Intelligent Agents Topic Analysis: pLSI and LDA

Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Summary and Agenda

- IR Agents
- Task/goal: Information retrieval
- Agents visits document repositories and returns doc recommendations
- Means:
- Vector space (bag-of-words)
- Dimension reduction (LSI)
- Probability based retrieval (binary)
- Language models
- Today: Language models with dimension reduction
- Probabilistic Latent Semantic Indexing (pLSI)
- Latent Dirichlet Allocation (LDA): Topic Models
- Soon: What agents can take with them
- What agents can leave at the repository (win-win)

Acknowledgments

Ramesh M. Nallapati
presentation on
Generative Topic Models for Community Analysis
\&
Sina Miran
presentation on
Probabilistic Latent Semantic Indexing (PLSI)
\&
David M. Blei
presentation on
Probabilistic Topic Models

Topic Models

- Statistical methods that analyze the words of texts in order to:
- Discover the themes that run through them (topics)
- How those themes are connected to each other
- How they change over time

"Neuroscience"

 illustration

Topic Modeling Scenario

Topics
 $\begin{array}{lr}\text { number } & 0.02 \\ \text { computer } & 0.01\end{array}$

Documents
Topic proportions and assignments

- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

Topic Modeling Scenario

Topics

Documents
Topic proportions and assignments

- In reality, we only observe the documents
- The other structures are hidden variables
- Topic modeling algorithms infer these variables from data

Plate Notation

- Naïve Bayes Model: Compact representation
- C = topic/class (name for a word distribution)
- $\mathrm{N}=$ number of words in document
- W_{i} one specific word in corpus
- M documents, W now words in documents

- Idea: Generate doc from P(W, C)

Generative vs. Descriptive Models

- Generative models: Learn P(x, y)
- Tasks:
- Predict (infer) new data
- Transform $P(x, y)$ into $P(y \mid x)$ for classification
- Advantages
- Assumptions and model are explicit
- Use well-known algorithms
- Descriptive models: Learn $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$
- Task: Classify data
- Advantages
- Fewer parameters to learn
- Better performance for classification

Forward Sampling No Evidence

Input: Bayesian network

$$
\mathrm{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{N}\right\}, \mathrm{N}-\text { \#nodes, } \mathrm{T} \text { - \# samples }
$$

Output: T samples
Process nodes in topological order - first process the ancestors of a node, then the node itself:

1. Fort $=0$ to T
2. For $\mathrm{i}=0$ to N
3. $X_{i} \leftarrow$ sample x_{i}^{t} from $P\left(x_{i} \mid p a_{i}\right)$

Sampling A Value

What does it mean to sample x_{i}^{t} from $P\left(X_{i} \mid p a_{i}\right)$?

- Assume $\mathrm{D}\left(\mathrm{X}_{\mathrm{i}}\right)=\{0,1\}$
- Assume $P\left(X_{i} \mid p a_{i}\right)=(0.3,0.7)$

- Draw a random number \mathbf{r} from $[0,1]$

If \mathbf{r} falls in $[0,0.3]$, set $X_{i}=0$
If \mathbf{r} falls in $[0.3,1]$, set $X_{i}=1$

Forward Sampling (Example)

Evidence : $X_{3}=0$
// generate sample k

1. Sample x_{1} from $P\left(x_{1}\right)$
2. Sample x_{2} from $P\left(x_{2} \mid x_{1}\right)$
3. Sample x_{3} from $P\left(x_{3} \mid x_{1}\right)$
4. If $x_{3} \neq 0$, reject sample and start from 1 , otherwise
5. sample x_{4} from $P\left(x_{4} \mid x_{2}, x_{3}\right)$

Rejection sampling (rather inefficient)

Earlier Topic Models: Topics Known

- Unigram
- No context information

$$
P\left(w_{1}, \ldots, w_{N}\right)=\prod_{i} P\left(w_{i}\right)
$$

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish
that, or, limited, the
Automatically generated sentences from a unigram model

Multinomial Naïve Bayes

- How to specify Domain(C)?
- Domain(C) $=\{1,2, \ldots, k\}$ or
- Domain(C) $=\{0,1\}^{k}$
- How to specify $P\left(c_{d}\right)$?
- Define a table

- or use parameterized distribution $\pi=\left(p_{1}, \ldots, p_{K}\right)$
- $\mathrm{P}(\mathrm{C}=c \mid \pi)=\prod_{k=1}^{K} \pi_{\substack{10 \\ \text { mecous }}}^{K} \pi_{k}^{z k}$

Recap: Binomial Distribution

- Describes the number of successes in a series of independent trials with two possible outcomes "success" or "no success"
- $\mathrm{n}=$ \#trials
$\mathrm{p}=$ \#successful trials / n
- Description of frequency of having exactly k successful trials as a function

$$
\mathrm{B}_{\mathrm{p}, \mathrm{n}}(\mathrm{k})=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Es gilt: $\sum_{i=0} B_{p, n}(i)=1$
- If $\mathrm{n}=1$: Bernoulli distribution

