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Abstract

Model-Driven Software Engineering (MDSE) encompasses traditional areas of language design,

tool engineering, and system validation and verification, following a unified conceptual and

technical framework (metamodeling, declarative model transformations, model-based analy-

sis). This work presents design cases of methodologies and tools for MDSE, where the state-

of-the-art is advanced as a result of applying formal techniques. The contributions encompass

(a) the application of metamodeling techniques to industrially relevant languages, capturing

their static semantics in a machine-processable manner; (b) the formulation of a methodology

for the design-time certification of transformation algorithms; (c) the design of algorithms for

efficiently evaluating Object Constraint Language (OCL) invariants for both the secondary-

storage and main-memory cases; and (d) several contributions focused on the generation of

Integrated Development Environments (IDEs) derived from language definitions for Domain

Specific Languages (DSLs). Venues for further progress and an appraisal of the impact of our

research are also reported.

Kurzfassung

Modellgetriebene Softwareentwicklung (MGSE) umfasst die traditionellen Gebiete des Sprach-

entwurfs, der Werkzeugentwicklung, und der Systemvalidierung in einem einheitlichen kon-

zeptuellen und technischen Rahmen (Meta-Modellierung, deklarative Modell-Transformation,

und modellbasierte Analyse). Diese Arbeit untersucht Entwurfsfälle für Methodologien und

Werkzeuge im Rahmen der MGSE, wobei der Stand der Kunst durch die Anwendung formaler

Techniken erhöht wird. Die Forschungsbeiträge dieser Arbeit umfassen (a) die Anwendung

von Techniken der Meta-Modellierung auf industriell relevante Programmiersprachen; (b) die

Formulierung einer methodischen Vorgehensweise zur Zertifizierung von Transformations -

Algorithmen zur Entwurfszeit, (c) der Entwurf von Algorithmen zur effizienten Evaluierung

von in der Object Constraint Language (OCL) formulierten Invarianten im Sekundär- und

im Hauptspeicher und (d) diverse Beiträge zur Generierung von Integrierten Entwicklung-

sumgebungen (Integrated Development Environments, IDEs) aus Sprachspezifikationen für

Domänenspezifische Sprachen (Domain Specific Languages, DSLs). Ebenso wird ein Ausblick

für zukünftige Forschungsarbeiten gegeben, und der Einfluss unserer Forschungsarbeiten auf

industrielle Praxis diskutiert.
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1.1 Motivation for this Research

Experience has shown that the sharpening of requirements into specifications is a difficult

task in software engineering, consuming resources that could otherwise be allocated to other

phases in the software development process (e.g., verification and validation). Several lines of

research aim at bridging the requirements-to-specifications gap:

� Ontologies, which allow jumpstarting system specifications with consistent formaliza-

tions, thus facilitating interoperability of the resulting systems.
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� Advanced proof and model-checking techniques, with advances aiming at balancing the

expressiveness of the formalisms vs. the time-space complexity of their decision proce-

dures, so as to support abstractions conceptually closer to those in the problem domain.

� Platforms for custom model-driven tools, where previously separate tools are integrated

to automate manual work in the practice of software engineering.

Increasingly, the design of programming languages reflects advances originating in all these

fields: (a) innovative modularization constructs are being proposed to facilitate encapsulat-

ing the structure and dynamics of given problem domains (a goal shared with ontologies);

(b) proposed type systems allow making finer predictions at compile-time about runtime pro-

gram behavior (by relying on sophisticate decision procedures); and (c) the entry barriers to

providing tool support for custom languages keep falling with the advent of building blocks

for creating Integrated Development Environments (IDEs) for custom languages.

The current state of the art in software engineering has yet to embrace the possibilities

opened by research progress. This PhD thesis contributes to realize some of these possibilities.

1.2 Thesis Statement

Our research hypothesis is: The application of formal techniques as part of the specification

of programming languages, the design of translation techniques, and the design of supporting

runtime systems, improves the productivity and quality of model-driven software development

processes.

It is a goal of this thesis to offer existential proofs about our research hypothesis, i.e., we aim

at presenting design cases of methodologies and tools for model-driven software engineering,

where the advantages identified for this approach have been realized as a consequence of

applying formal techniques.

As to the research methods and completion criteria, there is no algorithm on how best to

apply formal techniques in the context of the current state of the art, as this design activity

involves human cognition. However, there are established criteria to evaluate the fitness of

new methodologies, languages, and tools in software engineering, criteria which are applied by

specialists in this field. An external measure of such fitness is the degree to which proposals

are adopted over time by the professional community.
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1.3 Background

1.3.1 Design Patterns vs. Language Extensions vs. DSLs

The motivating force behind model-driven techniques is the realization that current languages

are imperfectly equipped to express solutions in terms of a problem-domain formalization (i.e.,

in terms of an ontology defining the concepts, instances, relations, and dynamics of a subset

of the world). Before adopting a custom domain-specific language embodying such means

of expression, the usual evolutionary path consists in encoding recurring solutions as design

patterns. In turn, those design patterns that stand the test of time become candidates for

automation as language extensions. None of these partial solutions are without problems, as

discussed next.

