpathexpression: tci ∈ Reg

RETURN c0...cn : (tc0 ; ... ; tcn)∗
(RETURN)

2

The main idea of the type inference rule for a return clause is that the types of the single con-
stituents can be inferred with known rules. Within one execution of a return clause these com-
ponent types are concatenated in a sequence type (;). Finally the enclosing Kleene star operator
is added, because as far as a flwor expression contains at least one for clause, the return clause
is iterated arbitrary times. Thus the single type of the return clause is repeated arbitrarily often.
For an example let us infer and check the type of the complex flwor query in listing 3.2.

Example 3.3.1This example infers the type of the flwor expression given in listing 3.2:

FOR i IN auctionSite//person
LET j := auctionSite//openauction[/seller/@id=i/@id]
RETURN i/name j/quantity

The type of the for variablei can be inferred aspersonand the type of the let variablej as
openauction∗ by the required type inference rules of definition 3.3.2. Theni/name has got
the XPath typename∗ andj/quantity the XPath typequantity∗ applying the rules of 3.2.9.
Finally we can apply theRETURN type inference rule yielding the final type:

3.3. EXTENDED FLWOR EXPRESSIONS 51

(name;quantity∗)∗

This type is valid since it is the same type as the declared type (name;quantity)∗ of the left
hand side of the assignment in line 4 of listing 3.2.

The next section will cover syntax and semantics of update expressions inXOBEDBPL and
most importantly, it introduces how these update expressions can be checked statically for struc-
tural validity.

3.3.2 Update Expressions

In XOBEDBPL xFLWOR expressions containing an update clause are called update expressions.
Up to now XML objects can either be constructed or queried but not manipulated. Update ex-
pressions enable to insert, delete, rename and replace arbitrary subelements of an XML object.
Once again these target sub elements are selected by XPath expressions. The syntax of an up-
date clause is given in definition 3.3.5. An xFLWOR expression with an update clause is also
called a flwu expression.

Syntax and Semantics

Definition 3.3.5 An update clause is defined by the following grammar:

updateclause → UPDATE var name suboperation(,suboperation)∗
suboperation → insert operation

| deleteoperation
| renameoperation
| replaceoperation

insert operation → INSERT content
((INTO |BEFORE|AFTER)location path)?

deleteoperation → DELETE location path
renameoperation → RENAME location pathTO name
replaceoperation → REPLACE location pathWITH content
content → var name| xpathexpression| xml object

2

The grammar states that an update clause is initiated by the keywordUPDATE followed by
a variable name upon which the update is performed. In the following, this variable is also
calledupdate target . The update operation is described by a sequence of fundamental

52 CHAPTER 3. XML INTEGRATION

sub-operations. At least one sub-operation must be given. The target variable of the update
operation must be formerly defined and has to be either an XML object or a list of XML ob-
jects. Each sub operation is performed successively upon the XML object(s). Thecontentin
XOBEDBPL is either a previously defined XML variable, an XML object or an XPath expres-
sion. Thelocation paths are XPath expressions selecting arbitrarydescendantobjects of the
update variable asimplicit context variable. This means thatlocation paths used to select the
target nodes of an update operation always have to start with a slash’/’ . It is important to notice
that XPath expressions are limited to those selecting descendants, attributes or childs, because
any other context cannot be guarenteed to exist for the XML objects within aXOBEDBPL pro-
gram at runtime.
Listing 3.3 gives an impression how update expressions upon XML objects are used in a
XOBEDBPL program.

Listing 3.3: An exampleXOBEDBPL method using an update expression
1 synchron ized i n t b id (S t r i n g p id , i n t i n c r , S t r i n g a i d){
2 / / c a l c u l a t e new c u r r e n t
3 xml<c u r r e n t∗> cu r =
4 $ a u c t i o n S i t e / / o p e na u c t i o n [/ @id={ a i d }] / c u r r e n t $;
5 c u r r e n t n e w c u r r e n t =
6 <c u r r e n t>{cu r . i t e m A s I n t (0)+ i n c r}</ c u r r e n t>;
7
8 / / c r e a t e new b i d d e r
9 b i d d e r b id = < b idder>

10 <date>{ge tDa te ()}< / da te>
11 <t ime>{getTime ()}< / t ime>
12 <p e r s o n r e f pe rson ={ p i d }/>
13 < i n c r e a s e>{ i n c r }</ i n c r e a s e>
14 </ b idde r>;
15
16 / / upda te a u c t i o n
17 $LET i : = a u c t i o n S i t e / / o p e na u c t i o n [/ @id={ a i d }]
18 UPDATE i INSERT { b id } BEFORE / c u r r e n t ,
19 REPLACE / c u r r e n t WITH{ n e w c u r r e n t}$;
20
21 re turn n e w c u r r e n t ;
22 }

The XOBEDBPL methodbid in listing 3.3 registers a new bid for an auction. The bidder
and the auction are selected by their ids. Additionally the increase is passed as parameter as
well. In lines 3-6 the new current bid is calculated and in a second step in lines 9-14 the new
bidder is created as an XML object. Finally in line 17-19 the update operation upon the auction
site is executed. The update operation itself consists of an insert before and a replace. The first

3.3. EXTENDED FLWOR EXPRESSIONS 53

is needed to insert the new bidder at the right place and the second to replace the old with the
new current. Please notice that this method is declared assynchronized . synchronized
is used in connection with Java threads and guarantees that methods are not executed in parallel.
Next it is introduced how these updates can be checked at compile time. A statically checked
update operation is guaranteed to only produce structurally valid XML objects at runtime.

Type Inference Rules

In this section we will concentrate on type inference of xFLWOR expressions containing an
update clause. Such an expression consists of one to many let and for clauses defining local
variables, their corresponding types can be inferred with the known rules 3.2.9 and 3.3.2. Con-
sequently a new set of rules is merely needed for the update clause itself. Finally the type of the
updated variable is defined to be the result type of the whole expression. Like for where clauses
of flwor expressions, where clauses being part of an update do not influence the type inference
process too.
In the following we will concentrate on inferring types of update clauses with the original type
of variablei already given.
The basic idea in the context of the following update type inference rules is to infer the parent
type of the XML objects that are the target of the update operation. In a second step the update
operation is applied to the parent type. Finally, it is checked if the manipulated parent type is
still valid according to the corresponding formalized schema type. According to the restriction
that only descendants, childs and their attributes of an XML object can be updated, the required
parent context can be guaranteed.
In general there are seven different update cases:

1. delete: UPDATE i DELETE xpath

2. simple insert: UPDATE i INSERT content

3. insert: UPDATE i INSERT content INTO xpath

4. insert after: UPDATE i INSERT content AFTER xpath

5. insert before: UPDATE i INSERT content BEFORE xpath

6. replace: UPDATE i REPLACE xpath WITH content

7. rename: UPDATE i RENAME xpath WITH name

For each update case a specific type inference function is required and will be given later in this
section. Then statically checking updates is done in three steps:

1. Infer the XPath typer with the set of XPath type inference rules given in 3.2.9 and deter-
mine the nodeTesttest of the update operation. The determination ofr andtest depends
on the regarding update case:

54 CHAPTER 3. XML INTEGRATION

1. delete: r is the type ofi/xpath/parent::∗ andtest is the node test of the last location
step inxpath.

2. simple insert: r is the type of the declared variablei andtest is the wildcard∗.
3. insert: r is the XPath type ofi/xpathandtest is the wildcard∗.
4. insert after: r is the type ofi/xpath/parent::∗ and test is the node test of the last

location step inxpath.

5. insert before: same asinsert after .

6. replace: same asinsert after .

7. rename: same asinsert after .

2. Apply the corresponding new update type inference rule to the typer and node testtest
gained in the first step. The result of this step is a typer′ that is the updated parent type.

3. Perform the subtype check. Ifr′ is still a valid subtype ofr, the update is statically valid!

The node test of the last location step of an XPath path expression can be evaluated by the
following function defined inlastTest 3.3.6.

Definition 3.3.6 The functionlastTest : xpath expression → E determines the
node test of the last location step of anXOBEDBPL XPath expression and is defined:

lastTest(name) = ∗
lastTest(xpath / axis::test) = test
lastTest(xpath /axis::test[p]) = test

with name∈ var name, xpath ∈ xpathexpression, axis ∈ axis specifier, test ∈ nodetest
andp ∈ predicateas defined byXOBEDBPL XPath expression grammar 3.2.3. 2

An example demonstrating how the functionlastTest works is given below.
Example 3.3.2The last node test of the XPath expressionauctionSite//open auction[/@id =′′

...′′] is calculated as:

lastTest(auctionSite/descendant :: open auction[/@id =′′ ...′′]) =
open auction

After describing the process in principal, we will go into more detail, by giving the new set
of update type inference rules. Before these rules can be defined some auxiliary functions need
to be introduced. The auxiliary type inference function in case of a delete operation is defined
in 3.3.7.

Definition 3.3.7 The functiondelete : Reg × E → Reg infers the updated parent type of

3.3. EXTENDED FLWOR EXPRESSIONS 55

a delete operation upon the child nodes satisfying the nodetesttest of the original parent type
r.

delete(r,test) = delete(r,test,{})

The functiondelete is based on the three parameter functiondelete : Reg×E×P (N) → Reg
andP (N) = {M | M ⊆ N}. The three parameterdelete function collects the already pro-
cessed nonterminals to avoid infinite loops. This function is defined recursively:

delete(∅,test,Nv) = ∅
delete(ε,test,Nv) = ε
delete(b,test,Nv) = b

delete(n,test,Nv) =

{ ∅ if n ∈ Nv

delete(r, test, Nv ∪ n)with n → r ∈ P else
delete(e[r],test,Nv) = e[r’] with r’:=del(r,test,Nv)
delete(r|s,test,Nv) = delete(r,test,Nv) | delete(s,test,Nv)
delete(r;s,test,Nv) = delete(r,test,Nv) ; delete(s,test,Nv)
delete(r∗,test,Nv) = delete(r,test,Nv)

The functiondel : Reg × E × P (N) → Reg is defined analogously to the three parame-
ter functiondelete , except:

del(e[r],test,Nv) =

{
e[r] if e 6= test
ε else

with b ∈ B, n ∈ N, test, e ∈ E, r, s ∈ Reg andNv ⊂ N . 2

Example 3.3.3Let us look at a delete operation example and see how the above rule infers
the updated parent type. The following update deletes a person element with a given id. It is
assumed thatauctionSite is a previously defined variable of the XML typesite.

$LET i:=auctionSite/people
UPDATE i DELETE i/person[/@id=”p001”]$

First the XPath typer is inferred according to thedeletecase. In the example it is the type
of auctionSite/people/person[/@id =′′ 001′′]/parent :: ∗, which ispeople∗. The last test
testis person . Now the new type inference rule as defined in 3.3.7 can be applied.

56 CHAPTER 3. XML INTEGRATION

delete(people∗,person) = delete(people∗,person,{})
delete(people∗,person,{}) = delete(people,person,{})

= delete(people[person∗],person,{people})
= people[r’]

r’ = del(person∗,person,{people})
= del(person,person,{people})
= del(person[@id[string];...],person,{people,person})
= ε

The updated parent type is inferred aspeople[ε], which is the expected result. Predicates as
explained in [42] as well are not taken into account since they only act as a filter on preselected
nodes. Static type checking ignoring predicates implicitly assumes worst cases. Since the up-
dated parent type is a valid subtype of the auctionpeopletype, the update is statically checked
to be valid.

In case of a simple insert the corresponding type inference function is given in 3.3.8.

Definition 3.3.8 The functioninsert : Reg × Reg → Reg infers the updated type of a
simple insert operation that inserts the given content of typec as child into the update target of
the original typer:

insert(r,c) = insert(r,c,{})

The three parameter auxiliary functioninsert : Reg × Reg × P (N) → Reg is defined
recursively:

insert(∅,c,Nv) = ∅
insert(ε,c,Nv) = ε
insert(b,c,Nv) = b

insert(n,c,Nv) =

{ ∅ if n ∈ Nv

insert(r, c, Nv ∪ n)with n → r ∈ P else
insert(e[r],c,Nv) = e[r;c]
insert(s|t,c,Nv) = insert(s,c,Nv) | insert(t,c,Nv)
insert(s;t,c,Nv) = insert(s,c,Nv) ; insert(t,c,Nv)
insert(s∗,c,Nv) = insert(s,c,Nv)

with b ∈ B, n ∈ N, e ∈ E, r, s, c ∈ Reg andNv ⊂ N . 2

Example 3.3.4The following update operation is an example for a simple insert operation.
The update inserts a person element into the people element. It is assumed that the variable
auctionSite has got the XML typesite.

person p = ...;

3.3. EXTENDED FLWOR EXPRESSIONS 57

$LET i:=auctionSite//people
UPDATE i INSERT {p} $

First r andtest have to be calculated according to thesimple insert rule. Thus,r is the type
of auctionSite//people which ispeople∗ andtest is the wildcard∗. The type of the content
which is going to be inserted isperson. Next the simple insert type inference rule can be applied.

insert(people∗,person) = insert(people∗,person,{})
insert(people∗,person,{}) = insert(people,person,{})

= insert(people[person∗],person,{people})
= people[person∗;person]

The updated parent type is inferred aspeople[person∗;person] which is a valid subtype of
the auction schema typepeople. According to this the example update operation is checked
successfully.

The type inference function for an insert operation is given in 3.3.9.

Definition 3.3.9 The functioninsert : Reg × Reg × E → Reg infers the updated par-
ent type in case of an insert operation given the type of the contentc and the node testtest of
the target child nodes.

insert(r,c,test) = insert(r,c,test,N)

The four parameter auxiliary functioninsert : Reg × Reg × E × P (N) → Reg is de-
fined recursively:

insert(∅,c,test,Nv) = ∅
insert(ε,c,test,Nv) = ε
insert(b,c,test,Nv) = b

insert(n,c,test,Nv) =

{ ∅ if n ∈ Nv

insert(r, c, test, Nv ∪ n)with n → r ∈ P else

insert(e[r],c,test,Nv) =

{
e[r] if e 6= test
e[r; c] else

insert(s|t,c,test,Nv) = insert(s,c,test,Nv) | insert(t,c,test,Nv)
insert(s;t,c,test,Nv) = insert(s,c,test,Nv) ; insert(t,c,test,Nv)
insert(s∗,c,test,Nv) = insert(s,c,test,Nv)

with b ∈ B, n ∈ N, test, e ∈ E, r, s, c ∈ Reg andNv ⊂ N . 2

The type inference function for an insert before update is presented in definition 3.3.10. Since
the type inference function for an insert after operation works equivalently to an insert before it
is not given here.

58 CHAPTER 3. XML INTEGRATION

Definition 3.3.10 The functioninsertBefore Reg × Reg × E → Reg infers the up-
dated parent type of an insert before operation given the original parent typer, the type of the
contentc and the node testtest selecting the target children.

insertBefore(r,c,test) = insertBefore(r,c,test,{})

The four parameter functioninsertBefore : Reg × Reg × E × P (N) → Reg is de-
fined analogously to the four parameter functioninsert , except:

insertBefore(e[r],c,test,Nv) = e[r’] ,with r’:=insBef(r,c,test,Nv)

The auxiliary functioninsBef : Reg ×Reg × E × P (N) → Reg is defined recursively:

insBef(ε,c,test,Nv) =

{
c if test is wildcard
ε else

insBef(b,c,test,Nv) =

{
c; b if test is wildcard
b else

insBef(n,c,test,Nv) =

{
n if n ∈ Nv

insBef(r, c, test,Nv ∪ n)with n → r ∈ P else

insBef(e[r],c,test,Nv) =

{
c; e[r] if e = test
e[r] else

insBef(r|s,c,test,Nv) = insBef(r,c,test,Nv) | insBef(s,c,test,Nv)
insBef(r;s,c,test,Nv) = insBef(r,c,test,Nv) ; insBef(s,c,test,Nv)
insBef(r∗,c,test,Nv) = insBef(r,c,test,Nv)

with b ∈ B, n ∈ N, test, e ∈ E, r, s, c ∈ Reg andNv ⊂ N . 2

The type inference function in case of a replace update operation is defined in definition 3.3.11.

Definition 3.3.11 The functionreplace : Reg × Reg × E → Reg infers the type of a
replace operation upon children selected by the node testtest of the original parent typer. The
type of the new content isc.

replace(r,c,test) = replace(r,c,test,{})

The four parameter functionreplace : Reg × Reg × E × P (N) → Reg is defined anal-
ogously to the four parameter functioninsertBefore , except:

replace(e[r],c,test,Nv) = e[r’] , with r’:=rep(r,c,test,Nv)

3.3. EXTENDED FLWOR EXPRESSIONS 59

And the auxiliary functionrep : Reg ×Reg × E × P (N) → Reg is defined recursively:

rep(ε,c,test,Nv) = ε

rep(b,c,test,Nv) =

{
c if b satisfies test
b else

rep(n,c,test,Nv) =

{
n if n ∈ Nv

rep(r, c, test, Nv ∪ n)with n → r ∈ P else

rep(e[r],c,test,Nv) =

{
c if e = test
e[r] else

rep(r|s,c,test,Nv) = rep(r,c,test,Nv) | rep(s,c,test,Nv)
rep(r;s,c,test,Nv) = rep(r,c,test,Nv) ; rep(s,c,test,Nv)
rep(r∗,c,test,Nv) = rep(r,c,test,Nv)

with b ∈ B, n ∈ N, test, e ∈ E, r, s, c ∈ Reg andNv ⊂ N . 2

Example 3.3.5An example update operation performing a replace operation is shown below.
The update replaces the email address of a given person element. It is assumed that the variable
auctionSite is previously defined and has got the typesite.

emailaddress email = ...;
$LET i:=auctionSite//person[/@id=”p001”]
UPDATE i REPLACE i/emailaddressWITH {email}$

According to thereplacecaser is the type of
auctionSite//person[/@id =′′ p001′′]/emailaddress/parent :: ∗ which isperson∗
and the last node testtest is emailaddress. The type of the content isemailaddress. Now the
replace type inference rule to infer the updated parent type can be applied.

replace(person∗,emailaddress,emailaddress) =

60 CHAPTER 3. XML INTEGRATION

replace(person∗,emailaddress,emailaddress,{})
= replace(person,emailaddress,emailaddress,{})
= replace(person[@id[string];name;emailaddress;...],

emailaddress,emailaddress,{person})
= person[r’]

r’ = rep((@id[string];name;emailaddress;...),
emailaddress,emailaddress,{person})

= @id[string];name;
rep(emailaddress,emailaddress,emailaddress,{person});...

= @id[string];name;
rep(emailaddress[string],emailaddress,emailaddress,{person,emailaddress});...

= @id[string];name;
emailaddress;...

Finally the updated parent type is inferred asperson[@id[string];name;emailadress;...], which
is exactly thepersonXML type. Thus, the update is valid.

Finally the type inference rule for a rename update operation is given in definition 3.3.12.

Definition 3.3.12 The functionrename : Reg × E × E → Reg infers the updated par-
ent type of a rename operation given the node testtest ∈ E selecting the target child elements,
the new namename ∈ E and the original parent typer ∈ Reg.

rename(r,name,test) = rename(r,name,test,Nv)

The four parameter functionrename : Reg × E × E × P (N) → Reg is defined analo-
gously to the four parameter functioninsertBefore , except:

rename(e[r],name,test,Nv) = e[r’] , with r’:=ren(r,name,test,Nv)

The auxiliary functionren : Reg × E × E × P (N) → Reg is defined recursively:

ren(ε,name,test,Nv) = ε
ren(b,name,test,Nv) = b

ren(n,name,test,Nv) =

{
n if n ∈ Nv

ren(r, c, test, Nv ∪ n)with n → r ∈ P else

ren(e[r],name,test,Nv) =

{
name[r] if e = test
e[r] else

ren(r|s,c,test,Nv) = ren(r,c,test,Nv) | ren(s,c,test,Nv)
ren(r;s,c,test,Nv) = ren(r,c,test,Nv) ; ren(s,c,test,Nv)
ren(r∗,c,test,Nv) = ren(r,c,test,Nv)

with b ∈ B, n ∈ N, test, name, e ∈ E, r, s ∈ Reg andNv ⊂ N . 2

3.3. EXTENDED FLWOR EXPRESSIONS 61

Now, that we have defined all necessary type inference functions for updates, we can give the
final type inference rules for update operations. Similar to those for XPath they are listed in the
definition 3.3.13.

Definition 3.3.13 The type of the updated target variable of an xFLWOR expression with
an update clause is defined by the following type inference rules:

i : r ∈ Reg,
path/parent::∗ : p∗ ∈ Reg

UPDATE i DELETE path: delete (p∗,lastTest (path)) ∈ Reg

(DELETE)

i : r ∈ Reg,
content :c ∈ Reg

UPDATE i INSERT content :insert (r,c)∈ Reg

(SIMPLE INSERT)

i : r ∈ Reg,
path: p∗ ∈ Reg,
content :c ∈ Reg

UPDATE i INSERT contentINTO path: insert (p∗,c,’∗’) ∈ Reg

(INSERT)

i : r ∈ Reg,
path/parent::∗ : p∗ ∈ Reg,
content :c ∈ Reg

UPDATE i INSERT contentBEFORE path:
insertBefore (p∗,c,lastTest (path)) ∈ Reg

(INSERT BEFORE)

i : r ∈ Reg,
path/parent::∗ : p∗ ∈ Reg,
content :c ∈ Reg

UPDATE i INSERT contentAFTER path:
insertAfter (p∗,c,lastTest (path)) ∈ Reg

(INSERT AFTER)

62 CHAPTER 3. XML INTEGRATION

i : r ∈ Reg,
path/parent::∗ : p∗ ∈ Reg,
content :c ∈ Reg

UPDATE i REPLACE pathWITH content :
replace (p∗,c,lastTest (path)) ∈ Reg

(REPLACE)

i : r ∈ Reg,
path/parent::∗ : p∗ ∈ Reg,
name :e ∈ E

UPDATE i RENAME pathTO name :
rename (p∗,e,lastTest (path)) ∈ Reg

(RENAME)

2

If an update clause consists of more than one basic update operation, e.g. delete, insert, re-
place, then the rules given in 3.3.13 are applied consecutively upon the current referenced static
parent type. Since each sub operation can be applied to different descendants or child nodes
of the update context variable and corresponding parent types may differ as well, parent types
of each sub operation have to be valid according to the corresponding schema type. For an
example let us infer and check the type of the update operation given in listing 3.3.

Example 3.3.6This example infers the type of the update expression given in listing 3.3:

LET i:= auctionSite//openauction[/@id={a id}]
UPDATE i INSERT {bid} BEFORE /current,
REPLACE /currentWITH {new current}

The type of the local let variablei is inferred to beopenauction∗ applying the rules of 3.3.2.
As mentioned before, if an update clause consists of more than one update operation, the final
type is inferred consecutively. Thus we start by inferring the type of the insert operation ap-
plied to i still having the original type. The content that is going to be inserted is a variable
namedbid and this variable is declared to be of typebidder in 3.3 line 9. The parent type
of the target child nodes of the insert before operation selected by/current can be inferred as
openauction∗ with the XPath type inference rules. The preconditions to apply the desired type
inference rule(INSERT BEFORE) are given. The required node test of the last location step
in /child :: current is evaluated as ’current’. Applying the rule yields to the execution of the
function insertBefore 3.3.10 with the following parameters and results in:

3.3. EXTENDED FLWOR EXPRESSIONS 63

insertBefore(openauction∗,bidder,’current’) =
insertBefore(openauction∗,bidder,’current’,{}) =
insertBefore(openauction,bidder,’current’,{}) =
insertBefore(open auction[@id[string];initial ;(reserve| ε);bidder∗;current;
(privacy| ε);itemref;seller;annotation;quantity;type;
interval],bidder,’current’,{openauction}) = open auction[r’]
r’ =
insBef(@id[string];initial ;(reserve| ε);bidder∗;current;(privacy| ε);
itemref;seller;annotation;quantity;type;
interval,bidder,’current’,{openauction}) =
insBef(@id[string],bidder,’current’,{openauction}) ; ... ;
insBef(interval,bidder,’current’,{openauction}) =
@id[string] ; ... ;
insBef(current [string],bidder,’current’,{openauction,current}) ; ... ;
interval [string] =
@id[string]; ... ;bidder ; current [string] ; ... ; interval [string]

The updated parent type of the first insert before operation is inferred as:

open auction[
@id[string];initial ;(reserve| ε);
bidder∗;bidder;current,(privacy| ε);
itemref;seller;annotation;quantity;type;interval
]

which is a valid subtype of the corresponding schema typeopenauction.
To check the second replace operation, its updated parent type needs to be inferred first. The
original parent type of this sub operation is inferred asopenauction∗, because the child nodes
are selected by/current. The type of the content is inferred ascurrent, since the variable
new current is declared to be of typecurrent in listing 3.3 line 5. Finally the required node
test is once again ’current’. Now that the preconditions are given, the ruleREPLACE can be
applied and results in:

replace(openauction∗,current,’current’) =
replace(openauction∗,current,’current’,{}) =
replace(openauction,current,’current’,{}) =
replace(open auction[c],current,’current’,{openauction}) = open auction[r’]
r’ =
rep(c,current,’current’,{openauction}) =
... =
... ; rep(current [string],current,’current’,{openauction,current}) ; ... =
... ; current ; ...