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Multinomial Distribution Mult(n| $\boldsymbol{\pi})$

- Generalization of binomial distribution
- K possible outcomes instead of 2
- Probability mass function
- $\mathrm{n}=$ number of trials
- $x_{j} \in\{0,1\}$ a count for how often class j occurs $\sum_{i=1}^{k} x_{i}=n$
- $p_{j}=$ probability of class j occurring

$$
\operatorname{Mult}\left(x_{1}, \ldots, x_{K} ; p_{1}, \ldots, p_{K}\right)=\frac{\Gamma\left(\sum_{i} x_{i}+1\right)}{\prod_{i} \Gamma\left(x_{i}+1\right)} \prod_{i=1}^{K} p_{i}^{x_{i}}
$$

- Here, the input to $\Gamma(\cdot)$ is a positive integer, so $\Gamma(n)=(n-1)$!
- If $\mathrm{n}=1$: called categorial distribution ("multinoulli")
- Often written Mult (.; p_{1}, \ldots, p_{K}) or $\operatorname{Mult}\left(. \mid p_{1}, \ldots, p_{K}\right)$
- Generates a one-hot vector

Sampling

- A variable value a can be sampled from a discrete distribution

$$
\pi=\left(p_{1}, \ldots, p_{K}\right)
$$

- Notation: a~Mult(. $\mid \pi$)

One-hot vector to be generated with position probability of indicator controlled by π

- Find $l \in\{1,2, \ldots, k\}$ such that

$$
\sum_{i=1}^{l-1} p_{i}<x \leq \sum_{i=1}^{l} p_{i}
$$

- Return $\left(z_{1}, \ldots, z_{K}\right)$ such that $z_{l}=1$ and $z_{i}=0$ für $i \neq l$

Multinomial with Matrices

- Let β be a $K \times V$ matrix (V vocabulary size), each row denotes a word distribution of a topic
- Select row k before applying multinomial:
- Notation: Mult(. | β_{k}) or Mult(. | $\left.\beta, k\right)$ or Mult(. $\mid k, \beta$)

Mixture of Unigrams: Known Topics

- Multinomial Naïve Bayes
- For each document $\mathrm{d}=1, \ldots, \mathrm{M}$
- Generate $\mathrm{C}_{\mathrm{d}} \sim \operatorname{Mult}(. \mid \pi)$
- For each position $\mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{d}}$
- Generate $\mathrm{w}_{\mathrm{i}} \sim \operatorname{Mult}\left(. \mid \beta, c_{d}\right)$

$$
\prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}}, c_{d} \mid \beta, \pi\right)
$$

$=\prod_{d=1}^{M} P\left(c_{d} \mid \pi\right) \prod_{i=1}^{N_{d}} P\left(w_{i} \mid \beta, c_{d}\right)=\prod_{d=1}^{M} \pi_{c_{d}} \prod_{i=1}^{N_{d}} \beta_{c_{d}, w_{i}}$

$$
\begin{aligned}
& \pi_{c_{d}}:=P\left(c_{d} \mid \pi\right) \\
& \beta_{c_{d}, w_{i}}:=P\left(w_{i} \mid \beta, c_{d}\right) \\
& \text { multinomial }
\end{aligned}
$$

Mixture of Unigrams: Unknown Topics

- Topics/classes are hidden
- Joint probability of words and classes

$$
\prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}}, z_{d} \mid \beta, \pi\right)=\prod_{d=1}^{M} \pi_{z_{d}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

- Sum over topics ($\mathrm{K}=$ number of topics)

$$
\prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}} \mid \beta, \pi\right)=\prod_{d=1}^{M} \sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun \& Tom Mitchell,

$$
\pi_{z_{k}}:=P\left(z_{k} \mid \pi\right)
$$

Learning to Classify Text from Labeled and Unlabeled Documents, Proc. AAAI 98, Pages 792-799, 1998.

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun \& Tom Mitchell Text Classification from Labeled and Unlabeled Documents using EM Journal of Machine Learning volume 39, pages 103-134, 2000.

Mixture of Unigrams: Learning

- Learn parameters π and β

$$
\operatorname{argmax}_{\beta \pi} \prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}} \mid \beta, \pi\right)
$$

$$
P\left(w_{1}, \ldots, w_{N_{d}} \mid \beta, \pi\right)=\sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

- Use likelihood

$$
\sum_{d=1}^{M} \log P\left(w_{1}, \ldots, w_{N_{d}} \mid \beta, \pi\right)=\sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

- Solve

$$
\operatorname{argmax}_{\beta \pi} \sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

- Not a concave/convex function
- Note: a non-concave/non-convex function is not necessarily convex/concave

