

Instructor: Sael Lee

CS549 – Computational Biology

LECTURE 16: PCA AND SVD

Resource:

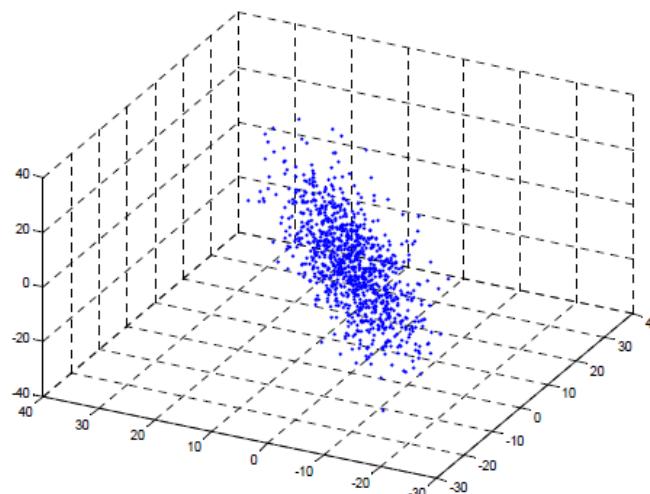
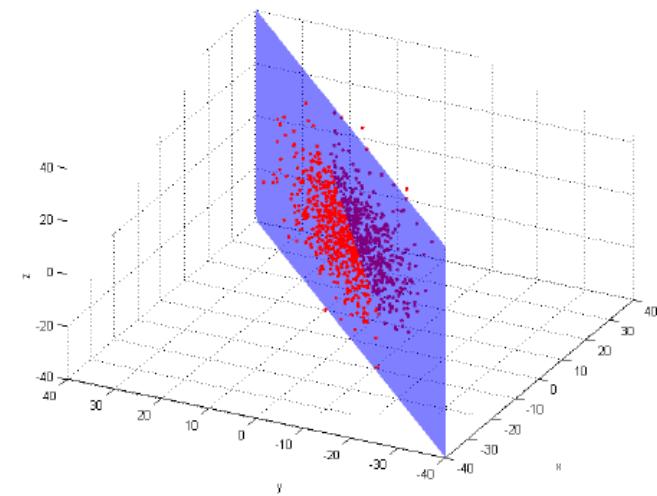
- PCA Slide by Iyad Batal
- Chapter 12 of PRML
- Shlens, J. (2003). A tutorial on principal component analysis.

CONTENT

- ✖ Principal Component Analysis (PCA)
- ✖ Singular Value Decomposition (SVD)

PRINCIPLE COMPONENT ANALYSIS

- ✖ PCA finds a **linear** projection of high dimensional data into a lower dimensional subspace such as:
 - + The variance retained is maximized.
 - + The least square reconstruction error is minimized



PCA STEPS

Linearly transform an $N \times d$ matrix X into an $N \times m$ matrix

- ✖ Centralize the data (subtract the mean).
- ✖ Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1} X^T X$
 - + $C_{i,j} = \frac{1}{N-1} \sum_{q=1}^N X_{q,i} X_{q,j}$
 - + $C_{i,i}$ (diagonal) is the variance of variable i.
 - + $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- ✖ Calculate the **eigenvectors** of the covariance matrix (orthonormal).
- ✖ Select **m eigenvectors** that correspond to the **largest m eigenvalues** to be the new basis.