64 CHAPTER 3. XML INTEGRATION

The updated parent type of the replace operation is inferred as:

open auction[
@id[string];initial ;(reserve| ε);
bidder;current,(privacy| ε);
itemref;seller;annotation;quantity;type;interval
]

which is valid, because it is exactly the corresponding schema typeopenauction. After check-
ing each update sub operation successfully for structural validity, the whole xFLWOR expres-
sion is determined to be valid.

In section 9.1 XML update tests that are checked for validity are performed. Several ap-
proaches mentioned in the sections about related work 2.7 and 2.9 are analyzed and compared
with XOBEDBPL.
As mentioned before, static type checking in general has got its limitations. In section 3.4 some
details about adding dynamic type checking capabilities that support the static type checking
process inXOBEDBPL are given.

3.4 Dynamic Type Checking

Static type checking is limited in many ways. One kind of problems arises, if it is based on type
inference, because types are inferred and described using regular (hedge) expressions. In gen-
eral true types belong to a more powerful grammar class, in particular context free grammars.
Thus the true type can only be approximated, which leads to false negative type errors. Con-
trarily, by using more powerful types, subtype checking becomes undecidable. Details about
the type checking problem in XML are given in [78]. In this section we will rather concentrate
on the problem, that statically inferred types may be too restrictive. Statically inferred types
describe the most general type. This general type can cause a structural type error, even if at
runtime a structural constraint won’t ever be violated. Besides the lack of checking value-based
constraints, there are even structural conditions that cannot be checked statically in general. In
XOBEDBPL statically detected structural type errors can be divided into two groups. On the
one hand there are type errors that will always lead to a runtime type error, e.g. inserting an
emailaddress element before the name element of a person. And on the other hand there are
type errors that may, but do not necessarily lead to a runtime error, e.g. deleting an open auc-
tion element inside the open auctions element, if the type would be defined as<!ELEMENT

3.4. DYNAMIC TYPE CHECKING 65

openauctions (openauction+)> in DTD notation. The latter case can be detected and distin-
guished by the static type checking analysis. A static error, which may but does not necessarily
result in a type error at runtime, is given if all occurence constraints in the supertype containing
an unbounded maximum are replaced by Kleene Star types (minimum occurence is zero and
maximum occurence is unbounded) and the subtype algorithm with the original inferred sub-
type and the modified supertype succeeds. Thus, theXOBEDBPL parser returns structural type
warnings instead of errors.
The main idea is that if the parser detects a statical type error, it inserts specific code right af-
ter the corresponding XML expression, e.g. an XPath expression, an XML object constructor,
XML update or query. InXOBEDBPL XML objects are translated into an object framework sim-
ilar to the DOM, details about the transformation process can be found in [42] and 7.2. Thus
the code contains the following directions.

• The statically required regular hedge type is assigned to the critical XML object

• acheck method is invoked upon this XML object. At runtime thecheck method infers
the dynamic regular hedge expression type and checks if the dynamic type is a valid
subtype of its static type.

TheNode interface used in theXOBEDBPL DOM version needs to be extended by the following
methods listed in the table 3.1.

Table 3.1: AdditionalNode methods required for dynamic type checking inXOBEDBPL

method description
void check() checks if the dynamic type
throws xobe.exception.XMLTypeException; is a valid subtype of the statically required type,

raises an XML type exception,
if the dynamic type is not valid

xobe.types.RegType infer(); infers the dynamic type of this node
void setHedgeType(xobe.types.RegType type);sets the statically required type of this node
xobe.types.RegType getHedgeType(); returns the statically required type of this node

The dynamic type of an XML object can be inferred with the same rules given in [42] for
XML object constructors. An example is given in 3.4.1.

Example 3.4.1Let us consider the following XPath expression and assignment:

xml<person> person = $auctionSite//person[/@id=’p00001’]$;

Since the right hand side type is inferred asperson∗ and the left hand side type is declared
asperson, a statical type error will always be risen. Contrarily, at runtime the dynamic type of

66 CHAPTER 3. XML INTEGRATION

the right hand side will always beperson, because the attribute id is unique, and therefore valid.
In XOBEDBPL the static error is detected by the parser and the code is changed to:

xml<person> person = $auctionSite//person[/@id=’p00001’]$;
person.setHedgeType(person as hedge type);
person.check();

An implementation of the methodscheck and infer declared by theNode interface is
outlined in listing 3.4. The implementation of theinfer method in 3.4 is suitable for an XML
object representing an XML element.

Listing 3.4: Implementation of theNode’s interface methodscheck andinfer

vo id check () throws xobe . e x c e p t i o n . XMLTypeException{
xobe . t y p e s . RegType dynType =t h i s . i n f e r () ;
/ / c a l l s u b t y p e check a l g o r i t h m
/ / check i f dynamic t y p e i s s u b t y p e o f s t a t i c t y p e
I n e q u a l i t y i neq =
new I n e q u a l i t y (dynType ,t h i s . s t a tType ,t h i s . schema ,t h i s . schemaIneq) ;
i f (! i neq . check ()){

/ / i f dynamic t y p e i s no t s u b t y p e o f s t a t i c t y p e
/ / r a i s e e r r o r
throw new XMLTypeException (” . . . ”) ;
}

}

xobe . t y p e s . RegType i n f e r (){

xobe . t y p e s . RegType r =new xobe . t y p e s . ElementType (t h i s . name) ;

/ / i n f e r and s e t t h e a t t r i b u t e t y p e s

/ / i n f e r and s e t t h e c o n t e n t t y p e r e c u r s i v e l y

re turn r ;
}
This section about dynamic type checking inXOBEDBPL finishes the part about XML integra-
tion. The next chapter 4 will introduce persistency inXOBEDBPL.

Chapter 4

Persistency

Up to now XML objects as well as general Java objects are transient meaning that these objects
have got application lifetime and data gets lost each time an application finishes. As defined in
the requirements for a database programming language in section 2.11, persistency is expected
to be orthogonal, type independent and transparent. In contrast to tools offering type dependent
persistency, where objects of some types can become persistent while others not,XOBEDBPL

offers transparent, orthogonal and type independent persistency by introducing a persistent en-
vironment calleddatabase. In case of persistency frameworks class declarations often have to
fullfill certain conditions, e.g. descriptor files are needed for listing persistent capable types as it
is done in JDO. Moreover, sometimes these approaches do not even support inheritance among
persistent types, e.g. entity beans in EJB. Details about these related approaches can be found
in section 2.12. Adatabasedeclaration inXOBEDBPL is used analogously to class declarations
well known from Java. The extended grammar part can be seen in definition 4.1.1.

4.1 Syntax and Semantics

Definition 4.1.1 A persistent environment or database inXOBEDBPL is constructed according
to the following grammar:

67

68 CHAPTER 4. PERSISTENCY

typedeclaration → ’ ;’
|
modifiers(
classor databaseinterfacedeclaration
|
enumdeclaration
|
annotationtypedeclaration
)

classor databaseinterfacedeclaration → (class|database|interface)
identifier
[typeparameters]
[extendslist]
[implementslist]
typebody

The nonterminaltypedeclarationis extended so that it is now possible to declare a type within
a persistent environment. Its declaration is marked by the keyworddatabase. Everything else
remains unchanged in reference to the Java 1.5 language grammar. 2

Since a database declaration is equivalent to a class declaration the most important difference
is that the keyworddatabaseimplies that generated objects of this database implicitly become
persistent. Member variables of such database declarations become persistent by reachabil-
ity regardless of typeand without modifying formerly defined class declarations. A database
member becomes persistent except when it is declared astransient . The transient
modifier is already defined in Java. Another possibility for an extension of the Java grammar
had been to introduce a new member variable modifier, e.gpersistent that is used contrarily
to the existing modifiertransient. This latter kind of extension would rather fit to a persistent
object oriented programming language than to a database programming language. In contrast to
mark single members of an object as persistent, the database declaration environment allows to
define a persistent environment. Modifying members within such an environment, e.g. invok-
ing methods within a persistent environment, can be handled as transactions implicitly. Thus,
this approach provides the required user transparency. Besides, most concepts and aspects dis-
cussed in the rest of this work would have stayed the same. Now we want to model the auction
scenario inXOBEDBPL. By defining the auction elements within a persistent environment, its
objects and sub objects will be kept persistent. From the programmer’s point of view it is suffi-
cient to declare theAuctionSite declaration in example 4.1.1 asdatabase, everything else
is done automatically.

Example 4.1.1

1 pub l i c database A u c t i o n S i t e{
2 p r i v a t e s i t e a u c t i o n S i t e ;
3 p r i v a t e S t r i n g d e s c r i p t i o n ;

4.1. SYNTAX AND SEMANTICS 69

4
5 / / an example c o n s t r u c t o r
6 pub l i c A u c t i o n S i t e (S t r i n g d e s c r i p t i o n){
7 t h i s . d e s c r i p t i o n = d e s c r i p t i o n ;
8 t h i s . a u c t i o n S i t e =< s i t e /> ;
9 }

10
11 / / an example g e t t e r
12 pub l i c S t r i n g g e t D e s c r i p t i o n (){
13 re turn t h i s . d e s c r i p t i o n ;
14 }
15
16 / / an example s e t t e r
17 pub l i c vo id s e t D e s c r i p t i o n (S t r i n g d e s c r i p t i o n){
18 t h i s . d e s c r i p t i o n = d e s c r i p t i o n ;
19 }
20
21 / / an example method t h a t r e g i s t e r s a new person
22 pub l i c boolean r e g i s t e r P e r s o n (S t r i n g pname ,
23 S t r i n g p emai l ,
24 S t r i n g p i d){
25
26 / / c r e a t e new person
27 person p = c r e a t e P e r s o n (pname , p emai l , p i d) ;
28
29 / / pe rson a l r e a d y e x i s t s
30 i f (p==n u l l) re turn f a l s e ;
31
32 / / r e g i s t e r t h e new person t o t h e a u c t i o n ’ s
33 / / peop le e lemen t
34 $LET i : = a u c t i o n S i t e / peop le
35 UPDATE i INSERT { p}$;
36
37 re turn t rue ;
36 }
37
38 / / a l l methods from p r e v i o u s l i s t i n g s
39 / / can remain unchanged and cou ld be
40 / / added here
41 }
The corresponding method to the method invocationcreatePerson in line 27 is given in
listing 3.1. Please notice that the lifetime of local variables and formal parameters is the same
as in classes. Only member variables are affected by the persistent environment, which is a

70 CHAPTER 4. PERSISTENCY

consistent extension in syntax and semantics.

4.1.1 Creation and Retrieval

Any constructor being part of a database declaration, e.g.AuctionSite(String description)
in line 6 of listing 4.1.1, generates new persistent objects. Method invocations upon these ob-
jects persistently modify them. Each method invocation is implicitly handled as a transaction
as mentioned before. An example application program that generates a new persistent auction
site object and registers a person is shown in the example 4.1.2.

Example 4.1.2

1 pub l i c c l a s s MainCrea t ion{
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s){
3
4 / / c r e a t e s a new p e r s i s t e n t a u c t i o n s i t e o b j e c t
5 A u c t i o n S i t e a u c t i o n =
6 new A u c t i o n S i t e (” an example a u c t i o n s i t e ”) ;
7
8 / / r e g i s t e r s a person t o t h e a u c t i o n s i t e o b j e c t
9 / / t h u s m o d i f y i n g t h e o b j e c t p e r s i s t e n t l y

10 a u c t i o n . r e g i s t e r P e r s o n (” Mary Fernandez ” ,
11 ” fernandez@xquery . com ” ,
12 ” p 00001 ”) ;
13 }
14 }

To retrieve and access an already existing persistent objectXOBEDBPL provides an XPath
expression searching for all objects of a given class with given member variable values. This
kind of retrieval and access is offered in addition to reference passing as it is known in the case
of transient objects. An example how it is at any time possible to find and access the persistent
auction site object created by theMainCreation application 4.1.2 is given in listing 4.1.3.

Example 4.1.3

1 pub l i c c l a s s MainSearch{
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s){
3 . . .
4 / / Search f o r t h e s p e c i f i c a u c t i o n s i t e (s)
5 S t r i n g d e s c r i p t i o n = ” an example a u c t i o n s i t e ” ;
6 L i s t a u c t i o n S i t e s =
7 $ A u c t i o n S i t e [/ d e s c r i p t i o n ={ d e s c r i p t i o n}] $;
8 A u c t i o n S i t e t h e A u c t i o n S i t e =n u l l ;
9 / / i f t h e r e i s a t l e a s t one , g e t t h e f i r s t

10 i f (a u c t i o n S i t e s . s i z e ()>0)

4.1. SYNTAX AND SEMANTICS 71

11 t h e A u c t i o n S i t e = (A u c t i o n S i t e) a u c t i o n S i t e s . g e t (0) ;
12
13 / / do a n y t h i n g w i t h t h e a u c t i o n s i t e
14 . . .
15 }
16 }

4.1.2 Deletion

Analagous to member variables of a transient object, Java member variables of databases are
deleted implicitly. They are removed if no persistent object references them any longer. Con-
trastly, database objects have to be deleted explicitly, since they exist independently and can be
seen as the entry point to persistent object trees. Any database declaration will implicitly extend
theDatabase interface and implement itsdelete method. This happens at parse time and
is explained in 4.2 in more detail. Invoking thedelete method upon a database object means
there will be an attempt to delete it. If the corresponding database object was deleted success-
fully, each succeeding access will cause a null pointer exception. An example demonstrating
the different deletion types is given in 4.1.4.

Example 4.1.4

1 pub l i c c l a s s MainDe le t ion{
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s){
3 . . .
4 A u c t i o n S i t e s i t e ;
5 . . .
6 / / g e t a r e f e r e n c e t o t h e d e s i r e d
7 / / a u c t i o n s i t e e lemen t
8 . . .
9 i f (s i t e !=n u l l){

10 / / i m p l i c i t l y d e l e t e s t h e p r e v i o u s d e s c r i p t i o n
11 / / o f t h e a u c t i o n s i t e o b j e c t
12 s i t e . s e t D e s c r i p t i o n (” a n o t h e r d e s c r i p t i o n ”) ;
13
14 / / e x p l i c i t l y d e l e t e s t h e p e r s i s t e n t
15 / / a u c t i o n s i t e da tabase
16 s i t e . d e l e t e () ;
17
18 / / checks , i f d e l e t i o n was s u c c e s s f u l
19 i f (s i t e ==n u l l){
20 System . ou t . p r i n t l n (”t h i s a u c t i o n s i t e
21 was s u c c e s s f u l l y d e l e t e d ”) ;
22 } e l s e{

72 CHAPTER 4. PERSISTENCY

23 System . ou t . p r i n t l n (”t h i s a u c t i o n s i t e
24 cou ld no t be d e l e t e d ”) ;
25 System . ou t . p r i n t l n (” a n o t h e r u s e r might keep a lock ”) ;
26 }
27 . . .
28 }
29 }
30 }

Line 12 shows how to delete a member variable of a database object. Line 16 presents an
explicit delete invocation as it is necessary in case of a database object itself. Since the deletion
of a persistent object is a special kind of write operation, it might not always succeed, e.g. line
20. It might happen that another application program holds a lock for this object. Transactions
and concurrency are introduced in chapter 5. If aXOBEDBPL program is running in a single
application environment each manipulating operation always succeeds including any deletes.
This behaviour naturally changes if there are several applications that work with the same data
and objects. Now that syntax and semantics are introduced the next section 4.2 will present
corresponding realization concepts.

4.2 Realization Concepts

The basic concepts to realize the type independent, orthogonal and transparent persistency are
shown in figure 4.1. Both generated variants implement a common interface containing all
public non-static methods of the originalXOBEDBPL type. As illustrated in figure 4.1 the in-
terface type is used throughout the transformed code to declare types of local variables, formal
parameters, return types and member variables. While the transient type is instantiated in tran-
sient environments, e.g. class declarations and methods, the persistent type is instantiated in
persistent environments, e.g. constructors of databases. In case an instantiated transient ob-
ject is assigned later on to a variable within a persistent environment, it is transformed into
an equivalent persistent object. Detection and transformation into a persistent object happen
automatically. The generation process of interface, transient and persistent types is done au-
tomatically at compile time. Implementation details are given in chapter 7. Furthermore, per-
sistent variants have an associateddescriptor class that is also generated automatically by
the precompiler. A descriptor class is used later by the persistency layer to store objects of
a given type efficiently and to avoid reflection. A descriptor class contains information about
the inheritance structure, types and names of member variables. It is also important to notice
that any persistent variant includes code to communicate with the persistency layer that is re-
sponsible for storing and updating persistent data in the background persistency layer. Chapter
6 focuses on the web-service-based persistency layer used in this work.XOBEDBPL database
type declarations as well as class declarations can inherit from other classes or databases re-
spectively. In particular, it is also possible that classes inherit from databases and vice versa.

4.2. REALIZATION CONCEPTS 73

Figure 4.1: Main persistency realization concepts

persistency layer

DBPL

XOBE DBPL

XOBE DBPL

XOBE DBPL

class

written by programmer

interface typeautomatic transformation

at compile time

persistent typetransient type

interface type

persistent type

typeinterface

database type

interface type

to instantiate objects in transient context to instantiate objects in persistent context

for type declarations

for type declarations

to instantiate objectsautomatic transformation

at compile time

automatic transformation

at compile time

written by programmer

written by programmer

automatic conversion, if required

uses

uses

XOBE

Inheritance , including those among interfaces, is supported quite intuitively and is illustrated
by figure 4.2. The concepts presented so far stay the same and in addition, the generated in-
terface of the subtype extends the corresponding interface of the supertype. This also holds
for persistent and transient variants. InXOBEDBPL classes and databases can implement ar-
bitrary interfaces. The generation process for the implementation structure is straightforward.
The generated interfaces extend the interface generated from the original one. Finally let’s
look at our example databaseAuctionSite listed in 4.1.1 and see the resulting Java classes
and interfaces of the transformation process that are given in figure 4.2. The auction site
database is transformed into an interfaceAuctionSiteInterface that contains all pub-
lic methods, e.g.getDescription , setDescription and registerPerson . As
mentioned before, types of formal parameters and return types change into interface types,
e.g. String becomesXobeString and XML types becomeXMLObjectInterface s.
In this example the generated interface needs only to be implemented by the persistent vari-
ant AuctionSitePersistent . The persistent variant implements theDatabase in-

74 CHAPTER 4. PERSISTENCY

Figure 4.2: Inheritance

transformation

DBPL type 1

XOBE DBPL type 2

interface type 1

persistent type 1 transient type 1

interface type 2

persistent type 2 transient type 2

inheritance − transient/persistent variant

XOBE

terface containing the requireddelete method and theXobeObject interface that im-
plies among others an object id. Persistent objects inXOBEDBPL are given a unique iden-
tity. How these ids are generated is described in section 6.6. Another important aspect is the
getTypeDescriptor method that returns aTypeDescriptor . As described before, this
is used to avoid reflection and contains type information. Each persistent variant gets its own
generated type descriptor, e.g.AuctionSiteDescriptor . The three exemplarily illus-
trated basic classes and interfaces are not generated each time a transformation process is exe-
cuted. These classes belong to the coreXOBEDBPL persistency classes and interfaces. Further
information can be found in [74, 71].

4.2.1 Consistency

Since persistent variants contain code communicating with theXOBEDBPL persistency layer to
load and write persistent data, they are stubs to the persistent objects. Persistent objects are
manipulated by more than one application in general. Consequently, the aspect of client-side
consistency must be taken into account and dealt with. A first approach inXOBEDBPL has
been that every read or write operation upon a persistent object causes immediate communica-
tion with the persistency layer. This kind of client-side consistency is called strict consistency.
Strict consistency suffers from enormous performance problems and is only considered theo-
retically. Consequently,XOBEDBPL has to use another, weaker client-side consistency model
which is chosen to be the so-calledFIFO consistency. In the context of FIFO consistency the
following constraints must be kept. Write operations which are performed by a single applica-
tion are seen in the order of their appearance by other applications. Contrarily, write operations

4.2. REALIZATION CONCEPTS 75

Figure 4.3: Transformation of theAuctionSite database

...

<<interface>>Database

+ delete() : void

AuctionSiteDescriptor

<<database>> AuctionSite

− auctionSite : xml<site>
− description : String

+getDescription() : String
+ setDescription(String) : void

...
+ registerPerson(String,String,String) : boolean

<<interface>>AuctionSiteInterface

+ getDescription() : XobeString
+ setDescription(XobeString) : void
+ registerPerson(XobeString,XobeString,XobeString)
...

written by programmer

generated

basic

<<interface>>XobeObject

+ getTypeDescriptor() : TypeDescriptor
+ getOid() : String

AuctionSitePersistent

− auctionSite : XMLObjectInterface
− description : XobeString
− oid : String

+ getDescription() : XobeString
+ setDescription(XobeString) : void
+ registerPerson(XobeString,XobeString,XobeString) : boolean
...
+ getTypeDescriptor() : TypeDescriptor
+ delete() : void
+ getOid() : String

<<abstract>>TypeDescriptor

+ static getInstance() : TypeDescriptor
+ getAttributeDescriptors : TypeDescriptor[]
+ getTypeName() : String
+ getParentType() : TypeDescriptor

which are performed by different applications may be seen in an arbitrary order by other appli-
cations. Therefore persistent objects might be copied to a cache on client-side. InXOBEDBPL,
code responsible to realize FIFO consistency is generated and inserted automatically. Trans-
actions, which are part of the next chapter, are realized with additional synchronization when
entering and leaving. Further consistency models can be found in [62]. An important topic in
future work is to provide semi-automatic consistency to the programmer and thus improving
performance. The programmer should then be able to mark program points where persistent
objects are written to the persistency layer or respectively read from it.

As mentioned previously, tests with an example application and related approaches such as
EJB and JDO are performed and evaluated in section 9.2. The next chapter 5 will introduce
how concurrency and transaction concepts are realized and handled inXOBEDBPL.

76 CHAPTER 4. PERSISTENCY

Chapter 5

Transactions

A concept which is closely connected to persistency, which was described in the last chapter,
is transactions. Transactions are used to protect objects which might be used by more than one
application. Transactions provide the possibility of mutual exclusion. Moreover, they allow
processes to manipulate mulitiple objects within one atomic operation. A well known example
demonstrating the need for transactions is a modern bank application. The application actualizes
an online database. The customer can use the online bank application via a web browser and is
also able to transfer money from one bank account to another. The whole operation consists of
two steps. During the first step an amounta of money is taken from bank account 1. During the
second step the amounta is paid into the bank account 2. If the connection fails between these
two steps the money gets lost. This problem would not have occurred if the two basic operations
were part of the same transaction. Basic operations in context of transactions are to mark the
beginning of a transaction, to end the transaction and causing the committal of all changes, to
abort a transaction causing any changes to be undone as well as to read and to write objects.
In context of transactions the four characteristic qualities are defined: atomicity, consistency,
isolation and durability. These properties are often abbreviated byACID . Atomicity means
that the execution of a transaction seems to be one basic operation from outside. Consistency
means that the transaction does not break system invariants. Isolation implicates that concurrent
transactions do not influence each other and finally durability means that changes made by
a transaction are persistent after the commit process. There are a lot of different transaction
types. The most common and straightforward type is called aflat transaction . Aflat
transaction consists of a sequence of operations keeping the ACID properties. Other types
include for example nested as well as distributed transactions. These are discussed in context of
XOBEDBPL in the following sections. Further types are described in detail in [28]. Most related
approaches, like EJB, if at all, only support flat or respectively distributed transactions.

77

78 CHAPTER 5. TRANSACTIONS

5.1 Syntax and Semantics

The syntax for transactions inXOBEDBPL is defined by the grammar given in definition 5.1.1.