- Possibly no unique max, many saddle or turning points

No easy way to find roots of derivative

Trick: Optimize Lower Bound

Mixture of Unigrams: Learning

$$
\begin{gathered}
\pi_{z_{k}}:=P\left(z_{k} \mid \pi\right) \\
\beta_{z_{k}, w_{i}}:=P\left(w_{i} \mid \beta, z_{k}\right)
\end{gathered}
$$

- The problem

$$
\operatorname{argmax}_{\beta \pi} \sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}
$$

- Optimize w.r.t. each document
- Derive lower bound
\mathbf{a}, \mathbf{b} distribution vectors

$$
\begin{gathered}
\log \sum_{i} \gamma_{i} x_{i} \geq \sum_{i} \gamma_{i} \log x_{i} \text { where } \gamma_{i} \geq 0 \wedge \sum_{i} \gamma_{i}=1 \quad \begin{array}{c}
\text { Jensen's inequality } \\
\log (\mathbf{a} \cdot \mathbf{b}) \geq \mathbf{a} \cdot \log \mathbf{b}
\end{array} \\
\log \sum_{i} x_{i}=\log \sum_{i} \gamma_{i} \frac{x_{i}}{\gamma_{i}} \geq \sum_{i}\left(\gamma_{i} \log x_{i}-\gamma_{i} \log \gamma_{i}\right) \\
\begin{array}{c}
\mathrm{H}(\gamma) \\
\begin{array}{c}
\text { Entropy of } \gamma_{d i} \\
\text { Sometimes } \\
\text { called I(.) }
\end{array}
\end{array} \\
\log \sum_{k=1}^{K} \pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}} \geq \sum_{k=1}^{K}\left(\gamma_{k} \log \left(\pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}\right)\right)+H(\gamma)
\end{gathered}
$$

Mixture of Unigrams: Learning

- Optimization problem for each document

$$
\operatorname{argmax}_{\beta \pi} \sum_{k=1}^{K}\left(\gamma_{k} \log \left(\pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k} w_{i}}\right)\right)+H(\gamma)
$$

Convex?
Concave?

- We have introduced a new latent variable γ to approximate the original functional to be optimized
- Each document is assumed to be associated with a latent variable $\gamma \in[0,1]^{\mathrm{K}}, \Sigma_{k} \gamma_{k}=1$ independent of other random variables
- Can be seen as a class in the new space $\gamma_{k}, \pi_{z_{k}}, \beta_{z_{k}, w_{i}}$

Mixture of Unigrams: Learning

- New optimization problem:

$$
\operatorname{argmax}_{\beta \pi} \sum_{k=1}^{K}\left(\gamma_{k} \log \left(\pi_{z_{k}} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}\right)\right)+H(\gamma)
$$

- Solution: Expectation Maximization
- Iterative algorithm to find local optimum
- Guess values of $\gamma_{k}, \pi_{z_{k}}, \beta_{z_{k}, w_{i}}$
- Compute $\gamma_{k}=P\left(\gamma_{k} \mid \pi_{z_{k}}, \beta_{z_{k}, w_{i}}\right)$ according to model
- Use Maximum-likelihood estimation of to optimize $\pi_{z_{k}}, \beta_{z_{k}, w_{i}}$
- Until no further improvement
- Guaranteed to maximize a lower bound on the loglikelihood of the observed data
- Use $\pi_{z_{k}}, \beta_{z_{k}, w_{i}}$ to estimate $P\left(z_{k} \mid \pi\right), P\left(w_{i} \mid \beta, z_{k}\right)$, respectively

Graphical Idea of the EM Algorithm

$$
\theta=\left(\pi_{k}, \beta_{k, w_{i}}\right)
$$

Mixture of Unigrams: Learning

- EM solution
- E step (compute $\left.\gamma_{k}=P\left(\gamma_{k} \mid \pi_{z_{k}}, \beta_{z_{k}, w_{i}}\right)\right)$

$$
\gamma_{k}^{(t+1)}=\frac{\gamma_{k}^{(t)} \pi_{z_{k}}^{(t)} \prod_{i=1}^{N_{d}} \beta_{z_{k}, w_{i}}^{(t)}}{\sum_{j=1}^{K} \gamma_{z_{d j}}^{(t)} \pi_{z_{j}}^{(t)} \prod_{i=1}^{N_{d}} \beta_{z_{j}, w_{i}}^{(t)}}
$$

Independence assumption

- M step (maximum likelihood optimization: use frequencies)

$$
\pi_{z_{k}}^{(t+1)}=\frac{\sum_{d=1}^{M} \gamma_{d k}^{(t)}}{M} \quad \beta_{z_{k}, w_{i}}^{(t+1)}=\frac{\sum_{d=1}^{M} \gamma_{d k}^{(t)} n\left(d, w_{i}\right)}{\sum_{d=1}^{M} \gamma_{d k}^{(t)} \sum_{j=1}^{N_{d}} n\left(d, w_{j}\right)}
$$

$n\left(d, w_{i}\right)$ number of times
word w_{i} occurs in document d

Back to Topic Modeling Scenario

- Documents are associated with a single topic
- Words do not depend on context
- Bag-of-words model