EIGENVECTORS

- ✖ If A is a **square matrix**, a non-zero vector \mathbf{v} is an **eigenvector** of A if there is a scalar λ (**eigenvalue**) such that

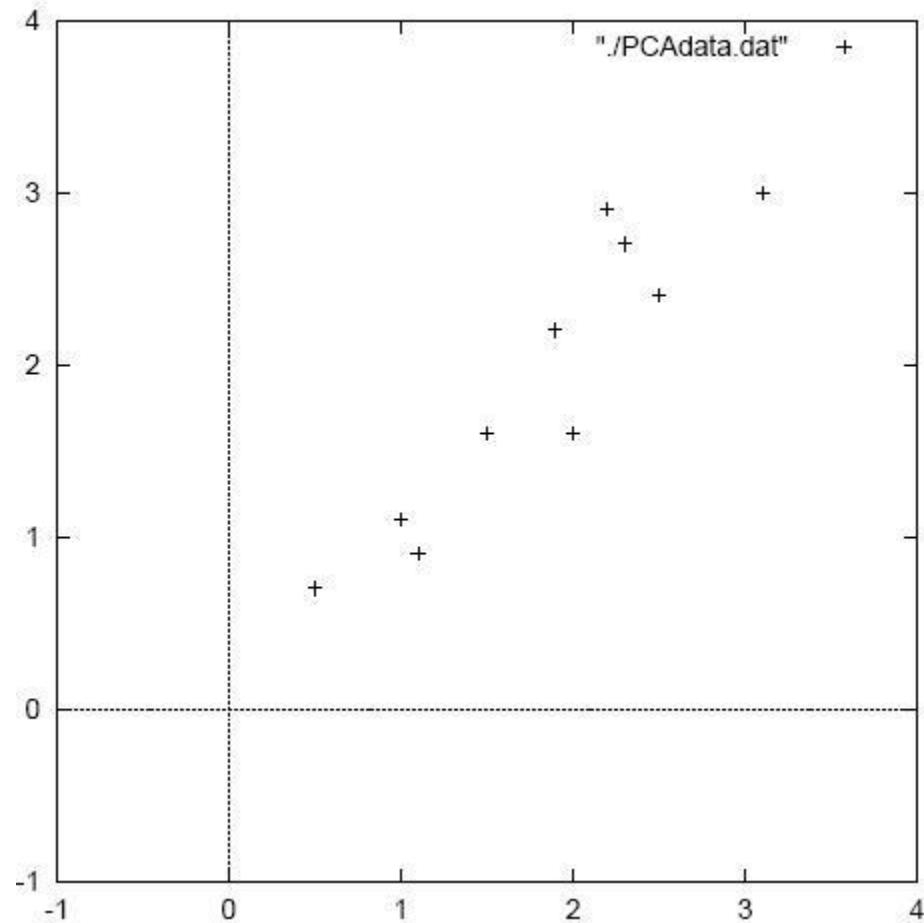
$$A\mathbf{v} = \lambda\mathbf{v}$$

- ✖ Example: $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

- ✖ If we think of the squared matrix A as a transformation matrix, then multiply it with the eigenvector do not change its direction.