Definition 5.1.1 Transactions inXOBEDBPL are constructed according to the following gram-
mar:

statement → block
| ...
| synchronizedstatement
| transactionstatement
| try statement

transactionstatement → transaction
’(’
namelist
’)’
block

2

As can be seen a transaction inXOBEDBPL is defined analogously to a try or synchronized
statement in Java. A transaction statement also consists of aname list . Within a name list
the programmer has to list all database objects supposed to be part of the transaction. If an
object occurs in this list the sequence of operations within the corresponding transaction block
will maintain the ACID properties.

Listing 5.1 shows an example of a transaction block. Thebid ’s method body without a
transaction block can also be found in 3.3.

Listing 5.1: An example transaction

1 . . .
2 c u r r e n t n e w c u r r e n t = n u l l ;
3 t r a n s a c t i o n (a u c t i o n S i t e){
4 / / c a l c u l a t e new c u r r e n t
5 xml<c u r r e n t∗> cu r =
6 $ a u c t i o n S i t e/ / o p e n a u c t i o n [/ @id={a i d }] / c u r r e n t$;
7 c u r r e n t n e w c u r r e n t =
8 <c u r r e n t>{cu r . i t e m A s I n t (0)+ i n c r}</ c u r r e n t>;
9

10 / / c r e a t e new b i d d e r
11 b i d d e r b id =< b idde r>
12 <date>{ge tDa te ()}< / da te>
13 <t ime>{getTime ()}< / t ime>
14 <p e r s o n r e f pe rson ={ p i d }/>
15 < i n c r e a s e>{ i n c r }</ i n c r e a s e>

5.1. SYNTAX AND SEMANTICS 79

16 </ b idde r>;
17
18 / / upda te a u c t i o n
19 $LET i : = a u c t i o n S i t e/ / o p e n a u c t i o n [/ @id={a i d }]
20 UPDATE i INSERT { b id } BEFORE / c u r r e n t ,
21 REPLACE / c u r r e n t WITH{ n e w c u r r e n t}$;
22 }
23 . . .

If applications use the methodbid concurrently it might happen that the two operations,
in particularcalculate the new currentandupdate the auction site, might be divided and could
not be executed as desired. Let us imagine two processes are both starting to execute thebid
method and are both reading for example a current amount of100 . The first process continues
and increases the bid to 150. The second process wants to increase the bid by 10. Since
it still has got the old amount, it actualizes the bid to 110, which an observer notices as an
illegal decreasing of the bid. By enclosing the two operations reading and updating within the
transaction block in line 3 and 22 this problem can no longer occur. Please notice that the Java
synchronized environment will not work if the processes do not operate on the same Java
Virtual Machine.

As described before, a transaction comes with five basic operations which arebegin , end ,
write , read andabort . The beginning and ending of a transaction is achieved by the open-
ing and closing brackets of the transaction block. Write and read operations are then method
invocations upon persistent objects registered to the transactional environment by the corre-
sponding name list. Finally, an abort will be generated and will throw a transaction abort
runtime exception (TransactionAbortException), if the runtime environment cannot
successfully execute and commit the transaction. All transactional operations happened so far
are rolled back. The program execution continues after the transaction block. Further actions in
particular if the transaction is supposed to be tried again depend on the programmer. Let us take
thebid example one more time. Now we want to catch a possible transaction abort exception
and print a suitable error message. The resulting code is given in listing 5.2.

Listing 5.2: Catching the abort of a transaction
1 . . .
2 t r y {
3 t r a n s a c t i o n (a u c t i o n S i t e){
4 / / c a l c u l a t e new c u r r e n t

. . .
10 / / c r e a t e new b i d d e r

. . .
18 / / upda te a u c t i o n

. . .
22 }
23 catch (T r a n s a c t i o n A b o r t E x c e p t i o n e){

80 CHAPTER 5. TRANSACTIONS

24 System . e r r . p r i n t l n (” . . . b id f a i l e d . . . ”) ;
25 }
26 . . .

Up to now we have only discussed flat transactions meaning that the transaction block only
consists, for example of a sequence of method invocations. Indeed as can be seen from the
grammar in 5.1.1 it is also possible to construct nested transaction statements. This possibility
and the corresponding semantics are discussed in the following section. The transformation of
transactions inXOBEDBPL into pure Java code is explained in section 7.2.2.

5.2 Classification of Transactions

There are quite a lot of different transaction types. In the context ofXOBEDBPL flat, nested and
distributed transactions are discussed and supported. More details about different transaction
types can be found in [28].

As explained before, flat transactions consist of a sequence of flat operations. The most
important limitation of flat transactions is that it is not possible to commit or abort partial results.
If a transaction is a long sequence of operations and an interruption becomes more likely this
will be a serious problem. An example of a flat transaction is dicussed in the previous section.

In contrast to flat transactions nested transactions try to overcome exactly these limitations.
Instead of one very long flat sequence of transactional operations nested transactions provide the
possibility to summarize logically separated parts of the whole transaction to separated nested
ones. These logically separated units are then transactions within transactions. These subtrans-
actions can be executed in parallel, perhaps on different hosts. Nested transactions implicate a
subtile new problem. Let us imagine that all subtransactions are committed successfully, but the
enclosing super transaction is rolled back. Consequently the subtransactions have to be undone.
Thus, durability is only true for the enclosing supertransaction. Nested transactions demand a
substantial administrative effort, but their semantics is rather intuitive. InXOBEDBPL nested
transactions can be formulated by nesting several transaction blocks.

In general nested transactions are provided to support the logical separation of the origi-
nal transaction. But the logical separation of a nested transaction does not automatically mean
that the objects of one partial transaction are located suitably. Consequently, a flat transaction
operating on objects or data that are distributed on different hosts is also called a distributed
transaction . The difference between nested and distribute transactions is subtle and impor-
tant. A nested transaction is separated logically in sub transactions. A distributed transaction
is a logic flat transaction operating on distributed data. Therefore theXOBEDBPL programmer
cannot explicitly formulate distributed transactions. One main concept ofXOBEDBPL is trans-
parency . According to the definition of a distributed transaction it depends on the underlying
persistency layer whether a transaction is executed in a distributed manner. The persistency
layer inXOBEDBPL is realized with the help of a web service which is introduced in chapter 6.

5.3. CONCURRENCY CONTROL 81

5.2.1 Realization Concepts

In principal there are two common approaches how transactions might be realized. A detailed
description can be found in [88]. On the one hand transactions could be realized by a private
workspace . The private workspace concept is used for example in Java Spaces [82]. Private
workpaces are also suitable for distributed transactions. A transactional process on each host
gets its own private workspace where the data is copied the process works with. Each read
and write operation of the transactional process is then performed within the private workspace.
Finally, the updates of the private workspace are either written through as a whole or simply
discarded.

A second common approach is called theWriteahead Protocol . With this approach
data is actually manipulated. But before the manipulation operation starts the change is regis-
tered as an entry in a protocol. The entry consists of the corresponding transaction identification,
the corresponding object or data identification as well as the new and the old value. If the trans-
action is successfully committed and the transaction is a none subsidiary one the entries can be
removed and nothing else has to be done anymore. If commiting the transaction fails all corre-
sponding changes can be undone by analyzing the protocol entries. InXOBEDBPL the private
workspace approach is realized since it is well suited in case of distributed transacions and has
got less overhead in case a transaction is aborted. The protocol is implemented as part of the
XOBEDBPL web service discussed in chapter 6.

5.3 Concurrency Control

So far it is possible to realize atomicity and durability. The remaining properties consistency
and isolation are achieved by controlling the execution of transactions running in parallel. Con-
sistency and isolation are guaranteed if the transactions access data objects in a certain order.
The order must be equivalent to an order that occurs when executing these transactions one after
another. This quality is also called serializability. In a distributed system each component has
got its own transaction manager, scheduler and data manager. Scheduler and data manager are
both responsible for keeping the data consistent. The scheduler is responsible for locking and
releasing operations or respectively for time stamping operations. The data manager performs
read and write operations. Finally the transaction manager initializes and ends a transaction.
Each transaction is managed by a single transaction manager which in turn communicates with
the schedulers of the corresponding components. A transaction’s responsible transaction man-
ager is also called the master. The de facto standard for the basic distributed transaction protocol
is thecentralized two-phase commit protocol first defined in [29]. Here, the mas-
ter is acting as the commit coordinator. This protocol is used in conjunction with different
concurrency control algorithms. If data isn’t replicated, the protocol works as follows. When
a subtransaction manager finishes executing its part of the distributed transaction, it sends an
execution complete message to the master. When the master has received such a message from

82 CHAPTER 5. TRANSACTIONS

each corresponding subtransaction manager, it will initiate the commit protocol by sending the
prepare to commit messages to all subtransaction managers. If a subtransaction manager
is able to commit, it sends aprepared message back to the master. The master will send
commit messages to each subtransaction manager after receiving prepared messaged from all
subtransaction managers. The protocol ends with the master receivingcommitted messages
from each of the subtransaction managers. If any of them is unable to commit, it will return a
cannot commit message instead of aprepared message in the first phase. This will cause
the master to sendabort instead of thecommit messages in the second phase of the protocol.
A modified version of the two-phase commit protocol is available in case of redundant data.

5.3.1 Realization Concepts

The oldest known algorithm to control concurrency are locks . A well known algorithm is in
particular thetwo-phase-locking algorithm. Details can be found in [88] for example.
During the first phase the scheduler tries to get all required locks and during the second phase
these locks are released again. Applying thetwo-phase-locking algorithm may result
in deadlocks. Deadlocks may be detected by time outs. The algorithm is also adaptable to
distributed systems.

The approach which is chosen inXOBEDBPL is called the distributed, timestamp-based,
optimistic concurrency control algorithm (DTO) [75] . This approach is very different from a
locking algorithm. The algorithm operates by exchanging certification information during the
commit protocol. For each data item, a read timestamp and a write timestamp are maintained.
Transaction may read and update data items freely. Updates are stored into a local, private
workspace until commit time. Additionally, for each read the transaction must remember the
version identifier, which could be the write timestamp, accociated with the item when it was
read. Transactions are assigned a globally unique timestamp, e.g. using the Lamport algorithm
[48] . This timestamp is sent in particular in the prepare to commit message and is used to
locally certify all read and write operations as follows. A read request is valid if the version
that was read is still the current version and no write with a newer timestamp has already been
locally certified. A write request is valid and certified if no later reads have been certified and
subsequently committed and no later writes have already been locally certified. The term later
refers to the timestamp of the transaction. It is required that these local verification computations
are performed within in a critical section. If all of the operations within the private workspace
are valid, a prepared response is sent back to the master. The corresponding data items need
to be locked until either an abort or a commit message is received. Then updates are either
performed upon the real data or simply discarded. Since all items that need to be locked are
known in advance, deadlocks cannot occur. According to [15] the performance of the DTO
algorithm compared to the two-phase-locking algorithm is similar. Moreover, DTO has got less
communication overhead using only the messages of the two-phase commit protocol. With an
increasing number of involved subtransaction managers the likelihood of restarts for the DTO
algorithm increases. The DTO algorithm always uses restarts to handle conflicts, checking

5.3. CONCURRENCY CONTROL 83

for problems only when a transaction is ready to commit. The algorithm is implemented and
realized within theXOBEDBPL web service persistency layer discussed in 6.

84 CHAPTER 5. TRANSACTIONS

Chapter 6

Web Service for Distributed Persistent
Objects

In previous chapters the transparent and type independent persistency concepts as well as trans-
actions inXOBEDBPL are introduced. This chapter explains the realization of the underlying
persistency layer used inXOBEDBPL. In XOBEDBPL persistent objects are supposed to be dis-
tributed and shared among and with other applications. Since these applications should not
be restricted to a certain programming language likeXOBEDBPL, objects and type information
have to be stored in a neutral manner. A suitable approach is to store objects and types semi-
structured, e.g. using XML. Thus, the persistency layer which is supposed to be transparent, dis-
tributed, programming language neutral and supporting object-oriented data best is developed
and realized based on web services and therefore XML (SOAP) communication. Moreover, the
persistency layer inXOBEDBPL has not only got an open interface to clients, e.g. programming
languages, but also is not restricted to certain data storages. The persistency layer is designed
so that arbitrary database paradigms, e.g. relational, object-oriented, XML, or even file systems
can be integrated with minimum effort. The persistency layer offers a transparent consistent
virtual view of distributed persistent data. InXOBEDBPL the persistency layer is totally hidden
within theXOBEDBPL runtime environment and fully transparent to theXOBEDBPL program-
mer. Code communicating with the persistency layer is automatically added into the persistent
class variants at compile time as described in chapter 4. The persistency layer introduced in the
following sections has also become an independent project.

6.1 Architecture

This section describes the conceptual architecture used to realize theXOBEDBPL web service
. A client connects to a singleXOBEDBPL web service instance which is part of a component
calledXOBE service node (XSN). A XOBE service node is part of a network containing one
or more other nodes. Figure 6.1 presents an exampleXOBE cluster consisting of three nodes.

85

86 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

Directed arrows within the picture indicate the direction of communication. Thick arrows rep-
resent communication of the component as a whole. Respectively they represent incoming and
outgoing interfaces. AXOBE cluster can be interpreted as apersistency grid . Conse-

Figure 6.1: AXOBE cluster consisting of threeXOBE service nodes

Xobe Cluster

Xobe
Service
Node A

Xobe
Service
Node B

Xobe
Service
Node C

quently communication and organization aspects can be taken from grids as described in [25]
and [24].

A singleXOBE service node consists of at least three components: one web service com-
ponent, one meta data component and one or more background persistency components. Incom-
ing and outgoing communication of aXOBE service node is done via SOAP. Communication
within the node itself is done in the specific implementation language. The architecture of
these three characteristic parts of aXOBE service node and theXOBE service node itself are
illustrated in figure 6.2.

The most important component is indeed the so-called web service component . This com-
ponent is responsible for most of the tasks. The web service component processes incoming
messages and queries. These messages are then passed to the several background persistency
components. Moreover, any changes concerning, for example types, transactions or users are

6.1. ARCHITECTURE 87

Figure 6.2: AXOBE service node and its three main components

Xobe background

component

web service

component

meta data persistency
background

component

Xobe Service Node

session
data

routing
security

object
locking

load

Xobe SOAP RPC
web service interface

balancing

web service component

meta data component

Xobe meta data
component interface

data storage driver
 interface

data storage
background persistency
 component

data storage

 interface
data storage driver

persistency interface

reported to the meta data component. Authentification, session data, object locking in case of
transactions and security aspects, routing and load balancing are managed by the web service
component as well.

The meta data component is responsible for keeping and offering all the persistent ad-
ministration data of theXOBE service node. The corresponding data includes, among others,
registration data about objects and types stored in this node, about available and registered
background persistency components of this node and about available applications and users.
The data storage is a common database system.

The background persistency component is nearly analogous to the meta data component.
Instead of meta data the concrete object data are stored within its data storage. In contrast
to the meta data component, this time the data storage could also be anotherXOBE cluster.
The architecture of the background persistency component allows to integrate and use arbitrary
storage paradigms, e.g. relational databases, XML databases, file systems. An object is always
kept as a whole in one component meaning that all atomic attributes and parent objects are
located at the same component. Complex typed attributes could also be located on different

88 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

components. This component can use an arbitrary data storage as long as a driver in the specific
programming language exists. Different data storage types are suitable for different data types.
For example an XML database stores XML objects more efficiently than a relational database.

SeparatedXOBE clusters can be fusioned by defining bridge nodes. These are normal
XOBE service nodes which are part of eachXOBE cluster.

At the moment objects are kept without redundancy.

6.2 Interface

TheXOBEDBPL web service interface offers methods for all essential tasks including retrieving
persistent objects, storing or respectively updating an object and deletions. Moreover, there are
a few more methods solving tasks arising in the context of the former operations. The interface
is kept thin and generic. Since the web service is completely integrated into theXOBEDBPL

runtime environment and requests are formulated as well as responses processed automatically,
the interface must provide methods for being capable to deal with objects ofany possible type.
Furthermore, object references are represented with the help of IDs. The web service’s clients
in theXOBEDBPL runtime environment are so-calledXOBE local servers encapsulating com-
munication with runningXOBEDBPL programs. Only the latter are written by the programmer.
The communication code is generated and added at compile time. The web service itself is
completely hidden from the programmer.

Figure 6.3 lists the available web service methods which are predominantlyload to retrieve
persistent objects,store to store or respectively update a persistent object anddelete to
delete a persistent object.

If a store request for an object of an unknown type occurs, the web service needs to know its
structure. With the help of the methodregisterType the client can register this new type.
A second important group of methods is provided for transactional support,
e.g. beginTransaction , endTransaction andabortTransaction . Finally, the
last group consists of the methodsbeginSession andendSession providing the func-
tionality to register (XOBEDBPL) clients to the web service. Aspects concerning transactions
and sessions are explained in section 6.6. Besides defining the available methods of the web
servcice WSDL also defines parameter and return types that are understandable by the web
service. TheXOBEDBPL web service must be able to describe objects of any possible type.
Accordingly the web service needs to know the super typegeneric object . The following
grammar shows how arbitrary objects are represented and sent to the web service .

Definition 6.2.1 Objects of an object-oriented programming language have to be mapped to
the following representation to be processable by the web service:

6.2. INTERFACE 89

Figure 6.3: Interface of theXOBEDBPL web service

+ endSession(SessionId) : Response

XobeWebService

+ load(LoadRequest) : Response
+ store(StoreRequest) : Response
+ delete(DeleteRequest) : Response

+ registerType(TypeRegistrationRequest) : Response

+ beginTransaction(TransactionRequest) : Response
+ endTransaction(TransactionRequest) : Response
+ abortTransaction(TransactionId) : Response

+ beginSession(Credentials) : Response

data object → object id typedescriptorid (attribute name)∗ (attribute)∗
|
atomic
|
data reference

attribute → data object
data reference → object id typedescriptorid

|
null

atomic → string | integer| ...

The terminalnull stands for the empty reference pointing to no object. The nonterminalsob-
ject id, typedescriptorid andattribute nameare mapped to a character sequence. An atomic
value represents common basic types like string or integer. 2

The optional sequence of attribute names allows to submit an object update. In case only some
or a single attribute value of an object has changed only these new changed values have to be
submitted followed by their corresponding attribute names. An example presenting the repre-
sentation ofXOBEDBPL classes and objects for the communication with the web service based
persistency layer is given in 6.4. The representation according to the grammars in 6.2.1 and
6.2.2 is illustrated with XML tags. In figure 6.5 an object update can be seen. In the example

90 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

the increase attribute’s value is set to40.0 . Since an object of typebidder has more
than one attribute, transmitting solely an update of a subset of its attributes forces to add the
corresponding attribute name(s), e.g.increase .

Figure 6.4: Representation of an object and its class

 <type_descriptor_id>id4</type_descriptor_id>

bidder

tdid: id1

personref : person
increase : String

date : String
time : String

Bidder : bidder

oid : id2
date : 28.01.2006
time : 17:15
personref :
increase : 20.0

person

tdid : id4

String

tdid : id5

Person : person

oid : id3 ...

representation for the communication with the web service based persistency layer

classes and objects in programming language

<data_object>

 id1
 </type_descriptor_id>
<attribute>

 <data_object>
 <atomic>28.01.2006</atomic>

 </data_object> </attribute>
 <attribute> <data_object>
 <atomic>17:15</atomic>
 </data_object> </attribute>

<attribute> <data_object>
 <data_reference>

 <object_id>id3</object_id>
 <type_descriptor_id>id4</type_descriptor_id>

 </data_reference>

</data_object>

</data_object></attribute>
<attribute><data_object>

 <atomic>20.0</atomic>
</data_object></attribute>

 <type_descriptor_id>
 <object_id>id2</object_id>

<type_descriptor>
 <type_descriptor_id>id1</type_descriptor_id>
 <type_name>bidder</type_name>
 <application_id>...</application_id>
 <attribute_declaration>
 <attribute_name>date</attribute_name>
 <type_descriptor_id>id5</type_descriptor_id>
 <multiplicity>optional</multiplicity>
 <association>composition</association>
 </attribute_declaration>
 ...
 <attribute_declaration
 <attribute_name>personref</attribute_name>

 <multiplicity>optional</multiplicity>
 <association>aggregation</association>
 </attribute_declaration>
 ...
</type_descriptor>

6.2. INTERFACE 91

Figure 6.5: Representation of an object update

</data_object>

<data_object>
 <object_id>id2</object_id>
 <type_descriptor_id>id1</type_descriptor_id>
 <attribute_name>increase</attribute_name>
 <attribute><data_object>
 <atomic>40.0</atomic>
 </data_object></attribute>

The type of an object is given by the object’s type descriptor ID. This ID uniquely references
a type descriptor object. A type description, in object-oriented programming language the class
of an object, is mapped to its representation according to the following grammar. The resulting
representation is understandable by theXOBEDBPL web service .

Definition 6.2.2 Types or classes of an object-oriented programming language have to be
mapped to the following representation to be processable by the web service:

typedescriptor → typedescriptorid typename applicationid
parent typedescriptorid? attribute declaration∗

parent typedescriptorid → typedescriptorid
attribute declaration → attribute name typedescriptorid

multiplicity association
multiplicity → single valued

|
multi valued
|
optional
|
bound

association → composition
|
aggregation

The nonterminalstypedescriptorid, attribute name, typenameandapplication id are mapped
to character sequences. 2

92 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

An application ID uniquely identifies the application this type belongs to. The multiplicity
of an attribute defines its cardinality. The default value is optional which means the attribute
either references a single value or none. Multivalued means that an attribute references a list of
values and single valued that this attribute has to reference one non null value. With the help of
the bounded multiplicity attributes referencing arrays can be represented.

The association feature of an attribute is very important in the context of deleting persistent
objects. If an attribute object is marked as composition, it will be destroyed with its parent
object. Contrastly an object referenced by an aggregation marked attribute exists independently
and is not deleted with its referencing object.

If a type is an extension of another type the parent type descriptor ID has to be set. The
parent type descriptor ID then references the corresponding type in the inheritance hierarchy.

Every complex data object as well as types need a unique ID that is generated in a decen-
tralized manner. More information about implementing the generation of IDs is given in section
6.6.

Any XOBEDBPL object is transformed into a data object automatically. Type descriptions
for the web service are generated for everyXOBEDBPL class at compile time.

TheXOBEDBPL web service interface is designed according to a request/response system.
Requests are solely formulated on client side. The operations offered by the web service are
available as local as well as global variants. In the first case a request is answered or processed
only by the directly connectedXOBE service node. In the latter case the request is additionally
passed to all known otherXOBE service nodes of the corresponding cluster. Global requests
are more time consuming than local ones, on the other hand the results of global requests might
be a super set.

In general requests contain an identification ID, a timestamp and hop entries to detect circles
and for routing decisions. Every request a client sends results in a response indicating if the
requested operation failed or could be successfully performed. In the following subsections
some details about the most important operations and their parameters and possible results are
given.

6.3. RETRIEVING OBJECTS 93

6.3 Retrieving Objects

To retrieve persistent objects it is necessary to define a selection language . The selection
language used in case of theXOBEDBPL web service provides an object-oriented selection of
data objects as well as meta data objects. The language’s structure is similar to a predicate
logic. Consequently, any other selection language, i.e. XPath, can be translated or mapped to
this selection language.

The XOBEDBPL web service receives a load request for either a single object or a set of
objects. A load request consists of the client’s session ID and a selection expression. The
web service component checks the validity of the session ID and continues to evaluate the
selection expression. A selection expression may for example consist of an object or type ID.
With the help of the corresponding meta data the web service tests if the requested objects
are available locally. Otherwise and in case of the global variant the request is broadcast to
XOBE service nodes located in the correspondingXOBE cluster. If an ID is registered to a
XOBE service node’s meta data component a shallow copy of this object is loaded from the
background persistency component. Finally, theXOBEDBPL web service sends those shallow
objects via SOAP as response to the client. The client can either be aXOBE service node or a
XOBEDBPL local server. The loading process is illustrated in figure 6.6. If no object or type is
selected by the load request a no objects found response is sent back to the client.

