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A Simple Example

P(A,B,C) = P(A)P(B,C | A)

~P(A) P(B|A)

=P(A) P(B|A) P(C|B)

C is conditionally independent of A given B

Graphical Representation ??7?



Bayesian Network

Directed Graphical Model
U=(Vy, .. V,)

P(U) =11 P(V; | Pa(V))

P(A,B,C) =P(A) P(B | A) P(C | B)




Digression: Polytrees

* A network is singly connected (a polytree) if
it contains no undirected loops.

Theorem: Inference in a singly connected
network can be done in linear time*.

Main idea: in variable elimination, need only maintain
distributions over single nodes.

*in network size including table sizes.
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



The problem with loops

‘ P(c)‘o.s ‘

Cloudy

N <

ol Rain | | Sprinkler

P(r)o.98]0.01 \/ P(s)0.02/0.99

[ e ] ‘deterministic or‘

The grass is dry only if no rain and no sprinklers.

P(g) = P(r,s) ~ 0

© Jack Breese (Microsoft) & Daphne Koller (Stanford)



The problem with loops contd.

0 0
P(8)= P I SIP(rs)+PE|T,3) P
+P(g\rs)P(rs)+P( | T,S) P(T, 5)
% T
=P, s) ~0

Propagation

#P(F) P(s) ~ 0.5 0.5 = 0.25

I_T

problem
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



Variable elimination

@ P()=ZP(c|b)ZP(b]a)Pa)

® pa) P A P(b)
N S

©
P(B, A) _>§}> P(B)  P(C| B)
N S

F%I) —Z Pl

© Jack Breese (Microso ft) & Daphne Koller (Stanford)




Inference as variable elimination

* A factor over X is a function from val(X) to
numbers in [0,1]:
— A CPT is a factor
— A joint distribution is also a factor

* BN inference:
— factors are multiplied to give new ones
— variables in factors summed out

A variable can be summed out as soon as all
factors mentioning it have been multiplied.

© Jack Breese (Microsoft) & Daphne Koller (Stanford)



Variable Elimination with loops
P(A) P(G) P(S|AG)
P(E | A)

%A S)—>|E> P(AE,S)

LDIE_[\;E_S;)—C“ES)

P(E,S C)—> P(C)

P(L | C)—»@ P(C,L)— % P(L)

Complexity is exponential in the size of the factors

© Jack Breese (Microsoft) & Daphne Koller (Stanford)




Join trees*®

A join tree is a partially precompiled factorization

* aka Junction Tree, Lauritzen-Spiegelhalter, or Hugin algorithm, ...
© Jack Breese (Microsoft) & Daphne Koller (Stanford)



Background: Markov networks

Random variable: B,E,A,|,M
Joint distribution: Pr(B,E,A,|,M)

Undirected graphical models give
another way of defining a
compact model of the joint
distribution...via potential
functions.

¢(A=a,|=j) is a scalar measuring
the “compatibility” of A=a ]=




Background

Pr(B=b,E=¢,A=a,j,m)

- %¢JA(CI Doyala,m)@,(a,b)p,.(a,e)p,(e)p,(b)

o

cligue potential

* @(A=a,)5j) is a scalar measuring
the “compatibility” of A=a ]=j




Another example

[h/t Pedro Domingos]

* Undirected graphical models

X, = short vector

Smoking

Cancer

False

False

False

True

True

False

True

True

H/T: Pedro Domingos



Markov Networks = Markov Random Fields

Undirected Graphical Model




Markov Random Fields

Undirected Graphical Model

®=0

Clique Separator Cligue

P(U) =1 P(Clique) / I P(Separator)

P(A,B,C) = P(A,B) P(B,C) / P(B)



Markov Random Fields

A node is conditionally independent of all others
given its neighbours.



Factor Graphs
* Example
— Exponential (joint) parameterization

Vas +
&

— Pairwise parameterization

B B

Markov network
Vasc Vag

Factor graph for Factor graph for
joint parameterization pairwise parameterization



Transforming MRFs into BNs and back

Because MRF and BN are incomparable, some independence structure is
lost in conversion

P A

u(z) = Y (zx1, acg Y(x1,x3)1)(x2, T4)Y (T3, T4)

I 1 CB4| T2, 33'3

xo L x3|(x1,x4) x2 L z3|(x1,x4)
p(z) = p(@e) p(zs)w(w|z2, z3)

To L :Ug no independence



Factor Graphs vs. MRFs

Factor graphs are more ‘fine grained’ than undirected graphical models

Qo QO
S

Y(x1,x2,23) V12(21, T2) a3 (T2, x3)31(23, 1) Y123(x1, 22, T3)

all three encodes same independencies, but different factorizations
(in particular the degrees of freedom in the compatibility functions are
3|X|% vs. |XP)

