LECTURE 16: PCA AND SVD

Resource:
- PCA Slide by Iyad Batal
- Chapter 12 of PRML
- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
PRINCIPLE COMPONENT ANALYSIS

- PCA finds a **linear** projection of high dimensional data into a lower dimensional subspace such as:
 - The variance retained is maximized.
 - The least square reconstruction error is minimized.
PCA STEPS

Linearily transform an $N \times d$ matrix X into an $N \times m$ matrix

- Centralize the data (subtract the mean).
- Calculate the $d \times d$ covariance matrix: $C = \frac{1}{N-1} X^T X$

 $C_{i,j} = \frac{1}{N-1} \sum_{q=1}^{N} X_{q,i}X_{q,i}$

 + $C_{i,i}$ (diagonal) is the variance of variable i.
 + $C_{i,j}$ (off-diagonal) is the covariance between variables i and j.
- Calculate the eigenvectors of the covariance matrix (orthonormal).
- Select m eigenvectors that correspond to the largest m eigenvalues to be the new basis.
If \(A \) is a square matrix, a non-zero vector \(\mathbf{v} \) is an eigenvector of \(A \) if there is a scalar \(\lambda \) (eigenvalue) such that

\[
A \mathbf{v} = \lambda \mathbf{v}
\]

Example:

\[
\begin{pmatrix}
2 & 3 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
3 \\
2
\end{pmatrix}
=
\begin{pmatrix}
12 \\
8
\end{pmatrix}
= 4 \begin{pmatrix}
3 \\
2
\end{pmatrix}
\]

If we think of the squared matrix \(A \) as a transformation matrix, then multiply it with the eigenvector do not change its direction.
PCA EXAMPLE

X : the data matrix with $N=11$ objects and $d=2$ dimensions
Step 1: subtract the mean and calculate the covariance matrix C.

\[
C = \begin{pmatrix}
0.716 & 0.615 \\
0.615 & 0.616
\end{pmatrix}
\]
Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:

\[\lambda_1 \approx 1.28, \ v_1 \approx [-0.677 \ -0.735]^T, \ \lambda_2 \approx 0.49, \ v_2 \approx [-0.735 \ 0.677]^T \]

Notice that \(v_1 \) and \(v_2 \) are orthonormal:

\[
|v_1| = 1 \\
|v_2| = 1 \\
v_1 \cdot v_2 = 0
\]
Step 3: project the data

Let \(V = [v_1, \ldots, v_m] \) is \(d \times m \) matrix where the columns \(v_i \) are the eigenvectors corresponding to the largest \(m \) eigenvalues.

The projected data: \(Y = X V \) is \(N \times m \) matrix.

If \(m = d \) (more precisely \(\text{rank}(X) \)), then there is no loss of information!
Step 3: project the data

\[\lambda_1 \approx 1.28, \mathbf{v}_1 \approx [-0.677, -0.735]^T, \lambda_2 \approx 0.49, \mathbf{v}_2 \approx [-0.735, 0.677]^T \]

- The eigenvector with the highest eigenvalue is the principle component of the data.
- If we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).
- Our PC is \(\mathbf{v}_1 \approx [-0.677, -0.735]^T \)
USEFUL PROPERTIES

- The covariance matrix is always symmetric

\[C = \left(\frac{1}{N - 1} X^T X \right)^T = \frac{1}{N - 1} X^T X^T = C \]

- The principal components of \(X \) are orthonormal

\[v_i^T v_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]

- \(V = [v_1, \ldots, v_m] \), then \(V^T = V^{-1} \), i.e. \(V^T V = I \)
Theorem 1: If square \(d \times d \) matrix \(S \) is a real and symmetric matrix \((S = S^T)\) then

\[
S = V \Lambda V^T
\]

Where \(V = [v_1, ..., v_d] \) are the eigenvectors of \(S \) and \(\Lambda = diag(\lambda_1, ..., \lambda_d) \) are the eigenvalues.