6.4 Storing Objects

The store operation offered by the web service enables to store new objects as well as to up-
date existing objects . TheXOBEDBPL web service client sends the data object, having to be
kept persistently in connection with an identification ID . An identification ID can either be a
session ID, which is sufficient for simple transactions, or a transaction ID, which is needed to
perform complex transactions. Simple transactions are those that consist of a single operation.
After checking the identification ID the web service component has to decide where to store or
respectively update the object data. In case the data object is stored for the first time a suitable
heuristic might be that theXOBE service node contacts its background persistency component
and stores the data locally. Otherwise the object data is stored on the corresponding original
web service’sXOBE node. A modified strategy could move object data from oneXOBE node
to another if it turns out that this host is more suitable, e.g. its directly connectedXOBEDBPL

local server works more frequently with this object data. The storing process described so far
can be seen in figure 6.7. A client application can only use the web-service-based persistency
layer if it has started a session. The directly connectedXOBE node stores the corresponding
session information within its meta data component, e.g. which object IDs are loaded. An
object update can then be identified assuming that a corresponding load operation needs to be
registered before. Please notice that up to now it is assumed that theXOBE service node or
more precisely its meta data component already knows the object’s type and its structure. In

94 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

Figure 6.6: Loading objects

3a

Actions:

1. send load request
2. check client’s identification id and search meta
 data for selected object ids
3a. retrieve object data from the BPC
3b. broadcast request to registered XSNs
4. receive and send response containing all
 data objects

Client

Abbreviations:

XSN : XOBE Service Node
WSC : Web Service Component
MDC : Meta Data Component
BPC : Background Persistency Component

1

XSN XSN

XOBE Cluster

WSC

MDC

BPC

3b
4

2

this case theXOBEDBPL client receives a store done response. If the requested store operation
fails, an error response will be sent. For example in context of an unknown type it will be an
unknown type response. If the object’s type is unknown a second operation is needed which is
described in the next section.

6.4.1 Registering Types

So far we have assumed that the web service which is going to store a new object already knows
how to do this, e.g. that it knows the structure or more precisely the type. Hence, if an object of
a new type is stored the web service’s response asks for the corresponding type descriptor. In
this case the web service’s method calledregisterType can be used by the client to answer
. Once again the client can either be anotherXOBE service node or aXOBEDBPL local server
instance.

This storing process can be seen in figure 6.8.

6.5. REMOVING OBJECTS 95

Figure 6.7: Storing a data object with known type in single transaction mode

2

Actions:

1. send store request
2. check client’s identification id and search meta
 data

3b. broaccast object update to registered XSNs
4. receive and send response with stored data
 object ids

3a. store new or local object in the BPC

Client

Abbreviations:

XSN : XOBE Service Node
WSC : Web Service Component
MDC : Meta Data Component
BPC : Background Persistency Component

1

XSN XSN

XOBE Cluster

WSC

MDC

BPC

4

3a

3b

6.5 Removing Objects

The delete operation removes data from aXOBE service node . Analogously to the load oper-
ation objects are selected by a selection expression. After the successful processing of a delete
operation none of the selected objects are available any longer. In this case the answer is a
delete done response.

TheXOBEDBPL web service client requests an object deletion by sending an identification
ID and a selection expression. After checking the identification ID the web service component
evaluates the selected set of object IDs analogously to the load case. With this information the
web service component forwards the delete request to its background persistency component or
respectively broadcasts it to the correspondingXOBE service nodes, which are part of the same
cluster. If the objects attributes are marked as aggregated they are not influenced by this deletion
process. Otherwise, if marked as composed they are deleted recursively. Moreover, objects
which are requested to be deleted are not deleted physically at the same instance, instead, this
happens after a specific time interval. The mechanism can be compared with a garbage collector
in the Java programming language.

The delete process is shown in figure 6.9.
Besides selection expressions, data objects and class descriptors, successful communication

96 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

Figure 6.8: Storing a new data object with unknown type in single transaction mode

5

Client

1. send store request
2. check client’s identification id and search meta data
3. send unknown type response
4. send register type request
5. 2. and store new type description within the MDC
6. send response with registered type descriptor id
7. continue to store object
8. store object in the BPC
9. send response with stored object id

Abbreviations:

XSN : XOBE Service Node
WSC : Web Service Component
MDC : Meta Data Component
BPC : Background Persistency Component

Actions:

XSN XSN

XOBE Cluster

WSC

MDC

BPC
1

2

3/4

9

8

6/7

with theXOBEDBPL web service requires session IDs to identify clients and transaction IDs to
guarantee consistent access of distributed objects. These IDs and their semantics are described
in the following subsection.

6.6 Session and Transactions

Session IDs as well as transaction IDs can be requested from theXOBEDBPL web service.
IDs in the wholeXOBEDBPL runtime environment are generated in a decentralized manner by
using a hashing algorithm. For example the input value to calculate an object ID consists of
its creation time, its type and client information. Accordingly, the input value for a session ID
consists of the client’s IP address and a time stamp. Hence, the generated IDs are statistically
unambiguous. The collision probability is smaller than 1:264. Nevertheless, if an object gets an
ID which is already in use and is stored for the first time there are two possible cases. The first
case is that the object has got another type than the already stored object. In this case an error

6.6. SESSION AND TRANSACTIONS 97

Figure 6.9: Deleting a data object

4

Actions:

1. send delete request
2. check client’s identification id and search meta
 data for selected object ids
3a. delete local object
3b. broadcast delete request to registered XSNs
4. receive and send response containing deleted
 data object ids

Client

1

XSN XSN

XOBE Cluster

WSC

MDC

BPC

Abbreviations:

XSN : XOBE Service Node
WSC : Web Service Component
MDC : Meta Data Component
BPC : Background Persistency Component

2

3a

3b

is thrown on client-side and the persistency layer remains unaffected. The second case is that
the object and the already stored object are of the same type. In this case the second and latest
object is interpreted as an object update. If the client is allowed to write the previous object it is
overwritten by the new one. Otherwise an error is risen on client-side and the persistency layer
remains unaffected. Please notice that this approach for generating object IDs in distributed
environments is commonly used and other approaches, e.g. based on a centralized ID generator,
will suffer from enormous performance problems and can only be considered theoretically.

A client requests a session ID by passing client specific data. After checking this data, the
server sends a session ID with an initial lifetime, which is rather short. Besides, the web service
generates its own customer ID to identify the client. Further requests from the same client
extend the lifetime of the corresponding session ID. A client can finish any session by sending
the ID back to theXOBEDBPL web service.

After receiving a valid session ID the client can perform load operations and store and delete
operations in single transaction mode. To perform modifying operations like store and delete in
complex transaction mode a transaction ID is needed in addition. Transaction IDs are given to
the client on the basis of its session ID.

As mentioned before, every single modifying operation which is requested with a session

98 CHAPTER 6. WEB SERVICE FOR DISTRIBUTED PERSISTENT OBJECTS

ID is handled and executed as a single short transaction internally. Complex transactions which
consist of more than one modifying operation are requested along with a transaction ID. These
complex transactions are executed as distributed transactions by the web-service-based per-
sistency layer. As described in chapter 5XOBEDBPL uses the two-phase commit protocol
in conjunction with the distributed, timestamp-based optimistic concurrency control algorithm
[75] . In this section only specific details concerning the realization with the web-service-based
persistency layer are discussed. A more general description is alread given in section 5.3.1. The
transactions are timestamped according to the Lamport protocol [48]. Transactions are initial-
ized by a registered client application during its session. TheXOBE web service component
which is directly connected to this client application acts as the master transaction manager.
The client application sends subsequent load and store operations along with the transaction ID.
If such an operation cannot be handled by the master node itself it is passed to the otherXOBE
web services. Each operation which cannot be handled by the master node has to be registered.
Finally, the corresponding response is received by the master again. The master checks which
web service instance processed the operation. This information is part of the response message.
The master stores this web service instance using its meta data component as a subtransaction
manager for this transaction. In case the response is not received by the master in time the
corresponding transaction has to be aborted. If the client commits the transaction the master
starts the two-phase commit protocol as already described. A prepare to commit is sent using
the endTransaction method in conjunction with a prepare-to-commit request. Contrary,
a commit is sent in conjunction with a commit request. Otherwise, the master sends an abort
message to each of the registered subtransaction managers for this transaction.

Nested transactions are not supported by the web-service-based persistency layer so far. For
more information on transactions inXOBEDBPL please have a look at chapter 5. More details
about theXOBEDBPL web service can be found in [73] and [65].

Chapter 7

Architecture and Implementation

This section contains the most important details about the architecture and implementation of
theXOBEDBPL preprocessor, the program transformation process as well as about the runtime
environment.

7.1 Preprocessor

The architecture of theXOBEDBPL preprocessor is shown in figure 7.1. In our implementation
we use the Java compiler compiler JavaCC [37] to generate theXOBEDBPL program parser.
Additionally we use the Xerces XML parser [5] to recognize the declared schemas. In the figure
denoted bySchema Parser types are formalized by regular hedge expressions. The internal
representation of processedXOBEDBPL programs is done via the Java tree builder JTB [30].
After parsing the input program and its required XML schemas the preprocessor infers the types
of XML constituents in the program. These resulting types are used for the subsequent subtype
checking. The algorithm is explained in [42] in detail. Finally, after the type checking process
the input program is transformed into pure Java. The first step transforms XML specific program
parts into DOM objects and corresponding method invocations. The second step performs the
structural transformations into a framework of Java classes and interfaces. The framework
depends on the underlying transient/persistent variant as described in section 4.2. The output of
the whole preprocessor are the transformedXOBEDBPL programs that can be executed by any
standard Java Virtual Machine (JVM). In section 7.2 the most important implementation details
concerning the transformation process of aXOBEDBPL program are introduced.

7.2 Transformation

In this section we will use the same notation to define transformations as in [42]. A transfor-
mation instruction is described by a rule of the form[[s]]pr ⇒ t. S stands for an expression of

99

100 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

Figure 7.1: Architecture of theXOBEDBPL preprocessor

Java

DBPL

XOBE DBPL

XOBE DBPLtransformed program

program XML Schema or DTD

Schema ParserProgram Parser

Type Checking

Transformation

Type Inference

Subtype Checking

XML Transformation

Structural Transformation

precompiler

XOBE

the source language andt for the desired translated expression in the target language. The pa-
rameter annotationp stands for values necessary for the further transformation process. These
values are passed. Contrastly the resulting annotationr is set after the transformation is applied
and therefore is available in succeeding transformation steps.
The transformation process is twofold. During the first step all XML specific program parts,
e.g. XML object constructors, XPath, flwor and update expressions, that are extensions to the
Java programming language are translated. Finally the second step performs structural trans-
formations to realize persistency and transactions inXOBEDBPL as it is described in section 4.2
and chapter 5.

7.2. TRANSFORMATION 101

7.2.1 XML Transformation

The translation of XML object constructors and XPath expressions is already described in [42].
While the implementation of XML object constructors nearly remain unchanged inXOBEDBPL

the implementation in the case of XPath changes entirely. In addition update and flwor expres-
sions have to be taken into account.

XML Object Constructors

The translation of XML object constructors does not change except thatXOBEDBPL uses a
slightly modified DOM variant to represent XML objects. The node interface is called
XobeNodeInterface and lists are represented by theXobeNodeListInterface inter-
face. The interfaces can be seen in figure 7.2. The more specialized interfaces,
e.g.DocumentInterface , ElementInterface , extend the
XobeNodeInterface interface as it is known from the DOM. TheXobeNodeInterface

Figure 7.2: The basic interfacesXobeNodeInterface andXobeNodeListInterface
for the XML transformation process

update(List) : void

replaceChilde(XobeNodeListInterface,XobeNodeListInterface): void

removeChild(XobeNodeListInterface): void

insertBefore(XobeNodeListInterface,XobeNodeListInterface) : void

appendChild(XobeNodeListInterface) : void

XobeNodeListInterface

XobeChildNodeInterface

AttributeInterface

DocumentInterface

TextNodeInterfaceElementInterface

...

XobeNodeInterface

appendChild(XobeNodeInterface) : void

insertBefore(XobeNodeInterface,XobeNodeInterface) : void
renameTo(String) : void
removeChild(XobeNodeInterface) : void
replaceChild(XobeNodeInterface,XobeNodeInterface) : void

insertAfter(XobeNodeInterface,XobeNodeInterface) : void

getChildren() : XobeNodeListInterface

getDescendants() : XobeNodeListInterface

getSelf() : XobeNodeListInterface

getParent() : XobeNodeListInterface

evaluateLocationPath(LocationPathDescriptor) : XobeNodeListInterface

insertAfter(XobeNodeListInterface,XobeNodeListInterface) : void

102 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

as well as theXobeNodeListInterface provide methods for all XPath axis and basic
update operations, e.g. append, insert after, insert before, rename, remove and replace. Fur-
thermore, two important methods are offered, e.g.evaluateLocationPath andupdate .
While evaluateLocationPath accepts aLocationPathDescriptor as a parameter
and is used to query XML objects using translated location paths,update accepts an
UpdateDescriptor as parameter and is used to update XML objects using translated update
expressions.

XPath expressions

XPath expressions inXOBEDBPL are always executed upon a context variable . The variable
references an already translated XML object. The remaining location path is translated into
an equivalent location path descriptor object. Finally theevaluateLocationPath method
described previously is invoked upon the context variable and the location path descriptor ob-
ject is passed as parameter. This is different to the transformation of XPath expressions in [42].
There each location path step is translated into a single method invocation upon the context
object. Since now XML objects may be persistent and remote, the former transformation pro-
cess can lead to inefficiencies, because each method invocation upon the XML object might
be serialized and then executed. The new XPath expression transformation first constructs a
local XPath descriptor object and finally invokes the evaluate method one-time. The location
path desriptor object is sent and executed where the context object is located. The interface to
represent a location path descriptor is shown in listing 7.1.

Listing 7.1: TheLocationPathDescriptor interface
1 pub l i c i n t e r f a c e L o c a t i o n P a t h D e s c r i p t o r{
2 pub l i c S t r i n g ge tAx i s () ;
3 pub l i c vo id s e t A x i s (S t r i n g a x i s) ;
4 pub l i c S t r i n g ge tNodeTes t () ;
5 pub l i c vo id se tNodeTes t (S t r i n g nodeTes t) ;
6 pub l i c L i s t g e t P r e d i c a t e s () ;
7 pub l i c vo id a d d P r e d i c a t e (P r e d i c a t e p r e d i c a t e) ;
8 pub l i c L o c a t i o n P a t h D e s c r i p t o r ge tNex t () ;
9 pub l i c vo id s e t N e x t (L o c a t i o n P a t h D e s c r i p t o r nex t) ;

10 }
A location path consists of an arbitrary number of steps. Thus, the descriptor interface contains
a reference to the next step. Each step consists of an axis name, node test and an arbitrary
number of predicates, implied by the corresponding getters and setters. An implementation of
the evaluate method defined by theXobeNodeInterface interface can be seen in listing
7.2.

Listing 7.2: Implementation of theevaluateLocationPath method
1 pub l i c X o b e N o d e L i s t I n t e r f a c e e v a l u a t e L o c a t i o n P a t h (
2 L o c a t i o n P a t h D e s c r i p t o r pa th){

7.2. TRANSFORMATION 103

3 L o c a t i o n P a t h D e s c r i p t o r nex t = pa th ;
4 / / r e s u l t o f t h e l o c a t i o n pa th
5 X o b e N o d e L i s t I n t e r f a c e r e s u l t =new XobeNodeList (t h i s) ;
6 do{
7 X o b e N o d e L i s t I n t e r f a c e resu l tTemp =new XobeNodeList () ;
8 / / a n a l y z e n e x t s t e p o f l o c a t i o n pa th . . .
9 S t r i n g axisName = nex t . getAxisName () ;

10 S t r i n g nodeTes t = nex t . ge tNodeTes t () ;
11 L i s t p r e d i c a t e s = nex t . g e t P r e d i c a t e s () ;
12 nex t = pa th . ge tNex t () ;
13 / / app ly a x i s . . .
14 i f (axisName . e q u a l s (” c h i l d ”)){
15 r e s u l t = r e s u l t . ge tCh i ldNodes () ;
16 } e l s e i f (axisName . e q u a l s (” d e s c e n d a n t ”)){
17 r e s u l t = r e s u l t . ge tDescendan t () ;
18 }
19 . . . / / a l l r ema in ing a x i s
20 / / app ly node t e s t
21 r e s u l t = r e s u l t . nodeTes t (nodeTes t) ;
22 / / i f p r e d i c a t e s are g iven , e v a l u a t e p r e d i c a t e s . . .
23 i f (p r e d i c a t e s . s i z e ()>0){
24 I t e r a t o r i t e r = p r e d i c a t e s . i t e r a t o r () ;
25 whi le (i t e r . hasNext ()){
26 P r e d i c a t e p r e d i c a t e =
27 (P r e d i c a t e) i t e r . nex t () ;
28 f o r (i n t i = 0 ; i < r e s u l t . s i z e () ; i ++){
29 / / f i l t e r each node o f t h e r e s u l t
30 i f (p r e d i c a t e . e v a l u a t e F o r (r e s u l t . g e t (i))){
31 resu l tTemp . add (r e s u l t . g e t (i)) ;
32 } e l s e{
33 resu l tTemp . remove (r e s u l t . g e t (i)) ;
34 }
35 } / / end f o r
36 r e s u l t = resu l tTemp ;
37 } / / end w h i l e
38 } / / p r e d i c a t e s p r e s e n t
39 }whi le (nex t !=n u l l) ;
40 re turn r e s u l t ;
41 }
Now we can define the transformation rule in the case of an XPath expression inXOBEDBPL

7.2.1.

Definition 7.2.1 The transformation of an XPath expression with the context XML object

104 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

variableV and the location stepsSi with i ∈ {1, ..., n} is defined by:

• an XPath expression with explicit context variableV

LocationPathDescriptor p = null;
{
LocationPathDescriptor t =
new LocationPathDescriptorImpl(”self”,”∗”);
p = t;
[[S1]]

t

[[V/S1/.../Sn]]r ⇒ .
.
.
[[Sn]]t

}
XobeNodeListInterface r = V.evaluateLocationPath(p);

• an XPath expression with implicit context variable as may be used within predicates and
has to be used within update operations

LocationPathDescriptor p = null;
{
LocationPathDescriptor t =
new LocationPathDescriptorImpl(”self”,”∗”);
p = t;
[[S1]]

t

[[/S1/.../Sn]]p ⇒ .
.
.
[[Sn]]t

}

R references the resulting node list andLocationPathDescriptorImpl denotes an im-
plementation of the interfaceLocationPathDescriptor . 2

An XPath expression within aXOBEDBPL program is transformed into several Java statements.
In the case of XPath expressions with a given context variableV , the result of an XPath ex-
pression is a list of XML objects. These objects are put into the result node listr. In principal
the remaining location steps are translated into a location path descriptor objectp. A temporary

7.2. TRANSFORMATION 105

descriptor objectt is initialized with a step selecting the self node and is assigned top. The re-
sult list is gained by evaluating the descriptor objectp upon the given context variableV . Each
location step is transformed separately and adds information to the temporary descriptor object
t and thus to the descriptor objectp as well. In contrast to XPath expressions with a context
variableV , XPath expressions within predicates or updates may start with a step. Semantically
this means that the path expression is evaluated upon the selected node list of this predicate’s
step or the update target variable respectively. Then the transformation rule generates only the
path descriptor that is later used in the predicate’s evaluation.

Definition 7.2.2 The transformation of a location step consisting of the axis nameA, the
node testN and the predicatesPi with i ∈ {1, ..., n} and the corresponding descriptor objectt
is defined by:

t.setNext(new LocationPathDescriptorImpl(A,N));
t = t.getNext();
{
[[[P1]]]p1

t.addPredicate(p1);
.

[[A :: N [P1]...[Pn]]]t ⇒ .
.
[[[Pn]]]pn

t.addPredicate(pn);
}

with LocationPathDescriptorImpl denoting an implementation of the interface
LocationPathDescriptor . 2

Each location step is transformed and appended to the corresponding location path descrip-
tor objectt. An example XPath expression without predicates is translated in 7.2.1 with the
rules given so far.

Example 7.2.1This example selects all person elements of theauctionSite XML object vari-
able with the help of an XPath expression. The resulting node list is assigned to the variable
ps.

xml<person∗> ps = $ a u c t i o n S i t e / d e s c e n d a n t : : pe rson $;

According to the defined XPath transformation rules the following pure Java code is generated.

L o c a t i o n P a t h D e s c r i p t o r p =n u l l ;
{

L o c a t i o n P a t h D e s c r i p t o r t =
new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;

106 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

p = t ;
t . s e t N e x t (new L o c a t i o n P a t h D e s c r i p t o r I m p l (” d e s c e n d a n t ” , ” pe rson ”)) ;
t = t . ge tNex t () ;

}
X o b e N o d e L i s t I n t e r f a c e ps = a u c t i o n S i t e . e v a l u a t e L o c a t i o n P a t h (p) ;

Variablesp andt reference location path descriptors. Whilep points to the initial location path
step,t points to the last location path step. The resultps is translated into aXOBE node list
that is gained by executing the path descriptor upon the context variableauctionSite.

While axis names and node tests can be taken as parameters without further translations, ex-
isting predicates need to be transformed by the following rule. The main idea in the context of a
predicate transformation is equivalent to XPath expressions themselves. The predicate is trans-
lated into a descriptor object of typePredicate . In XOBEDBPL predicates consist of a pred-
icate boolean expression that may contain e.g. conditional-or, conditional-and and relational
or XPath expressions again. XPath expressions are translated according to the already defined
rules. Conditional-or, conditional-and and relational expressions are represented by objects of
type CondOrPredicateExpr , CondAndPredicateExpr and RelPredicateExpr
respectively. All these types are subtypes of thePredicate .

Definition 7.2.3 The transformation of a predicate with the predicate expressionPE is de-
fined by:

[[[PE]]]p ⇒ [[PE]]p
Predicate predicate = p;

wherep denotes the resulting predicate descriptor. 2

Since the different kinds of predicate expressions are transformed equivalently, we will focus on
the transformation rules for a conditional-and expression as well as for a relational expression
that contains the equality operator.

Definition 7.2.4 The transformation for a conditional-and expression with the left hand side
expressionEl and the right hand side expressionEr is defined by:

[[El]]el

[[El && Er]](new CondAndPredicateExpr(el,er)) ⇒
[[Er]]er

whereCondAndPredicateExpr denotes a class that represents a conditional-and expres-

7.2. TRANSFORMATION 107

sion. 2

The transformation is applied recursively to the left and right hand side expression. The
result of this transformation rule is the new conditional-and expression using the results of the
recursive transformation processes as parameters.

Definition 7.2.5 The transformation for a comparison relation consisting of the left hand side
expressionEl and the right hand side expressionEr is defined by:

[[El]]el

[[El == Er]](new RelPredicateExpr(el,er,”==”)) ⇒
[[Er]]er

whereRelPredicateExpr denotes a class that represents a relational expression. 2

Again the transformation rule is applied recursively to the right and left hand side. The
result is a new object representing the comparison relational expression with the results of the
recursive transformation processes as parameters. The example 7.2.2 applies the transformation
rules including predicate rules given so far.

Example 7.2.2This example adds a predicate to the XPath expression used in example 7.2.1.
Now, only a single person with a given ID is selected and inserted into the resulting node list
ps.

xml<person∗> ps = $ a u c t i o n S i t e / d e s c e n d a n t : : pe rson [/ @id = ” p00001 ”] $;

According to the defined XPath transformation rules the following pure Java code is generated.

1 L o c a t i o n P a t h D e s c r i p t o r p =n u l l ;
2 {
3 L o c a t i o n P a t h D e s c r i p t o r t =
4 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
5 p = t ;
6 t = t . nex t (new L o c a t i o n P a t h D e s c r i p t o r I m p l (” d e s c e n d a n t ” , ” pe rson ”)) ;
7 / / new code c o r r e s p o n d i n g t o t h e p r e d i c a t e
8 {
9 / / t r a n s f o r m a t i o n o f ” / @id”

10 L o c a t i o n P a t h D e s c r i p t o r p2 =n u l l ;
11 {
12 L o c a t i o n P a t h D e s c r i p t o r t 2 =
13 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
14 p2 = t 2 ;
15 t 2 = t 2 . nex t (new L o c a t i o n P a t h D e s c r i p t o r I m p l (” a t t r i b u t e ” , ” i d ”)) ;
16 }
17 P r e d i c a t e p r e d i c a t e =

108 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

18 new R e l P r e d i c a t e E x p r (new P r i m a r y P r e d i c a t e E x p r (p2) ,
19 new P r i m a r y P r e d i c a t e E x p r (” p00001 ”) ,
20 ” = = ”) ;
21 t . a d d P r e d i c a t e (p r e d i c a t e) ;
22 }
23 / / end o f p r e d i c a t e r e l a t e d code
24 }
25 X o b e N o d e L i s t I n t e r f a c e ps = a u c t i o n S i t e . e v a l u a t e L o c a t i o n P a t h (p) ;

The beginning of the generated code that is new and corresponds to the predicate is marked by a
comment. A predicate inXOBEDBPL may contain location paths with implicit context variable,
e.g. @id. The location path is transformed recursively into an inner location path descriptor
object that is used to construct the predicate descriptor. Notice that in this case the predicate
descriptor is a relational predicate expression instance. Finally, the predicate descriptor is added
to the current or last location path stept.