Design patterns. Manolescu et al. notice in their article The Growing Divide in the

Patterns World [154] the limited adoption by software professionals of novel design patterns

(with such design patterns focusing on particular usage situations, usually addressing specific

software architectures or vertical domains such as healthcare). The reality of reuse reveals that

most professionals are aware of a subset of the original 23 patterns described in the landmark

Design Patterns book. Manolescu et al. go on to say: “This gap is eroding the premise

of patterns as an easily consumable form of expert knowledge and could ultimately cause an

irreversible split between pattern experts — practitioners who advance the state of the art by

identifying, refining, and documenting patterns — and those simply using patterns.” [154, p.

61]. The MDSE advocate would quickly point out that sophistication is the very reason why

novel patterns are not frequently used, although they should be. The solution cannot be other

than encoding such sophisticate know-how in the model compilers that MDSE calls for. The

design patterns advocate would argue instead that the community should push forward the

way it has done so far (offering better documentation, providing case studies where patterns

are combined to solve a business problem).

Extending existing languages is a fertile ground for computer science researchers to put

forward techniques. Frequently, such techniques focus on extending the syntax of a language

in an upward-compatible manner. The necessary accompanying extension of the semantics

are not so widely discussed, except for translationist semantics (desugaring new language

constructs into the existing language). Mechanisms for achieving certain kinds of syntactic

extension have been present in modern languages, e.g., operator overloading in C++ and
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function classes in Haskell. As an example of the latter, the embedding of a database query

language was reported as early as (HaskellDB, [145, 29]). Crucially, the type system of the

embedding language cannot be extended, a detrimental situation from the point of view of

safety, as not all type-unsafe programs in the extended language may be amenable to sound and

complete type checking. A successor to the approach initiated with HaskellDB is elaborated

by Simon Peyton Jones and Philip Wadler in [123], endowing comprehensions with syntax

for capturing the remaining expressive power of SQL (ORDER BY, GROUP BY, and LIMIT).

Again, additional type checking rules are needed beyond those hardcoded in the existing type

system.

More recently, language designers have recognized the need for planning ahead for extensibil-

ity [26], yet extending the type checking algorithm requires custom techniques as before. An ex-

ample in this category is BPELlight [167], where the existing constructs for message exchange

are generalized into the concept of conversations, which allows for improved reuse by param-

eterizing the variable aspects of communication (e.g., whether an exchange is synchronous or

consists instead of a two separate invocations between partners), to avoid overspecifying an

algorithm. The extension in question relies on the BPEL 2.0 all-purpose <extensionActivity>.

Falling just short of defining a completely new DSL, this technique cannot avoid the outcome

where the same behavior can be expressed using different syntax, making programs more dif-

ficult to understand. As an aside, the periodic revisions of languages for enterprise computing

should not be misinterpreted as a sign of reproachable design. After all, the domain they ad-

dress is not nearly as well-behaved as the uniform closed world of discrete data structures, for

which the palette of language constructs has remained stable for a long time. Rather, revisions

reflect improved understanding of the economics of large-scale software development.

Summing up, the MDSE advocate would argue that, while building extensibility into the

language is certainly a useful approach, it must be accompanied by other MDSE techniques,

specially (a) specifying extended type checking rules in a declarative language such as OCL,

and (b) compiling in stages by leveraging the customizable hooks in a model compiler frame-

work.

1.3.2 Logical Consistency of Data Models

Not every syntactically correct software model is logically consistent: preventing a software

specification from describing logically unsatisfiable situations requires extending the design-
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Person

Italian English

Lazy LatinLover Gentleman Hooligan

{disjoint}

{disjoint, covering}

Figure 1.1: Enrico Franconi’s Latin Lover example

time analyses performed by model authoring tools with logic engines, as model-checking alone

is not enough to detect unsatisfiability and state implicit consequences, in the general case.

As motivational example consider the data model depicted in Figure 1.1, proposed by Fran-

coni in his lecture on Description Logics1. One of the (implicit) logical consequences resulting

from the given constraints is that class LatinLover is inconsistent (no non-empty set of in-

stances may simultaneously satisfy all invariants at runtime). In terms of DSL specifications,

we want to make sure that also language metamodels are satisfiable and make explicit its

logical consequences to rule out unintended ones.

1.3.3 Logical Consistency of Behavioral Specifications

Some modeling languages allow expressing behavior. Behavioral specifications should also be

checked for logical consistency, for example to detect whether all system states are reachable.

Precisely specifying the dynamic semantics of modeling languages has proved to be a thorny

issue, with different definition mechanisms having been tried for languages in industrial use.

1http://www.inf.unibz.it/~franconi/dl/course/slides/modelling/modelling.pdf
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For example, Crane [47] points out the complications that current semantic definitions of

three widespread versions of statechart languages exhibit (STATEMATE, Rhapsody, UML

2.0). The UML 2 Semantics Project has been tasked with the unenviable goal of sharpening

post-fact the semantics of UML22.