Proof:

- \(S V = V \Lambda \)
- \([S v_1 ... S v_d] = [\lambda_1. v_1 ... \lambda_d. v_d] \): the definition of eigenvectors.
- \(S = V \Lambda V^{-1} \)
- \(S = V \Lambda V^T \) because \(V \) is orthonormal \(V^{-1} = V^T \)
USEFUL PROPERTIES

- The projected data: $Y = X V$
- The covariance matrix of Y is

$$C_Y = \frac{1}{N-1} Y^T Y = \frac{1}{N-1} V^T X^T X V = V^T C_X V$$

$$= V^T V \Lambda V^T V$$ because the covariance matrix C_X is symmetric

$$= V^{-1} V \Lambda V^{-1} V$$ because V is orthonormal

$$= \Lambda$$

After the transformation, the covariance matrix becomes diagonal.
DERIVATION OF PCA: 1. MAXIMIZING VARIANCE

- Assume the best transformation is one that maximize the variance of project data.

- Find the equation for variance of projected data.

- Introduce constraint

- Maximize the un-constraint equation. (find derivative w.r.t projection axis and set to zero)
DERIVATION OF PCA:

2. MINIMIZING TRANSFORMATION ERROR

- Define error
- Identify variables that need to be optimized in the error
- Minimize and solve for the variables
- Interpret the information
Any $N \times d$ matrix X can be uniquely expressed as:

$$X = U \times \Sigma \times V^T$$

- r is the **rank** of the matrix X (# of linearly independent columns/rows).
 - U is a **column-orthonormal** $N \times r$ matrix.
 - Σ is a **diagonal** $r \times r$ matrix where the singular values σ_i are sorted in descending order.
 - V is a **column-orthonormal** $d \times r$ matrix.
PCA AND SVD RELATION

Theorem:
Let \(X = U \Sigma V^T \) be the SVD of an \(N \times d \) matrix \(X \) and
\[
C = \frac{1}{N-1} X^T X
\]
be the \(d \times d \) covariance matrix.

The eigenvectors of \(C \) are the same as the right singular vectors of \(X \).

Proof:
\[
X^T X = V \Sigma U^T U \Sigma V^T = V \Sigma \Sigma V^T = V \Sigma^2 V^T
\]
\[
C = V \frac{\Sigma^2}{N-1} V^T
\]
But \(C \) is symmetric, hence \(C = V \Lambda V^T \)
Therefore, the eigenvectors of the covariance matrix \(C \) are the same as matrix \(V \) (right singular vectors) and

the eigenvalues of \(C \) can be computed from the singular values \(\lambda_i = \frac{\sigma_i^2}{N-1} \)
The singular value decomposition and the eigendecomposition are closely related. Namely:

- The **left-singular vectors** of X are eigenvectors of XX^T.
- The **right-singular vectors** of X are eigenvectors of X^TX.
- The **non-zero singular values** of X (found on the diagonal entries of Σ) are the square roots of the non-zero eigenvalues of both X^TX and XX^T.

$$X = U \times \Sigma \times V^T$$
ASSUMPTIONS OF PCA

- I. Linearity
- II. Mean and variance are sufficient statistics.
 - Gaussian distribution assumed
- III. Large variances have important dynamics.
- IV. The principal components are orthogonal
function [signals,PC,V] = pca1(data)

% PCA1: Perform PCA using covariance.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension
mn = mean(data,2);
data = data - repmat(mn,1,N);

% calculate the covariance matrix
covariance = 1 / (N-1) * data * data';

% find the eigenvectors and eigenvalues
[PC, V] = eig(covariance);

% extract diagonal of matrix as vector
V = diag(V);

% sort the variances in decreasing order
[junk, rindices] = sort(-1*V);
V = V(rindices);
PC = PC(:,rindices);

% project the original data set
signals = PC' * data;

function [signals,PC,V] = pca2(data)

% PCA2: Perform PCA using SVD.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension
mn = mean(data,2);
data = data - repmat(mn,1,N);

% construct the matrix Y
Y = data' / sqrt(N-1);

% SVD does it all
[u,S,PC] = svd(Y);

% calculate the variances
S = diag(S);
V = S .* S;

% project the original data
signals = PC' * data;