Next we will go on to introduce transformation rules in the case of complex queries and
updates.

Flwor Expressions

XFlwor expressions containing a return clause are called flwor expressions. The transformation
of flwor expressions is based on the already defined rules for path expressions and XML objects.
The definition can be seen in 7.2.6.

Definition 7.2.6 Without loss of generality the following transformation is given for flwor
expressions containing at least one for and one let clause. The transformation for a flwor expres-
sion, consisting of the for clausesFi with i ∈ {1, ..., n}, the let clausesLj with j ∈ {1, ..., m},
the where clauseW , the order by clauseC and the return clauseR, is defined by:

• j < i and1 ≤ k < i andj ≤ t ≤ m:

7.2. TRANSFORMATION 109

[[
. .
. .
. .

Lj [[Lj]]
(f 1 i,l1,...,f k i,lj−1)
lj

. .

. .

. .
Fi [[Fi]]

(f 1 i,l1,...,f i−1 i,lt)
fi

for(int i i=0; i i< fi.size();i i++){
XobeNodeListInterface fi i = new XobeNodeList(fi.get(i i));

. .

. .

. ⇒ .
W [[W]](f 1 i,l1,...,f n i,lm)

XobeNodeListInterface r = new XobeNodeList();
O [[R]](r,f 1 i,l1,...,f n i,lm)

.

.

.
}//end for i i
.
.
.

R [[O]]r

]]r

If j = 1 the pre-evaluated let and for variablesLj do not exist.

• i < j and1 ≤ t < j andi ≤ k ≤ n

110 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

[[
. .
. .
. .
Fi [[Fi]]

(f 1 i,l1,...,f i−1 i,lt)
fi

for(int i i=0; i i< fi.size();i i++){
XobeNodeListInterface fi i = new XobeNodeList(fi.get(i i));

. .

. .

. .

Lj [[Lj]]
(f 1 i,l1,...,f k i,lj−1)
lj

. .

. .

. ⇒ .
W [[W]](f 1 i,l1,...,f n i,lm)

XobeNodeListInterface r = new XobeNodeList();
O [[R]](r,f 1 i,l1,...,f n i,lm)

.

.

.
}//end for i i
.
.
.

R [[O]]r

]]r

If i = 1 the pre-evaluated let and for variablesFi do not exist.

2

The result of a flwor expression is the node listr. Let and for clauses define new local vari-
ablesfi andlj. While let variables are taken as a whole, for variables cause iteration processes.
These iteration processes are translated into for-loops. Where clauses act as filters upon let and
for variables. The result clause constructs the overall result of the flwor expressionr and finally
the order by clause kind of sorts the result list.
The isolated let and for clause transformations are equally defined as can be seen in the defini-
tions 7.2.7 and 7.2.8.

Definition 7.2.7 The transformation of a let clause with the variablei and the path expres-
sionp is defined by:

7.2. TRANSFORMATION 111

[[LET i := p]]
(fl1,...,f ln)
i ⇒ [[p]]

(fl1,...,f ln)
i

2

fl stands for either a for or let variable. The different binding behaviour of a for and a let
variable is preserved by the flwor rule as mentioned before.

Definition 7.2.8 The transformation of a for clause with the variablei and the path expression
p is defined by:

[[FOR i IN p]]
(fl1,...,f ln)
i ⇒ [[p]]

(fl1,...f ln)
i

2

For and let transformation rules simply rely on those for path expressions 7.2.1. The trans-
formation rule for a where clause is not given here since it would go beyond the scope of this
work. Moreover, where clauses are transformed analogously to XPath predicates. The transfor-
mation rule for return clauses is given in definition 7.2.9. Once again this rule is based on path
expressions as well as XML object transformation rules.

Definition 7.2.9 The transformation of a return clause with path expressions, XML objects
or variablespvi with i ∈ {1, ..., n} and predefined for or let variablesflj with j ∈ {1, ...,m} is
defined by:

[[pv1]]
(fl1,...,f lm)
pvr1

r.add(pvr1);
.

[[RETURN pv1, ..., pvn]](r,fl1,...,f lm) ⇒ .
.
[[pvn]]

(fl1,...,f lm)
pvrn

r.add(pvrn);

2

Each component of a return clause is transformed first and then added to the result listr. r
is instantiated before and passed as reference. Finally an order by clause is transformed accord-
ing to the rule defined in 7.2.10.

Definition 7.2.10 The transformation of an order by clause with the order specificationspec is
defined by:

112 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

[[ORDER BY spec]]r ⇒ r.orderBy(”spec”);

2

The resulting node listr is ordered with respect to the specificationspec. An example demon-
strating the transformation rules for flwor expressions is given in 7.2.3.

Example 7.2.3This example transforms the flwor expression of listing 3.2 that returns names
and quantities of sellers referenced by open auction elements.

$FOR i IN a u c t i o n S i t e / / pe rson
LET j : = a u c t i o n S i t e / / o p e na u c t i o n [/ s e l l e r / @id= i / @id]
RETURN i / name j / q u a n t i t y $;

According to the transformation rules for flwor expressions the following pure Java code is
generated:

1 / / f o r c l a u s e t r a n s f o r m a t i o n
2 L o c a t i o n P a t h D e s c r i p t o r p =n u l l ;
3 {
4 L o c a t i o n P a t h D e s c r i p t o r t =
5 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
6 p = t ;
7 t = t . nex t (
8 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” d e s c e n d a n t ” , ” pe rson ”)
9) ;

10 }
11 X o b e N o d e L i s t I n t e r f a c e i =
12 a u c t i o n S i t e . e v a l u a t e L o c a t i o n P a t h (p) ;
13 f o r (i n t i 0 = 0 ; i 0< i . s i z e () ; i 0 ++){
14 X o b e N o d e L i s t I n t e r f a c e ii 0 =
15 new XobeNodeList (i . g e t (i 0)) ;
16 / / l e t c l a u s e t r a n s f o r m a t i o n
17 L o c a t i o n P a t h D e s c r i p t o r p2 =n u l l ;
18 {
19 L o c a t i o n P a t h D e s c r i p t o r t 2 =
20 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
21 p2 = t 2 ;
22 t 2 = t 2 . nex t (
23 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” d e s c e n d a n t ” , ” o p e na u c t i o n ”)
24) ;
25 / / p r e d i c a t e t r a n s f o r m a t i o n
26 {
27 L o c a t i o n P a t h D e s c r i p t o r p3 =n u l l ;
28 {

7.2. TRANSFORMATION 113

29 L o c a t i o n P a t h D e s c r i p t o r t 3 =
30 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
31 p3 = t 3 ;
32 t 3 = t 3 . nex t (
33 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” c h i l d ” , ” s e l l e r ”)
34) ;
35 t 3 = t 3 . nex t (
36 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” a t t r i b u t e ” , ” i d ”)
37) ;
38 }
39 L o c a t i o n P a t h D e s c r i p t o r p4 =n u l l ;
40 {
41 L o c a t i o n P a t h D e s c r i p t o r t 4 =
42 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
43 p4 = t 4 ;
44 t 4 = t 4 . nex t (
45 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” a t t r i b u t e ” , ” i d ”)
46) ;
47 }
48 X o b e N o d e L i s t I n t e r f a c e i 4 = i . e v a l u a t e L o c a t i o n P a t h (p4) ;
49 }
50 P r e d i c a t e p =new R e l P r e d i c a t e E x p r (
51 new P r i m a r y P r e d i c a t e E x p r (p3) ,
52 new P r i m a r y P r e d i c a t e E x p r (i 4) ,
53 ” = = ”) ;
54
55 t 2 . a d d P r e d i c a t e (p) ;
56 }
57 X o b e N o d e L i s t I n t e r f a c e j =
58 a u c t i o n S i t e . e v a l u a t e L o c a t i o n P a t h (p2) ;
59
60 / / r e t u r n c l a u s e t r a n s f o r m a t i o n
61 / / f l w o r e x p r e s s i o n r e s u l t
62 X o b e N o d e L i s t I n t e r f a c e r =new XobeNodeList () ;
63 / / t r a n s f o r m a t i o n o f f i r s t component
64 L o c a t i o n P a t h D e s c r i p t o r p5 =n u l l ;
65 {
66 L o c a t i o n P a t h D e s c r i p t o r t 5 =
67 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
68 p5 = t 5 ;
69 t 5 = t 5 . nex t (
70 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” c h i l d ” , ” name ”)
71) ;

114 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

72 }
73 X o b e N o d e L i s t I n t e r f a c e i 5 =
74 i . e v a l u a t e L o c a t i o n P a t h (p5) ;
75
76 / / f i r s t t r a n s f o r m e d component
77 / / i s added t o r e s u l t
78 r . add (i 5) ;
79
80 / / t r a n s f o r m a t i o n o f t h e second component
81 L o c a t i o n P a t h D e s c r i p t o r p6 =n u l l ;
82 {
83 L o c a t i o n P a t h D e s c r i p t o r t 6 =
84 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
85 p6 = t 6 ;
86 t 6 = t 6 . nex t (
87 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” c h i l d ” , ” q u a n t i t y ”)
88) ;
89 }
90 X o b e N o d e L i s t I n t e r f a c e j 6 =
91 j . e v a l u a t e L o c a t i o n P a t h (p6) ;
92
93 / / second t r a n s f o r m e d component
94 / / i s added t o r e s u l t
95 r . add (j 6) ;
96 }
The generated code that corresponds to the new flwor transformation rules really starts in line
60. In line 62 the node list, that collects all resulting tuples of the whole flwor expression, is
generated. In line 78 and 95 the transformed components representing the path expressions
i/name andj/quantity are added to the result.

Update Expressions

Update expressions are xFLWOR expressions containing an update clause. The rules for a let,
for and where clause are the same as defined in the previous section. For this reason new rules
for the update clause itself are needed. Similar to XPath expressions and predicates basic update
operations are translated into update descriptors. The type hierarchy that is used byXOBEDBPL

can be seen in figure 7.3. Each kind of basic update operation is represented by a class. If the
update clause consists of several basic update operations the corresponding descriptor objects
are put in a list. As can be seen in figure 7.2 the interfaceXobeNodeInterface declares an
update method that accepts a list of update descriptor objects as a parameter. An implementation
of this method is presented in listing 7.3.

Listing 7.3: An implementation of theXobeNodeInterface update method

7.2. TRANSFORMATION 115

Figure 7.3: The update descriptor type hierarchy

UpdateDescriptor

+getTargetPath : LocationPathDescriptor

DeleteDescriptor InsertDescriptor

+getContent() : XobeNodeListInterface

RenameDescriptor

+getName() : XobeString

ReplaceDescriptorInsertAfterDescriptorInsertIntoDescriptorInsertBeforeDescriptor

1 pub l i c vo id upda te (L i s t u p d a t e s){
2 X o b e N o d e L i s t I n t e r f a c e xn l =new XobeNodeList (t h i s) ;
3 I t e r a t o r i t e r = u p d a t e s . i t e r a t o r () ;
4 whi le (i t e r . hasNext ()){
5 / / g e t n e x t upda te o p e r a t i o n
6 U p d a t e D e s c r i p t o r upda te = (U p d a t e D e s c r i p t o r) i t e r . nex t () ;
7 / / e v a l u a t e c o r r e s p o n d i n g t a r g e t nodes
8 X o b e N o d e L i s t I n t e r f a c e x n l i =
9 xn l . e v a l u a t e L o c a t i o n P a t h (upda te . g e t T a r g e t P a t h ()) ;

10 i f (upda te i n s t a n c e o f D e l e t e D e s c r i p t o r){
11 xn l . g e t P a r e n t () . removeChi ld (xn l) ;
12 } e l s e i f (upda te i n s t a n c e o f I n s e r t I n t o D e s c r i p t o r){
13 X o b e N o d e L i s t I n t e r f a c e c o n t e n t =
14 ((I n s e r t I n t o D e s c r i p t o r) upda te) . g e t C o n t e n t () ;
15 xn l . appendCh i ld (c o n t e n t) ;
16 }
17 / / rema in ing upda te o p e r a t i o n s
18 / / a re t r e a t e d a n a l o g o u s l y
19 . . .
20 }

116 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

21 }
In contrast to the transformation rule 7.2.6 for a flwor expression, the transformation rule for an
update expression covers an update clause instead of an order by and a return clause. The rule
is given in definition 7.2.11.

Definition 7.2.11 Without loss of generality the following transformation is given for flwu
expressions containing at least one for and one let clause. The transformation of an update ex-
pression consisting of the forFi and letLj clauses, withi ∈ {1, ..., n} andj ∈ {1, ..., m}, the
where clauseW and an update clauseU is defined by:

• j < i and1 ≤ k < i andj ≤ t ≤ m

[[
. .
. .
. .

Lj [[Lj]]
(f 1 i,l1,...,f k i,lj−1)
lj

. .

. .

. .
Fi [[Fi]]

(f 1 i,l1,...,f i−1 i,lt)
fi

for(int i i=0;i i< fi.size();i i++){
XobeNodeListInterface fi i = new XobeNodeList(fi.get(i));

. .

. .

. ⇒ .
W [[W]](f 1 i,l1,...,f n i,lm)

U [[U]](f 1 i,l1,...,f n i,lm)

.

.

.
}//end for i i
.
.
.

]]

If j = 1 the pre-evaluated let and for variablesLj do not exist.

• i < j and1 ≤ t < j andi ≤ k ≤ n

7.2. TRANSFORMATION 117

[[
. .
. .
. .
Fi [[Fi]]

(f 1 i,l1,...,f i−1 i,lt)
fi

for(int i i=0;i i< fi.size();i i++){
XobeNodeListInterface fi i = new XobeNodeList(fi.get(i));

. .

. .

. .

. .

Lj [[Lj]]
(f 1 i,l1,...,f k i,lj−1)
lj

. .

. ⇒ .
W [[W]](f 1 i,l1,...,f n i,lm)

U [[U]](f 1 i,l1,...,f n i,lm)

.

.

.
}//end for i i
.
.
.

]]

If i = 1 the pre-evaluated let and for variablesFi do not exist.

2

The only rule that has not been defined yet is the transformation rule for an update clause
and is defined in 7.2.12.

Definition 7.2.12 The transformation of an update clause with the context variablei and
the basic update operationsUi with i ∈ {1, ..., n} is defined by:

List d = new LinkedList();
[[U1]]

(d,fl1,...,f ln)

.
[[UPDATE i U1, ...Un]](fl1,...,f ln) ⇒ .

.
[[Un]](d,fl1,...,f ln)

i.update(d);

118 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

2

The list d is passed to each basic update transformation. Each basic update transformation
process adds the corresponding descriptor object to this list. Finally the context variablei is
updated by invoking the update method and passing the update descriptor listd. Basic update
operations are transformed according to the rules given in the following definition 7.2.13.

Definition 7.2.13 The transformation of the basic update operations with the target path ex-
pressionP and the contentC is defined by:

• delete operation

[[P]]fl1,...,f ln
t

[[DELETE P]](d,fl1,...,f ln) ⇒ UpdateDescriptor u = new DeleteDescriptor(t);
d.add(u);

• simple insert operation

[[C]]fl1,...,f ln
c

[[INSERT C]](d,fl1,...,f ln) ⇒ UpdateDescriptor u = new InsertDescriptor(c);
d.add(u);

• insert into operation

[[C]]fl1,...,f ln
c

[[INSERT C INTO P]](d,fl1,...,f ln) ⇒ [[P]]fl1,...,f ln
t

UpdateDescriptor u =
new InsertIntoDescriptor(c,t);
d.add(u);

• insert before operation

[[C]]fl1,...,f ln
c

[[INSERT C BEFORE P]](d,fl1,...,f ln) ⇒ [[P]]fl1,...,f ln
t

UpdateDescriptor u =
new InsertBeforeDescriptor(c,t);
d.add(u);

7.2. TRANSFORMATION 119

• insert after operation

[[C]]fl1,...,f ln
c

[[INSERT C AFTER P]](d,fl1,...,f ln) ⇒ [[P]]fl1,...,f ln
t

UpdateDescriptor u =
new InsertAfterDescriptor(c,t);
d.add(u);

• replace operation

[[C]]fl1,...,f ln
c

[[REPLACE P WITH C]](d,fl1,...,f ln) ⇒ [[P]]fl1,...,f ln
t

UpdateDescriptor u =
new ReplaceDescriptor(c,t);
d.add(u);

• rename operation

[[P]]fl1,...,f ln
t

[[RENAME P TO m]](d,fl1,...,f ln) ⇒ UpdateDescriptor u =
new RenameDescriptor(t,m);
d.add(u);

Semantically path expressions selecting target nodes of an update operation always have an im-
plicit context variable and start with a slash’/’ . 2

The above rules are based on transformation rules for XML objects and XPath expressions.
Each rule adds its corresponding update descriptor object to the listd that is passed by the
update clause rule. In context of an update operation the XPath expression with an implicit
context variable, e.g. the target variable of the update operation, selecting the target nodes is
only transformed into the corresponding descriptor objectp. An example demonstrating the
transformation rules for update expressions is given in 7.2.4.

Example 7.2.4This example update operation deletes all closed auction elements of the auction
site.

$LET i : = a u c t i o n S i t e
UPDATE i DELETE / / c l o s e d a u c t i o n $;

Applying the transformation rules for update expressions yields the following Java code.

120 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

1 / / l e t c l a u s e t r a n s f o r m a t i o n
2 L o c a t i o n P a t h D e s c r i p t o r p =n u l l ;
3 {
4 L o c a t i o n P a t h D e s c r i p t o r t =
5 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
6 p = t ;
7 }
8 X o b e N o d e L i s t I n t e r f a c e i =
9 a u c t i o n S i t e . e v a l u a t e L o c a t i o n P a t h (p) ;

10
11 / / upda te c l a u s e t r a n s f o r m a t i o n
12 L i s t d = new L i n k e d L i s t () ;
13
14 / / d e l e t e o p e r a t i o n t r a n s f o r m a t i o n
15 / / t a r g e t pa th t r a n s f o r m a t i o n
16 L o c a t i o n P a t h D e s c r i p t o r p2 =n u l l ;
17 {
18 L o c a t i o n P a t h D e s c r i p t o r t 2 =
19 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” s e l f ” , ”∗ ”) ;
20 p2 = t 2 ;
21 t 2 = t 2 . nex t (
22 new L o c a t i o n P a t h D e s c r i p t o r I m p l (” d e s c e n d a n t ” , ” c l o s e da u c t i o n ”)
23) ;
24 }
25
26 U p d a t e D e s c r i p t o r u =new D e l e t e D e s c r i p t o r (p2) ;
27
28 d . add (u) ;
29
30 i . upda te (d) ;

7.2.2 Transaction Transformation

A transaction statement inXOBEDBPL is transformed according to the rule given in definition
7.2.14.

Definition 7.2.14 The transformation of a transaction statement with a name list consisting
of the variablesp1, ...pn and a transaction blockB is defined as:

7.2. TRANSFORMATION 121

TransactionID id =
LocalServer.getInstance().beginTransaction();
try{
synchronized(p1){
.
.
.
synchronized(pn){
p1.setTransactionID(id);

[[transaction(p1,...,pn){B}]] ⇒ ...
pn.setTransactionID(id);
[[B]]
}
.
.
.
}
}catch(TransactionAbortException e){
throw e;
}catch(Exception e){
LocalServer.getInstance().abortTransaction(id);
throw new TransactionAbortExcetion();
}
LocalServer.getInstance().endTransaction(id);

2

The above rule to transform a transaction statement into pure Java code starts a transaction
by invoking the corresponding method on the local server instance of theXOBEDBPL run-
time environment. The local server is used as an adapter betweenXOBEDBPL programs and
the web service based persistency layer. The local server class provides the same methods as
the XOBEDBPL web service, but with different, mostly simpler argument and response types.
The purpose of the local server is to hide communication details with the concrete persistency
layer implementation. The resulting transaction ID is set within a synchronized environment
for each persistent object being part of the transactional name list. After setting the transac-
tion IDs the transformed transaction block is inserted. Finally, the transaction is committed by
calling theendTransaction method upon the local server instance. Within transactions a
TransactionAbortException might be thrown by the local server. In this case the cor-
responding transactional operations are rolled back. The rollback is done by the local server or
more precisely by theXOBEDBPL web service persistency layer. A server-side caused transac-
tion abort is caught by the first catch clause. Moreover, a transaction can also be aborted by

122 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

the client. If an exception occurs within the beginning and ending of a transaction, it is caught
by the second catch clause. In this case the transaction has to be aborted invoking the corre-
sponding method upon the local server and aTransactionAbortException is thrown
explicitely.

7.2.3 Structural Transformation

Details about the concepts of structural transformation can be found in 4.2. Similarily to the
transformation rules defined for XML program parts it is possible to define a set of transforma-
tion rules for the structural transformation process. Nethertheless, this would go far beyond the
scope of this text and would yield nothing really new. Details about the realization concepts are
given in chapter 5.

7.3 Runtime Environment

Figure 7.4 illustrates theXOBEDBPL runtime environment. As described in section 4.2 per-
sistency, distribution and transactions are based on a special web service. The concepts of
theXOBEDBPL web service as well as its architecture are described in detail in chapter 6. At
the momentXOBEDBPL web services are implemented in .NET [54]. Transformed persistent
classes communicate with aXOBEDBPL local server instance. Local servers use local persis-
tency mechanisms like databases for local data. If data is shared they connect to a suitable
givenXOBEDBPL web service instance. The communication between the web service and the
XOBEDBPL local server is automatically achieved with the help of theWSDL2Java tool that
is part of the Apache Axis project [2]. Transformed transient classes do not communicate with
local servers. Transient classes use persistent classes and vice versa. At the moment we use
Postgres [66] as the relational database for performance reasons, but this is transparent to the
programmer. Object-relational mapping is done automatically and independent of type. Further
implementation details can be found in section 7.4. The figure also indicates that an arbitrary
number of clients can access arbitrary web service instances. Moreover, there may be an ar-
bitrary number ofXOBEDBPL web service instances. The persistent data managed by the web
service is passed as SOAP messages. Since these SOAP messages envelope data composed
according to an intermediate language introduced in chapter 6, the clients need not be imple-
mented in Java at all.

7.4 OR Mapping Techniques

In this section we will give basic issues of mapping objects into relational tables. As mentioned
previously background databases inXOBEDBPL are mostly relational due to performance rea-

7.4. OR MAPPING TECHNIQUES 123

sons. The techniques that are described here and used inXOBEDBPL are inspired by the pro-
posals made in [1].

7.4.1 Mapping Member Variables

Member variables of a class are mapped to zero or more columns in a relational database. A
member variable is mapped to zero columns if it is transient. It is mapped to one column if it
has got a basic type includingString , e.g. boolean, int, float. Furthermore, because some
member variables of a class are themselves class types they are mapped to several columns of
several tables. InXOBEDBPL each persistent object is identified by a global, non-business data,
unique ID of typeString . If a member variable is complex only its ID is mapped to a column.
The ID references the object or respectively another row of the appropriate table. If this row
does not already exist the corresponding member variable object must be mapped recursively.
Object IDs are used as keys and foreign keys in the resulting relations.

Bulk types

Bulk types include lists and arrays. Since a list or array is also an object in Java a bulk typed
attribute of an object is also mapped to its object ID value of the corresponding table. For each
class and each of its bulk typed attributes a corresponding table is created. The table consists of
three columns, the first column references the list’s object ID, the second the object contained
in this list instance and finally the third keeps the object’s position in this list instance.

7.4.2 Mapping Classes

Classes map to tables. In [1] three different approaches are proposed and discussed in refer-
ence to inheritance that causes the most significant problems in every object-relational mapping
approach. The first approach uses one table for an entire class hierarchy that will frequently
lead to altering this table if a new class appears in the hierarchy. The second uses one table
per concrete class. When modifying a class its table must be modified and all the tables of any
of its subclasses. The third approach that is also used inXOBEDBPL uses one table per class.
The main advantage of this approach is that it conforms to object-oriented concepts the best,
e.g. polymorphism. One disadvantage might be that there are many tables in the database and
objects of a subtype are read and written using multiple joins.