A review of the many attempts at formalizing successive versions of UML 1.x can be found

in [51]. Of the attempts reported, several fall under the category of “define the semantics

of individual diagram notations”. Given that diagrams are just views on one and the same

underlying system description, such attempts resulted in incomplete, incompatible, and non-

comparable accounts of UML semantics. Another dimension for classification regards the

degree of formality given to concurrency [51]:

Another coverage level relates to the problems with possible concurrency as well as

aspects of objects communication, which have been uncovered and not addressed in

the original UML 1.x documents itself. Such open problems are typical for so called

loose semantics, where the aspects of concurrency and object communication are

not fixed to some design decision, but cover different implementations. Such loose

semantics is not suitable for formal verification.

Precise semantics have become more necessary with the advent of Domain Specific Modeling

Languages (DSMLs). Some authors have gone as far as proposing a general-purpose semantic

anchoring methodology to be routinely applied as new DSLs become available [44], favoring

the Abstract State Machine formalism [20] as target semantic domain. Besides the end-to-end

tooling support thus made possible (involving, for example, simulation besides verification),

another potential advantage of such technique is interoperability between separately specified

DSMLs.

1.3.4 Verification of OO Programs

Figure 1.2 presents in a schematic manner the relationship between specification and imple-

mentation. The concepts mentioned in that diagram can be summarized as follows:

� Model: description of the statics and dynamics of a software system, expressed in a

modeling language

2http://www.cs.queensu.ca/~stl/internal/uml2/index.html
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Requirements

(LSCs or temporal logic)

Use cases

association

Figure 1.2: Interplay between specifications and implementations (Harel, [106])

� Validation: the process of determining the correctness of models, designs, and artifacts

(Are we building the right product? ).

� Verification: the process of determining whether an implementation corresponds to a

model, and thus in a way exhibits the properties validated at the model level (Are we

building the product right? ).

In the definitions above a focus is already implicit in executable models, given that the

properties of interest refer to the evolution of the system over time. Different modeling ap-

proaches and analysis techniques have been developed, aimed at answering different decision

problems. Following a classification by Lamport [141], properties of interest comprise:

� Safety properties: something bad will never happen.

� Liveness properties: something good will eventually happen.

The textbook examples of them are (a) that an elevator door will not open between floors,

and (b) that an elevator door will open after some time at the selected floor, respectively.

Reactive systems have resisted full verification as their complexity emerges not from the

data they manage, nor from the algorithms they embody, but from the interactions with other

systems. The techniques to verify reactive systems can be classified into:
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� Abstract Interpretation: A partial execution of a program or system which gains

information about its semantics (e.g., control structure, flow of information) without

performing all the calculations. For example, we may take the abstract points ”+”, ”0”

and ”-” to represent positive, zero and negative numbers and then define an abstract

version of the multiplication operator, ”*”, which operates on abstract values. An in-

terpretation is safe if the result of the abstract operation is a safe approximation to the

abstraction of the concrete result. The meaning of “a safe approximation” depends on

how we are using the results of the analysis.

� Symbolic Model Checking: An automated technique that, given a finite-state model

of a system and a property (stated e.g., in a temporal logic) systematically checks the

validity of this property. From the point of view of results, a model checker behaves as

an exhaustive simulator (in that it returns counterexamples, i.e., traces of executions

which violate a property of interest) but without necessarily performing an exhaustive

state exploration.

� Theorem Proving: A theorem prover has a search component that sometimes finds

the derivation tree (from premises to conclusion) that satisfies a proposed theorem,

perhaps with the help of the modeler in the form of hints about proof tactics (e.g., “try

induction”). Well known theorem provers are Isabelle/HOL, ACL2, PVS, Coq.

Although Abstract Interpretation is in principle more general than Model Checking, there

is better agreement on algorithms for model checking, and the results achieved with them

are more impressive than those using Abstract Interpretation. Theorem Proving is the most

flexible technique of them all, and also the most difficult to use. Model checkers come with

a pre-defined set of properties they can check (those supported by the space-reduction op-

timizations they rely on). For example, the models and properties of (a) SPIN are based

on Linear Temporal Logic, while those of (b) SMV on Branching Temporal Logic and those

of (c) UPPAAL on Real-Time Temporal Logic. The more expressive the behavioral model

allowed by a logic, the more the model checker tooling relies on visual modeling. The toolset

of UPPAAL has visualization facilities close to those found in UML tools.

8



1.4. Contributions CHAPTER 1

1.4 Contributions

The contributions resulting from this PhD thesis span different development areas (language

definition, tool engineering, verification techniques). In detail, they comprise:

� A technique to improve the precision of metamodel-based language specifications [77, 79],

applied to (a) a language used in the development of enterprise software systems (Java

Persistence Query Language), and (b) the type checking rules of an industrially-relevant

meta-modeling language (EMOF extended with Generics). Additionally, the technique

in question is shown to simplify the construction of authoring tools for the language

being specified [86].

� Also in the field of language design, a conceptual framework is proposed to integrate the

specification of modeling views into DSL language specifications. A resulting advantage

is the automatic synchronization between views and their underlying model, while at

the same time maintaining well-formedness [81].

� A methodology to automate the certification of translation algorithms common in the

model-driven approach, by bridging the gap between the formalisms in which such trans-

formations are expressed and the decision procedures required to certify properties of

interest. Both imperative-style as well as declarative-style transformations are consid-

ered [84, 83].

