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Person Age Male? Height > 55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

x =
age

1[gender=male]

!

"

#
#

$

%

&
&

y =
1 height > 55"
0 height ≤ 55"

"
#
$

%$

Male?

Age>9? Age>10?

1 0 1 0

Yes

Yes Yes No

No

No

Recap: Decision Trees
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Regression Trees
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Ensembles of Classifiers

• None of the classifiers is perfect
• Idea

– Combine the classifiers to improve performance

• Ensembles of classifiers
– Combine the classification results from different 

classifiers to produce the final output
• Unweighted voting
• Weighted voting

CS 4700, Foundations of  Artificial Intelligence, Carla P. Gomes
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Example: Weather Forecast

Reality

1

2

3

4

5

Combine

X X X
X X X

X X X
X X

X X

CS 4700, Foundations of  Artificial Intelligence, Carla P. Gomes

5



Regression Tree Ensembles
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Voting

• Linear combination of dj ∈ {-1, 1}

• Unweighted voting: wj = 1/L

• Also possible dj ∈ ℤ
• High values for |y| means

high "confidence"
• Possibly use sign(y) ∈ {-1, 1}
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Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging [Breiman 94]
– Random Forests [Breiman 97] 

• Ensemble methods that minimize bias
– Boosting [Freund&Schapire 95, Friedman 98]
– Ensemble Selection

Subsequent slides are based on a presentation by Yisong Yue
An Introduction to Ensemble Methods
Bagging, Boosting, Random Forests, and More 8



Generalization Error

• “True” distribution: P(x,y) 
– Unknown to us

• Train: h(x) = y 
– Using training data S = {(x1,y1),…,(xn,yn)}
– Sampled from P(x,y)

• Generalization Error:
– L(h) = E(x,y)~P(x,y)[ f(h(x),y) ]     
– E.g., f(a,b) = (a-b)2
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Perso
n

Age Male? Height > 
55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height > 
55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Margare
t

10 0 1

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1

… L(h) = E(x,y)~P(x,y)[ f(h(x),y) ]  
Generalization Error:

h(x)y

1
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Bias/Variance Tradeoff

• Treat h (x|S) as a random function 
– Depends on training data S

• L = ES[ E(x,y)~P(x,y)[ f(h (x|S),y) ] ]
– Expected generalization error
– Over the randomness of S

1
1



Bias/Variance Tradeoff

• Squared loss: f(a,b) = (a-b)2

• Consider one data point (x,y)
• Notation: 

– Z = h(x|S) – y 
– ž = ES[Z]
– Z-ž = h(x|S) – ES[h(x|S)]

ES[(Z-ž)2] = ES[Z2 – 2Zž + ž2]
= ES[Z2] – 2ES[Z]ž + ž2

= ES[Z2] – ž2

ES[f(h(x|S),y)] = ES[Z2]
= ES[(Z-ž)2] + ž2

BiasVariance

Expected Error

Bias = systematic error resulting from the effect that the 
expected value of estimation results differs from the true 
underlying quantitative parameter being estimated.
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Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging
– Random Forests

• Ensemble methods that minimize bias
– Boosting
– Ensemble Selection

Subsequent slides by Yisong Yue
An Introduction to Ensemble MethodsBoosting, 
Bagging, Random Forests and More 18



Bagging

• Goal: reduce variance

• Ideal setting: many training sets S’
– Train model using each S’
– Average predictions

ES[(h(x|S) - y)2] = ES[(Z-ž)2] + ž2

Variance BiasExpected Error Z = h(x|S) – y 
ž = ES[Z]

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 

“Bagging Predictors” [Leo Breiman, 1994]

Variance reduces linearly
Bias unchanged

sampled independently

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

S’P(x,y)

Bagging = Bootstrap Aggregation

19



Bagging

• Goal: reduce variance

• In practice: resample S’ with replacement
– Train model using each S’
– Average predictions

ES[(h(x|S) - y)2] = ES[(Z-ž)2] + ž2

Variance BiasExpected Error Z = h(x|S) – y 
ž = ES[Z]

from S

“Bagging Predictors” [Leo Breiman, 1994]

Variance reduces sub-linearly
(Because S’ are correlated)
Bias often increases slightly

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+

S’S

Bagging = Bootstrap Aggregation

http://statistics.berkeley.edu/sites/default/files/tech-reports/421.pdf 

Sampling schemes may be without replacement ('WOR'—no element can be 
selected more than once in the same sample) or with replacement ('WR'—an 
element may appear multiple times in the one sample). [Wikipedia]
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Bagging

21



14 ERIC BAUER AND RON KOHAVI
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Figure 5. The bias-variance decomposition for MC4 and three versions of Bagging. In most cases,
the reduction in error is due to a reduction in variance (e.g., waveform, letter, satimage, shuttle),
but there are also examples of bias reduction when pruning is disabled (as in mushroom and
letter).