@ set of independencies represented by MRF is the same as FG

@ but FG can represent a larger set of factorizations



BNs — MRFs — FGs

@ undirected graphical models can be represented by factor graphs

» we can go from MRF to FG without losing any information on the
independencies implies by the model

@ Bayesian networks are not compatible with undirected graphical

models or factor graphs
» if we go from one model to the other, and then back to the original
model, then we will not, in general, get back the same model as we

started out with
» we lose any information on the independencies implies by the model,

when switching from one model to the other

20



Generative vs. Discriminative

Generative ML or MAP Learning: Naive Bayes

» Class-specific distributions for each of M features

Discriminative ML or MAP Learning: Logistic regression

yiﬁi ply=~k|x0)= Z Hexp{9 ¢(Tm) }

Z(x,0) = ZHexp{Hkqﬁa;m}

k=1 m=1

« Exponential family distribution (maximum entropy classifier)
* Different distribution, and normalization constant, for each x

21



Conditional Random Field

* A Conditional random field (CRF) is a Markov
random field of unobservables which are
globally conditioned on a set of observables

(Lafferty et al., 2001)

Lafferty, J., McCallum, A., Pereira, F. "Conditional random fields: Probabilistic models for
segmenting and labeling sequence data". Proc. 18th International Conf. on Machine
Learning. Morgan Kaufmann. pp. 282—-289. 2001




A Conditional random field is effectively an MRF plus a set of “external” variables
X, where the “internal” variables Y of the MRF are the unobservables ( O and the
“external” variables X are the observables (@®:

[ % I VRN
>the MRF
the CRF < 7
3
fixed, observable,
>variables X (not in
the MRF)
\

Thus, we could denote a CRF informally as:
C=(M, X)

for MRF M and external variables X, with the understanding that the graph G, of the
CREF is simply the graph G, of the underlying MRF M plus the vertices X and any
edges connecting these to the elements of Gy.

P(Y | X)

we do not explicitly model any direct relationships

between the observables (i.e., among the X) D
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Based on ECCV14 paper:

Large-Scale Object Recognition
using Label Relation Graphs

Jia Deng!?, Nan Ding?, Yangqing Jia%, Andrea Frome?, Kevin Murphy?,

Samy Bengio?, Yuan Li%, Hartmut Neven?, Hartwig Adam?

University of Michigan!, Google?
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Object Classification

* Assign semantic labels to objects

Dog
Corgi

Puppy
Cat

X X X



Object Classification

* Assign semantic labels to objects

Probabilities

Dog 0.9
Corgi 08

Puppy 0.9
Cat 0.1




Object Classification

* Assign semantic labels to objects

Features Classifier Probabilities
Corgi 08
Feature Extractor
Puppy 0.9

Cat 0.1




Object Classification

* Independent binary classifiers: Logistic Regression

| Dog 0.4
: . No assumptions
| Corel 08 ,pout relations.
— Puppy os
— Cat 0.2

e Multiclass classifier: Softmax

Assumes mutual
exclusive labels.




Object labels have rich relations

Hierarchical

Corgi Puppy

Softmanx: all labels are mutually exclusive ® Overlap
Logistic Regression: all labels overlap ®




Goal: A new classification model

Respects real world label relations

DOg 0.9
Corgi 0.8
Puppy 0.9

Cat 0.1




Visual Model + Knowledge Graph

Dog 0.9

Visual . Knowledge | = Corgi 0.8
Model Joint —>

Inference Gra ph Pu ppy 0.9

Cat 0.1

1

Assumption in this work:
Knowledge graph is given and fixed.



Agenda

* Encoding prior knowledge (HEX graph)
e Classification model
e Efficient Exact Inference



Agenda

* Encoding prior knowledge (HEX graph)
* Classification model
e Efficient Exact Inference



Hierarchy and Exclusion (HEX) Graph

Hierarchical

Dog
Corgi Puppy

* Hierarchical edges (directed)
e Exclusion edges (undirected)



Examples of HEX graphs

’ o - Person
Dog  Cat Red Shiny @
0—O O O Male T Female Childé

_____________________________________________________________________________________________

Mutually exclusive All overlapping Combination



State Space: Legal label configurations

Each edge defines a constraint.

Oo€ ot
@ O 0 0 0 0
0 0 0 1
O O 0 0 1 0
Corgi Puppy 0 0 1 1
1 0 0 0
1 1 0 0



State Space: Legal label configurations

Each edge defines a constraint.