� A scheme for software repositories to achieve efficient integrity checking of the artifacts

they manage [82].

� A scheme to improve the efficiency of checking invariants at runtime over an object

population residing in main memory by applying memoization, with an initial analysis

of the application of transactional memory techniques [85].

� The integration of the Object Constraint Language (OCL) into a model-driven toolchain

(the Eclipse Modeling Platform) (a) by providing a compilation component to translate

OCL constraints into Java 5; and (b) by supporting the elaboration of OCL specifications

with a custom IDE.
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Although the description of each contribution necessarily focuses on its specifics, this PhD

work makes the case for the integrated application of the proposed techniques. In addition

to making results available to the research community, the prototypes accompanying some of

the contributions provide a more direct venue for practitioners to adopt such techniques.

1.5 List of Publications

This thesis is a monograph, which contains some unpublished material, but is mainly based

on the following publications, listed for each category in chronological order.

Journal Publication

� Miguel Garcia. Efficient Integrity Checking for Essential MOF + OCL in Software

Repositories. Journal of Object Technology, vol. 7, no. 6, July-August 2008, pages 101-

119.

Conferences

� Miguel Garcia and Ralf Möller. Certification of Transformation Algorithms in Model-

Driven Software Development. In Wolf-Gideon Bleek, Jorg Räsch, and Heinz Züllighoven,

editors, Software Engineering 2007, volume 105 of GI-Edition Lecture Notes in Infor-

matics, pages 107- 118, 2007.

� Miguel Garcia and Ralf Möller. Incremental Evaluation of OCL Invariants in the Essen-

tial MOF Object Model. In Thomas Kühne, Wolfgang Reisig, and Friedrich Steimann,

editors, Modellierung 2008, volume 127 of GI-Edition Lecture Notes in Informatics,

pages 11–26, 2008.

Professional Magazines

� Miguel Garcia. How to process OCL Abstract Syntax Trees, Eclipse Technical Article,

June 2007.

� Miguel Garcia. Automating the embedding of Domain Specific Languages in Eclipse

JDT, Eclipse Technical Article, September 2008.
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Workshops

� Miguel Garcia. Formalizing the Well-formedness Rules of EJB3QL in UML + OCL.

In T. Kühne, editor, Reports and Revised Selected Papers, Workshops and Symposia at

MoDELS 2006, Genoa, Italy, LNCS 4364, pages 66-75. Springer-Verlag, 2006.

� Miguel Garcia. Rules for Type-checking of Parametric Polymorphism in EMF Generics.

In Wolf-Gideon Bleek, Henning Schwentner, and Heinz Züllighoven, editors, Software

Engineering 2007 Beiträge zu den Workshops, volume 106 of GI-Edition Lecture Notes

in Informatics, pages 261- 270, 2007.

� Miguel Garcia and A. Jibran Shidqie. OCL Compiler for EMF. Eclipse Modeling Sym-

posium, co-located with Eclipse Summit Europe 2007.

� Miguel Garcia. Bidirectional Synchronization of Multiple Views of Software Artifacts.

Workshop on Domain-specific Modeling (DSML’08), co-located with Modellierung 2008,

Berlin, Germany.

� Miguel Garcia. Formalization of QVT-Relations: OCL-based Static Semantics and

Alloy-based Validation. 2nd Workshop MDSD Today 2008, Elmshorn, Germany.

Technical Reports

� Miguel Garcia, Alissa Kaplunova, and Ralf Möller. Model Generation in Description

Logics: What Can We Learn From Software Engineering?. Technical Report, Institute

for Software Systems (STS), Hamburg University of Technology, Germany, August 2007.

� Miguel Garcia and Paul Sentosa. Generation of Eclipse-based IDEs for Custom DSLs.

Technical Report, Institute for Software Systems (STS), Hamburg University of Tech-

nology, Germany, January 2008.

1.6 Dissemination in Industry and Standardization Bodies

Model compilers and modeling environments developed as part of this PhD thesis are being

used by industry and by standardization bodies:
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� An OCL compiler and accompanying text editor for OCL have been contributed as

components to the Model Development Tools (MDT) subproject of Eclipse.

� Two software tools have been contributed as components in the Modeling Framework

Tools (EMFT) subproject of Eclipse: (a) an extension of the Emfatic model editor to

handle EMF Generics; and (b) a tool to automate the embedding of domain-specific

languages in Java (DSL2JDT).

1.7 Outline of the Dissertation

The recognition that model-based techniques are advantageous when realizing language tooling

has not been uniformly accompanied by industry-based efforts to formalize recent languages

in terms of the Essential MOF + OCL datamodel [170]. In Chapter 2 we address one of the

omissions by formalizing the static semantics of an industrially relevant language (JPQL, [66]),

moreover comparing conformance aspects between model-based JPQL tools and their state-

of-the-practice counterparts. In Chapter 3 we focus on formally specifying type checking rules,

again supporting our claims in terms of an industrially relevant language (EMOF extended

with parametric polymorphism). A strong measure of correctness for a DSL specification

is logical consistency, formally ensuring that such specification is satisfiable, as discussed in

Chapter 4.

All along, we aim at extending these techniques into the field of program verification, to

certify the algorithms that realize model transformations in model-driven software engineering.