Probabilistic LSI

- Select a document d with probability P(d)
- For each word of din the training set
- Choose a topic z with probability P(z|d)
- Generate a word with probability P(w|z)

$$
P\left(d, w_{i}\right)=P(d) \sum_{k=1}^{K} P\left(w_{i} \mid z_{k}\right) P\left(z_{k} \mid d\right)
$$

- Documents can have multiple topics

pLSI

- Joint probability for all documents, words

$$
\prod_{d=1}^{M} \prod_{i=1}^{N_{d}} P\left(d, w_{i}\right)^{n\left(d, w_{i}\right)}
$$

- Distribution for document d, word w_{i}

$$
P\left(d, w_{i}\right)=P(d) \sum_{k=1}^{K} P\left(w_{i} \mid z_{k}\right) P\left(z_{k} \mid d\right)
$$

- Reformulate $P\left(z_{k} \mid d\right)$ with Bayes' Rule

$$
P\left(d, w_{i}\right)=\sum_{k=1}^{K} P\left(d \mid z_{k}\right) P\left(z_{k}\right) P\left(w_{i} \mid z_{k}\right)
$$

$$
\mathrm{P}\left(\mathrm{~d} \mid \mathrm{z}_{\mathrm{k}}\right)
$$

pLSI: Learning Using EM

- Model

$$
\prod_{d=1}^{M} \prod_{i=1}^{N_{d}} P\left(d, w_{i}\right)^{n\left(d, w_{i}\right)} \quad P\left(d, w_{i}\right)=\sum_{k=1}^{K} P\left(d \mid z_{k}\right) P\left(z_{k}\right) P\left(w_{i} \mid z_{k}\right)
$$

- Likelihood

$$
L=\sum_{d=1}^{M} \sum_{i=1}^{N_{d}} n\left(d, w_{i}\right) \log P\left(d, w_{i}\right)=\sum_{d=1}^{M} \sum_{i=1}^{N_{d}} n\left(d, w_{i}\right) \log \sum_{k=1}^{K} P\left(d \mid z_{k}\right) P\left(z_{k}\right) P\left(w_{i} \mid z_{k}\right)
$$

- Parameters to learn (M step)

$$
P\left(d \mid z_{k}\right) \quad P\left(z_{k}\right) \quad P\left(w_{i} \mid z_{k}\right)
$$

- (E step)

$$
P\left(z_{k} \mid d, w_{i}\right)
$$

pLSI: Learning Using EM

- EM solution
- E step

$$
P\left(z_{k} \mid d, w_{i}\right)=\frac{P\left(z_{k}\right) P\left(d \mid z_{k}\right) P\left(w_{i} \mid z_{k}\right)}{\sum_{m=1}^{K} P\left(z_{m}\right) P\left(d \mid z_{m}\right) P\left(w_{i} \mid z_{m}\right)}
$$

$P\left(d \mid z_{k}\right)$

- M step

$$
\begin{aligned}
& P\left(w_{i} \mid z_{k}\right)=\frac{\sum_{d=1}^{M} n\left(d, w_{i}\right) P\left(z_{k} \mid d, w_{i}\right)}{\sum_{d=1}^{M} \sum_{j=1}^{N_{d}} n\left(d, w_{j}\right) P\left(z_{k} \mid d, w_{j}\right)} \\
& P\left(d \mid z_{k}\right)=\frac{\sum_{i=1}^{N_{d}} n\left(d, w_{i}\right) P\left(z_{k} \mid d, w_{i}\right)}{\sum_{d=1}^{M} \sum_{i=1}^{N_{d}} n\left(d, w_{i}\right) P\left(z_{k} \mid d, w_{i}\right)} \\
& P\left(z_{k}\right) \quad=\frac{1}{R} \sum_{d=1}^{M} \sum_{i=1}^{N_{d}} n\left(d, w_{i}\right) P\left(z_{k} \mid d, w_{i}\right), R=\sum_{d=1}^{M} \sum_{i=1}^{N_{d}} n\left(d, w_{i}\right)
\end{aligned}
$$

pLSI: Overview

- More realistic than mixture model
- Documents can discuss multiple topics!
- Problems
- Very many parameters
- Danger of overfitting

pLSI Testrun

- PLSI topics (TDT-1 corpus)
- Approx. 7 million words, 15863 documents, $\mathrm{K}=128$

The two most probable topics that generate the term "flight" (left) and "love" (right).

List of most probable words per topic, with decreasing probability going down the list.

