Einführung in Web- und Data-Science

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)
Statistics and Data Science [CASI 2017, p. 446 ff.]

Statistical Inference:
• Deals with the why
• Mathematical foundations

Algorithmics & Data Science as CASI sees it:
• Deals with the how
• Just pragmatism? (side blow at computer science)
• Decision problems clearly identified in computer science w.r.t. semantics of representation formalisms
• Correctness of algorithms (the why) is very well an issue in computer science (and data science as subfield)
• Tractability issues added by CS
From Statistical Inference to Data Science...
1900

- Karl Pearson’s chi-square paper
- Applied a new mathematical tool, matrix theory, in the service of statistical methodology.
- Pearson and Weldon went on to found *Biometrika* in 1901, the first recognizably modern statistics journal.
- Pearson’s paper, and *Biometrika*, launched the statistics discipline on a fifty-year march toward the mathematics pole of the triangle
From Statistical Inference to Data Science

1908

- Student’s \(t \) statistic
- Crucial first result in small-sample “exact” inference
- Major influence on statistical thinking
1925

- Fisher’s estimation paper
 - Fundamental ideas: sufficiency, efficiency, Fisher information, maximum likelihood theory, and the notion of optimal estimation

- Optimality is a mark of maturity in mathematics, ...

- ... making 1925 the year statistical inference went from a collection of ingenious techniques to a coherent discipline
1933

- Neyman and Pearson’s paper on optimal hypothesis testing.

 Logical completion of Fisher’s program, it nevertheless aroused his strong antipathy (concern that mathematization was squeezing intuitive correctness out of statistical thinking)
From Statistical Inference to Data Science

1937

- Neyman’s seminal paper on confidence intervals
- Mathematical treatment of statistical inference was a predecessor of decision theory

1950

- Wald’s Statistical Decision Functions
- Decision theory completed the full mathematization of statistical inference
1962

- Tukey’s paper “The future of data analysis” argued for a more application- and computation-oriented discipline
- Mosteller and Tukey later suggested changing the field’s name to data analysis, a prescient hint of today’s data science

1972

- Cox’s proportional hazards paper
- Growing interest in biostatistical applications and particularly survival analysis
1979

- The bootstrap, and later the widespread use of MCMC
- Electronic computation used for the extension of classic statistical inference.
1995

• This stands for false-discovery rates and, a year later, the lasso

• Both are computer-intensive algorithms, firmly rooted in the ethos of statistical inference
From Statistical Inference to Data Science

2000

• Microarray technology inspires enormous interest in large-scale inference, both in theory and as applied to the analysis of microbiological data.

2001

• Random forests
• Joins boosting and the resurgence of neural nets in the ranks of machine learning prediction algorithms
• Data science: a more popular successor to Tukey and Mosteller’s “data analysis”
• At one extreme it seems to represent a statistics discipline without parametric probability models or formal inference.
• Data Science Association defines a practitioner as one who “. . . uses scientific methods to liberate and create meaning from raw data”
• In practice the emphasis is on
 – algorithmic processing of large data sets
 – for the extraction of useful information,
 – with prediction algorithms as exemplars
2016b

- This represents the traditional line of statistical thinking, but now energized with a renewed focus on applications
- Of particular applied interest are biology and genetics
- Genome-wide association studies (GWAS) show a different face of big data.
- Prediction is important here, but not sufficient for the scientific understanding of disease
Computer Science and Data Science

Since 1950

- Logic
- Probability Theory
- Representation and Query Language
- Databases
- Algorithms and Data Structures
- Programming
- Systems (HW/SW)
- ...

Mathematics

Computer Science

Efficient algorithms and suitable data structures

Computation (Aufgaben als Optimierungsprobleme dargestellt)

Application