7.4.3 Relationships

There are two types of relationships that an object can be involved in, association and aggre-
gation. Aggregation means that anything which occurs to the whole in the database needs to
be performed upon the parts. By contrast, in the case of an association the parts are indepen-
dent and remain unchanged. InXOBEDBPL database objects might only be associated with

124 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

other database objects. Persistent, non database objects are always aggregated to one or more
database objects. For example if a database object is deleted all its constituent objects are
deleted as well. Relationships in relational databases are maintained through the use offoreign
keysandkeys. The mapping process used inXOBEDBPL does not use keys or foreign keys since
unique IDs and references are generated outside of the database and mapped automatically as
described before. If keys and foreign keys were to be declared or defined the database would
have to check the corresponding constraints. Checking needs time and slows down update op-
erations. Since the database mapping process is entirely transparent to the user such constraints
are not neccessary.

7.5 Performance Aspects

Performance data concerning the precompiler’s type checking mechanism can be found in [42].
Since inXOBEDBPL only a new set of type inference rules for updates that rely on those for
XPath are introduced and nothing is changed in principal, the former results are still mean-
ingful. The program transformation process can be estimated byO(n) wheren denotes the
program size. Linear runtime can be expected since each node of the program tree that rep-
resents the inputXOBEDBPL program is only processed once and is translated in a constant
number of Java code lines. The latter is reflected by the transformation rules that are given in
section 7.2. Moreover, the performance of theXOBEDBPL precompiler is not that significant,
because eachXOBEDBPL program has to be translated once, but the result can be executed arbi-
trarily often. Thus, the runtime behaviour of the generated Java classes is crucial for statements
about the performance ofXOBEDBPL.
In chapter 9 experiments are performed. The first tests focussing on XML update support in
XOBEDBPL, as well as in related approaches, are made and evaluated. The second test con-
centrates on the example application andXOBEDBPL’s overall functionality including XML
integration and persistency.

7.5. PERFORMANCE ASPECTS 125

Figure 7.4: TheXOBEDBPL runtime environment

Client

DBPL local server

XOBE DBPL web service
p : transformed persistent variant

t : transformed transient variant

XOBE DBPL web service

p

t tp

database

local data

Client

WWW

XOBE

126 CHAPTER 7. ARCHITECTURE AND IMPLEMENTATION

Chapter 8

XOBEDBPL as Semantic Extension

In the previous chapters the concepts ofXOBEDBPL and their realization were introduced. In
particular the integration of statically type checked XML and type independent transparent per-
sistency are realized by extending the syntax of the chosen source programming language. Con-
sequently, a complicated preprocessor is needed, which translates the extended Java syntax into
pure Java again. More importantly, aXOBEDBPL programmer cannot use existing development
tools like Eclipse [90], since there is noXOBEDBPL editor for example. Another problem in the
context of the actualXOBEDBPL implementation is its dependency on the actual Java syntax.
When the new Java version 1.5 was introduced a new grammar, parser and new analyser for
XOBEDBPL had to be implemented. In the future this might happen again. A third problem is
that theXOBEDBPL program analyser and code generator work on Java files ending with.java
which are rather high level. Types of methods, objects etc. have to be found and determined
first. The syntax is diverse and offers a lot of operators and possibilities. Consequently, it is
very difficult to write and implement theXOBEDBPL analyser and code transformator.

From this point of view the question arises if it is necessary to extend the existing object-
oriented programming language (Java) syntactically anyway. Or the other way round, could
it be sufficient to realize allXOBEDBPL concepts introduced so far by merely extending Java
semantically. If this could be achieved, all problems mentioned above do not occur anymore.

Indeed it is possible to keep theXOBEDBPL concepts without changing Java’s syntax. The
following sections will explain this for each concept. There is only one limitation regarding
static type checking of XML list types. This limitation is discussed in section 8.1.3.

The main realization idea is to use annotations introduced in Java 1.5 [85] and to analyse
and manipulate the Java byte code by aXOBEDBPL postprocessor based on an existing Java
framework calledByte CodeEngineeringL ibrary (BCEL) [3] . A short introduction is given
as well in section 2.1.

It is important to notice that all concepts and in particular the static type checking algorithm
and type inference rules and the communication with theXOBEDBPL persistency layer remain
unchanged.

Before going into the details, the overall architecture of theXOBEDBPL postprocessor and

127

128 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

related tools can be seen in figure 8.1. This architecture enables to realize the XML integra-
tion concepts. TheSchema import makes DTD and XML Schema instances available to
the Java programmer by generating corresponding wrapper classes. The programmer can then
write Java programs using XML objects, XPath, updates and persistency aspects. TheJava
compiler produces the associated set of.class files which in turn are used as input to
the postcompiler . Besides this, the postcompiler also takes the DTD and XML Schema
instances as input. AfterByte Code processing andXML schema parser theXML
typechecking component statically checks the programs. Finally theTransformation
component transforms the original into a new set of Java class files, which solely generate and
work with valid XML and may be persistency capable. According to the architecture in fig-
ure 8.1 the first section introduces the XML integration including XML schema import, XPath
queries and updates. The second section explains the realization of persistency concepts using
annotations. Further details can also be found in [70].

129

Figure 8.1: XML integration concepts

* : written by programmer

XML typechecking

Transformation

Java compiler

Java (XML)
wrapper

.java files

Schema import

DTD

XML
Schema

Java program

.java files

Java .class
files

Java .class
files

− XML enriched Java
 XPath, XML objects,
 updates
− persistency

Byte Code processing XML schema parser

postcompiler

*

*

*

130 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

8.1 XML Integration

The main idea regarding the integration of XML is that all XML objects are castable to a com-
mon XML supertype. Every XML element type has got a corresponding Java type. In contrast
to other approaches discussed in section 2.9 XML classes are only provided to offer Java con-
structor invocation to instantiate XML instances. Solely the supertype offers basic functionality
and no default code. It is implemented as an abstract Java class namedXML. The corresponding
class diagram is shown in figure 8.2.

Figure 8.2: The XML super class

...

<<abstract>> XML

#element : ElementInterface

+XML(String)
+XML(String,Object...)
+XML(String,XobeInterface...)

+xpath(String) : List<XML>
+xpath(String,Object...) : List<XML>
+xpath(String,XobeInterface...) : XobeNodeListInterface

+update(String)
+update(String,Object...)
+update(String,XobeInterface...)

+<<static>>importSchema(File)

TheXMLclass uses thevarargs functionality introduced in Java 1.5 which allows multiple
arguments to be passed as parameters to methods. It requires the simple... notation for the
method to accept the argument list. Besides constructors anxpath method is offered for
queries and anupdate method for updates, respectively. It is important to notice that there
are three variants for each method. The programmer is supposed to use the variant containing
the single string parameter signature. The second variant is used during the type checking
process at compile time, while the third one is executed at runtime. Moreover, the first two
versions only contain default bodies. Only the third one, which is really executed, contains the
true code and therefore the needed functionality. The second important idea behind the XML
super class is to provide the user the possibility to formulate XML element constructors, XPath
queries and updates as before. This means that this can be done in a high-level and transparent

8.1. XML INTEGRATION 131

syntax already known fromXOBEDBPL. But XOBEDBPL’s main advantage is checking XML
constituents at compile time. Therefore, the strings must be transformed with the help of BCEL
into parameters of the second method version. After the type checking process is done, these
method invocations are once again transformed into invocations of the third variant. At runtime
both realization approaches, the one extending Java’s syntax and this one, are equivalent.

In the following sections XML constructors, XPath queries and updates are introduced. This
time they are realized without syntax extensions but still are statically type checked according
to the corresponding schema. Last, the persistency and transaction realization using annotations
is introduced.

8.1.1 XML Schema Import

An XML schema is made available by importing it. Importing means that for each declared
element type a corresponding wrapper class is generated. For this purpose theXMLsuper class
offers a static method calledimportSchema . The method accepts a file containing the desired
XML schema. The schema can either be a DTD or XML Schema instance. The method’s code
can be seen in listing 8.1.

Listing 8.1: The method to import XML schemas
1 pub l i c s t a t i c vo id importSchema (F i l e f i l e){
2 HedgeGrammar grammar =new HedgeGrammar (f i l e) ;
3 Map env i ronment = grammar . ge tEnv i ronmen t () ;
4 I t e r a t o r i t e r = env i ronment . v a l u e s () . i t e r a t o r () ;
5 whi le (i t e r . hasNext ()){
6 / / g e n e r a t e a wrapper c l a s s f o r
7 / / e v e r y e lemen t t y p e
8 }
9 }

Concepts behind XML schemas remain unchanged. In line 2 the XML schema is transformed
into its hedge grammar representation. Then a while-loop in line 5-8 iterates over all declared
XML element types. Within the loop a wrapper class for each element is generated. The
wrapper class is derived from theXMLsuper class and is named according to its fully qualified
name. The schema information is preserved by adding aSchema annotation. Itsuri attribute
references the corresponding XML schema file.

Let’s take theauction DTD for an example. The generatedsite classsite is shown
in listing 8.2.

Listing 8.2: The generated wrapper class for the XML elementsite

1 . . .
2 @Schema (u r i =” a u c t i o n . d td ”)
3 pub l i c c l a s s s i t e ex tends XML {
4 pub l i c s i t e (S t r i n g xml){

132 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

5 super (xml) ;
6 }
7
8 pub l i c s i t e (S t r i n g xml , Ob jec t . . . v a r i a b l e s){
9 super (xml , v a r i a b l e s) ;

10 }
11 }

After importing an XML schema, the programmer can start to invoke XML constructors,
XPath queries and updates.

8.1.2 XML Objects

An XML object of a certain element type can be instantiated by invoking the single string
parameter constructor. The string parameter will be checked syntactically and semantically at
compile time against the XML schema that is referenced by its XML class annotation.

Construction

Let’s examine an example given in listing 8.3. The example shows how to create an XML
elementperson .

Listing 8.3:XOBEDBPL Java methodcreatePerson

1 pe rson c r e a t e P e r s o n (S t r i n g name){
2 pe rson p ;
3 . . .
4 . . .
5
6 / / new person i s c r e a t e d
7 p = new pe rson (”<person @id= ’ ”+genera teAnID () + ” ’>”+
8 ”<name>”+name+”</name>”+
9 ”<e m a i l a d d r e s s>an emai l<e m a i l a d d r e s s>”+

10 ”</ person>”) ;
11
12 re turn p ;
13 }

Compared to the old version theXOBEDBPL constructor is passed as a string parameter in
lines 7-10. It is important to notice that except XML element contents or attribute values the
constructor string must consist of constants. Otherwise, a static error is thrown, since it would
be impossible to check its correctness at compile time. The fact that XML constructor strings
are statically checked and validated against an XML schema implicates a semantically enhanced
Java.

8.1. XML INTEGRATION 133

Variables and in particular previously defined other XML objects, or arbitrary expressions
may be put as element content or attribute value within the constant string. In the given example
two variable parts namely the result of thegenerateAnID method and the passedname
parameter are contained. Examining theperson constructor from a syntactic point of view,
it is pure Java. What is new is that this constructor will be treated differently regarding its
semantics. The string must conform to an XML element, it must also be valid according to the
declared XML schema and non-constant parts of the string are treated as XML variables and
their types are checked too. Checking happens at compile time and is explained in the next
subsection.

Static Type Checking

Every part of the XML constructor string must be constant except for the XML variables. There-
fore it is easy to transform the constructor invocation into the second constructor variant, which
requires a string and an object array. The new string parameter contains the constant string
parts, while the object array contains the variable parts. The order of their appearance in the
original string is preserved. The transformation process happens at compile time. The version
for the example given in listing 8.3 can be seen in listing 8.4.

Listing 8.4: XOBEDBPL Java methodcreatePerson already transformed for the static type
checking process

1 pe rson c r e a t e P e r s o n (S t r i n g name){
2 pe rson p ;
3 . . .
4 . . .
5
6 / / new person i s c r e a t e d
7 p = new pe rson (”<person @id= ’{} ’ > ”+
8 ”<name>{}</name>”+
9 ”<e m a i l a d d r e s s>an emai l<e m a i l a d d r e s s>”+

10 ”</ person>” ,
11 new Ob jec t []{ genera teAnID () , name}
12) ;
13
14 re turn p ;
15 }

Places of variable parts within the constant string remain marked with the help of a pair of
brackets ({}). In the above example there are two pairs of brackets within the constant string
part, one for thegenerateID method in line 7 and one for the name in line 8. This order
is preserved among the objects being part of the second array parameter in line 11. After this
transformation static type checking can be done.

134 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

The byte code representing the constructor invocation in listing 8.4 is shown below in list-
ing 8.5. The byte code is later executed by a stack machine. Please notice that high-level type
information is still available. While anew instruction creates a new object theanewarray in-
struction creates a new array of given size and type.Ldc pushes a constant andiconst pushes
an integer constant. Anaload instruction pushes a local object variable. Anaastore stores
a value to a given object array’s position. Finallyinvokevirtual and invokespecial
invoke a method or a constructor respectively upon an object with given parameters.

Listing 8.5: Byte code representation of theperson constructor invocation

6 : new pe rson
. . .

1 0 : l d c (< pe rson @id= ’{} ’><name>{}</name>
<emai l>an emai l</ emai l></person>)

1 2 : i c o n s t 2
1 3 : anewar ray j a v a . l ang . Ob jec t
. . .
1 7 : i c o n s t 0
1 8 : a l o a d t h i s
1 9 : i n v o k e v i r t u a l genera teAnID () : S t r i n g
2 2 : a a s t o r e
. . .
2 4 : i c o n s t 1
2 5 : a l o a d name : S t r i n g
2 6 : a a s t o r e
2 7 : i n v o k e s p e c i a l pe rson (S t r i n g , Ob jec t [])

At 6: a new person object is generated and finally instantiated by invoking the constructor
with the signatureperson(String,Object []) at 27:. The constant XML constructor with
the placeholders loaded at 10: is passed as string parameter. An object array of size 2 is gen-
erated by 12: and 13:. Its first component at 17: contains the result of thegenerateAnID
method invocation as can be seen at 18:,19: and 22:. Finally the object array’s second position at
24: contains the local variablenameat 25: and 26:. The object array is passed as second param-
eter to theperson constructor. The information within the byte code is sufficient for statically
type checking if thisperson XML constructor invocation generates a valid XMLperson
element. The type checking process starts by parsing the constant string and continues inferring
its type. Each time the type inference process detects a pair of brackets the corresponding type
of the variable part is looked up, which is the declared type of a variable or a method’s return
type. In the given example the first pair of brackets is detected as id attribute value. According
to the information extracted from the byte code the corresponding attribute value type can be
inferred as string, since this is the return type of thegenerateAnID method. The second
variable part which defines thename element’s content type is looked up as string, too, since
this is the type of the local variablename. It is finally checked if the whole inferred type is a
valid subtype of the constructor’s XML schema type. In the given example the inferred type in

8.1. XML INTEGRATION 135

regular hedge type notation isperson[@id[string];name[string];email[string]]. Thus, the XML
element person constructor is checked successfully.

Please note that in contrast to the syntactically enhancedXOBEDBPL version it is no longer
necessary to check if the left type of the assignment in line 7 is a valid super type of its right
hand part. This is now checked by the Java compiler. Instead it is only necessary to check if the
XML element constructed by the parameters is a valid subtype of the constructor’s XML type.
XML constructors can be easily recognized with the help of BCEL. After parsing the string and
getting the XML element syntax tree, the well known type inference rules and type checking
algorithm can be applied without modification. Please notice that all variable parts being part
of the object array have got well-defined types which are easily available using BCEL and the
Java Virtual Machine’s constant pool.

After the type checking process a second compile time transformation process occurs. All
specific XML types are mapped to the general XML DOM-like model that is also used in the
syntactically enhancedXOBEDBPL version. The super interface for allXOBEDBPL objects and
lists is namedXobeInterface . Consequently, at runtime every XML constructor invokes
the third constructor of the XML super class listed in figure 8.2. The corresponding code is
given in listing 8.6.

Listing 8.6: The XML constructor invoked at runtime

1 pub l i c XML(S t r i n g xml , X o b e I n t e r f a c e . . . v a r i a b l e s){
2 XobeParser p a r s e r =new XobeParser (new S t r i n g R e a d e r (xml)) ;
3 XMLElement e lemen t =n u l l ;
4 t r y {
5 e lemen t = p a r s e r . XMLElement () ;
6 XMLElementTrans t r a n s ;
7 / / t r a n s f o r m t h e XML e lemen t . . .
8 t h i s . e lemen t = t r a n s . ge tE lemen t () ;
9 } ca tch (P a r s e E x c e p t i o n e){

10 . . .
11 }
12 }

In line 2 theXOBEDBPL parser parses the constant XML string which constructs the XML
object. Since the string is already checked at compile time, this operation is guaranteed to be
safe. The parser produces the corresponding XML element syntax tree in line 5. A second
transformation process in line 6-8 transforms the runtime XML object. The runtime XML
object referenced by theelement attribute in line 8 is a DOM like object and uses the same
classes as before inXOBEDBPL.

136 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

8.1.3 Queries in XPath

Since all XML classes are derived from the superclassXMLshown in figure 8.2, XPath queries
are designed as method invocations upon XML objects. Thexpath method, requiring one
string parameter, is provided for this purpose. Once again, the programmer formulates an XPath
query as a constant string. Analogously to an XML constructor invocation XML variables might
be included and referenced. In contrast to the syntactically enhancedXOBEDBPL version the
context node is implicitly given. It is the XML object the method is invoked upon.

Invocation

An example retrieving all person elements with a given id is given in listing 8.7.

Listing 8.7: An XPath query
1 / / L i s t <person> p l i s t = (L i s t <person>)
2 / / a u c t i o n S i t e . xpa th (
3 / / ” / / pe rson [@id=’{”+ p i d +” } ’] ”) ;
4 L i s t<XML> p l i s t =
5 a u c t i o n S i t e . xpa th (
6 ” / / pe rson [@id= ’{ ”+ p i d +” } ’] ”) ;

The result of an XPath expression is always a list of XML objects. Once again the query
string must consist of constant string parts except attribute values or element contents. Other-
wise a static error is thrown. Like in case of XML constructors the single stringxpath variant
is transformed into the two parameter version. The string is split into its constant and variable
constituents and type checking is performed analogously. In the case of XPath queries, types
are often limited to the general generic list typeList <XML>. Unfortunately, it is not possible
to cast generic list types, as implied by the comment in listing 8.7. If we assume the following
lines of code in listing 8.8 withplist as defined and instantiated in listing 8.7, static type
checking will raise a warning in line 2. According to the auction DTD a people element con-
tains a sequence ofperson elements. Nevertheless, lines 4-6 will succeed because the true
inferred type is still available and can be taken into account.

Listing 8.8: XPath result types
1 peop le p =
2 new peop le (”<peop le>{”+ p l i s t +” }</ peop le>”) ;
3
4 p = new peop le (”<peop le>{”+
5 a u c t i o n S i t e . xpa th (
6 ” / / pe rson [@id= ’{ ”+ p i d +” } ’] ”)
7 +” </ peop le>”) ;

The above limitation is caused by the Java language itself. We hope that in the future generic
lists will be castable as one might expect. In general XPath types are more complex than Java
types and have to be mapped to the generic XML list type anyway.

8.1. XML INTEGRATION 137

Static Type Checking

XPath result types, in this new semantically enhancedXOBEDBPL version, are more limited
than in the previous version. In the previous version it is possible to specify among others a
choice type, for examplexml <(person |name) ∗ >. This type can only be expressed as
List <XML> which is the super type of the original version. Since Java does not know such
kind of result types, it is not available for the programmer anymore. On the one side this is a
true limitation and using the supertype version might result in false negative warnings by the
static type checking process. On the other side these cases are rather unimportant in practice
and it is more important to use pure Java. Moreover, if an XPath expression resulting in such a
choice type is directly included inside an XML object constructor invocation for example, the
type is inferred as choice type and treated as such. An example is given above in listing 8.8.

To prepare XPath invocations for the type checking process the string parameter is separated
analogously to the XML object constructor into two parameters. The string parameter contains
all constant parts and labels for the variable parts. The object array contains all variable ref-
erences in the same order as they appear within the former string. In case of the given XPath
example the transformation process results in lines of code shown in listing 8.9.

Listing 8.9: The XPath example transformed for the type checking process

2 . . .
3 L i s t<XML> p l i s t =
4 a u c t i o n S i t e . xpa th (” / / pe rson [/ @id = ’{} ’] ” , new Objec t []{ p i d }) ;
5 i f (p l i s t . s i z e ()>0) re turn n u l l ;
6 . . .

After parsing the string and getting the XPath syntax tree the well known type inference
rules and type checking algorithm can be applied without further modification.

At runtime the method is invoked upon an XML object. The variables are then guaranteed to
be of typeXobeInterface due to the XML and persistency transformation process known
from the syntactically enhancedXOBEDBPL version. Hence, the followingxpath method of
theXMLsuper class is invoked. Its code can be seen in listing 8.10.

Listing 8.10: XPath method invoked at runtime

1 pub l i c X o b e N o d e L i s t I n t e r f a c e xpa th (S t r i n g xpath ,
2 X o b e I n t e r f a c e . . . v a r i a b l e s){
3 XobeParser p a r s e r =new XobeParser (new S t r i n g R e a d e r (xpa th)) ;
4 XPathExpress ion pa th =n u l l ;
5 t r y {
6 pa th = p a r s e r . XPa thExpress ion () ;
7 XPathTrans t r a n s ;
8 / / t r a n s f o r m t h e XPath e x p r e s s i o n . . .
9 L o c a t i o n P a t h D e s c r i p t o r d e s c r i p t o r = t r a n s . g e t P a t h () ;

10 re turn t h i s . e lemen t . e v a l u a t e L o c a t i o n P a t h (d e s c r i p t o r) ;

138 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

11 } ca tch (P a r s e E x c e p t i o n e){
12 . . .
13 }
14 re turn n u l l ;
15 }

At runtime an xpath method returns aXobeNodeListInterface type. This is also due
to transformation steps happened at compile time. In line 2 the XPath query is parsed. The
operation is safe, since the constant string is checked at compile time. The XPath expression
syntax tree is extracted and transformed into an XPath location path descriptor in lines 5-8.
XPath descriptors are introduced and explained in chapter 7. Finally the XPath query is executed
upon the context XML element in line 9. The result is returned.

8.1.4 Updates

The last section concerning the XML integration focuses on XML updates. Updates do not
have a return value. Analogously to XPath queries updates are realized by method invocations
upon XML objects. Once again, the update expression is passed as string parameter which is
checked statically at compile time. Therefore the update must be formulated as a constant string
and only contents supposed to be inserted or replaced, for example, can be passed as variable
parts.

Invocation

Let’s formulate the update example from listing 3.3 chapter 3 in semantically enhanced pure
Java syntax. The result of thisXOBEDBPL version can be seen in listing 8.11.

Listing 8.11: The update example in case of the semantically enhancedXOBEDBPL version
1 synchron ized i n t b id (S t r i n g p id , i n t i n c r , S t r i n g a i d){
2 / / c a l c u l a t e new c u r r e n t
3 L i s t<XML> cu r =
4 a u c t i o n S i t e . xpa th (” / / o p e na u c t i o n [/ @id= ’{ ”+ a i d +” } ’] / c u r r e n t ”) ;
5 c u r r e n t n e w c u r r e n t = new c u r r e n t (
6 ”<c u r r e n t>{”+
7 (I n t e g e r . p a r s e I n t (cu r . g e t (0)) + i n c r)+
8 ” }</ c u r r e n t>”
9) ;

10
11 / / c r e a t e new b i d d e r
12 b i d d e r b id = new b i d d e r (”<b idde r>”+
13 ”<date>{”+ ge tDa te () + ”}</ da te>”+
14 ”<t ime>{”+getTime () + ”}</ t ime>”+
15 ”<p e r s o n r e f pe rson ={ ”+ p i d +” }/> ”+

8.1. XML INTEGRATION 139

16 ”< i n c r e a s e>{”+ i n c r +” }</ i n c r e a s e>”+
17 ”</ b idde r>”) ;
18
19 / / upda te a u c t i o n
20 a u c t i o n S i t e . upda te (”LETi : = / / o p e n a u c t i o n [/ @id={ a i d }] ”+
21 ”UPDATE i INSERT { ”+ b id +” } BEFORE / c u r r e n t , ”+
22 ”REPLACE / c u r r e n t WITH { ”+ n e w c u r r e n t +”} ”) ;
23 re turn n e w c u r r e n t ;
24 }

The first part of the example including lines 1-19 shows an XML object constructor and
XPath expressions as described before. This is only supposed to give an impression of a slightly
more complex example. The new update method invocation appears in line 20-22. The string
is a one to one transformation of the formerXOBEDBPL example. Like in case of xpath expres-
sions the context element object is implicitly defined by the object the update method is invoked
upon. In the given example it is the auction site object. Consequently, the path expression defin-
ing the local variablei can be formulated as a relative location path.