"plane"	"space shuttle"	"family"	"Hollywood"
plane	space	home	film
airport	shuttle	family	movie
crash	mission	like	music
flight	astronauts	love	new
safety	launch	kids	best
aircraft	station	mother	hollywood
air	crew	life	love
passenger	nasa	happy	actor
board	satellite	friends	entertainment
airline	earth	cnn	star

Relation with LSI

$$
\begin{array}{cc}
P=U_{k} \Sigma_{\mathrm{k}} V_{k}^{T} & P\left(d, w_{i}\right)=\sum_{k=1}^{K} P\left(d \mid z_{k}\right) P\left(z_{k}\right) P\left(w_{i} \mid z_{k}\right) \\
U_{k}=\left(P\left(d \mid z_{k}\right)\right)_{d, k} & \Sigma_{\mathrm{k}}=\operatorname{diag}\left(P\left(z_{k}\right)\right)_{k} \quad V_{k}=\left(P\left(w_{i} \mid z_{k}\right)\right)_{i, k}
\end{array}
$$

- Difference:
- LSI: minimize Frobenius (L-2) norm
- pLSI: log-likelihood of training data

Intelligent Agents Topic Analysis: pLSI and LDA

Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

pLSI with Multinomials

$$
\begin{aligned}
\pi_{d} & :=P(d \mid \pi) \\
\beta_{k, w_{i}} & :=P\left(w_{i} \mid \beta, z_{k}\right) \\
\theta_{d, k} & :=P\left(z_{k} \mid \theta_{d}\right)
\end{aligned}
$$

- Multinomial Naïve Bayes
- Select document d ~Mult($\cdot \mid \pi$)
- For each position $\mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{d}}$
- Generate $z_{i} \sim \operatorname{Mult}\left(\cdot \mid d, \theta_{d}\right)$

Multiple topics

- Generate $\mathrm{w}_{\mathrm{i}} \sim \operatorname{Mult}\left(\cdot \mid z_{\mathrm{i}}, \beta_{\mathrm{k}}\right)$
$\prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}}, d \mid \beta, \theta, \pi\right)$

$$
\begin{aligned}
& =\prod_{d=1}^{M} P(d \mid \pi) \prod_{i=1}^{N_{d}} \sum_{k=1}^{K} P\left(z_{i}=k \mid d, \theta_{d}\right) P\left(w_{i} \mid \beta_{k}, z_{i}\right) \\
& =\prod_{d=1}^{M} \pi_{d} \prod_{i=1}^{N_{d}} \sum_{k=1}^{K} \theta_{d, k} \beta_{k, \stackrel{\circ}{w_{i}}} \begin{array}{l}
\text { Maximum- } \\
\text { likelihood } \\
\text { learning? }
\end{array}
\end{aligned}
$$

Prior Distribution for Topic Mixture

- Goal: topic mixture proportions for each document could drawn from some distribution.
- Distribution on multinomials (k-tuples of non-negative numbers that sum to one)
- The space of all of these multinomials can be interpreted geometrically as a ($\mathrm{k}-1$)-simplex
- K-1 independent values
- Simplex $=$ Generalization of a triangle to ($\mathrm{k}-1$) dimensions
- Criteria for selecting our prior:
- It needs to be defined for a (k-1)-simplex

The possible probabilities for the categorical distribution with $k=3$ are the 2-simplex $p_{1}+p_{2}+p_{3}=1$, embedded in 3 -space.

- Should have nice properties

LDA Model - Parameters

\leftarrow Proportions parameter
(k-dimensional vector of real numbers)
\leftarrow Per-document topic distribution
(k-dimensional vector of probabilities summing up to 1)
\leftarrow Per-word topic assignment
(number from 1 to k)
\leftarrow Observed word
(number from 1 to v, where v is the number of words in the vocabulary)
\leftarrow Word "prior"
(v -dimensional)

LDA Model

Latent Dirichlet Allocation

- Document = mixture of topics (as in pLSI), but according to a Dirichlet prior
- When we use a uniform Dirichlet prior, LDA= pLSI

Dirichlet Distributions

$$
p(\theta \mid \alpha)=\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}
$$

- Defined over a (k-1)-simplex
- Takes K non-negative arguments which sum to one.
- Consequently it is a natural distribution to use over multinomial distributions.

The possible probabilities for the $\quad \square$ categorical distribution with $k=3$ are the 2-simplex $p_{1}+p_{2}+p_{3}=1$, embedded in 3 -space.

- The Dirichlet parameter α_{i} can be thought of as a prior count of the $\mathrm{i}^{\text {th }}$ class

$$
\operatorname{Dir}\left(x_{1}, \ldots, x_{K} ; p_{1}, \ldots, p_{K}\right)=\frac{\Gamma\left(\sum_{i} x_{i}+1\right)}{\prod_{i} \Gamma\left(x_{i}+1\right)} \prod_{i=1}^{K} p_{i}^{x_{i}}
$$

