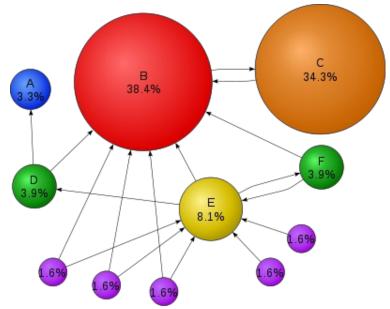
Einführung in Web- und Data-Science

Begriffsbestimmungen

Prof. Dr. Ralf Möller


Universität zu Lübeck Institut für Informationssysteme

Web und Data Science

Web Science

- Analyse von Strukturen im Web (Mensch und Computer)
- Formalisierung durch große Graphstrukturen und entsprechende Entscheidungsprobleme über Graphen
- Beispiel: Pagerank (Bewertung von Webseiten)

Zufallssurfer-Modell:

Größe der Kreise in etwa proportional der relativen Häufigkeit, mit der sich ein Surfer auf einer Seite befindet

[Wikipedia]

Web Science

- Graphstrukturen extrem groß
- Verfahren zur
 Lösung von
 Entscheidungs problemen
 extrem aufwendig
- Graphdaten unterliegen ständigem Wandel und so auch die Auswertungsergebnisse

Praktische und Technische Informatik

Mathematik Stochastik Statistik

Web Science

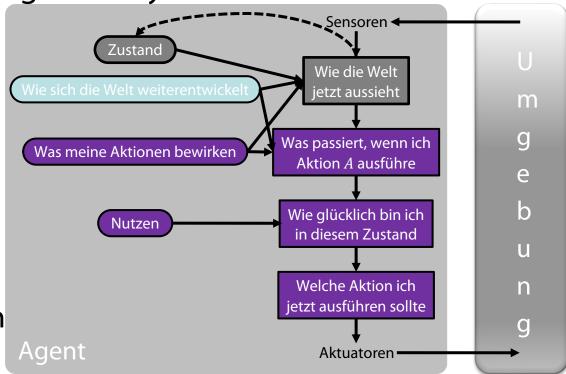
Formale Grundlagen der Informatik

Data Science

- Extraktion von
 Wissen aus Daten
 (u.a. Graphdaten)
- Entwicklung innovativer
 Konzepte in den Bereichen
 Logik, Datenbanken
 und Stochastik / Statistik
 (Datenanalyse und
 Wissensentdeckung)

Praktische und Technische Informatik Mathematik Stochastik Statistik

Data Science

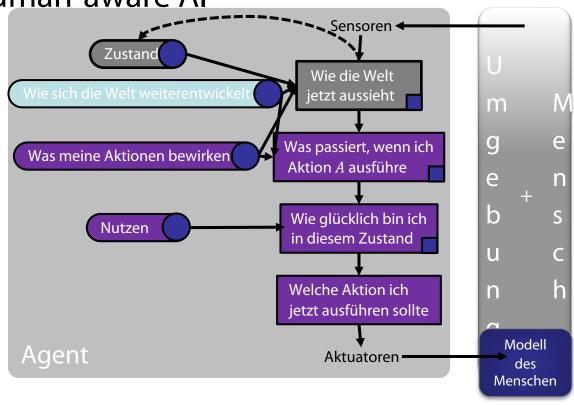

Formale Grundlagen der Informatik

Verwendung von LADS und Analysis

... und was ist mit Künstlicher Intelligenz?

Wissenschaft der intelligenten Systeme

- Agenten
 - Haben/bilden Ziele
 - Sensoren/Aktoren
 - Handlungsplanung
 - Lernen zur Laufzeit
- Mechanismen
 - Globale Kooperation von Agenten zur
 - Agent Erreichung eines gemeinsamen Ziels
- Agenten interagieren mit Menschen (and anderen Agenten)
 - Ziele der Agenten beeinflussbar



Wissenschaft Künstliche Intelligenz

- Nur algorithmische Modellierung für Agenten?
 - Transparenz, Erklärungsfähigkeit

Neue Aspekte: Human-aware Al

- Erwartungskonformität
- BeweisbarnützlicheAgenten

Daten Modelle vs. Algorithmische Modelle

Datenmodellierung

VS.