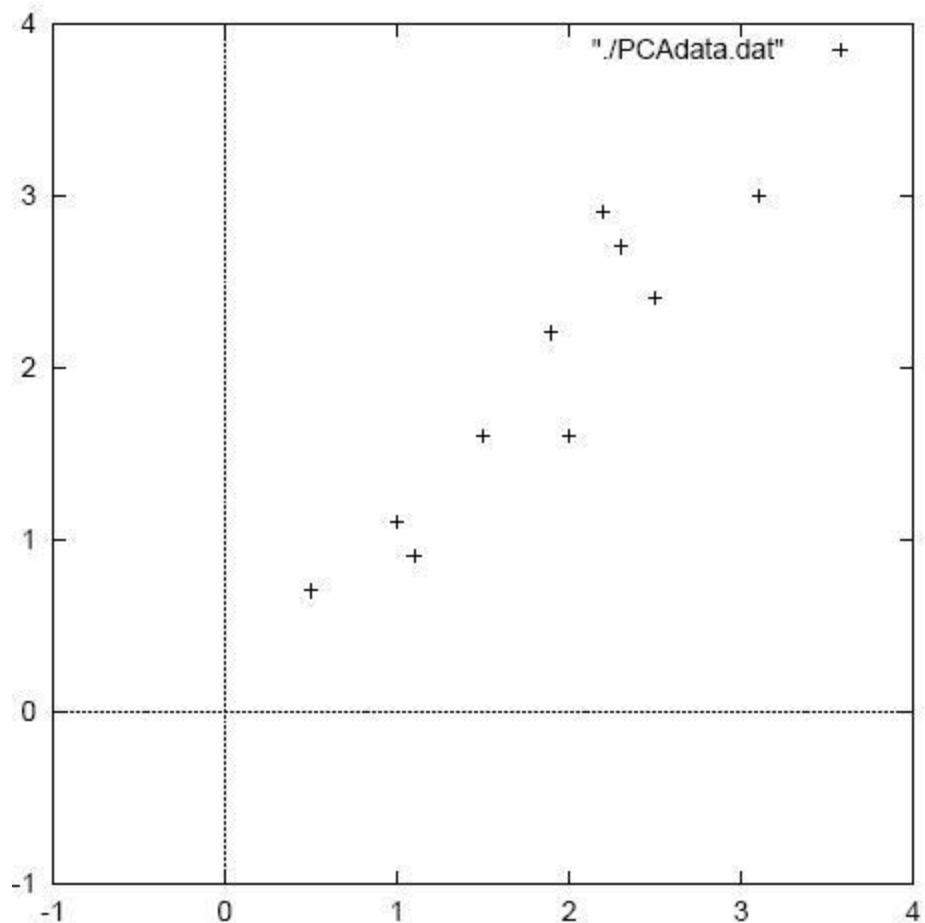
PCA EXAMPLE

X : the data matrix with $N=11$ objects and $d=2$ dimensions



- Step 1: subtract the mean and calculate the covariance matrix C.

$$C = \begin{pmatrix} 0.716 & 0.615 \\ 0.615 & 0.616 \end{pmatrix}$$



- Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:

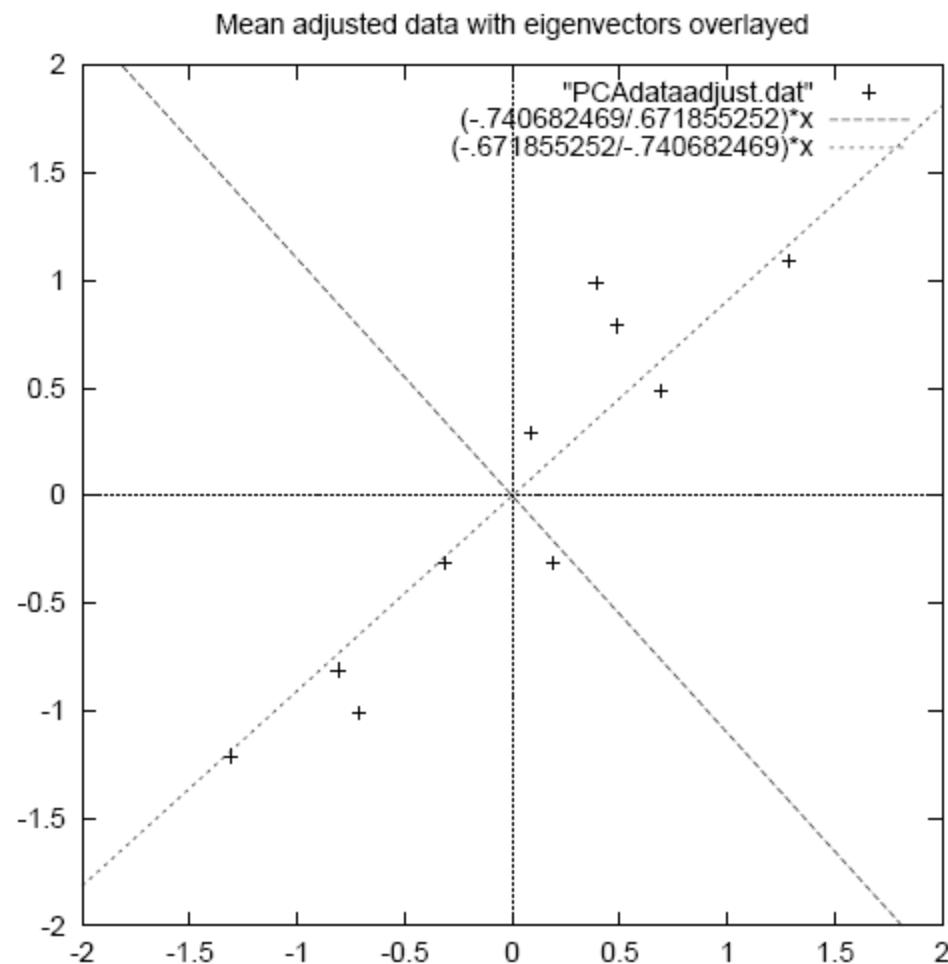
$$\lambda_1 \approx 1.28, v_1 \approx [-0.677 \ -0.735]^T, \lambda_2 \approx 0.49, v_2 \approx [-0.735 \ 0.677]^T$$