Dirichlet Distribution over a 2-Simplex

LDA Model - Plate Notation

- For each document d,
- Generate $\theta_{d} \sim$ Dirichlet (α)
- For each position $i=1, \ldots, N_{d}$
- Generate a topic $z_{i} \sim \operatorname{Mult}\left(\cdot \mid \theta_{\mathrm{d}}\right)$
- Generate a word $w_{i} \sim \operatorname{Mult}\left(\cdot \mid z_{i} \beta\right)$

$$
\begin{aligned}
& P\left(\beta, \theta, z_{1}, \ldots, z_{N_{d}}, w_{1}, \ldots, w_{N_{d}}\right) \\
& =\prod_{d=1}^{M} P\left(\theta_{d} \mid \alpha\right) \prod_{i=1}^{N_{d}} P\left(z_{i} \mid \theta_{d}\right) P\left(w_{i} \mid \beta, z_{i}\right)
\end{aligned}
$$

Corpus-level Parameter α (uniform: $\alpha_{i=} \alpha_{j}$)

- Let $\alpha=1$
- Per-document topic distribution: $K=10, D=15$

Corpus-level Parameter α

- $\alpha=10$

- $\alpha=100$

Corpus-level Parameter α

- $\alpha=0.1$

- $\alpha=0.01$

Back to Topic Modeling Scenario

What are the words' topics and word distribs of topics?

- $P(\beta, \theta, \boldsymbol{z} \mid \boldsymbol{w}, \alpha)$

$\begin{array}{ll}\text { brain } & 0.04 \\ \text { netr }\end{array}$ neuron nerve 0.02

Topics
Documents

Topic-specific Words: "Smoothed" LDA Model

- Give a different word distribution to each topic
- β is $K \times V$ matrix (V vocabulary size), each row denotes word distribution of a topic
- For each document d
- Choose $\theta_{d} \sim$ Dirichlet (α)
- Choose $\beta_{k} \sim \operatorname{Dirichlet}(\eta)$
- For each position $\mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{d}}$
- Generate a topic $z_{\mathrm{k}} \sim \operatorname{Mult}\left(\cdot \mid \theta_{\mathrm{d}}\right)$
- Generate a word $\mathrm{w}_{\mathrm{i}} \sim \operatorname{Mult}\left(\cdot \mid z_{\mathrm{k}}, \beta_{\mathrm{zk}}\right)$

But why does LDA actually work?

- Trade-off between two goals

1. For each document, allocate its words to as few topics as possible
2. For each topic, assign high probability to as few terms as possible

- These goals are at odds.
- Putting a document in a single topic makes \#2 hard: All of its words must have non-negligible probability under that topic
- Putting very few words in each topic makes \#1 hard: To cover a document's words, it must assign many topics to it
- Trading off these goals finds groups of tightly co-occurring words

Query Answering Problem (non-smoothed version)

This not only looks awkward, but is as well computationally intractable in general. Coupling between θ and $\beta_{i j}$. Solution: Approximations.

$$
p(\theta \mid \alpha)=\frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}
$$

LDA Learning

- Parameter learning:
- Variational Inference / EM
- Numerical approximation using lower-bounds
- Results in biased solutions
- Convergence has numerical guarantees
- Gibbs Sampling
- Stochastic simulation
- Unbiased solutions
- Stochastic convergence

We have a lecture on Approximation Algorithms for Probabilistic
Models!

Back to Agents

- Agents not only use models
- Agents build models that are appropriate to fulfil the agents' goals ...
- ... or maximize the utilities derived from preference structures and goals
- Agents derive approximation algorithms for query answering on the models they find appropriate

QA strategies

LDA Application: Reuters Data

- Setup
- 100-topic LDA trained on a 16,000 documents corpus of news articles by Reuters
- Some standard stop words removed
- Top-7 words from some of the $P(w \mid z)$

"Arts"	"Budgets"	"Children"	"Education"
new	million	children	school
film	tax	women	students
show	program	people	schools
music	budget	child	education
movie	billion	years	teachers
play	federal	families	high
musical	year	work	public

LDA Application: Reuters Data

- Result

Again: "Arts", "Budgets", "Children", "Education".
The William Randolph Hearst Foundation will give $\$ 1.25$ million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants.

Measuring Performance

- Perplexity of a probability model
- Describe how well a probability distribution or probability model predicts a sample
- q : Model of an unknown probability distribution p based on a training sample drawn from p
- Evaluate q by asking how well it predicts a separate test sample x_{1}, \ldots, x_{N} also drawn from p
- Perplexity of q w.r.t. sample x_{1}, \ldots, x_{N} defined as

$$
2^{-\frac{1}{N} \sum_{i=1}^{N} \log _{2} q\left(x_{i}\right)}
$$

- A better model q will tend to assign higher probabilities to $q\left(x_{i}\right)$ \rightarrow lower perplexity ("less surprised by sample")

Perplexity of Various Models

Use of LDA

- A widely used topic model (Griffiths, Steyvers, 04)
- Complexity is an issue
- Use in IR:
- Ad hoc retrieval (Wei and Croft, SIGIR 06: TREC benchmarks)
- Improvements over traditional LM (e.g., LSI techniques)
- But no consensus on whether there is any improvement over a relevance model, i.e., model with relevance feedback (relevance feedback part of the TREC tests)

T. Griffiths, M. Steyvers, Finding Scientific Topics. Proceedings of the National Academy of Sciences, 101 (suppl. 1), 5228-5235. 2004
Xing Wei and W. Bruce Croft. LDA-based document models for ad-hoc retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '06). ACM, New York, NY, USA, 178-185. 2006.