P08 -2
O—=O 1
£ ——
Corgi Puppy 4 0 0 1 1
1 0 0 !

Hierarchy: (dog, corgi) can’t be (0,1)

=
=
o
o



State Space: Legal label configurations

Each edge defines a constraint.

Dog -2t
0 0

O © 0 0
O O 0 0 1 0
Corgi Puppy 0 0 1 1
4 1 0 0 0
Hierarchy: (dog, corgi) can’t be (0,1)
1 1 0 0
1 1 0 1

_—

Exclusion: (dog, cat) can’t be (1,1)




Agenda

* Encoding prior knowledge (HEX graph)
e Classification model
e Efficient Exact Inference



HEX Classification Model

e Pairwise Conditional Random Field (CRF)

O O i
| xtER” —()—! O | y €40,1}"
nput scores I I Binary Label vector
—(O— O |
-O——0 i
1
Pr(ylx)=

Z(X)H¢i(xi’yi) l:j[wz',j(yiayj)



HEX Classification Model

e Pairwise Conditional Random Field (CRF)

—O— O i
xXER" —()— '® o ye{0,1}"
Input scores : i O i Binary Label vector
OO0 i

Pr(ylx)= Z(lx)n¢i(xi’yi) nwi,j(yi’yj)

—— 7

sigmoid(x;,) if y, =1
1-sigmoid(x,) if y;=0

¢i(xi9yi)={

Unary: same as logistic regression



HEX Classification Model

e Pairwise Conditional Random Field (CRF)

e

| I
I I
i I
XER" 'S | ' yE{0,1}
Input scores : O O i Binary Label vector
ﬂ: : :
O——0 !

Pr(ylx)—m]w oy | w0y

7 N

sigmoid(x,) if y,=1 0 If violates constraints
: o : _ wi,j(yi’yj)={
1 - sigmoid(x,) if y =

¢i(xi9yi)={

1 Otherwise

Unary: same as logistic regression Pairwise: set illegal configuration to zero




HEX Classification Model

e Pairwise Conditional Random Field (CRF)

O '® i
xER" —()— 0 o ye{0,1}"
Input scores : i O i Binary Label vector
O——0 i

Pr(ylx)= Z(X)n¢i('xi’yi> nwi,j(y,-,yj)

zx=Y |]a y)ﬂw 35,

yeE{0,1}" i

Partition function: Sum over all (legal) configurations



HEX Classification Model

e Pairwise Conditional Random Field (CRF)

O '® i
xER" —()— 0 o ye{0,1}"
Input scores : i O i Binary Label vector
O——0 i

Pr(ylx)= Z(x)n¢i(xi’yi) Hwi,j(yi’yj)

Probability of a single label: marginalize all other labels.

v
Pr(y, =1lx)=




Special Case of HEX Model

e Softmax
Dog Cat
O—0
—0
Car Bird

Mutually exclusive

Pr(y, =11x) = exp(x,)

1+Eexp(xj)

J

* Logistic Regressions

Red Shiny
O O
o O

Round  Thick

All overlapping

1

Pr(y. =1lx)=
O ) 1+exp(-x,)



e

Dog
Corgi
Puppy
Cat

Label: Dog

Learning

Loss =-1logPr(Dog =1)

Maximize marginal probability of observed labels

DNN = Deep Neural Network




Agenda

* Encoding prior knowledge (HEX graph)
e Classification model
e Efficient Exact Inference



Naive Exact Inference is Intractable

* Inference:
— Computing partition function
— Perform marginalization

 HEX-CRF can be densely connected (large treewidth)

()
@ Q



Observation 1: Exclusions are good

Number of legal states is O(n), not O(2").

* Lots of exclusions = Small state space = Efficient inference
e Realistic graphs have lots of exclusions.
* Rigorous analysis in paper.



Observation 2: Equivalent graphs

Dog Cat Dog Cat
O O
Corgi O » Corgi O
O O CI%Oloy O Puppy
Cardigan Pembroke Cardigan Pembroke

Welsh Corgi  Welsh Corgi Welsh Corgi  Welsh Corgi



Observation 2: Equivalent graphs

Dog Cat Dog Cat Dog Cat

Q O 0O O

corgi () « corgi () » corgi ()

O O CP%ppy O O CP%ppy Puppy

Cardigan Pembroke Cardigan Pembroke Cardigan Pembroke

Welsh Corgi Welsh Corgi Welsh Corgi Welsh Corgi Welsh Corgi Welsh Corgi
Sparse equivalent Dense equivalent
* Small Treewidth © * Prune states ©

* Dynamic programming * Can brute force



2.Build
Junction Tree
(offline)