Notice that v_1 and v_2 are **orthonormal**:

$$|v_1|=1$$

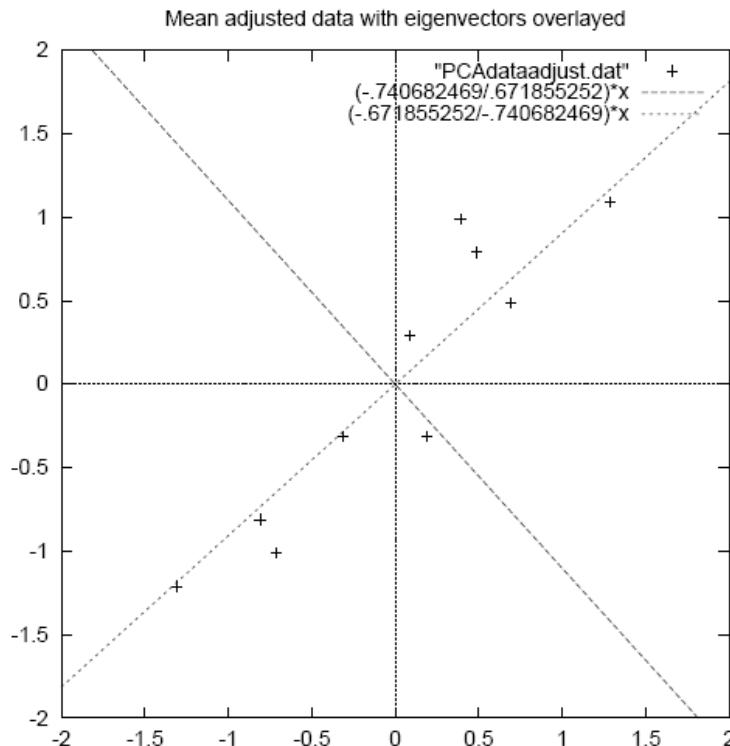
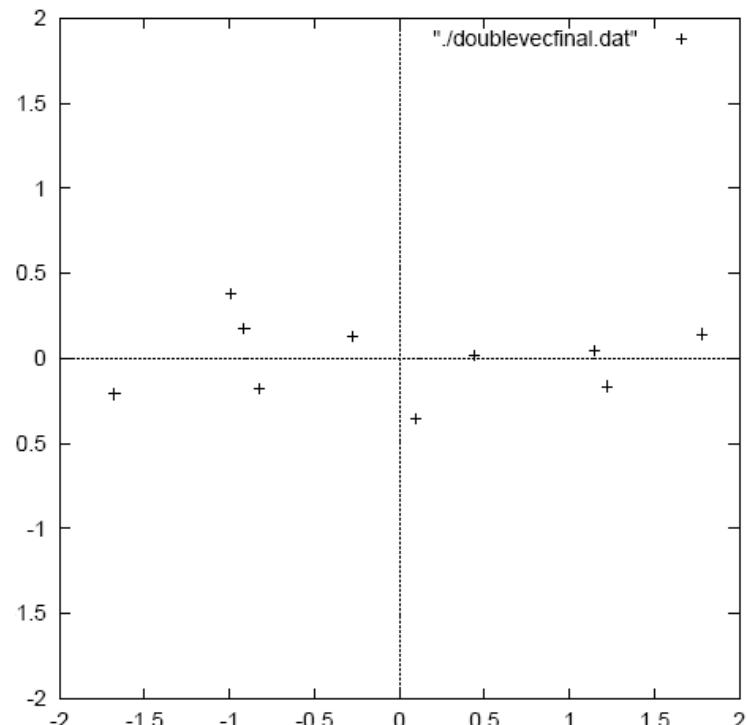
$$|v_2|=1$$