Static Type Checking

To perform static type checking in case of update expressions it is required to transform the
single parameter invocation into a two parameter invocation. The first parameter contains once
again the static parts of the update string and labels where variables are inserted. The second
parameter is the object array containing the variable parts of the former string. In case of the
example update expression the invocation results in the one presented in listing 8.12.

Listing 8.12: The update example ready to perform type checking
19 / / upda te a u c t i o n
20 a u c t i o n S i t e . upda te (”LETi : = / / o p e n a u c t i o n [/ @id={}] ”+
21 ”UPDATE i INSERT {} BEFORE / c u r r e n t , ”+
22 ”REPLACE / c u r r e n t WITH {} ” ,
23 new Ob jec t []{ a id , b id , n e w c u r r e n t}) ;

For static type checking the constant string parameter is parsed. The validity of this up-
date expression can be detected by determining the corresponding variable types and method
signatures. Type inference rules and the type checking algorithm remain unchanged.

At runtime an update method is invoked upon an XML object and the variable parameters of
the array are then of the typeXobeInterface . This happens due to the XML and persistency
transformation step. The code of the runtime update method is shown in listing 8.13.

Listing 8.13: The update method invoked at runtime
1 pub l i c vo id upda te (S t r i n g update ,
2 X o b e I n t e r f a c e . . . v a r i a b l e s){
3 XobeParser p a r s e r =

140 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

4 new XobeParser (new S t r i n g R e a d e r (upda te)) ;
5 t r y {
6 UpdateClause u c l a u s e = p a r s e r . UpdateClause () ;
7 Upda teC lauseTrans t r a n s ;
8 / / t r a n s f o r m t h e upda te . . .
9 Update u p d a t e s = t r a n s . ge tUpda te () ;

10 f o r (U p d a t e D e s c r i p t o r u : u p d a t e s . ge tUpda tes ()){
11 t h i s . e lemen t . upda te (u) ;
12 }
13 } ca tch (P a r s e E x c e p t i o n e){
14 . . .
15 }
16 }

The update is parsed in lines 3-4 and the corresponding syntax tree is extracted in line
6. The parsing process is safe, since the string is checked at compile time. Then this tree is
transformed into a list of update descriptors in the lines 7-9. Update descriptors are explained
and introduced in chapter 7. Finally, each basic update operation is invoked consecutively upon
the XML object. The update execution happens in lines 10-12.

8.2 Persistency

The persistency concept ofXOBEDBPL is realized using annotations. Instead of extending Java’s
syntax with the additional keyworddatabasea persistent class is now declared by adding a
specific class annotation.

8.2.1 Declaration

A persistent environment is now signed with thePersistentannotation tag. The database dec-
laration of the syntactically enhancedXOBEDBPL variant is therefore no longer needed. If we
want to declare theAuctionSite class as persistent environment as it is done in example
4.1.1 previously the version using an annotation looks like the one shown in listing 8.14.

Listing 8.14: Declaring the persistentAuctionSite environment

1 @ P e r s i s t e n t
2 pub l i c c l a s s A u c t i o n S i t e{
3 . . .
4 }

Invoking an available constructor will cause the generation of a persistent object of type
AuctionSite . The creation of persistent objects remains the same. The retrieval of existing
persistent objects still happens by a special type of XPath expressions. For this purpose the

8.3. TRANSACTIONS 141

already introducedXMLsuper class provides a static methodxpath that can be invoked by
passing the desired class object and an XPath expression as queries. This time the class object
is implicitly taken as the context variable. The class object is of the typejava.lang.Class .
The rest is analogous as described in section 4.1.1. The example given in 4.1.3 is then translated
into the following version shown in listing 8.15. Please notice that only the changed lines are
given.

Listing 8.15: Retrieving of arbitrary persistent objects

1 L i s t<XML> a u c t i o n S i t e s =
2 XML. xpa th (A u c t i o n S i t e .c l a s s , ” [/ d e s c r i p t i o n = ’{ ”+ d e s c r i p t i o n +”} ’] ”) ;

The resulting list contains all auction site objects which are already persistently kept and
which have got the specific description value.

If objects of classes that are marked as persistent are supposed to be destructible the pro-
grammer has to add a defaultdelete method with an empty body. The method doesn’t have
a return type and takes no parameters. Moreover, the method is marked with aDelete anno-
tation. An example can be seen in listing 8.16.

Listing 8.16: Declaring a delete method

1 @Delete
2 pub l i c vo id d e l e t e (){
3 }

A suitable body is added during the transformation process taking place at compile time.
Consequently, the example demonstrating the different deletion types given in 4.1.4 remain
semantically and syntactically unchanged.

8.2.2 Realization Concepts

The concepts behind persistency remain unchanged except that interface, transient and persis-
tent variants are no longer generated as Java classes explicitly. Only their.class versions
are generated using BCEL. Details about the realization concepts concerning persistency can
be found in section 4.2.

8.3 Transactions

Transactions are realized using annotations as well. TheXOBEDBPL version extends Java’s
syntax with a transaction statement. By contrast, the semantically enhanced version provides
the possibility to label methods with a specific annotation. InXOBEDBPL flat, nested and dis-
tributed transactions are supported. The latter is out of the programmer’s control. Distributed
transactions solely depend on the underlying persistency layer.

142 CHAPTER 8. XOBEDBPL AS SEMANTIC EXTENSION

8.3.1 Declaration

A method which is supposed to be executed as a transaction is marked with theTransaction
annotation tag. In general the expression power of a transactional method is not weaker than
that of a transaction statement. This is because every transaction statement may be separated
into an extra method. The transaction example given in listing 5.1 chapter 5 is written analo-
gously in the semantically enhancedXOBEDBPL variant in listing 8.17. The body illustrated by
three dots is already given in listing 8.11.

Listing 8.17: A transaction example
1 @Transac t ion
2 synchron ized i n t b id (S t r i n g p id , i n t i n c r , S t r i n g a i d){
. . .

25 }
Besides flat transactions, it is also possible to realize nested transactions by annotations.

Nested transactions are formulated if a transaction annotated method is invoked from within a
transaction method. Distributed transactions are provided implicitly by the underlying persis-
tency layer inXOBEDBPL.

8.3.2 Realization Concepts

Realization concepts in context of transactions don’t change compared to the syntactically en-
hancedXOBEDBPL version. More details can be found in section 5.2.1 and section 5.3.1.

Chapter 9

Experimental Results

In this chapter some experimental results using theXOBEDBPL prototypical implementation are
introduced. The first section focuses on tests in the context of the XML integration and statically
type checked update operations. The second section describes tests regarding the transparent
and type independent integration of persistency concepts inXOBEDBPL.

9.1 XML Updates

We tested theXOBEDBPL prototype implementation on four XML documents generated by the
XMark project’sxmlgen generator. In the context of XML update testing we used rather small
scaling factors forxmlgen resulting in XML documents with sizes reaching from kilobytes
to three megabytes. Moreover we defined four representative updates and measured times to
validate and execute them. Validation and execution times of theXOBEDBPL prototype imple-
mentation were compared with three other approaches all referenced in sections 2.9 and 2.10
about corresponding related approaches. Validation of updates in the context of the candidates
using DOM , e.g. Infonyte [36] and Xindice , is tested at runtime by parsing the whole docu-
ment against the schema. Contrarily,XOBEDBPL and Xact are based on static validation, which
is independent of the XML document’s size. The four updates that are chosen here are defined
as follows.

Update 1. deletes an existing person of the auction site by its id.

Update 2. deletes all closed auctions elements of the auction site.

Update 3. inserts a new person into the people element of the auction site.

Update 4. is an update operation consisting of a delete operation as defined in the first update
and an insert as defined in update 3.

143

144 CHAPTER 9. EXPERIMENTAL RESULTS

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.23 13.5/13.64 -/0.36 -/0.37
0.01 0.17/0.52 13.5/13.64 -/0.69 -/2.09
0.02 0.17/0.83 13.5/13.64 -/0.87 -/2.67
0.03 0.17/1.06 13.5/13.67 -/1.07 -/3.96

Table 9.1: Update 1. Deletion of an existing person by its id.

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.19 11.7/11.87 -/0.36 -/0.45
0.01 0.17/0.19 11.7/12.17 -/0.99 -/1.49
0.02 0.17/0.19 11.7/12.47 -/1.48 -/2.57
0.03 0.17/0.19 11.7/12.7 -/3.96 -/4.76

Table 9.2: Update 2. Deletion of all closed auction elements.

The four tables 9.1,9.2,9.3 and 9.4 present the results. The four rows represent the four different
sized XML documents generated by the XMark generator. Each record consists of two numbers
representing static validation time as well as the execution time of the valid update, measured
in seconds respectively. Latter times do not include former times. A’-’ for static validation
time indicates that static validation is not supported. The leftmost column contains the scaling
factors of the XMark project. A scaling factor of1.0 produces an XML auction schema instance
in the size of100 MB, a scaling factor of0.1 consequently leads to a10 MB sized document and
so forth. In particular the scaling factor0.0 generates a minimum XML document according
to the auction schema. As we limit the size of the largest XML document to3 Megabytes
all operations were able to take place in main memory. This was required because Xact does
not contain a database connection, but is the only other available prototype supporting static
validation and XML manipulation. Consequently, measured times are not influenced by times
accessing hard disk. Moreover, times to load and/or store the documents are not included.
The experimental results show thatXOBEDBPL is very well suited to replace existing approaches
based on DOM and rather low-level APIs. In particular, the times needed to statically validate
the four updates are very small and much better than Xact’s. Even for the chosen, rather small
XML documents, approaches likeInfonyte+DOM andXindice suffer from the time needed
to check the validity of updates at runtime. And contrary to static validation times, these times
will grow as the size of the documents grow.
We ran our tests using Sun’s Java 1.4.1 virtual machine on a 2.0 GHz Pentium 4 with 768 MB
RAM. Each test was run repeatedly to get average times.

9.1. XML UPDATES 145

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.19 13.34/13.54 -/0.35 -/0.47
0.01 0.17/0.23 13.34/14.24 -/0.95 -/1.32
0.02 0.17/0.24 13.34/14.94 -/1.31 -/2.37
0.03 0.17/0.25 13.34/15.14 -/1.66 -/3.96

Table 9.3: Update 3. Insert of a new person into the people element.

XMark XOBEDBPL Xact DOM+Infonyte Xindice
scaling factor
0.0 0.17/0.4 22.14/22.35 -/0.52 -/0.61
0.01 0.17/0.73 22.14/22.37 -/1.47 -/3.18
0.02 0.17/1.1 22.14/24.64 -/2.74 -/5.24
0.03 0.17/1.3 22.14/27.24 -/3.62 -/7.52

Table 9.4: Update 4. Update operations 1 and 3 are combined.

146 CHAPTER 9. EXPERIMENTAL RESULTS

9.2 Distributed and Persistent Objects

This section summarizes the results we gained while testing theXOBEDBPL prototype imple-
mentation concerning persistency. The example application deals with the auction site scenario
used throughout this work. To compareXOBEDBPL regarding persistency concepts and realiza-
tion we chose the following three other candidates which are implemented in Java.

• The EJB 2.1 implementation used in JBoss [79, 39],

• Hibernate [32] and

• the JDO implementation JPOX [80, 41].

As introduced in section 2.12 EJB provides persistent Java objects which are managed by a
server. If a client connects to a persistent object, operations, parameters etc. have to be se-
rialized. How these objects are kept persistent is not limited by the specification. Moreover,
EJBs are rather complicated to use and learn. In addition, neither version 2.1 nor 3.x support all
object-oriented concepts regarding the persistent components. Thus, this example application
cannot deal with inheritance. Contrastly, Hibernate offers a tool to ease the mapping from ob-
jects to relations. Hibernate is limited to using relational databases. The JDO specification is a
persistence solution for Java objects on the client side. In general, JDO can be used in connec-
tion with arbitrary types of databases. In the case of a relational database the mapping has to be
described by an XML file. All approaches require explicit code dealing with the corresponding
persistency manager. JBoss, JDO and Hibernate used the relational database product HSQLDB
[91] as storage for persistent objects. Moreover, the database server and the auction site program
were executed on the same host.XOBEDBPL is transparent and does support all object-oriented
concepts. Since the persistency layer is developed for distributed applications which are not
solely limited to Java, persistent objects have to be serialized to XML (SOAP messages). The
client auction site application ran on another host. Moreover, at the momentXOBEDBPL clients
use the Axis [2] implementation to communicate with the persistency layer’s web service in-
terface. XOBEDBPL is the only candidate in this scenario using serialization. Thus, times to
generate XML from objects and vice versa were not taken into account. Consequently, times
measured forXOBEDBPL are better comparable to those of the other candidates.

The tests consist of several operation types, in particular inserting, deleting, searching, re-
trieving and a mixture of them. In particular the auction example application offers the follow-
ing selective characteristic methods:

Insert Inserting a new person into the auction site. Thus, the person becomes persistent as
well.

Deletion Removing a registered person from the auction site.

Retrieval Retrieving a specific person from the auction site and printing its personal data.

9.2. DISTRIBUTED AND PERSISTENT OBJECTS 147

Mixture 1 Starting a new auction. First, an item has to be referenced or created as well. Then
the new auction can be created and inserted into the auction site’s open auction list. The
operation consists either of two inserts or one insert and one retrieval.

Mixture 2 Bidding for an open auction. The corresponding open auction’s last bid has to be
found and then a new bid has to be created and inserted according to the desired increase.
In addition, a person must be referenced by each bid. The whole operation consists of a
search, an update and an insert.

Mixture 3 Closing of all expired open auctions. Since open auctions contain a closing date and
time, it must repeatedly be checked if some open auctions have to be turned into closed
auctions. The whole operation consists of a search and a retrieval, a deletion, a creation
and an insert.

The auction site application offers the above operations and was implemented using each of the
four candidates. Then the operations were executed using the four different implementations.
The following criteria were checked:

Performance The execution time of the above operations.

Transparency in particular regarding database or persistency layer access.

Expressivenessin particular regarding the availability of object-oriented concepts like inheri-
tance. In addition, the possibility to develop distributed applications including exchanges
with applications written in other object-oriented programming languages was also eval-
uated.

Usability concerning the ease of use, clarity, reusability and the retrieval of persistent objects.

The only test parameter was chosen to be the starting size of the auction site XML document
reaching from 35 KB to 1 MB. We ran our tests using Sun’s Java 1.4.2 virtual machine on a 2.0
GHz Pentium 4 with 768 MB RAM. Each test was repeated several times to get average times.
The resulting time diagrams are given in figures 9.1, 9.2, 9.3, 9.4, 9.5 and 9.6.

Transparency, expressiveness and usability results concerning the four candidates are sum-
marized by table 9.5.

After all the tests were run,XOBEDBPL has got the highest degree regarding transparency,
expressiveness and usability. EJB suffers from complicated components and doesn’t support
all object-oriented features, in particular inheritance. JDO, Hibernate and EJB require explicit
code to deal with transaction or persistency managers. InXOBEDBPL this is fully transparent to
the programmer. The retrieval of persistent objects is done by certain kinds of query languages.
XOBEDBPL provides type checked XPath queries. JDO, EJB and Hibernate offer SQL which is
of course not type checked since queries are passed as simple strings. Moreover, Hibernate also
offers HQL, which is similar to OQL [58], and example objects also called criteria queries. The
latter are type checked and profit from the Java type system.

148 CHAPTER 9. EXPERIMENTAL RESULTS

Figure 9.1: Inserting a new person

204

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

10

30

98

As a result one can say that each candidate has got its own usage scenario. Hibernate is
probably best suited for non-distributed Java applications using relational databases as storage.
For this rather simple but common scenario Hibernate provides straightforward support. In
contrast to Hibernate JDO also supports other database paradigms, in particular object-oriented
databases. EJB is a good solution for server-side persistent Java objects. EJB also offers support
for distributed applications, but excludes distributed transactions. Moreover, EJB does not fully
support object-oriented features, e.g. inheritance. Contrastly,XOBEDBPL is developed for dis-
tributed persistent objects and XML.XOBEDBPL is fully transparent and supports inheritance.
In addition persistent and distributed objects can also be exchanged with other applications

Hibernate JDO EJB XOBEDBPL

persistency mapping ⊕ ¯ ª ⊕⊕
transparency transactions ¯ ¯ ⊕ ⊕⊕

persistency layer access̄ ¯ ¯ ⊕⊕
inheritance ⊕ ⊕ ®/⊕(EJB 3.x) ⊕⊕

expressiveness query languages ⊕ ¯ ¯ ⊕
distribution ® ® ⊕ ⊕⊕
exchange ® ® ª ⊕

usability ⊕⊕ ⊕ ª ⊕

Table 9.5: Transparency, expressiveness and usability results, withªª very bad,ª bad,¯ ok,
⊕ well,⊕⊕ very well and® not supported at all

9.2. DISTRIBUTED AND PERSISTENT OBJECTS 149

Figure 9.2: Removing a registered person

203

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

14

21

35

including non-Java applications.
It is important to notice thatXOBEDBPL’s performance can be significantly improved. In the

following there are four main starting points. First, store operations sent to the persistency layer
might be executed by threads, because the client program doesn’t generally have to wait for an
answer. Second, as mentioned beforeXOBEDBPL clients use the Axis implementation for web
service communication. It comes out that Axis has rather got a weak performance.XOBEDBPL

clients have only got to deal with the persistency layer web service. Therefore, it might be
better to develop a specific web service client side which is only capable of sending and receive
messages from the persistency layer’s web service. Third, a more efficient consisteny model on
client-side has to be found and implemented. A more efficient client-side consistency model can
reduce communication with the persistency layer in general. Fourth and last, using XML and
SOAP in particular causes rather large document or message sizes. This is due to the talkative
nature of XML. There are several approaches dealing with the efficient binary compression of
XML. One promising proposal is made by [107]. An outlook on future work and conclusions
can also be found in chapter 10.

150 CHAPTER 9. EXPERIMENTAL RESULTS

Figure 9.3: Retrieving and printing specific personal data

28

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

78

23

11

Figure 9.4: Starting a new auction

97

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

195

192

39

9.2. DISTRIBUTED AND PERSISTENT OBJECTS 151

Figure 9.5: Bidding for an open auction

97

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

192

39

212

Figure 9.6: Closing of all expired auctions

34

0

time in ms

Hibernate

XOBE (WS)

JDO

EJB

50 100 150 200 250

139

146

14

152 CHAPTER 9. EXPERIMENTAL RESULTS

Chapter 10

Conclusions and Future Work

This work introduces a database programming language for XML applications namedXOBEDBPL.
As discussed in the introduction there is an increasing need for the seamless processing of XML
in existing object-oriented programming languages. Moreover, persistency is a desired ability in
programming languages as well. Both concepts should, if possible, be integrated on a high-level
and transparently for the programmer. InXOBEDBPL the focus lies exactly on the integration
of XML corresponding operations like queries and updates as well as persistency. For vari-
ous reasons, of which two of them are popularity and availability, Java is chosen as the source
object-oriented programming language. An introduction is given in chapter 1. Basics and re-
lated approaches in reference to XML and persistency can be found in chapter 2.XOBEDBPL

is the successor project ofXOBE which focuses on the development of web applications and
integrates XML objects as well as simple XPath queries. XML constituents of a program are
checked at compile time. InXOBEDBPL XML objects can now be manipulated ,too. XML up-
dates and more complex queries are introduced and the type checking process is adapted. The
extended XML integration inXOBEDBPL is introduced in chapter 3. The other main new topic in
XOBEDBPL is the transparent integration of persistency. Persistency inXOBEDBPL is provided
on a high-level, regardless of type and preserves object-oriented concepts like inheritance. The
persistency concept inXOBEDBPL is explained in chapter 4. Chapter 5 introduces transactions
which are closely connected to persistency. InXOBEDBPL persistency is realized using a persis-
tency layer. The persistency layer is hidden from the programmer and is based on an approach
dealing with web services. Thus, the persistency layer might also be used by both non-Java and
Java applications. Persistent data is highly distributed and can be shared. Details are discussed
in chapter 6. More details concerning the architecture and implementation are given in chapter
7. The originalXOBEDBPL realization approach extends the Java programming language syn-
tactically. Another solution is explained in chapter 8, which extends Java semantically without
changing its syntax and the concepts for XML and persistency integration. Of course, it is more
elegant to develop XML applications inXOBEDBPL’s original variant, but existing development
tools can’t deal with the new syntax. ConsequentlyXOBEDBPL specific plug-ins have to be de-
veloped and programmers need to learn a new syntax. The semantically enhancedXOBEDBPL

153

154 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

realization approach circumvents these problems. In the future it is planned to develop both
approaches in parallel.

Chapter 9 discusses some first experimental results concerning the integration of XML as
well as the integration of persistency. In case of XML it is shown that the new type infer-
ence rules regarding updates are very efficient. Results in the context of persistency will be
improved by applying more efficient XML (SOAP) processing tools and more efficient con-
sistency models among others. As a resultXOBEDBPL, using a web service based persistency
layer, is developed and suitable for distributed applications.

Future Work

Finally, there are some very interesting future topics to proceed and further developXOBEDBPL.
Future work includes for example the efficient processing of XML and the aspect of keeping
persistent data redundantly. Closely connected to redundancy is the management of efficient
consistency. It is also desirable to deal with errors during transactions. Last but not least the
persistency layer deals internally with relational databases. In the future it might be better to use
so-called hybrid databases as well. Hybrid databases provide the possibility to store relational
data as well as XML data natively.

XML Processing

As can be seen from the results in chapter 9 concerning persistent data it is important to develop
the processing of XML and SOAP messages in general. The persistency layer based on web
services andXOBEDBPL programs, exchanges data and messages via SOAP. SOAP is a specific
XML language. On the one hand it should be analyzed if software approaches or new models
can improve efficiency. On the other hand it is important to find out if hardware components
capable of processing XML or SOAP in particular can improve performance. There are several
approaches which compress XML documents and messages into a binary representation. Due
to the talkative nature of XML there is a lot of overhead within XML and in particular SOAP
messages. One promising approach is introduced in [107]. Another aspect references the rep-
resentation of XML objects. XML objects inXOBEDBPL are represented using a DOM-like
model at runtime. DOM significantly limits the size of these XML objects. Another model
might be more suitable.

Redundancy

Up to now persistent objects inXOBEDBPL are stored without redundancy. In the future it might
be suitable to introduce redundancy. Redundancy is important if components of the persistency
layer fail and, just as important, it can improve performance. If persistent objects are supposed

155

to be distributed and should be accessible by many applications, copies of these objects im-
prove access times. In context of redundancy realization concepts concerning transactions and
concurrency within the persistency layer need to be adapted as well.

Efficient Consistency

Closely connected to the redundancy is the consistency aspect. If objects or data are kept
redundantly these copies, if updated, might become inconsistent. To minimize or respectively
hide these effects from the applications, server-side consistency approaches are needed. Besides
consistency in the context of redundant data, efficient consistency also plays an important role
in the context of shared persistent data in general. As mentioned in section 4.2.1 and can be seen
by analyzing the tests in section 9.2 there is an urgent need for a much more efficient client-
side consistency realization concept. It is also planned to provide semi-automatic client-side
consistency to theXOBEDBPL programmer. It should be possible to mark program points where
persistent objects should be reloaded and respectively updated. The programmer must be able
to define these points on a high-level. The usage of aspect-oriented programming [44] seems to
be promising in this context.

Nested Transactions

SyntacticallyXOBEDBPL offers the possibility to formulate nested transactions. However, the
distributed web-service-based persistency layer does not support these kind of transactions so
far. Hence, future work may also include the implementation and support of nested transactions
on the persistency layer level.

Errors and Transactions

Currently, it is assumed that transactions inXOBEDBPL are either committed successfully or
aborted. The abortion of a transaction happens if one of the ACID properties can not be guar-
anteed any longer due to other concurrent transactions. Contrastly, there might be other reasons
why a transaction fails or should be aborted. These reasons are errors which are possible since
the persistency layer inXOBEDBPL is realized by a distributed network of arbitraryXOBE
service nodes based on web services.

Applying Hybrid Databases

Finally, the persistency layer inXOBEDBPL, although not limited to, uses relational databases
internally. Relational databases are widely available and provide high performance. Neverthe-
less, a new paradigm of databases has been developed which are called hybrid databases. An
example is SystemRX [8]. These new databases are able to store relational data as well as XML

156 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

data natively. It would be very interesting to discover how these hybrid databases can be applied
within theXOBEDBPL persistency layer.

Scalability

Another very interesting topic is scalability, regarding in particular the size of the underlying
persistency layer and the number of clients. In the case of large scale persistency systems con-
sistency and transaction models need to be analyzed and adapted in a suitable way. Scalability
concerning theXOBEDBPL persistency service is definitely an ongoing research topic.