Acknowledgements

Topic modelling

Tomoharu Iwata

Social annotation services

- Delicious, Flickr, CiteULike, youtube, Last.fm, Technorati, Hatena
- Users can attach annotations freely to objects, and share the annotations.

Derive content-unrelated annotations

- manufacturer of camera that took the photo
- 'nikon', ‘canon’
- when they were taken
- '2008', ‘november'
- remind the annotator
- 'toread'
- qualities
- 'great', ‘*****'
- ownership

Proposed model

- generative model for contents (words) and annotations with relevance based on topic models
- infer relevance to the content for each annotation

Latent Dirichlet allocation

[Blei et. al. Latent Dirichlet Allocation, JMLR2003]

Correspondence LDA

David M. Blei and Michael I. Jordan. Modeling annotated data. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (SIGIR '03). Association for Computing Machinery, New York, NY, USA, 127-134. 2003.

Proposed model (Inference with Gibbs Sampling)

- N: \#words, M: \#annotations, D: \#documents, K: \#topics
- each annotation is associated with a latent variable $r, r=1$ if content-related, $\mathrm{r}=0$ otherwise

Topics in Delicious

	unrelated	Topic1	Topic2	Topic3	Topic4	Topic5
	reference web imported design internet online cool toread tools blog	money finance economics business economy Finance financial investing bailout finances	video music videos fun entertainment funny movies media Video film	opensource software programming development linux tools rails ruby webdev rubyonrails	food recipes recipe cooking Food Recipes baking health vegetarian diy	windows linux sysadmin Windows security computer microsoft network Linux ubuntu
		money financial credit market economic october economy banks government bank	music video link tv movie itunes film amazon play interview	project code server ruby rails source file version files development	recipe food recipes make wine made add love eat good	windows system microsoft linux software file server user files ubuntu

Topics in Flickr

Perplexity

The proposed method performed better than Corr-LDA in the case of noisy social annotation data.

Acknowledgements

Generative Topic Models for Community Analysis

Ramesh Nallapati
http://www.cs.cmu.edu/~wcohen/10-802/lda-sep-18.ppt
\&

Arthur Asuncion, Qiang Liu, Padhraic Smyth:
Statistical Approaches to Joint Modeling of Text and Network Data

What if the corpus has network structure?

CORA citation network. Figure from [Chang, Blei, AISTATS 2009]

Outline

- Topic Models for

Community Analysis

- Citation Modeling
- with pLSI
- with LDA
- Modeling influence of citations
- Relational Topic Models

Hyperlink Modeling Using pLSI

- Select document d ~Mult(.| | $)^{\text {(}}$
- For each position $\mathrm{n}=1, \ldots, \mathrm{~N}_{\mathrm{d}}$
- Generate $z_{\mathrm{n}} \sim \operatorname{Mult}\left(\cdot \mid \theta_{d}\right)$
- Generate $\mathrm{w}_{\mathrm{n}} \sim \operatorname{Mult}\left(\cdot \mid \beta_{z_{n}}\right)$
- For each citation $j=1, \ldots, L_{d}$
- Generate $\mathrm{z}_{\mathrm{j}} \sim \operatorname{Mult}\left(\cdot \mid \theta_{d}\right)$
- Generate $\mathrm{c}_{\mathrm{j}} \sim \operatorname{Mult}\left(\cdot \mid \gamma_{z_{j}}\right)$
$\pi_{d}:=P(d \mid \pi)$
Hyperlink Modeling Using pLSI

$$
\gamma_{k c_{i}}:=P\left(c_{i} \mid \gamma, z_{k}\right)
$$

$$
\theta_{d k}:=P\left(z_{k} \mid \theta_{d}\right)
$$

- pLSI likelihood

$$
\begin{aligned}
& \prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}} d \mid \theta, \beta, \pi\right) \\
= & \prod_{d=1}^{M} \pi_{d}\left(\prod_{i=1}^{N_{d}} \sum_{k=1}^{K} \theta_{d k} \beta_{k w_{n}}\right)
\end{aligned}
$$

- New likelihood

$$
\begin{aligned}
& \prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}}, c_{1}, \ldots, c_{L_{d}}, d \mid \theta, \beta, \gamma, \pi\right) \\
= & \prod_{d=1}^{M} \pi_{d}\left(\prod_{i=1}^{N_{d}} \sum_{k=1}^{K} \theta_{d k} \beta_{k w_{n}}\right)\left(\prod_{j=1}^{L_{d}} \sum_{k=1}^{K} \theta_{d k} \gamma_{k c_{j}}\right)
\end{aligned}
$$