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139, 1999 

Variance

Bias Bias

DT Bagged DT

Be
tt
er

22



Random Forests

• Goal: reduce variance
– Bagging can only do so much
– Resampling training data converges asymptotically to 

minimum reachable error

• Random Forests: sample data & features!
– Sample S’ 
– Train DT

• At each node, sample feature subset

– Average predictions

“Random Forests – Random Features” [Leo Breiman, 1997]
http://oz.berkeley.edu/~breiman/random-forests.pdf

Further de-correlates trees

23

http://oz.berkeley.edu/~breiman/random-forests.pdf


The Random Forest Algorithm

Given a training set S
For i := 1 to k do:

Build subset Si by sampling with replacement from S
Learn tree Ti from Si

At each node:
Choose best split from random subset of F features

Each tree grows to the largest extent, and no pruning
Make predictions according to majority vote of the set of k 

trees.

24



Outline

• Bias/Variance Tradeoff

• Ensemble methods that minimize variance
– Bagging
– Random Forests

• Ensemble methods that minimize bias
– Boosting
– Ensemble Selection

Yoav Freund and Robert Schapire who 
won the Gödel Prize in 2003

Y. Freund, and R. Shapire, “A decision-theoretic generalization of on-line 
learning and an application to boosting”, Proceedings of the Second 
European Conference on Computational Learning Theory, 1995, pp. 23–37. 25

https://en.wikipedia.org/wiki/Yoav_Freund
https://en.wikipedia.org/wiki/Robert_Schapire
https://en.wikipedia.org/wiki/G%C3%B6del_Prize


Selection of a Series of Classifiers

Data set 1 Data set 2 Data set T

Classifier1 Classifier2 ClassifierT… ...

… ...

… ...

Training instances that are wrongly predicted by 
Classifier1 motivate the selection of the best 
classifier from a pool able to deal with previously 
erroneously classified instances

weighted combination

Original training set

Pool of Classifiers

Next set of training 
instance is determined by 

weighted sampling

26



Perso
n

Age Male? Height > 
55”

Alice 14 0 1

Bob 10 1 1

Carol 13 0 1

Dave 8 1 0

Erin 11 0 0

Frank 9 1 1

Gena 8 0 0

Person Age Male? Height > 
55”

James 11 1 1

Jessica 14 0 1

Alice 14 0 1

Amy 12 0 1

Bob 10 1 1

Xavier 9 1 0

Cathy 9 0 1

Carol 13 0 1

Eugene 13 1 0

Rafael 12 1 1

Dave 8 1 0

Peter 9 1 0

Henry 13 1 0

Erin 11 0 0

Rose 7 0 0

Iain 8 1 1

Paulo 12 1 0

Margare
t

10 0 1

Frank 9 1 1

Jill 13 0 0

Leon 10 1 0

Sarah 12 0 0

Gena 8 0 0

Patrick 5 1 1

… How to implement weighted sampling?
27



Example of a Good Classifier: Bias minimal

+

-

++

+

+

-

-
-

-

How can we automatically construct such a classifier?

28



AdaBoost (Adaptive Boosting)

• Wanted: Two-class classifier for pattern recognition 
problem

• Given: Pool of 11 classifiers (experts)
• For a given pattern xi each expert kj can emit an opinion 

kj(xi) ∈ {-1, 1}
• Final decision: sign(C(x)) where

C(xi) = α1k1(xi) + α2k2(xi) + · · · + α11k11(xi)
• k1, k2, . . . , k11 denote the eleven experts 
• α1, α2, . . . , α11 are the weights we assign to the opinion 

of each expert
• Problem: How to derive αj (and kj)?

