Reinforcement Learning

R. Moller
University of Lubeck

Acknowledgments

Atrtificial Intelligence "%,
A Modern Approach

Russell and
Norvig: ch 21

Stuart Russell * Peter Norvig

Policy Iteration

Pick a policy IT at random

Repeat:

+ Compute the utility of each state for I1
U...0) < Ra) + 2Pk | m6).i) U k)

+* Compute the policy IT’ given these
utilities
(i) = arg max, 2, Pk | a.i) Uk)

Subsequent slides
from Xiaoli Fern

— Utilities follow the Bellman equation

U _(s) = R(s)+;/ZT(s 7(s),s"U_(s")

‘ Note the dependence on neighboring states ‘

Reinforcement Learning

Agent placed in an environment and must
learn to behave optimally in it

Acciime that the warld hahavec like an
FT\ODIUUIIIN. LIITUULU LIIL. VVWUIITAA MUl iIdvuoeo I1IING Ji1

MDP, except:

— Agent can act but does not know the transition
model

— Agent observes its current state its reward but
doesn’t know the reward function

Goal: learn an optimal policy

Factors that Make RL Difficult

e Actions have non-deterministic effects

— which are initially unknown and must be
learned

e Rewards / punishments can be infrequent
— Often at the end of long sequences of actions

— How do we determine what action(s) were
really responsible for reward or punishment?
(credit assignment problem)

— World is large and complex

Passive vs. Active learning

e Passive learning

— The agent acts based on a fixed policy mt and
tries to learn how good the policy is by
observing the world go by

— Analogous to policy evaluation is policy
iteration

e Active learning

— The agent attempts to find an optimal (or at
least good) policy by exploring different
actions in the world

— Analogous to solving the underlying MDP

Model-Based vs. Model-Free RL

e Model based approach to RL:

— learn the MDP model (T and R), or an
approximation of it

— use it to find the optimal policy
e Model free approach to RL:

— derive the optimal policy without explicitly
learning the model

We will consider both types of approaches

Passive Reinforcement Learning

e Suppose agent’s policy 1 is fixed

e |t wants to learn how good that policy is in
the world ie. it wants to learn U™(s)

e This is just like the policy evaluation part of
policy iteration

e The big difference: the agent doesn’t know
the transition model or the reward function
(but it gets to observe the reward in each
state it isin)

Passive RL

e Suppose we are given a policy

e \Want to determine how good it is

Given 1

2 | 4 1 =
1 T - S — -—
1 2 3 4

Need to learn U _(S):

0.812

0.762

0.868

0.918

+1

0.660

Passive RL

+1

Given policy T,

— estimate U (s) 2|
Not given 1 ' -
— transition matrix, nor

— reward function!

Simply follow the policy for many
epochs

Epochs: training sequences

(1,1)2(1,2)2(1.3)2(1.2)>(1,3)>(2.3)>(3.3) 2(3.4) +1
(L1)=(1.2)>(1.3)2(2.3)2>(3.3)>(3.2)2(3.3)>(3.4) 1
(1.D)2(2,)2(3.1)2(3.2)>(4.2)

Appr. 1: Direct Utility Estimation

e Direct utility estimation (model free)

— Estimate U_(s) as average total reward of
epochs containing s (calculating from s to end
of epoch)

e Reward to go of a state s

— the sum of the (discounted) rewards from that
state until a terminal state is reached
e Key: use observed reward to go of the
state as the direct evidence of the actual
expected utility of that state

Direct Utility Estimation

Suppose we observe the following trial:

(L,1).g.04 = (1,2)9.04 =(1,3) .04 = (1,2) .04 = (1,3)9.04
—(2,3).0.04 = (3,3)0.04 = (4,3) 44

The total reward starting at (1,1) 1s 0.72. We call this a sample
of the observed-reward-to-go for (1,1).

For (1,2) there are two samples for the observed-reward-to-go
(assuming y=1):

1' (192)-0.04 _)(193)-0.04 — (192)-0.04 — (193)-0.04 — (293)-0.04 —
(3,3) .04 = (4,3), [Total: 0.76]

2. (1,2)g04 = (1,3) 904 = (2,3) 904 = (3,3)9.04 = (4.3)14
[Total: 0.84]

Direct Utility Estimation

e Direct Utility Estimation keeps a running
average of the observed reward-to-go for
each state

e Eg. For state (1,2), it stores (0.76+0.84)/2 =
0.8

e As the number of trials goes to infinity, the
sample average converges to the true
utility

Direct Utility Estimation

e The big problem with Direct Utility
Estimation: it converges very slowly!

e Why?

— Doesn’t exploit the fact that utilities of states are
not independent

— Utilities follow the Bellman equation

U,(s)=R(s)+y D T(s,7(s),sW,,(s")

Note the dependence on neighboring states

Direct Utility Estimation

Using the dependence to your advantage:

Suppose ypu know that state (3,3) has
a high utility

= Suppose you are now at (3,2)

The Bellman equation would be able
to tell you that (3,2) 1s likely to have a
1) 3 A high utility because (3,3) 1s a
neighbor.

