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Accessing Document Annotation Databases

Answers

Queries
…

Challenges:
• Robustness: noise, incompleteness, 

ambiguity (“Sunnybrook”), statistical 
information (“foundInRoom(bathtub, 
bathroom)”), …

• Complex queries: “which Canadian 
hockey teams have won the Stanley 
Cup?”

• Extensions to annotations required
(exploit domain knowledge)

• Learning: how to acquire and maintain
domain models as well as how to use it

“Expressive,  
probabilistic, efficient:

pick any two”

Current state of the art

What if the 
DB/KB or 
domain 

models are 
imperfect?

Wang&Cohen, Scalable Statistical Relational Learning for NLP



Representation

ScalabilityMachine 
Learning

Three Areas of Data Science

Abstract 
Machines, 
Binarization

Probabilistic logics,
Representation learning

Scalable 
Learning
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Scalable Probabilistic Relational
Reasoning & Learning

Wang&Cohen, Scalable Statistical Relational Learning for NLP



Datalog for Extending Annotation DBs

• A program defines a unique least Herbrand model
• Example program:

grandparent(X,Y):-parent(X,Z),parent(Z,Y).
parent(alice,bob).  parent(bob,chip). parent(bob,dana).

The least Herbrand model also includes grandparent(alice,dana) 
and grandparent(alice,chip).

Finding the least Herbrand model: theorem proving…
Usually we care about answering queries: 

What are values of W: grandparent(alice,W) ?

H/T: “Probabilistic Logic Programming, De Raedt and Kersting



Markov Networks

• Undirected graphical models

Cancer
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[h/t Pedro Domingos]

A soft constraint that smoking è cancer



Markov Logic Networks (MLNs): Intuition

• QA w.r.t. is a set of hard constraints
on the set of possible worlds constrained to be 
deductively closed

• Let's make closure a soft constraint:
When a world is not deductively closed,
it becomes less probable

• Give each rule a weight which is a reward for 
satisfying it:  (Higher weight  Þ Stronger constraint)

( )åµ satisfiesit  formulas of weightsexpP(world)

[Domingos et al]

Wang&Cohen, Scalable Statistical Relational Learning for NLP



Markov Logic Networks (MLNs): Definition

• A Markov Logic Network (MLN) is a set of pairs (F, w)
where
– F is a formula in first-order logic
– w is a real number

• Together with a set of constants,
it defines a Markov network with
– One node for each grounding of each predicate in the 

MLN – each element of the Herbrand base
– One feature for each grounding of each formula F in the 

MLN, with the corresponding weight w

H/T: Pedro Domingos



Example: Friends & Smokers

habits.  smoking  similar  have  Friends
cancer.  causes  Smoking

H/T: Pedro Domingos
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Markov Logic Networks

• MLN is template for ground Markov nets

• Probability of a world x:

Weight of formula i No. of true groundings of formula i in x
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H/T: Pedro Domingos
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MLNs generalize many statistical models J

• Special cases:
– Markov networks
– Bayesian networks
– Log-linear models
– Exponential models
– Max. entropy models
– Logistic regression
– Hidden Markov models
– Conditional random fields

• Obtained by making all 
predicates zero-arity

• Markov logic allows 
objects to be 
interdependent 
(non-i.i.d.)

H/T: Pedro Domingos



MLNs generalize logic programs J

• Subsets of Herbrand base ~ domain of joint distribution
• Interpretation ~ element of the joint
• Consistency with all clauses A:-B1,…,Bk	, i.e. “model of 

program” ~ compatibility with program as determined by 
clique potentials

• Reaches logic in the limit when potentials are infinite 
(sort of)

H/T: Pedro Domingos



MLNs are expensive L

• Inference done by explicitly building a ground MLN
– Herbrand base is huge for reasonable programs: It grows 

faster than the size of the DB of facts
– You’d like to able to use a huge DB—NELL is O(10M)

• After that, inference on an arbitrary MLN is expensive:  
#P-complete
– It’s not obvious how to restrict the template so the MLNs 

will be tractable

Wang&Cohen, Scalable Statistical Relational Learning for NLP



Use Probabilistic Databases for Scalability?

Old trick: If you want to weight a rule you can 
introduce a rule-specific fact…. 

weighted(r3),0.88

r3. status(X,tired) :- child(W,X), infant(W), weighted(r3).