29
Rojas, R. (2009). AdaBoost and the super bowl of classifiers a tutorial 
introduction to adaptive boosting. Freie University, Berlin, Tech. Rep.



AdaBoost: Constructing the Ensemble

• Derive expert ensemble iteratively
• Let us assume we have already m-1 experts

– Cm−1(xi) = α1k1(xi) + α2k2(xi) + · · · + αm−1km−1(xi) 

• For the next one, classifier m, it holds that
– Cm(xi) = Cm−1(xi) + αmkm(xi) with Cm−1 = 0 for m = 1

• Let us define an error function for the ensemble
– If yi and Cm(xi) coincide, the error for xi should be small (in 

particular when Cm(xi) is large), if not, error should be large

– E(x) = 𝛴!"#$ e%&!(("#$ )! *+","()!))where αm and km

are to be determined in an optimal way

30



AdaBoost (cntd.)

• E(x) = ∑%&'( w%
) ⋅ e*+!,"-"(/!)

with wi
(m) = e−yi(Cm−1(xi)) for i ∈ {1..N} and wi

(1) = 1

• E(x)        = 𝛴yi=km(xi)
wi

(m) e−αm + 𝛴yi≠km(xi)
wi

(m) eαm

• E(x)        =         Wc e−αm                    +                We eαm

• eαm E(x) =         Wc +                We e2αm

• eαm E(x) =         (Wc + We)         +                We (e2αm - 1)

• Pick classifier km with lowest weighted error to minimize 
right-hand side of equation

• Select km's weight αm : Solve argminαm
E(x)

31

constant in each iteration, call it W

e2αm > 1



AdaBoost (cntd.)

• 𝛿E/𝛿αm = - Wc e−αm     +    We eαm 

• Find minimum
• - Wc e−αm     +    We eαm = 0
• - Wc +    We e2αm = 0
• αm = ½ ln (Wc / We)
• αm = ½ ln ((W – We) / We)
• αm = ½ ln ((1 – 𝜀m) / 𝜀m) 

with 𝜀m  = We / W being the 
percentage rate of error 
given the weights of the 
data points

32
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Round 1 of 3
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Round 2 of 3
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Round 3 of 3
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Final Hypothesis

0.42 + 0.70 + 0.32

Hfinal = sign[ 0.42(h1? 1|-1) + 0.70(h2? 1|-1) + 0.32(h3? 1|-1) ]

+

-
++

+
+

-

-
-

-
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AdaBoost with Decision Trees

h(x) = 𝛼1h1(x)

S’ = {(x,y,w1)}

h1(x)

S’ = {(x,y,w2)}

h2(x)

S’ = {(x,y,wn))}

hn(x)

…

+ 𝛼2h2(x) + … + 𝛼nhn(x)

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

w – weighting on data points
𝛼 – weight of linear combination

Stop when validation 
performance plateaus

38
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26 ERIC BAUER AND RON KOHAVI
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Figure 9. The bias and variance decomposition for MC4, backfit-p-Bagging, Arc-x4-resample,
and AdaBoost. The boosting methods (Arc-x4 and AdaBoost) are able to reduce the bias over
Bagging in some cases (e.g., DNA, chess, nursery, letter, shuttle). However, they also increase the
variance (e.g., hypothyroid, sick-euthyroid, LED-24, mushroom, and adult).

DT

AdaBoost

Be
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er

Bagging

Variance

Bias Bias

Boosting often uses weak models
E.g, “shallow” decision trees
Weak models have lower variance

“An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants”
Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139, 1999 39



Gradient Boosting (XGBoost) Ensemble Learning

• The term "gradient" in gradient boosting refers to the fact that the 
method is based on minimizing the gradient of the loss function
• Fit each new model to the gradient of the loss function with respect to the 

ensemble's predictions
• By iteratively minimizing the loss function's gradient, the ensemble of models 

is improved, leading to the term "gradient boosting"

• XGBoost: popular implementation of gradient boosting 
• Parallelization
• Regularization (penalty on the complexity of the loss function to prevent 

overfitting)
• Captures non-linear relationships between features and the target variable

• Gradient boosting has been widely used in machine learning and has been 
a key component in many winning models of Kaggle competitions
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Bagging vs Boosting