START

Remember that each blank

state has R(s) = -0.04 DUE can’t tell you that until the end

of the trial

Adaptive Dynamic Programming
(Model based)

e This method does take advantage of the
constraints in the Bellman equation

e Basically learns the transition model T and
the reward function R

e Based on the underlying MDP (T and R) we
can perform policy evaluation (which is
part of policy iteration previously taught)

Adaptive Dynamic Programming

e Recall that policy evaluation in policy
iteration involves solving the utility for each
state if policy mis followed.

e This leads to the equations:
U,(s)=R(s)+y) T(s,7(s),s"HU (s")

e The equations above are linear, so they can
be solved with linear algebra in time O(n3)
where n is the number of states

Adaptive Dynamic Programming

e Make use of policy evaluation to learn the

o

utilities of states
order to use the

the agent needs to learn the transition
model T(s,a,s’) and the reward function R(s)

How do we learn these models?

Adaptive Dynamic Programming

e Learning the reward function R(s):

Easy because it’s deterministic. Whenever you
see a new state, store the observed reward value
as R(s)

e Learning the transition model T(s,a,s’):

Keep track of how often you get to state s’ given
that you’re in state s and do action a.

— eg.ifyouareins=(1,3) and you execute Right three
times and you end up in s’=(2,3) twice, then
T(s,Right,s’) = 2/3.

ADP Algorithm

function PASSIVE-ADP-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s” and reward signal r’
static: 71, a fixed policy
mdp, an MDP with model T, rewards R, discount y
U, a table of utilities, initially empty

N,
N

sas”?

a table of frequencies for state-action pairs, initially zero
a table of frequencies for state-action-state triples, initially zero

s, a the previous state and action, initially null

if s”is new thendo U[s’] < r’; R[s'] < 1’ } Update reward

if s is not null, then do function

increment Nsa[sla] and Nsas’[slalsl] Update transition

for each t such that N [s,a,t] is nonzero do - model
T[s,a,t] & N [s,a,t] / N [s,a] D

U < POLICY-EVALUATION(rt, U, mdp)

if TERMINAL?[s"] then s, a <& null else s, a < 7, ni[s’]

return a

The Problem with ADP

e Need to solve a system of simultaneous
equations — costs O(n3)

— Very hard to do if you have 10°° states like in
Backgammon

— Could makes things a little easier with modified
policy iteration

e Can we avoid the computational expense
of full policy evaluation?

Temporal Difference Learning

e |nstead of calculating the exact utility for a state
can we approximate it and possibly make it less
computationally expensive?

e Yes we can! Using Temporal Difference (TD)
learning

U,(s)=R(s)+y D T(s,7(s),sW ,(s")
_—

* Instead of doing this sum over all successors, only adjust the
utility of the state based on the successor observed in the trial.
* It does not estimate the transition model — model free

TD Learning

Example:

e Suppose you see that U™(1,3) =0.84 and U™(2,3) =
0.92 after the first trial.

e |f the transition (1,3) — (2,3) happens all the
time, you would expect to see:

U™(1,3) = R(1,3) + U(2,3)
—U"(1,3) = -0.04 + U™(2,3)
— U™(1,3) =-0.04 + 0.92 = 0.88

e Since you observe U™(1,3) = 0.84 in the first trial,
it is a little lower than 0.88, so you might want to
“bump” it towards 0.88.

Aside: Online Mean Estimation

 Suppose that we want to incrementally compute the
mean of a sequence of numbers

— E.g. to estimate the mean of a r.v. from a sequence of samples.

) 1 n+1
XH—I ZA:_ZA—F [HI_L xr’]

n+ 1 n+ 1 n <5
n]
:A”JrnJrl(_X)
N

average of n+1 samples learnine rate sample n+1
- e

* Given a new sample x(n+1), the new mean is the old

estimate (for n samples) plus the weighted difference
between the new sample and old estimate

Temporal Difference Learning (TD)

e TD update for transition from s to s’:
UL (8)=U () + a(R(s) + YU (s) =U ()

yd v

learnine rate New (noisy) sample of utility
based on next state

e So the update is maintaining a “mean” of the (noisy)
utility samples

e |f the learning rate decreases with the number of
samples (e.g. 1/n) then the utility estimates will
eventually converge to true values!

U,(s)=R(s)+y> T(s,a,s"U (s")

Temporal Difference Update

When we move from state s to s’, we apply the
following update rule:

U,(s)=U,(s)+a(R(s)+ U, (s")=U_,(s))

This 1s similar to one step of value 1teration

We call this equation a “backup”

Convergence

Since we’re using the observed successor s’ instead of all
the successors, what happens if the transitions — s’ is
very rare and there is a big jump in utilities from sto s’?

How can U_(s) converge to the true equilibrium value?