- Learning using EM

Hyperlink Modeling Using pLSI

- Heuristic
$-0<\alpha<1$ determines the relative importance of content and hyperlinks

$$
\begin{aligned}
& \prod_{d=1}^{M} P\left(w_{1}, \ldots, w_{N_{d}}, c_{1}, \ldots, c_{L_{d}}, d \mid \theta, \beta, \gamma, \pi\right) \\
= & \prod_{d=1}^{M} \pi_{d}\left(\prod_{i=1}^{N_{d}} \sum_{k=1}^{K} \theta_{d k} \beta_{k w_{n}}\right)^{\alpha}\left(\prod_{j=1}^{L_{d}} \sum_{k=1}^{K} \theta_{d k} \gamma_{k c_{j}}\right)^{1-\alpha}
\end{aligned}
$$

Hyperlink modeling using PLSA

- Experiments: Text Classification
- Datasets:
- Web KB
- 6000 CS dept web pages with hyperlinks
- 6 Classes: faculty, course, student, staff, etc.
- Cora
- 2000 Machine learning abstracts with citations
- 7 classes: sub-areas of machine learning
- Methodology:
- Learn the model on complete data and obtain θ_{d} for each document
- Test documents classified into the label of the nearest neighbor in training set
- Distance measured as cosine similarity in the θ space
- Measure the performance as a function of α

Overview on Evaluation Measures

Hyperlink Modeling Using pLSI

Hyperlink modeling using LDA

- For each document d,
- Generate $\theta_{d} \sim$ Dirichlet(α)
- For each position $\mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{d}}$
- Generate a topic $z_{\mathrm{i}} \sim \operatorname{Mult}\left(\cdot \mid \theta_{d}\right)$
- Generate a word $\mathrm{w}_{\mathrm{i}} \sim \operatorname{Mult}\left(\cdot \mid \beta_{z_{n}}\right)$
- For each citation $j=1, \ldots, L_{c}$
- Generate $z_{\mathrm{i}} \sim \operatorname{Mult}\left(\theta_{\mathrm{d}}\right)$
- Generate $\mathrm{c}_{\mathrm{i}} \sim \operatorname{Mult}\left(\cdot \mid \gamma_{z_{j}}\right)$
- Learning using variational EM, Gibbs sampling
E. Erosheva, S Fienberg, J. Lafferty, Mixed-membership models of

Link-pLSI-LDA: Topic Influence in Blogs

Modeling Citation Influences - Copycat Model

- Each topic in a citing document is drawn from one of the topic mixtures of cited publications

Modeling Citation Influences

- Citation influence model: Combination of LDA and Copycat model

L. Dietz, St. Bickel, and T. Scheffer, Unsupervised Prediction of Citation Influences, In: Proc. ICML 2007.

Modeling Citation Influences

- Citation influence graph for LDA paper

Modeling Citation Influences

- Words in LDA paper assigned to citations

Cited Title	Associated Words	γ
Probabilistic Latent Semantic Indexing	text(0.04), latent(0.04), modeling(0.02), model(0.02), indexing(0.01), semantic(0.01), document(0.01), collections(0.01)	0.49
Modelling heterogeneity with and without the	dirichlet(0.02), mixture(0.02), allocation(0.01), context(0.01), Dirichlet process	variable(0.0135), bayes(0.01), model(0.01), proportions(0.01)

Relational Topic Model (RTM) [ChangBlei 2009]

- Same setup as LDA, except now we have observed network information across documents

Relational Topic Model (RTM) [ChangBlei 2009]

- For each document d
- Draw topic proportions $\theta_{d} \mid \alpha \sim \operatorname{Dir}(\alpha)$
- For each word $w_{d, n}$
- Draw assignment

$$
z_{d, n} \mid \theta_{d} \sim \operatorname{Mult}\left(\theta_{d}\right)
$$

- Draw word

$$
w_{d, n} \mid z_{d, n}, \beta_{1: K} \sim \operatorname{Mult}\left(\beta_{z_{d, n}}\right)
$$

- For each pair of documents d, d^{\prime}
- Draw binary link indicator $y \mid z_{d}, z_{d^{\prime}} \sim \psi\left(\cdot \mid z_{d}, z_{d^{\prime}}, \eta\right)$

Document networks

	\# Docs	\# Links	Ave. Doc- Length	Vocab-Size	Link Semantics
CORA	4,000	17,000	1,200	60,000	Paper citation (undirected)
Netflix Movies	10,000	43,000	640	38,000	Common actor/director
Enron (Undirected)	1,000	16,000	7,000	55,000	Communication between person i and person j
Enron (Directed)	2,000	21,000	3,500	55,000	Email from person i to person j

Conclusion

- Topic Modeling
- Relational topic modeling provides a useful start for combining text and network data in a single statistical framework
- RTM can improve over simpler approaches for link prediction
- Opportunities for future work:
- Faster algorithms for larger data sets
- Better understanding of non-edge modeling
- Extended models