• Bagging: the construction of complementary base-
learners is left to chance and to the unstability of the 
learning methods

• Boosting: actively seek to generate complementary 
base-learners--- training the next base-learner based on 
the mistakes of the previous learners
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Ensemble Selection

“Ensemble Selection from Libraries of Models”
Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004

Person+ Age+ Male?+ Height+>+55”+

Alice# 14# 0# 1#

Bob# 10# 1# 1#

Carol# 13# 0# 1#

Dave# 8# 1# 0#

Erin# 11# 0# 0#

Frank# 9# 1# 1#

Gena# 8# 0# 0#

Person+ Age+ Male?+ Height+>+55”+

James# 11# 1# 1#

Jessica# 14# 0# 1#

Alice# 14# 0# 1#

Amy# 12# 0# 1#

Bob# 10# 1# 1#

Xavier# 9# 1# 0#

Cathy# 9# 0# 1#

Carol# 13# 0# 1#

Eugene# 13# 1# 0#

Rafael# 12# 1# 1#

Dave# 8# 1# 0#

Peter# 9# 1# 0#

Henry# 13# 1# 0#

Erin# 11# 0# 0#

Rose# 7# 0# 0#

Iain# 8# 1# 1#

Paulo# 12# 1# 0#

Margaret# 10# 0# 1#

Frank# 9# 1# 1#

Jill# 13# 0# 0#

Leon# 10# 1# 0#

Sarah# 12# 0# 0#

Gena# 8# 0# 0#

Patrick# 5# 1# 1#…
+

L(h)#=#E(x,y)~P(x,y)[#f(h(x),y)#]###
GeneralizaHon+Error:+

h(x)+y+
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Training S’

Validation V’

H = {2000 models trained using S’}

h(x) = h1(x) + h2(x) + … + hn(x) 
Maintain ensemble model as combination of H:

Add model from H that maximizes performance on V’ 

+ hn+1(x) 

Repeat

S

Denote as hn+1

Models are trained on S’
Ensemble built to optimize V’
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Method Minimize Bias? Minimize Variance? Other Comments

Bagging Complex model 
class. (Deep DTs)

Bootstrap aggregation 
(resampling training 
data)

Does not work for 
simple models.

Random 
Forests

Complex model 
class.
(Deep DTs)

Bootstrap aggregation
+ bootstrapping features

Only for decision trees.

Gradient
Boosting
(AdaBoost)

Optimize training 
performance.

Simple model class.
(Shallow DTs)

Determines which 
model to add at run-
time.

Ensemble 
Selection

Optimize validation 
performance

Optimize validation
performance

Pre-specified
dictionary of models 
learned on training set.

• State-of-the-art prediction 
performance

– Won Netflix Challenge
– Won numerous KDD Cups
– Industry standard

…and many other ensemble methods as well.

The Netflix Prize sought to substantially 
improve the accuracy of predictions 
about how much someone is going to enjoy 
a movie based on their movie preferences. 2009

Although the data sets were constructed to preserve customer privacy, 
the Prize has been criticized by privacy advocates. In 2007 two researchers 
from the University of Texas were able to identify individual users by 
matching the data sets with film ratings on the Internet Movie Database.
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Better

Average performance over many datasets
Random Forests perform the best

An Empirical Evaluation of Supervised Learning in High Dimensions
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Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

modest dimensions, but lose ground to random forests,
neural nets, and SVMs as dimensionality increases.
Also, linear methods such as logistic regression begin
to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.
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Figure 2. Moving average standardized scores of each
learning algorithm as a function of the dimension.
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Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.

“An Empirical Evaluation of Supervised Learning in High Dimensions”
Caruana, Karampatziakis & Yessenalina, ICML 2008 44
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Mixture of Experts: Gating

• Voting where weights are input-dependent (gating)
• Different input regions convered by different learners

(Jacobs et al., 1991)

• Gating decides which expert
to use

• Need to learn the individual
experts as well as the gating functions wi(x):

Σwj(x)  =  1, for all x

å
=

=
L

j
jjdwy

1
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Mixture of Experts: Stacking

• Combiner f () is 
another learner 
(Wolpert, 1992)



Mixture of Experts: Cascading

Use dj only if 
preceding ones are 
not confident

Cascade learners in 
order of complexity
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