Algorithmische Modellierung

 $Y \leftarrow F(X, zuf\"{a}lliges\ Rauschen, Parameter)$

Wir verstehen die Welt ?

Wie gut funktioniert meine Datenmodellierung? Statistiker, Datenanalyst, Data Miner-

Lineare Regression Logistische Regression Bekannte Wahrscheinlichkeiten Konfidenz Intervalle Vorhersage von Variablen & Anpassungsgüte Statistiker, Data Scientist Maschinelles Lernen

Wir verstehen die Welt nicht ?

Die Welt produziert Daten in einer Black Box

Data Scientist

-Maschinelles Lernen, X

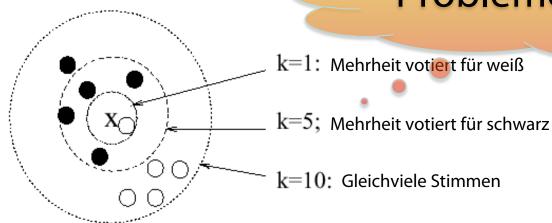
Random Forrest, SVM

Unbekannte multivariate Verteilung

Iterativ

Vorhersagewahrscheinlichkeit

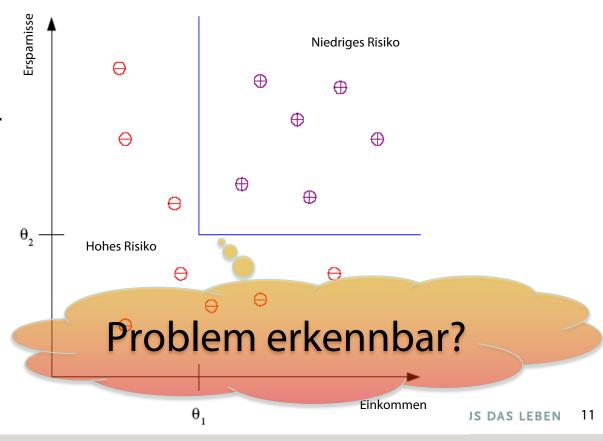
Web- und Data Science: Herausforderungen


- Große Datenbestände
 - Speicher und Zugriffstechnologie
- Starker Zuwachs an Daten, hohe Dynamik
 - Hohe Datenraten und Echtzeitanforderungen
- Heterogene Datenbestände
 - Verteiltes Datenmanagement
 - Datenintegration

Instanzbasierte Anfragebeantwortung

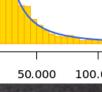
- Annahme: Gegeben viele Datenpunkte
 - Beispielmerkmale: (x, y, Farbe), Farbe ∈ { weiß, schwarz }
- Anfrage: Datenpunkt ohne Wert für bestimmtes Merkmal
 - Beispiel: Merkmal Farbe ohne Wert
- Anfragebeantwortung (Klassifikation des Anfragepunkts):
 Mehrheitsvotum der k-nächsten Nachbarn (kNN-Verfahren)

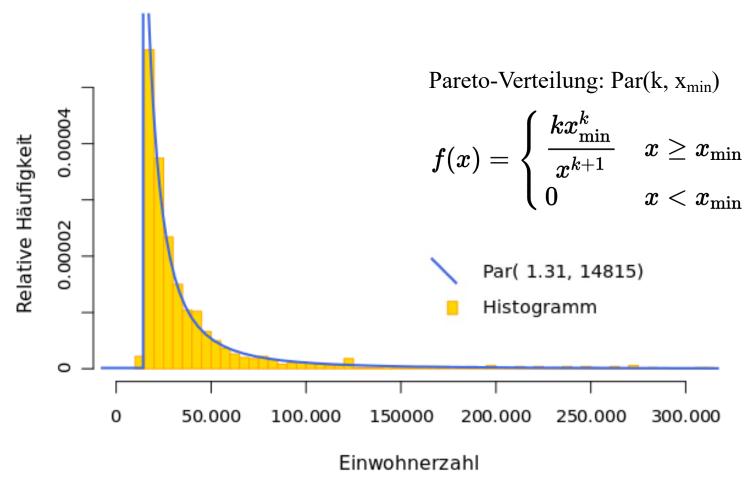
Probleme erkennbar?