To reach that goal, formalizations of both input and output (i.e., models expressed in EMOF

+ OCL) and of transformation algorithms are needed. The translation of OCL expressions is

thus a pre-requisite and is covered in Chapter 5 in terms of an OCL to Java compiler which

allows illustrating translation techniques. This chapter also conveys the operational semantics

of OCL.

Without tools to support DSL usage, the language metamodeling technique would not be

adopted in engineering practice. An efficient approach (DSL embedding, covered in Chapter 6)

leverages the tooling of a host language yet enforces the static semantics of the embedded DSL.

More complete tooling can be obtained as described in Chapter 7, by generating Integrated

Development Environments out of (progressively more complete) language definitions. This

activity is essential to establishing a toolchain for Model-Driven Software Engineering. Having
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made the case for IDEs for DSLs in general, a natural next step is the provision of one such

IDE for OCL. After recognizing that current definitions of modeling languages neglect the

specification of (bidirectional) view synchronization, a declarative approach is put forward in

Chapter 8 to fill this gap.

With the previous elements in place, a procedure to certify model transformation algorithms

is presented in Chapter 9. The approach is based on a model checker for a temporal logic,

using +CAL as high-level language which has the syntactic flavor of Algol. A glimpse of

the difficulties faced when transferring such techniques to an industrial setting is offered in

Chapter 10: not only new techniques but also detail-level engineering are required on QVT-

Relations, a language for expressing model transformations, standardized by the OMG. After

formalizing its static semantics, a validation technique is discussed, thus providing formal

insight into the dynamic semantics of QVT-Relations.

The following two chapters focus on a runtime issue, namely the efficient evaluation of

OCL invariants for finite object populations. The scenario addressed by Chapter 11 is that

of software repositories, where the same problems faced by DBMSs are present (scalability,

transactions) only that in the context of a very expressive datamodel and query language

(EMOF and OCL, resp.) The problem is proved tractable by applying query optimization

techniques based on monoid calculus. Addressing the same concern for the main-memory

case presents a different set of design constraints, with the resulting balance being reached by

adapting memoization techniques as described in Chapter 12.

Model-Driven Software Engineering is an active area of research, thus it comes as no surprise

that further developments can be envisaged. Promising venues for further work, along with

insights gained as a result of this research are brought together in Chapter 13
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Model-Driven Software Engineering (MDSE) encompasses traditional areas of both lan-

guage design and software engineering (language definition and tooling, manipulation of pro-

grams and models, refinement of specifications into lower-level abstractions) following a unified

conceptual and technical framework (metamodeling and declarative model transformations).

By expressing a language definition as a metamodel, the information about abstract syntax

and static semantics (including type-checking rules) becomes machine-processable, enabling

language-aware manipulation along a toolchain in a reusable, declarative manner. In this work,

metamodels are expressed in Essential MOF (EMOF) [170] (covering structural aspects), and
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are extended with constraints expressed in OCL [203], to be evaluated over finite populations

of instances. An OCL class invariant is a boolean function over an object graph.

In the context of model-driven software engineering, the abstract syntax of a domain-specific

language (DSL) is represented as an EMOF object-oriented model thus attaining a number

of advantages compared to an Extended Backus Naur Form (EBNF) approach [137]. This

object-oriented model additionally captures the static semantics of the DSL (e.g., declare-

before-use) in the form of invariants expressed in the Object Constraint Language (OCL). As

shown in [79], the type checking rules of a DSL are also amenable to an OCL formulation,

unlike the situation in traditional DSL design where type-checking rules are treated separately.

Additional benefits naturally emerge once the language definition is available as a metamodel:

� Abstract Syntax Trees (ASTs) can be exchanged with ease in a toolchain (e.g., between

a compiler front-end and an static analyzer), fostering interoperability.

� The declarativeness of the OCL formulation allows applying formal techniques to lan-

guage processing, in particular Hoare-style program verification of model-transformation

algorithms, so as to know at transformation design-time whether well-formed output will

always be generated for well-formed input [84].

� Prototypes exist [124, 49] where an AST definition is augmented with annotations to

univocally determine a concrete syntax. From this augmented definition, a generator can

derive: (a) grammars for different parser generators, making parsers interchangeable;

(b) classes whose instances represent Concrete Syntax Tree (CST) nodes, thus allowing

for OCL to be used to query and constrain a CST; (c) a visitor to transform a well-formed

CST (as checked with OCL) into an AST; (d) an unparser from CST to textual notation

(i.e., a pretty-printer); and (e) a text editor supporting usability features such as syntax-

directed completion, markers for violations of well-formedness, navigation from usages

to definitions, folding, and structural views.

� Following a similar approach, a concrete visual syntax can be defined, allowing for the

generation of a diagram editor for the DSL in question [65, 90] as reviewed in Chapter 8.