So learning rule weights is a special case of learning 
weights for selected DB facts.

r3. status(X,T) :- child(W,X), infant(W), 
assign_tired(T), weighted(r3).

assign_tired(tired),1

Wang&Cohen, Scalable Statistical Relational Learning for NLP



PDBs: Problems

• Not clear if expanding queries with respect to rules yields 
safe queries (safe queries can be answered with SQL)

• Rules can be cyclic (no expansion possible)
• Queries get very large due to expansion

(n-way join order optimization has its limits)
– Preprocessing is at least not easy
– Better approach: Query data w.r.t. model

• How to learn a model?
– Learn datalog rules
– Learn more complex logical formulas

21



Inductive Logic Programming

• Combines inductive methods with the power of 
first-order representations

• Offers a rigorous approach to the learning problem
• Offers complete algorithms for inducing general, first-

order theories from examples

J.R. Quinlan. Learning Logical Definitions from Relations. 
Machine Learning, Volume 5, Number 3, 1990

Muggleton, S.; De Raedt, L., Inductive Logic Programming: Theory and methods. 
The Journal of Logic Programming. 19-20: 629–679, 1994

Lavrac, N.; Dzeroski, S., Inductive Logic Programming: 
Techniques and Applications. New York: Ellis Horwood, 1994

E.Y. Shapiro., Inductive inference of theories from facts, Research Report 192, 
Yale University, Department of Computer Science, 1981. Reprinted in J.-L. 
Lassez, G. Plotkin (Eds.), Computational Logic, The MIT Press, Cambridge, MA, 
1991, pp. 199–254.

E.Y. Shapiro., The model inference system. Proceedings of the 7th international 
joint conference on Artificial intelligence-Volume 2. Morgan Kaufmann 
Publishers Inc., 1981



ILP: An example

• Example: Learning family relations from examples
– Observations are an extended family tree

• Mother, Father and Married relations
• Male and Female properties

– Target predicates: Grandparent, BrotherInLaw, Ancestor 



Example (not up to date)

George ⋈Mum

Spencer ⋈ Kydd Elizabeth ⋈ Philip Margaret

Diana ⋈ Charles Anne ⋈Mark Andrew ⋈ Sarah Edward

William Harry Peter Zara Beatrice Eugenie



Example

• Descriptions include facts like
– Father(Philip, Charles)
– Mother(Mum, Margaret)
– Married(Diana, Charles)
– Male(Philip)
– Female(Beatrice)

• Sentences in Classifcations depend on the target concept being learned 
(in the example: 12 positive, 388 negative)

– Grandparent(Mum, Charles)
– ¬Grandparent(Mum, Harry)

• Goal: find a set of sentences for Hypothesis such that the entailment 
constraint is satisfied

– Without background knowledge this is for example
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Background knowledge

• A little bit of background knowledge
helps a lot
– Background knowledge contains

– Grandparent is now reduced to

• Constructive induction algorithm
– Create new predicates to facilitate the expression of 

explanatory hypotheses
– Example: introduce a predicate Parent to simplify the 

definitions of the target predicates

( ) ( ) ( )[ ]yxFatheryxMotheryxParent ,,, ∨⇔

€ 

Grandparent x,y( )⇔ ∃zParent x,z( )∧Parent z,y( )[ ]



Top-Down Inductive Learning: FOIL

• Split positive and negative examples
– Positive: <George, Anne>, <Philip, Peter>, <Spencer, Harry>
– Negative: <George, Elizabeth>, <Harry, Zara>, <Charles, Philip>

• Construct a set of Horn clauses with Grandfather(x,y) as the head with the 
positive examples instances of the Grandfather relationship

– Start with a clause with an empty body
Þ Grandfather(x,y)

– All examples are now classified as positive, so specialize to rule out the 
negative examples: Here are 3 potential additions:
1) Father(x,y) Þ Grandfather(x,y) 
2) Parent(x,z) Þ Grandfather(x,y)
3) Father(x,z) Þ Grandfather(x,y)

– The first one incorrectly classifies the 12 positive examples
– The second one is incorrect on a larger part of the negative examples
– Prefer the third clause and specialize

Father(x,z) Ù Parent(z,y) Þ Grandfather(x,y)