Index

ACID properties, 77
annotations, 5, 127
architecture, 99

persistency layer, 85
postprocessor, 127
preprocessor, 99
runtime environment, 122

background persistency component, 87
BCEL, 6, 127
BigWig, 33
byte code processing, 128

Castor, 32
concurrency control, 82, 98
consistency, 155
CORBA, 36

database programming languages, 34
DBPL, 36
requirements, 34
Tycoon, 36

databases
hybrid, 155

DBPL, 36
distributed transactions, 80
DOM, 22, 28, 32, 143
DTD, 9

semantic extension, 131
dynamic type checking, 64

ECMAScript, 32
EJB, 36, 146
experimental results, 143

persistency, 146

XML updates, 143

FLWOR
extended, 47
grammar, 21

flwor expression, 48
transformation, 108

formalization
regular hedge expression, 40
regular hedge grammar, 40

function
child, 45
delete, 54
descendant, 45
insert, 57
insert before, 58
lastTest, 54
nodeTest, 44
parent, 46
rename, 60
replace, 58
self, 44
simple insert, 56

Hibernate, 33, 36, 146

IDs, 96

Java, 5
annotations, 5
BCEL, 6
byte code, 134
JVM, 6
varargs, 130

Java RMI, 36

157

158 INDEX

Java Server Pages, 32
Java Servlets, 32
JDO, 36, 146
JDOM, 32
JWig, 33

Lamport algorithm, 82
locking, 82

mapping, 122
bulk types, 123
classes, 123
member variables, 123
relationships, 123

meta data component, 87

object-relational mapping, 122

persistency, 67
consistency, 74
creation, 70
deletion, 71
EJB, 37
grammar, 67
Hibernate, 36
inheritance, 73
JDO, 36
realization, 72
retrieval, 70
semantic extension, 140
tests, 146
transparent, 3
XML, 33

persistency layer, 85
background persistency component, 87
architecture, 85
IDs, 96
meta data component, 87
registering types, 94
removing objects, 95
retrieving objects, 93
sessions, 96

storing objects, 93
transactions, 96
web service component, 86
XOBE cluster, 85
XOBE local servers, 88
XOBE service node, 86

postprocessor, 127
preprocessor, 99
private workspace, 81

redundancy, 154
regular hedge expression, 40
regular hedge grammar, 40
return clause, 49

transformation, 111
runtime environment, 122

SAX, 23
scalability, 156
semantic extension, 127

persistency, 140
realization, 141
transactions, 141
type checking, 133, 137, 139
updates, 138
XML integration, 129
XML objects, 132
XML schema import, 131
XPath, 136

static type checking, 40
semantic extension, 133, 137, 139

structural transformation, 122

timestamps, 82
transactions, 77

ACID, 77
classification, 80
distributed, 80, 98
flat, 77
grammar, 78
nested, 80, 98, 155
realization, 81, 82

INDEX 159

semantic extensions, 141
timestamps, 98
transformation, 120
two-phase commit protocol, 98

transformation, 99
basic update operations, 118
flwor expression, 108
for clause, 111
let clause, 110
order by, 111
return clause, 111
structural, 122
transaction, 120
update clause, 117
update expression, 114
XML objects, 101
XPath, 102
XPath location step, 105
XPath predicate, 106

transparent persistency, 3
two-phase commit protocol, 81, 98
Tycoon, 36
type checking

dynamic, 2, 64
static, 2, 40

type inference
flwor expression, 50
let and for clause variable, 48
updates, 53, 61
XPath expression, 43, 46

update clause, 51
transformation, 117

update expression, 51
semantic extension, 138
transformation, 114

web service component, 86
web services

overview, 30
SOAP, 31

UDDI, 31
WSDL, 31
XOBE DBPL, 85

writeahead protocol, 81

Xact, 143
XDuce, 32
Xen, 33
xFLWOR, 47
Xindice, 34, 143
XJ, 33
XL, 33
XML

document, 7
DOM, 22
DTD, 9
in programming languages, 32
overview, 6
persistent, 33
processing, 154
updates, 28
validity, 9
well-formedness, 7
XMark, 8, 10, 13, 27, 143
XML Schema, 12
XPath, 15
XQuery, 20

XML Beans, 32
XML in programming languages, 32
XML objects, 39, 132

transformation, 101
XML Schema, 12

semantic extension, 131
XML updates

overview, 28
tests, 143
update expression, 51
XUpdate, 29

XOBE, 39
XOBE cluster, 85
XOBE DBPL web service, 85

160 INDEX

delete operation, 95
interface, 88
load operation, 93
object representation, 88
session operation, 96
store operation, 93
transaction operation, 96
type representation, 91

XOBE local server, 88
XOBE service node, 86
XPath, 15

axis, 17
grammar, 19
predicates, 17
semantic extension, 136

XPath expression, 43
transformation, 102

XQuery, 20, 28
flwor expression, 48
FLWOR grammar, 21

Xtatic, 33
XUpdate, 29

Bibliography

[1] Scott W. Ambler. Mapping Objects To Relational Databases.
http://www.AmbySoft.com/mappingObjects.pdf , October 2000.

[2] The Apache Axis Project. axis.http://ws.apache.org/axis/index.html , De-
cember 2004. Version 1.2.

[3] Apache Software Foundation. The Byte Code Engineering Library (BCEL).
http://xml.apache.org/BCEL/bcel-5.1/docs/index.html , 2003. Version
5.1.

[4] The Apache XML Beans Project. Apache XML Beans.http://xml.apache.org/

xmlbeans/index.html , 19. June 2003. Version 2.0.

[5] The Apache XML Project. Xerces Java Parser.http://xml.apache.org/

xerces2-j/ , 2005. Version 2.7.1.

[6] Malcolm P. Atkinson and O. Peter Buneman. Types and Persistence in Database Pro-
gramming Languages. volume 19 ofACM Computing Surveys, pages 105–190. ACM,
June 1987.

[7] M.P Atkinson and R. Morrison. Orthogonally Persistent Object Systems.VLDB Journal,
4(3):319–401, 1995.

[8] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Jim Kleewein, George Lapis, Guy
Lohman, Bob Lyle, FatmäOzcan, Hamid Pirahesh, Normen Seemann, Tuong Truong,
Bert Van der Linden, Brian Vickery, and Chun Zhang. System RX: One Part Relational,
One Part XML. InACM Sigmod Conference 2005, Baltimore, Maryland, USA, 14-
16. June 2005.

[9] Borland.XML Application Developer’s Guide, JBuilder. Borland Software Corporation,
Scotts Valley, CA, 1997,2001. Version 5.

[10] Beatrice Bouchou and Mirian Halfeld Ferrari Alves. Updates and Incremental Validation
of XML Documents. InProceedings of the 9th International Conference on Data Base
Programming Languages(DBPL), Potsdam, Germany, 6-8. September 2003.

161

162 BIBLIOGRAPHY

[11] Ronald Bourret. XML Data Binding Resources. web document,http://

www.rpbourret.com/xml/XMLDataBinding.htm , 28. July 2002.

[12] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The bigwig project. In
ACM Transactions on Internet Technology, volume 2(2), pages 79–114. ACM, 2002.

[13] Anne Br̈uggemann-Klein, Makoto Murata, and Derick Wood. Regular tree and regular
hedge languages over unranked alphabets: Version 1. Technical Report HKUST-TCSC-
2001-05, Hong Kong University of Science & Technology, April 3 2001. Theoretical
Computer Science Center.

[14] Manfred Broy and Otto Spaniol, editors.Informatik und Kommunikationstechnik.
Springer-Verlag, Berlin Heidelberg New York, 1999.

[15] Michael J. Carey and Miron Livny. Distributed concurrency control performance: A
study of algorithms, distribution, and replication. InVLDB ’88: Proceedings of the 14th
International Conference on Very Large Data Bases, pages 13–25, San Francisco, CA,
USA, 1988. Morgan Kaufmann Publishers Inc.

[16] Josephine Cheng and Jane Xu. Xml and db2. InProceedings of the 16th IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 569–576. IEEE, 2000.

[17] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending java
for high-level web service construction. InACM Transactions on Programming Lan-
guages and Systems, volume 25(6), pages 814–875. ACM, 2003.

[18] Ecma International. EcmaScript Language Specification.
http://www.ecma-international.org/ , December 1999. Edition 3.0.

[19] Ecma International. EcmaScript for XML Specification.
http://www.ecma-international.org/ , June 2004. Edition 1.0.

[20] K.P. Eswaran, J.N Gray, R.A. Lorie, and I.L. Traiger. The Notions of Consistency and
Predicate Locks in a Database System. Communications of the ACM 19, 1976.

[21] ExoLab Group. Castor. ExoLab Group,http://castor.exolab.org/ , 2001.

[22] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neumann,
Robert Schiele, and TillWestmann. Anatomy of a native XML base management system.
In The VLDB Journal, volume 11, pages 292–314, 2002.

[23] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. XL: An XML Program-
ming Language for Web Service Specification and Composition. InProceedings of Inter-
national World Wide Web Conference (WWW 2002), May 7-11, Honolulu, Hawaii, USA,
pages 65–76. ACM, 2002. ISBN 1-880672-20-0.

BIBLIOGRAPHY 163

[24] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open
grid services architecture for distributed systems integration, 2002.

[25] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: Enabling
scalable virtual organizations.Lecture Notes in Computer Science, 2150:1–??, 2001.

[26] Vladimir Gapayev and Benjamin C. Pierce. Regular object types. InECOOP 2003,
Lecture Notes in Computer Science 2743, pages 151–175. Springer-Verlag, 2003.

[27] David Gelernter. Multiple tuple spaces in linda. InPARLE (2), pages 20–27, 1989.

[28] C. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[29] J. Gray. Notes on database operating systems: An advanced course. In R. Bayer, R. Gra-
ham, and G. Seegmuller, editors,Lecture Notes in Computer Science, number 60, pages
393–481. Springer-Verlag, 1978.

[30] UCLA Compilers Group. Java Tree Builder JTB.
http://compilers.cs.ucla.edu/jtb/ , 2004. Version 1.3.2.

[31] Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Vivek Sarkar,
and Rajesh Bordawekar. XJ: Integration of XML Processing into Java.IBM Research
Report RC23007 (W0311-138), November 18, 2003.

[32] Hibernate. Hibernate. URL:http://www.hibernate.org/4.html , 2005.

[33] Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed xml processing lan-
guage. InACM Transactions on Internet Technology, volume 3(2), pages 117–148. ACM,
2003.

[34] Haruo Hosoya, J́erôme Vouillon, and Benjamin C. Pierce. Regular expression types for
xml. In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), Montreal, Canada, volume 35(9) ofSIGPLAN Notices, pages
11–22. ACM, September 18-21 2000. ISBN 1-58113-202-6.

[35] IBM Corporation. IBM DB2 XML Extender. URL:
http://www-3.ibm.com/software/data/db2/extenders/xmlext/ .

[36] Infonyte GmbH. Infonyte DB. URL:http://www.infonyte.com , 2003.

[37] java.net. Java Compiler Compiler (JavaCC) – The Java Parser Generator.http://

javacc.dev.java.net/ , 2004. Version 4.0.

[38] java.net. HyperJAXB. URL:http://hyperjaxb.dev.java.net/ , 2005.

164 BIBLIOGRAPHY

[39] JBoss, Inc. JBoss. http://www.jboss.com/, 2006.

[40] JDOM Project. JDOM FAQ.http://www.jdom.org/docs/faq.html .

[41] JPOX. Java Persistent Objects(JPOX).http://www.jpox.org/index.jsp .

[42] Martin Kempa.Programmierung von XML-basierten Anwendungen unter Berücksichti-
gung der Sprachbeschreibung. PhD thesis, Institut f̈ur Informationssysteme, Universität
zu Lübeck, 2003. Aka Verlag, Berlin, (in German).

[43] Martin Kempa and Volker Linnemann. Type Checking in XOBE. In Gerhard Weikum,
Harald Scḧoning, and Erhard Rahm, editors,Proceedings of Datenbanksysteme für Busi-
ness, Technologie und Web (BTW), 10. GI-Fachtagung,, volume P-26 ofLecture Notes in
Informatics, pages 227–246. Gesellschaft für Informatik, 26.-28. Februar 2003.

[44] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit
and Satoshi Matsuoka, editors,Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

[45] Sang-Kyun Kim, Myungcheol Lee, and Kyu-Chul Lee. Validation of XML Document
Updates Based on XML Schema in XML Databases. volume 2736 ofLecture Notes in
Computer Science (LNCS), pages 98–108, Heidelberg, 2003. Springer-Verlag.

[46] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis of
XML transformations in Java.IEEE Transactions on Software Engineering, 30(3):181–
192, March 2004.

[47] H.T. Kung and J.T Robinson. On Optimistic Methods for Concurrency Control. volume 2
of ACM Transactions on Database Systems 6, pages 213–226. ACM, 1982.

[48] L. Lamport. Time, clocks and the ordering of events in a distributed system.Commun.
ACM, 21(7):558–565, 1978.

[49] Yuri Leontiev, M. Tamer Ozsu, and Duane Szafron. On Type Systems for Object-
Oriented Database Programming Languages. volume 34 ofACM Computing Surveys,
pages 409–449. ACM, December 2002.

[50] Mengchi Liu, Li Lu, and Guoren Wang. A Declarative XML-R Update Language. vol-
ume 2831 ofLecture Notes in Computer Science (LNCS), pages 506–519, Heidelberg,
2003. Springer-Verlag.

BIBLIOGRAPHY 165

[51] F. Matthes, G. Schröder, and J.W. Schmidt. Tycoon: A Scalable and Interoperable Persis-
tent Environment. Fully Integrated Data Environments, ESPRIT Basic Research Series,
pages 365–381, Heidelberg, 2000. Springer-Verlag.

[52] Erik Meijer, Wolfram Schulte, and Gavin Biermann.
Programming with Circles, Triangles and Rectangles.
http://www.cl.cam.ac.uk/ ∼gmb/Papers/vanilla-xml2003.html ,
2003.

[53] Microsoft. DCOM: Distributed Component Object Model Technologies. Microsoft,
http://www.microsoft.com/com/default.mspx , 2005.

[54] Microsoft Corporation. .NET Framework Developer’s Guide. web document,http://

msdn.microsoft.com/library/default.asp , 2001.

[55] Ravi Murthy and Sandeepan Banerjee. XML Schemas in Oracle XML DB. InProceed-
ings of the 29th VLDB Conference, Berlin, Germany, pages 1009–1018, 2003.

[56] OASIS. Introduction to UDDI: Important Features and Functional Concepts. whitepaper:
http://www.uddi.org/whitepapers.html/ , October 2004.

[57] OASIS. UDDI Executive Overview: Enabling Service-Oriented Architecture. whitepa-
per: http://www.uddi.org/whitepapers.html/ , October 2004.

[58] Object Data Management Group (ODMG). The Object Query Language (OQL).
http://www.odmg.org/, 2000.

[59] Object Management Group (OMG). Common Object Request Broker Architecture
(CORBA). OMG CORBA,http://www.corba.org/ , 2005.

[60] Oracle Corporation.Oracle9i, Application Developer’s Guide – XML, Release 1 (9.0.1).
Redwood City, CA 94065, USA, June 2001. Shelley Higgins, Part Number A88894-01.

[61] Oracle Corporation. Oracle XML DB. URL:
http://otn.oracle.com/tech/xml/xmldb/index.html , 2003.

[62] T. Ozsu and P. Valduriez.Principles of Distributed Database Systems. Prentice Hall,
Upper Saddle River, NJ, 1999.

[63] Yannis Papakonstantinou and Victor Vianu. Incremental Validation of XML Documents.
volume 2572 ofLecture Notes in Computer Science (LNCS), pages 47–63, Heidelberg,
2003. Springer-Verlag.

[64] Eduardo Pelegrı́-Llopart and Larry Cable. JavaServer Pages Specification,
Version 1.1. Java Software, Sun Microsystems,http://java.sun.com/

products/jsp/download.html , 30. November 1999.

166 BIBLIOGRAPHY

[65] Dominik Pietzsch. Entwicklung eines Prototypen für einen verteilten Datenpersistenz-
Service im Kontext vonXOBEDBPL. Master’s thesis, Institut für Informationssysteme,
Universiẗat zu L̈ubeck, 2005. (in German).

[66] PostgreSQL Global Development Group. PostgreSQL.
http://www.postgresql.org/ , 2005.

[67] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and R. Busse.
XMark: A Benchmark for XML Data Management. InInternational Conference on Very
Large Data Bases(VLDB’02), pages 974–985, Hong Kong, August 2002.

[68] J.W. Schmidt and F. Matthes. The DBPL Project: Advances in Modular Database Pro-
gramming. volume 19 ofInformation Systems, pages 121–140, 1994.

[69] Harald Scḧoning. Tamino - A DBMS designed for XML. InProceedings of the 17th
International Conference on Data Engineering, pages 149–154, Heidelberg, Germany,
April 2-6 2001. IEEE Computer Society.

[70] Henrike Schuhart, Beda C. Hammerschmidt, and Volker Linnemann. Integrating Stati-
cally Typechecked XML Data Technologies Into Pure Java. In15th International Con-
ference On Software Engineering and Data Engineering (SEDE-2006), July 6-8 2006.

[71] Henrike Schuhart and Volker Linnemann. Implementing A Database Programming Lan-
guage For XML Applications. In Nuno Guimaraes and Pedro Isaias, editors,Interna-
tional Conference Applied Computing(IADIS), volume 1, pages 153–161. International
Association for Development of the Information society, 21.-25. Februar 2005.

[72] Henrike Schuhart and Volker Linnemann. Updates for Persistent XML Objects. In
Gottfried Vossen, Frank Leymann, Peter Lockemann, and Wolffried Stucky, editors,
Proceedings of Datenbanksysteme für Business, Technologie und Web (BTW), 11. GI-
Fachtagung,, volume P-65 ofLecture Notes in Informatics, pages 245–264. Gesellschaft
für Informatik, 2.-4. March 2005.

[73] Henrike Schuhart, Dominik Pietzsch, and Volker Linnemann. Developing a Web Service
for Distributed Persistent Objects in the Context of an XML Database Programming
Language. InInternational Conference On the Move(OTM), volume 3670 ofLNCS,
pages 613–630. Springer Verlag, 21.10.-4.11. 2005.

[74] Henrike Schuhart, Dominik Pietzsch, and Volker Linnemann. Framework of the
XOBE Database Programming Language. InInternational Conference Applied Com-
puting(IADIS), 21.-25. Februar 2005.

[75] Mukul K. Sinha, P. D. Nandikar, and S. L. Mehndiratta. Timestamp based certification
schemes for transactions in distributed database systems.SIGMOD Rec., 14(4):402–411,
1985.

BIBLIOGRAPHY 167

[76] SourceForge.net. XDoclet - Attribute Oriented Programming. http://

xdoclet.sourceforge.net/xdoclet/ , 2005. Version 3.2.

[77] Hong Su, Bintou Kane, Victor Chen, Cuong Diep, De Ming Guan, Jennifer Look, and
Elke Rundensteiner. A Leightweight XML Constraint Check and Update Framework.
volume 2784 ofLecture Notes in Computer Science (LNCS), pages 39–50, Heidelberg,
2003. Springer-Verlag.

[78] Dan Suciu. The xml type checking problem.SIGMOD Rec., 31(1):89–96, 2002.

[79] Sun Developer Network. Enterprise JavaBeans Technology. Sun Developer Network,
http://java.sun.com/products/ejb/ , 2005.

[80] Sun Developer Network. Java Data Objects (JDO) . Sun Developer Network,http://

java.sun.com/products/jdo/ , 2005.

[81] Sun Developer Network. Java Remote Method Invocation (Java RMI) . Sun Developer
Network,http://java.sun.com/products/jdk/rmi/ , 2005.

[82] Sun Developer Network. Jini Network Technology - Specifications. Sun Developer
Network,http://java.sun.com/software/jini/specs/ , 2005.

[83] Sun Microsystems, Inc. The Java Virtual Machine Specification.http://java.sun.

com/j2se/jvm/docs/index.html , 1999.

[84] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.4.2, Documentation.
http://java.sun.com/j2se/1.4.2/docs/index.html , 2003.

[85] Sun Microsystems, Inc. Java 2 Platform, Standard Edition, v 1.5.0, Documentation.
http://java.sun.com/j2se/1.5.0/docs/index.html , 2004.

[86] Sun Microsystems, Inc. Java Architecture for XML Binding (JAXB).
http://java.sun.com/xml/jaxb/ , July 2005.

[87] Gargi M. Sur, Joachim Hammer, and Jerome Simeon. UpdateX - An XQuery-Based
Language for Processing Updates in XML. InInternational Workshop on Programming
Language Technologies for XML(PLAN-X 2004), pages 40–53, January 2004.

[88] Andrew S. Tanenbaum and Maarten van Steen.Distributed Systems: Principles and
Paradigms. Prentice Hall, Inc., Upper Saddle River, NJ, 2002.

[89] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating XML.
In ACM Sigmod Conference 2001, pages 413–424. ACM, 2001.

[90] The Eclipse Foundation. Eclipse.http://www.eclipse.org/ , 2006. Version 3.1.

168 BIBLIOGRAPHY

[91] The hsqldb Development Group. HSQL Database Engine (HSQL).
http://www.hsqldb.org/, February 2006.

[92] The Organization for Advancement of Structured Information Standards (OASIS). RE-
LAX NG Specification. http://relaxng.org/spec-20011203.html , December
2001.

[93] W3Consortium. Hypertext Transfer Protocol 1.1(HTTP). W3C Draft Standard,http://

www.w3.org/Protocols/Specs.html , June 1999.

[94] W3Consortium. Updates for XQuery. Working Draft, unpublished, October 2002.

[95] W3Consortium. SOAP Version 1.2 Part 0: Primer. W3C Recommendation,http://

www.w3.org/TR/soap-12-part0/ , 24. June 2003.

[96] W3Consortium. SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommenda-
tion, http://www.w3.org/TR/soap-12-part1/ , 24. June 2003.

[97] W3Consortium. Document Object Model (DOM) Level 3 Core Specifica-
tion. Recommendation,http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-

20040407/ , 07. April 2004.

[98] W3Consortium. Extensible Markup Language (XML) 1.0 (Third Edition). Recommen-
dation,http://www.w3.org/TR/2004/REC-xml-20040204/ , 04. February 2004.

[99] W3Consortium. XML Path Language (XPath), Version 2.0. W3C Working Draft,http:

//www.w3.org/TR/xpath20 , 04. April 2004.

[100] W3Consortium. XML Schema Part 0: Primer Second Edition. Recommendation,
http://www.w3.org/TR/xmlschema-0/ , 28. October 2004.

[101] W3Consortium. XML Schema Part 1: Structures Second Edition. Recommendation,
http://www.w3.org/TR/xmlschema-1/ , 28. October 2004.

[102] W3Consortium. XML Schema Part 2: Datatypes Second Edition. Recommendation,
http://www.w3.org/TR/xmlschema-2/ , 28. October 2004.

[103] W3Consortium. Web Service Description Language (WSDL) Version 2.0 Part 0: Primer.
Working Draft,http://www.w3.org/TR/wsdl20-primer/ , 10. May 2005.

[104] W3Consortium. Web Service Description Language (WSDL) Version 2.0 Part 1: Core
Language. Working Draft,http://www.w3.org/TR/wsdl20/ , 10. May 2005.

[105] W3Consortium. XQuery 1.0: An XML Query Language. Working Draft,http://

www.w3.org/TR/xquery/ , 04. April 2005.

BIBLIOGRAPHY 169

[106] W3Consortium. XQuery Update Facility Requirements. W3C Working Draft,http://

www.w3.org/TR/2005/WD-xquery-update-requirements-20050603/

id-update-functionality , 3. June 2005.

[107] C. Werner, C. Buschmann, and S. Fischer. WSDL-Driven SOAP Compression.Interna-
tional Journal of Web Services Research, 2(1), 2005.

[108] A. R. Williamson. Java Servlets by Example. Manning Publications Co., Greenwich,
1999.

[109] XML Database Initiative(XML:DB). XUpdate. http://

xmldb-org.sourceforge.net/xupdate , 2004.

[110] About SAX. http://sax.sourceforge.net .

[111] Kun Yue, Zhengchuan Xu, Zhimao Guo, and Aoying Zhou. Constraint Preserving XML
Updating. volume 2642 ofLecture Notes in Computer Science (LNCS), pages 47–58,
Heidelberg, 2003. Springer-Verlag.