This chapter reports the application of language metamodeling techniques to JPQL (Java

Persistence Query Language), the query language for object-relational mapping standard-

16



2.1. Shortcomings in the JPQL Spec CHAPTER 2

ized as part of the Enterprise JavaBeans 3.0 (EJB3) specification [66] (in that context, the

language is also referred to as EJB3QL). Five years from now, today’s EJB3 applications

will be “legacy”. We see our metamodel as an enabler for increasing the efficiency of re-

verse engineering activities. It has already proven useful in uncovering spots where the JPQL

specification is vague. The case study reported in this chapter involved (a) expressing the

abstract syntax and well-formedness rules of JPQL in EMOF and OCL respectively; (b) de-

riving from that metamodel software artifacts required for several language-processing tasks,

targeting the Eclipse modeling platform; and (c) comparing the generated artifacts with their

counterparts in the reference implementation of EJB3 (which was not developed following a

language-metamodeling approach). The metamodel of JPQL constitutes the basis for applying

model-checkers to assure conformance of tools claiming to follow the specification [84].

The structure of this chapter is as follows. Sec. 2.1 presents motivational examples of

well-formedness rules and their formulation in the metamodel of JPQL. Sec. 2.2 discusses

the impact of language metamodeling techniques on the consistency and completeness of a

language specification. Sec. 2.3 summarizes places where the JSR-220 JPQL specification was

found to be incomplete or imprecise. The schema language adopted in JSR-220 is formalized

in Sec. 2.4. Sec. 2.5 discusses related work, with Sec. 2.6 offering conclusions and possibilities

for further work. The software artifacts of this case study are available for download1.

2.1 Sample Shortcomings of the JPQL Spec

The JPQL specification includes an EBNF grammar which, as usual, cannot capture all well-

formedness constraints relevant to the language being defined. Implementors of the specifica-

tion cannot rely on a machine-processable specification of all relevant well-formedness rules

(WFRs) thus leaving open the possibility for non-interoperable implementations.

The evaluation of WFRs that are not captured by an EBNF grammar becomes a respon-

sibility of the semantic analysis phase of a language processing tool. As a simple example,

JSR-220 [66, §4.3.1] requires “Entity names are scoped within the persistence unit and must

be unique within the persistence unit.” The OCL formulation is as follows:

context PersistenceUnit

inv WFR 4 3 1 : self . entities −>isUnique(name)

1http://www.sts.tu-harburg.de/people/mi.garcia/pubs/atem06/
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Table 2.1: EBNF for comparison expression

comparison_expression ::=

string expression comparison operator

{string expression | all or any expression}
|

boolean expression { = | <> }
{boolean expression | all or any expression}

|

enum expression { = | <> }
{ enum expression | all or any expression}

|

datetime expression comparison operator

{datetime expression | all or any expression}
|

entity expression { = | <> }
{entity expression | all or any expression}

|

arithmetic expression comparison operator

{arithmetic expression | all or any expression}

Beyond the productivity gain (once expressed in OCL, Java code to evaluate it can be gener-

ated automatically), the fact that this check is specified declaratively instead of implemented

procedurally makes the resulting artifacts amenable to formal verification. For this particular

WFR the “many-eyeballs principle” is enough for validating an implementation. This strategy

does not scale to more subtle, intricate WFRs. Sec. 2.3 contains the OCL encoding of complex

WFRs for which the correctness of a procedural evaluation is non-obvious.

As a further motivating example consider the case where the EBNF grammar underspecifies

the WFR about expressions that compare values declared in enumerations. The production

comparison expression contains an alternative (enum expression on Table 2.1) for just this case,

namely (in-)equality comparison of values coming from enumerations.

In fact, comparing values from different enumeration types makes no sense (doing so would

defeat the whole purpose of enumeration types) but the grammar does not rule it out. This

particular WFR is probably included in the semantic analysis phase of the reference imple-

mentation (but we haven’t examined its source code to confirm it) while its OCL formulation
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Listing 2.1: Comparison of enumeration values

context EnumCompExp

inv comparedValuesBelongToTheSameEnumerationType :

left .type() = right .type()

is quite compact, as shown in Listing 2.1.

In another category, the grammar in the specification sometimes misses the opportunity to

make distinctions that it could express, a fact that was brought to our attention by comparing

it with its version for the ANTLR parser generator2 in the reference implementation. From

the specification:

4.6.9 Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional

expression is as follows:

string expression [NOT] LIKE pattern value [ESCAPE

escape character]

The string expression must have a string value. The pattern value is a string

literal or a string-valued input parameter in which . . .

According to this, pattern value can be replaced by one of two specific constructs, for

which grammar productions are defined (literalString and inputParameter). The nor-

mative document does not make this distinction (in that pattern value is left undefined.)

The reference implementation however reflects the intention of the spec, except that it calls

likeValue what the specification calls pattern value (Figure 2.1):

We adopt the convention of displaying grammar productions from JSR-220 in EBNF nota-

tion. The names of OCL invariants have been chosen to allow for easy cross-referencing with

the spec, each such name is prefixed with “WFR ” followed by the section number where the

specification introduces the constraint.