FOIL

function Foil(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty
while examples contains positive examples do

clause ← New-Clause(examples, target)
remove examples covered by clause from examples
add clause to clauses

return clauses



FOIL

function New-Clause(examples, target) returns a Horn clause
local variables: 

clause, a clause with target as head and an empty body
l, a literal to be added to the clause
extended-examples, a set of examples with values for new 

variables
extended-examples ← examples
while extended-examples contains negative examples do

l ← Choose-Literal(New-Literals(clause), extended-examples)
append l to the body of clause
extended-examples ← set of examples created by applying 
Extend-Example to each example in extended-examples

return clause



FOIL

function Extend-Example(example, literal) returns
if example satisfies literal

then return the set of examples created 
by extending example with each 
possible constant value for each new 
variable in literal

else return the empty set



FOIL

• New-Literals
– Takes a clause and constructs all possible “useful” literals

• Example: Father(x,z) Þ Grandfather(x,y)
– Add literals using predicates

• Negated or unnegated
• Use any existing predicate (including the goal)
• Arguments must be variables
• Each literal must include at least one variable from an earlier literal 

or from the head of the clause
• Valid: Mother(z,u), Married(z,z), Grandfather(v,x)
• Invalid: Married(u,v)

– Equality and inequality literals
• E.g. z ≠ x, empty list

– Arithmetic comparisons
• E.g. x > y, threshold values



FOIL

• The way New-Literal changes the clauses leads to a very 
large branching factor

• Improve performance by using type information
– E.g., Parent(x,n) where x is a person and n is a number

• Choose-Literal uses a heuristic similar to information gain
• Ockham’s razor to eliminate hypotheses

– If the clause becomes longer than the total length of the positive 
examples that the clause explains, this clause is not a valid 
hypothesis

• Most impressive demonstration
– Learn the correct definition of list-processing functions in Prolog 

from a small set of examples, using previously learned functions as 
background knowledge



Inverse Resolution

• Inverse resolution
– Run a proof backwards to find Hypothesis
– Problem: How to run the proof backwards?



Generating Inverse Proofs

• Ordinary resolution
– Take two clauses C1 and C2 and resolve them to produce 

the resolvent C

• Inverse resolution
– Take resolvent C and produce two clauses C1 and C2

– Take C and C1 and produce C2



Generating Inverse Proofs

True Þ Grandparent(George, Anne)

True ÞFalse

Grandparent(George, Anne) Þ False

True Þ Parent(Elizabeth, Anne)Parent(Elizabeth, y) Þ
Grandparent(George, y)

[y/Anne]



Generating Inverse Proofs

• Inverse resolution is a search
– For any C and C1 there can be several or even an infinite number of 

clauses C2
• Instead of Parent(Elizabeth,y) Þ Grandparent(George,y) there were 

numerous alternatives
Parent(Elizabeth,Anne) Þ Grandparent(George,Anne)
Parent(z,Anne) Þ Grandparent(George,Anne)
Parent(z,y) Þ Grandparent(George,y)

– The clauses C1 that participate in each step can be chosen from 
Background, Descriptions, Classifications or from hypothesized clauses 
already generated

• ILP needs restrictions to make the search manageable
– Eliminate function symbols
– Generate only the most specific hypotheses
– Use Horn clauses
– All hypothesized clauses must be consistent with each other
– Each hypothesized clause must agree with the observations



New Predicates and New Knowledge

• An inverse resolution procedure is a complete 
algorithm for learning first-order theories

– If some unknown Hypothesis generates a set of examples, 
then an inverse resolution procedure can generate 
Hypothesis from the examples

• Can inverse resolution infer the law of gravity from 
examples of falling bodies?

– Yes, given suitable background mathematics

• Monkey and typewriter problem: How to overcome 
the large branching factor and the lack of structure 
in the search space?



New Predicates and New Knowledge

• Inverse resolution is capable of generating new 
predicates
– Resolution of C1 and C2 into C eliminates a literal that C1

and C2 share
– This literal might contain a predicate that does not 

appear in C
– When working backwards, one possibility is to generate a 

new predicate from which to construct the missing literal



New Predicates and New Knowledge

• P can be used in later inverse resolution steps
– Example: Mother(x,y) Þ P(x,y) or Father(x,y) Þ P(x,y) leading to the “Parent” 

relationship
• Inventing new predicates is important to reduce the size of the definition of the 

goal predicate
– Some of the deepest revolutions in science come from the invention of new 

predicates (e.g. Galileo’s invention of acceleration)

Father(George,y) Þ Ancestor(George,y)

Father(George,y) Þ P(x,y) P(George,y) Þ Ancestor(George,y)

[x/George]



Learning of "Weights"

• Use similar trick as for PDBs:
– Introduce atoms weighted(rk) in rules 

and respective facts with probabilities

• Learn probabilities of weighted facts such that training 
data are most likely generated (ML, MAP)

• Various approaches known 

• Use MLNs

40



Problems with MLN QA

• Grounding

Leads to research about lifted inference:
• Probabilistic relational models (PRMs)
• Dynamic probabilistic relational models (DPRMs)

41


