Ralf Möller, Institut für Informationssysteme, Universität zu Lübeck

Logical Foundations for Interpreting Media Data as Streams of Data Descriptions

New Ways of Interacting with Media New Ways of Teaching?

Inquire is a product of the Artificial Intelligence Center at SRI International. This work is based on Project Halo, managed and funded by Vulcan Inc.

Text and figures from *Biology (9th Edition)* by Neil A. Campbell and Jane B. Reece. Copyright © 2011 by Pearson Education, Inc. Reprinted (used) by permission of Pearson Education, Inc.

Learn more at inquireproject.com

Assumptions and Research Goals

- Way of interacting with media also relevant for professional environments
 - E.g., for tasks in hospitals
- Need to make production of interactive media much less expensive
- Ensure authors have fun producing apps involving media

Generating Symbolical Semantic Content Descriptions for Multimedia Documents

- Establish relations to external resource such as, e.g., Google Knowledge Graph
- Derive relational descriptions of media content
 - Automatic "interpretation" …
 - ... on different layers of abstraction
- Ontologies and inference problems
 - Deduction (Find implicit descriptions)
 - Abduction (Explain "observations")

Query answering wrt ontologies

Example

controlledBy(BLB, HSH)

Bank(HRE)

Anfrage
{(X)|controlledBy(X,Y)}
?-X=BLB X=HRE, X=HSH

[Racer 1998 - ...][TONES 05-08]

MortgageLender

HRE

HSH

BLB

Bank HRE HSH

BLB HSH HSH HSH HSH PRINGER

Symbolic representation of interpretation knowledge: First-order style / deduction

• \forall y, z : Jumper(y), touches(y, z), Pole(z)

∃x: PoleVault(x),

PV_InStartPhase(x),

hasPart(x, y),

hasPart(x, z)

- Hard to realize...
 - No control over first-order prover

Symbolic representation of interpretation knowledge: Datalog style / abduction

```
touches(Y, Z) \leftarrow Pole\_Vault(X),
                    PV InStartPhase(X),
                    hasPart(X,Y), Jumper(Y),
                    hasPart(X, Z), Pole(Z).
  near(Y, Z) \leftarrow Pole\_Vault(X),
                    PVInEndStartPhase(X),
                    hasPart(X,Y), Horizontal\_Bar(Y),
                    hasPart(X, Z), Jumper(Z).
  near(Y,Z) \leftarrow High\_Jump(X),
                    HJ\_InJumpPhase(X),
                    hasPart(X,Y), Horizontal\_Bar(Y),
                    hasPart(X, Z), Jumper(Z).
```


. .

Starting interpretation Spatial association

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

F1:Face
O
B1:Body
O
P1:Pole

Semantic interpretation Abduction

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

9

Semantic interpretation Abduction

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

10

Semantic interpretation Abduction Deduction

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

[Diss Kaya]

[BOEMIE 06-09]

Multimedia interpretation Abduction

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

N2:Pole vault trial
N1:Person, Pole vaulter

Pn1:Person
Name
C1:Country
Name

Multimedia interpretation Abduction Deduction

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

N2:Pole vault trial N1:Person, Pole vaulter

B1:Body P1:Pole N3:Person, Pole vaulter

Multimedia interpretation Use case: cf. video

14

Conclusion too unspecific? Use body atoms as guards!

```
touches(Y, Z) \leftarrow Pole\_Vault(X),
                    PV InStartPhase(X),
                    hasPart(X,Y), Jumper(Y),
                    hasPart(X, Z), Pole(Z).
  near(Y, Z) \leftarrow Pole\_Vault(X),
                    PVJnEndStartPhase(X),
                    hasPart(X,Y), Horizontal\_Bar(Y),
                    hasPart(X, Z), Jumper(Z).
  near(Y,Z) \leftarrow High\_Jump(X),
                    HJ\_InJumpPhase(X),
                    hasPart(X,Y), Horizontal\_Bar(Y),
                    hasPart(X, Z), Jumper(Z).
```


Abductive query answering

- Simple example
 - Query: $ans() \leftarrow C(x), D(y), R(x,y)$
 - Abox: $\{(i,j): R, i:C\}$
 - **Preferred** solution (optimal, according to score defined below)

$$x \leftarrow i, y \rightarrow j :$$

 $\Delta = \{j : D\}$

- Other solution (plus 7 more, $3^2 = 9$), e.g.

```
x \leftarrow new1, y \leftarrow new_2 :
\Delta = \{new_1 : C, new_2 : D, (new_1, new_2) : R\}
```

- Exponential number of solutions has to be computed to find ,,the best"
 - optimization idea: early dynamic cutoff of search space based on score evaluation on partially computed explanations (deltas)

Depth-first abductive query evaluation

[Diss Wessel: nRQL]

Score for comparing solutions

Very simple:

entailed Assertions minus hypothesized Assertions

$$score(\Delta) =_{def} |\Delta^{+}| - |\Delta^{-}| \rightarrow maximize$$

$$\Delta = \Delta^+ \cup \Delta^-$$
 (entailed, hypothesized)

Illustration of partial scores

[Diss Wessel: nRQL]

Score-based cutoff

[Diss Wessel: nRQL]

More formally

```
n = |\Delta^+| + |\Delta^-| (n const. for each rule body)
score(\Delta) =_{def} |\Delta^{+}| - |\Delta^{-}| \rightarrow maximize (not monotone)
n + \mathsf{score}(\Delta) = 2|\Delta^+|
score(\Delta) = 2|\Delta^+| - n \rightarrow maximize (and monotone!)
• Let \Delta_p \subseteq \Delta, m_p = n - |\Delta_p| (remaining conjuncts)
     - If score(\Delta_p) + (n - |\Delta_p|) < score(\Delta_{best\_so\_far})
            score(\Delta_{best\_so\_far}) - score(\Delta_p) > (n - |\Delta_p|)
        reject \Delta_p
```

How effective is this?

- Synthetic benchmark: finding graph isomorphisms (n nodes)
- Problem reductions:

Graph Isomorphism → ABox Difference → Abduction

[Diss Wessel: nRQL]

Mulimedia interpretation: Temporal association

Stream-oriented processing (open-world stream)

Mulimedia interpretation: Temporal association

Mulimedia interpretation: Temporal association