2ANTLR parser generator, http://www.antlr.org
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literalString

inputParameter

likeValue

 

Figure 2.1: Reference implementation, what a pattern value can be

2.2 Consistency and Completeness Enforced by Language

Metamodeling

Expressing the structure and WFRs of a language as an EMOF+OCL metamodel forces the

specification authors to consider corner cases that may be easily overlooked otherwise. While

encoding in OCL the WFRs around type compatibility for comparison and for assignment ex-

pressions, we noticed that the specification is not clear about what combinations of (LHS type,

RHS type) are valid in assignments (as part of the UPDATE statement), in case persistent

entity types are involved. The specification is silent about whether assigning a B-typed value

to a field with declared type A (where B is a subtype of A) is standard across implementations,

implementation-dependent, or disallowed. Portability warnings for such cases are encoded in

our metamodel as OCL invariants. For example, “State-fields that are mapped in serialized

form or as LOBs may not be portably used in conditional expressions” [66, §4.6] can be found

by searching for PORTABILITY 4 6. This section discusses in more detail our observations

around the UPDATE statement.

Following the grammar in the spec, our metamodel allows an UPDATE statement to own

one or more UpdateItem, each representing a LHS := RHS. All constructs that are allowed on

the LHS support the EMOF interface LHSUpdateItem, similarly for those on the right hand

side (Figure 2.2). For comparison, the EBNF counterpart is reproduced in Table 2.2.

Notice that all shared properties of alternatives in a production rule can be factored out

into the interface that covers them. In the UPDATE example, all constructs (and only those)

on the RHS that may evaluate to a primitive type conform to the interface RHSUpdateItem-

SupportedJavaType, thus allowing an OCL expression to abstract away from the sub-cases.

The JSR-220 specification handles in §4.10 assignments involving primitive types only: “The
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Table 2.2: EBNF fragment for the UPDATE statement

update statement ::= update clause [where clause]

update clause ::=

UPDATE abstract schema name [[AS] identification variable]

SET update_item {, update_item}*
update item ::=

[identification variable.]

{state field | single valued association field } = new value

new value ::=

simple arithmetic expression | string primary |

datetime primary | boolean primary | enum primary

simple entity expression | NULL

new value specified for an update operation must be compatible in type with the state-field to

which it is assigned.”

For completeness, the WFR for type compatibility for comparison (not assignment) between

entities is also mentioned here, although it does not shed light on this issue: “Two entities of

the same abstract schema type are equal if and only if they have the same primary key value.”

[66, §4.12].

Making explicit the underspecified assignment case is forced upon us by OCL type checking.

It all starts when we consider the two sub-cases for a LHS: interface LHSUpdateItem is realized

by only two classes: StateField and SingleValuedAssocField (our metamodel faithfully enforces

the partition semantics: the sub-cases cover the case completely and are disjoint with each

other).

Listing 2.11 on p. 33 reproduces the OCL if-statement which specifies the compatibility

condition for the primitive-types case (the then-branch) as well as the entity-types case (the

else-branch). The else-branch in turn has to consider again the two partitioning sub-cases of

the RHS: primitive or entity. For the first case, false should be returned as the types are not

assignment-compatible. The second case embodies a conservative approach: only assignments

of entities of exactly the same declared type are allowed, for lack of additional assurances from

the specification, which is due for update in JSR-317.

Notice that the WFR discussion so far lies still within the realm of language structure, not

operation. We don’t claim that behavioral semantics should be specified in OCL. However,
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sooner or later, such additional information is needed for answering some decision problems.

For example, without knowledge of the prescribed evaluation order of the LHSs in an UPDATE

statement, what can be said about the following statement? Does it exchange the references

in fields workAddress and homeAddress?

UPDATE Employee

SET workAddress = homeAddress, homeAddress = workAddress

The metamodeling approach allows expressing “details” which are taken for granted as

unstated assumptions in most language specs. Continuing with the example of UpdateItem, it

can be made explicit that the fields being assigned are actually visible (declared or inherited)

at the type of the entity being updated:

context UpdateItem

inv LHSVisibility :

self .updateStmt.fromClause.type(). isVisible ( self . left )

Making explicit these assumptions is a precondition for applying formal approaches to rea-

soning about software artifacts.

2.3 Selected Examples of Additional Corner Cases

2.3.1 Visibility of Declarations

Just like in SQL, queries and subqueries may declare one or more identification variables in a

FROM clause. The SELECT, WHERE, GROUP BY, and HAVING clauses may then refer

to these variables. In case subqueries are present, the specification is not clear about how to

interpret a nested variable declaration with the same name as a declaration in the outer scope.

Is it disallowed or does it hide the outer declaration? For example:

SELECT c

FROM Customer c

WHERE c.balanceOwed < ( SELECT avg(c.balanceOwed) FROM Customer c )

Scopes for identification variables are not defined as such in Ch. 4 of the spec: “An identi-

fication variable always designates a reference to a single value. It is declared in one of three
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Listing 2.2: Declarations-before-usages for a SelectStmt

context SelectStmt

inv WFR 4 6 2 A:

( not self .whereClause−>isEmpty()

implies

self .whereClause. areAllReferredVarsVisible (

self . locallyDeclaredIdVars () )

) and (

not self .havingClause−>isEmpty()

implies

self .havingClause. areAllReferredVarsVisible (

self . locallyDeclaredIdVars () )

)

ways: in a range variable declaration, in a join clause, or in a collection member declaration.