Answer: The average value of U_(s) will converge to the
correct value

This means we need to observe enough trials that have
transitions from s to its successors

Essentially, the effects of the TD backups will be averaged
over a large number of transitions

Rare transitions will be rare in the set of transitions
observed

Comparison between ADP and TD

e Advantages of ADP:

— Converges to the true utilities faster
— Utility estimates don’t vary as much from the true
utilities
e Advantages of TD:
— Simpler, less computation per observation
— Crude but efficient first approximation to ADP

— Don’t need to build a transition model in order to
perform its updates (this is important because we can
interleave computation with exploration rather than
having to wait for the whole model to be built first)

ADP and TD

o
o
1

sojewnsa Ann

400 600 800

200

200 300 400

100

Number of epochs

Number of epochs

Overall comparisons

* Direct Estimation (model free)

Simple to implement
Each update is fast
Does not exploit Bellman constraints and converges slowly

* Adaptive Dynamic Programming (model based)

Harder to implement

Each update is a full policy evaluation (expensive)
Fully exploits Bellman constraints

Fast convergence (in terms of epochs)

* Temporal Difference Learning (model free)

Update speed and implementation simliar to direct estimation

Partially exploits Bellman constraints---adjusts state to “agree’ with ocbserved
SUCCes50r

* Not all possible successors
Convergence in between direct estimation and ADP

Passive learning

Learning U_(s) does not lead to a optimal policy,
why?
the models are incomplete/inaccurate

the agent has only tried limited actions, we
cannot gain a good overall understanding of T

This is why we need active learning

Goal of active learning

e Let’s first assume that we still have access to
some sequence of trials performed by the agent
— The agent is not following any specific policy

— We can assume for now that the sequences should
include a thorough exploration of the space

— We will talk about how to get such sequences later

e The goal is to learn an optimal policy from such
sequences

Active Reinforcement Learning
Agents

We will describe two types of Active
Reinforcement Learning agents:
e Active ADP agent

e (Q-learner (based on TD algorithm)

Active ADP Agent
(Model-based)

Using the data from its trials, the agent learns a
transition model T and a reward function R

With T'(s,a,s’) and R(s), it has an estimate of the
underlying MDP

It can compute the optimal policy by solving the
Bellman equations using value iteration or policy
iteration

U(s)= R(S)-I—]/maXZT(S a,s')U(s'")

If T and R are accurate estlmatlonsof the
underlying MDP model, we can find the optimal
policy this way

Issues with ADP approach

Need to maintain MDP mode
T can be very large O(|S|% x |A])

Als o , finding the optimal action
requires solving the Bellman equation —
time consuming

Can we avoid this large computational
complexity both in terms of time and
space?

Q-learning

So far, we have focused on the utilities for states

e U(s) = utility of state s = expected maximum
future rewards

An alternative is to store Q-values, which are
defined as:

e Q(a,s) = utility of taking action g at state s

= expected maximum future reward if
action g at state s

e Relationship between U(s) and Q(a, s)?

U(s)=max0(a,s)

Q-learning can be model free

e Note that after computing U(s), to obtain the
optimal policy, we need to compute:

7(s) = maxZT(S a,s U(s")
— This requires T, the model of world

— So even if we use TD learning (model free), we
still need the model to get the optimal policy

e However, if you successfully estimate Q(a,s) for
all a and s, we can compute the optimal policy
without using the model:

7(s)=max(a,s)

Q-learning

At equilibrium when the Q-values are correct, we
can write the constraint equation:

O(a,s)=R(s)+ yz T(s,a,sYU(s")

—y \—T—/\@ -
Y

Reward at state s ,

Expected value for action-state pair (a, s)

I

Expected value averaged over all possible states s’ that can
be reached from s after executing action a

Q-learning

At equilibrium when the Q-values are correct, we
can write the constraint equation:

Q(a S) R(S)-I—]/ZT(S a,s)maxQ(a S)

N T e
N 1 _/
\/

Reward at state s T

Best expected value for action-state pair (a, s)

Best value averaged over all possible states s’ that can be
reached from s after executing action a

Best value at the next state = max over all actions in state s’

Q-learning Without a Model

e We can use a temporal differencing approach which is
model-free

e After moving from state s to state s’ using action a:

Q(a S) <« Q(a S) +a(R(s)+ Q/max O(a',s')—0(a, S))

f 1 ks

New estimate of Q(a,s) Learningrate 0 <a <1

Old estimate of Q(a,s)

Difference between old estimate Q(a,s) and the new noisy
sample after taking action a

Q-learning: Estimating the Policy

Q-Update: After moving from state s to state s’ using
action a:

O(a,s) < Q(a,s)+a(R(s)+ymaxJ(a',s') - (a,s))

Note that T(s,a,s’) does not appear anywhere!

Further, once we converge, the optimal policy can be
computed without T.

This 1s a completely model-free learning algorithm.

Q-learning Convergence

e Guaranteed to converge to the true Q
values given enough exploration

e Very general procedure (because it’s model
free)

e Converges slower than ADP agent (because
it is completely model free and it doesn’t
enforce consistency among values through
the model)

Exploitation vs Exploration

e Actions are always taken for one of the two
following purposes:

— Exploitation: Execute the current optimal policy to get
high payoff
— Exploration: Try new sequences of (possibly random)

actions to improve the agent’s knowledge of the
environment even though current model doesn’t believe

they have high payoff
e Pure exploitation: gets stuck in a rut

e Pure exploration: not much use if you don’t put that
knowledge into practice