Probleme mit kNN

- Klassifikationsergebnis stark von k abhängig
- Hoher Speicherbedarf
- Effizienter Zugriff auf "Nachbarn" erfordert weitere Maßnahmen (noch mehr Speicherbedarf)
- Klassifikation basierend auf den Daten

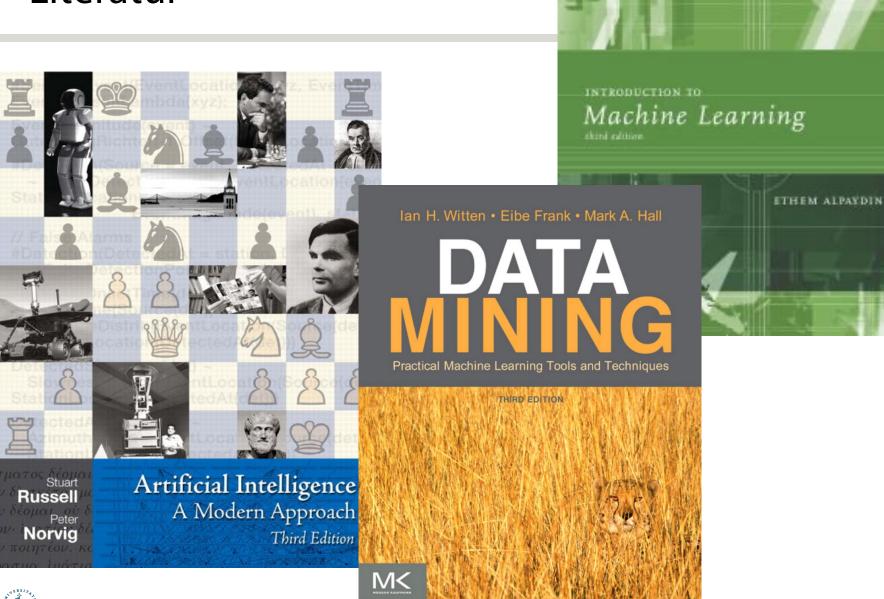
Modellbasierte Anfragebeantwortung

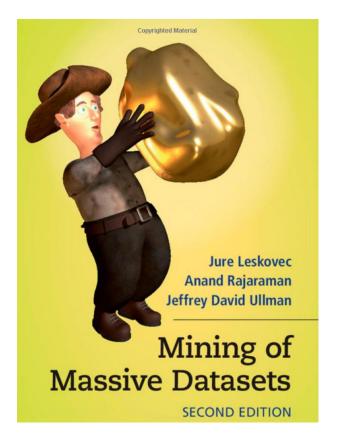

- Repräsentation der Daten durch Parameter eines Modells
 - Wenn (Einkommen > θ_1 ∧ Ersparnisse > θ_2), dann kreditwürdig (\oplus), sonst nicht (\ominus)
- Nur 2 Parameter nötig: (θ_1, θ_2)
- Modell fordert geringen Speicher


Aufgabe

- Anzahl von Städten mit bestimmten Einwohnerzahlen schätzen
- Daten: Liste von Einwohnerzahlen (auf 5000er gerundet)
- Explizites Modell: Zählerfeld aufbauen
 Unvollständigkeit der Daten
- Implizites Modell: Potenzgesetz y=axb
 - a und b bestimmen (a positive, b negativ)
 - Aufwendiges Optimierungsproblem Lösen

Begriff der "Verteilung"


Einwohnerzahlen Deutscher Städte


Literatur

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Literatur

- Stuart Russell, Peter Norvig, Artificial Intelligence –
 A Modern Approach, Pearson, 2009 (oder 2003er Ed.)
- Ian H. Witten, Eibe Frank, Mark A. Hall,
 Data Mining: Practical Machine Learning
 Tools and Techniques, Morgan Kaufmann,
 2011
- Ethem Alpaydin,
 Introduction to Machine Learning,
 3rd Ed., MIT Press, 2014
- Jure Leskovec, Anand Rajaraman,
 Jeffrey D. Ullman, Mining of Massive Datasets,
 2nd Ed., Cambridge University Press, 2014
- Viele zusätzliche Bücher, Präsentationen, und Videos im Web