$$v_1 \cdot v_2 = 0$$



✖ Step 3: project the data

- + Let $V = [v_1, \dots, v_m]$ is $d \times m$ matrix where the columns v_i are the eigenvectors corresponding to the largest m eigenvalues
- + The projected data: $Y=X V$ is $N \times m$ matrix.
- + If $m=d$ (more precisely $\text{rank}(X)$), then there is no loss of information!



- Step 3: project the data

$$\lambda_1 \approx 1.28, v_1 \approx [-0.677 \ -0.735]^T, \lambda_2 \approx 0.49, v_2 \approx [-0.735 \ 0.677]^T$$

- The eigenvector with the highest eigenvalue is the **principle component** of the data.
- if we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).*
- Our PC is $v_1 \approx [-0.677 \ -0.735]^T$

USEFUL PROPERTIES

- × The covariance matrix is always symmetric

$$C^T = \left(\frac{1}{N-1} X^T X \right)^T = \frac{1}{N-1} X^T X^T = C$$

- × The principal components of X are orthonormal

$$v_i^T v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- × $V = [v_1, \dots, v_m]$, then $V^T = V^{-1}$, i.e $V^T V = I$

USEFUL PROPERTIES

Theorem 1: if square $d \times d$ matrix S is a real and symmetric matrix ($S = S^T$) then

$$S = V \Lambda V^T$$

Where $V = [v_1, \dots, v_d]$ are the **eigenvectors** of S and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$ are the **eigenvalues**.

Proof:

- $S V = V \Lambda$
- $[S v_1 \dots S v_d] = [\lambda_1 v_1 \dots \lambda_d v_d]$: the definition of eigenvectors.
- $S = V \Lambda V^{-1}$
- $S = V \Lambda V^T$ because V is orthonormal $V^{-1} = V^T$

USEFUL PROPERTIES

- × The projected data: $Y = X V$
- × The covariance matrix of Y is

$$C_Y = \frac{1}{N-1} Y^T Y = \frac{1}{N-1} V^T X^T X V = V^T C_X V$$

$$= V^T V \Lambda V^T V \quad \text{because the covariance matrix } C_X \text{ is symmetric}$$

$$= V^{-1} V \Lambda V^{-1} V \quad \text{because } V \text{ is orthonormal}$$

$$= \Lambda$$

After the transformation, the covariance matrix becomes diagonal.

DERIVATION OF PCA : 1. MAXIMIZING VARIANCE

- ✖ Assume the best transformation is one that maximize the variance of project data.
- ✖ Find the equation for variance of projected data.
- ✖ Introduce constraint
- ✖ Maximize the un-constraint equation. (find derivative w.r.t projection axis and set to zero)

DERIVATION OF PCA :

2. MINIMIZING TRANSFORMATION ERROR

- ✖ Define error
- ✖ Identify variables that needs to be optimized in the error
- ✖ Minimize and solve for the variables.
- ✖ Interpret the information

SINGULAR VALUE DECOMPOSITION(SVD)

- Any $N \times d$ matrix X can be uniquely expressed as:

$$\mathbf{X} = \mathbf{U} \times \Sigma \times \mathbf{V}^T$$

$N \times d$ $N \times r$ $r \times r$ $r \times d$

- r is the **rank** of the matrix X (# of linearly independent columns/rows).
 - U is a column-orthonormal $N \times r$ matrix.
 - Σ is a **diagonal** $r \times r$ matrix where the **singular values** σ_i are sorted in descending order.
 - V is a column-orthonormal $d \times r$ matrix.

PCA AND SVD RELATION

Theorem:

Let $X = U \Sigma V^T$ be the SVD of an $N \times d$ matrix X and $C = \frac{1}{N-1} X^T X$ be the $d \times d$ covariance matrix.

The eigenvectors of C are the same as the right singular vectors of X .

Proof:

$$X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma \Sigma V^T = V \Sigma^2 V^T$$

$$C = V \frac{\Sigma^2}{N-1} V^T$$

But C is symmetric, hence $C = V \Lambda V^T$

Therefore, the eigenvectors of the covariance matrix C are the same as matrix V (right singular vectors) and

the eigenvalues of C can be computed from the singular values $\lambda_i = \frac{\sigma_i^2}{N-1}$

$$\mathbf{X} = \mathbf{U} \times \boldsymbol{\Sigma} \times \mathbf{V}^T$$

The singular value decomposition and the **eigendecomposition** are closely related. Namely:

- × The **left-singular vectors** of X are eigenvectors of XX^T
- × The **right-singular vectors** of X are eigenvectors of X^TX .
- × The **non-zero singular values** of X (found on the diagonal entries of $\boldsymbol{\Sigma}$) are the square roots of the non-zero eigenvalues of both X^TX and XX^T .

ASSUMPTIONS OF PCA

- ✖ I. Linearity
- ✖ II. Mean and variance are sufficient statistics.
 - + Gaussian distribution assumed
- ✖ III. Large variances have important dynamics.
- ✖ IV. The principal components are orthogonal

PCA WITH EIGENVALUE DECOMPOSITION

```
function [signals,PC,V] = pca1(data)
```

```
% PCA1: Perform PCA using covariance.
```

```
% data - MxN matrix of input data
```

```
% (M dimensions, N trials)
```

```
% signals - MxN matrix of projected data
```

```
% PC - each column is a PC
```

```
% V - Mx1 matrix of variances
```

```
[M,N] = size(data);
```

```
% subtract off the mean for each dimension
```

```
mn = mean(data,2);
```

```
data = data - repmat(mn,1,N);
```

```
% calculate the covariance matrix
```

```
covariance = 1 / (N-1) * data * data';
```

```
% find the eigenvectors and eigenvalues  
[PC, V] = eig(covariance);
```

```
% extract diagonal of matrix as vector  
V = diag(V);
```

```
% sort the variances in decreasing order  
[junk, rindices] = sort(-1*V);  
V = V(rindices);  
PC = PC(:,rindices);
```

```
% project the original data set  
signals = PC' * data;
```

PCA WITH SVD

```
function [signals,PC,V] = pca2(data)
```

```
% PCA2: Perform PCA using SVD.
```

```
% data - MxN matrix of input data
```

```
% (M dimensions, N trials)
```

```
% signals - MxN matrix of projected data
```

```
% PC - each column is a PC
```

```
% V - Mx1 matrix of variances
```

```
[M,N] = size(data);
```

```
% subtract off the mean for each dimension
```

```
mn = mean(data,2);
```

```
data = data - repmat(mn,1,N);
```

```
% construct the matrix Y
```

```
Y = data' / sqrt(N-1);
```

```
% SVD does it all
```

```
[u,S,PC] = svd(Y);
```

```
% calculate the variances
```

```
S = diag(S);
```

```
V = S .* S;
```

```
% project the original data
```

```
signals = PC' * data;
```