The identification variable declarations are evaluated from left to right in the FROM clause,

and an identification variable declaration can use the result of a preceding identification vari-

able declaration of the query string.” [66, §4.4.2]. However, §4.6.2 implicitly introduces the

notion of a visibility scope for identification variables: “All identification variables used in the

WHERE or HAVING clause of a SELECT or DELETE statement must be declared in the

FROM clause, as described in Section 4.4.2. The identification variables used in the WHERE

clause of an UPDATE statement must be declared in the UPDATE clause.”

Our interpretation of the scope rules can be summarized as: A FROM clause (and other

constructs) introduces a new scope for identification variables. Scopes may be nested forming

a tree hierarchy, with (new) variables declared in an inner scope hiding those with the same

name in surrounding scopes. To confirm whether ORM (Object-Relational Mapping) engines

conforming to the JSR-220 specification follow this interpretation, JPQL queries involving

variable hiding were translated to SQL with two different engines. The resulting SQL exhibits

variable hiding by explicitly renaming the declaration and usages of the inner variables.

In terms of our metamodel, we check in each query (including subqueries) whether all usages

of variables refer to variables which are visible (Listing 2.2).

The argument received by function areAllReferredVarsVisible() is a set containing the dec-

larations of visible variables. The recursive nature of the check performed by areAllReferred-
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Listing 2.3: Declarations-before-usages for a subquery

context Subquery:: areAllReferredVarsVisible ( varsInScope :

Set(ejb3qlmm::idVarDecl::IdVarDecl) ) : Boolean

body :

( not self .whereClause−>isEmpty()

implies

self .whereClause. areAllReferredVarsVisible (

varsInScope−>union(self. locallyDeclaredIdVars ()))

) and (

not self .havingClause−>isEmpty()

implies

self .havingClause. areAllReferredVarsVisible (

varsInScope−>union(self. locallyDeclaredIdVars ()))

)

VarsVisible() can be seen at work for a subquery. The overriding OCL definition is shown in

Listing 2.3. Before checking whether its WHERE and HAVING clauses (if any) fulfill the

declares-before-usages constraint, the scope is augmented with the locally declared variables

by using the OCL union() operator.

As in other situations, a visitor could have been written to procedurally validate scope

visibility. Again, arguments related to the “productivity” and “correctness” categories can be

made in favor of the declarative approach.

2.3.2 Reduction of Datasets into Groups

GROUP BY (Figure 2.4) is a rich source of WFRs that amount to exceptions to otherwise valid

queries. For example, groups can be formed based on the values of an entity-typed column,

with an exception: “Grouping by an entity is permitted. In this case, the entity must contain

no serialized state fields or lob-valued state fields.” [66, §4.7], as encoded in Listing 2.4.

Some constraints stated in the specification are vague. For example, if a GROUP BY clause

is used to reduce a dataset into groups, a boolean expression may be given in the HAVING

clause to leave out some of the reduced groups. Such expression may refer only to the groups

already reduced, not to their base data. The phrasing in the specification does not make
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Listing 2.4: Constraint on entities used as grouping criteria

context SelectStmt

inv WFR 4 7 B:

let entitiesUsedAsGroupBy :

Set(ejb3qlmm::schema::AbstractSchema)

= groupbyClause−>iterate(

gbi : ejb3qlmm::selectStmt :: GroupByItem ;

r : Set(ejb3qlmm::schema::AbstractSchema) = Set{} |
if gbi . oclIsKindOf(ejb3qlmm::idVarDecl :: IdVarDecl)

then r−>including(gbi.oclAsType(

ejb3qlmm::idVarDecl :: IdVarDecl ). type())

else r

endif )

in entitiesUsedAsGroupBy−>forAll(

as : ejb3qlmm::schema::AbstractSchema |
as. lobFields−>isEmpty() )

it clear: “The HAVING clause must specify search conditions over the grouping items or

aggregate functions that apply to grouping items.” [66, §4.7]. Our reading is that a HAVING

clause may contain usages of the following:

1. items which are grouped in the GROUP BY clause, as well as

2. aggregate functions on non-grouped items. Given that applying an aggregate function

to a grouped item consisting of just one value always returns that single value, we rule

out this possibility

The set of item 1 consists of instances of any class implementing the interface GroupByItem.

All usages in the HAVING clause not belonging to that set must be arguments to an aggregate

function (i.e. must be an instance of a subclass of AggregateExp). An OCL function returning

all data-access expressions being used in a CondExp returns the set for checking the condition

in item 2. Such function is reused in the formulation of other WFRs.
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Listing 2.5: Navigability of path expression in JPQL

−− each association field should be visible

−− at the type of its predecessor

context AssocPathExp

inv : let pathLength : Integer = self .chainAssocs−>size()

in self .chainAssocs−>forAll(f : ejb3qlmm::schema::AssocField |
if self .chainAssocs−>indexOf(f) > 1

then let predec : Integer = ( self .chainAssocs−>indexOf(f))−1

in self .chainAssocs−>at(predec).type.

associationFields −>includes(f)

else true

endif )

Listing 2.6: Visibility for first navigation step

context AssocPathExp

inv : self . idVar .type (). oclAsType(ejb3qlmm::schema::AbstractSchema)

. associationFields −>includes( self .chainAssocs−>first() )

2.3.3 Path Expressions

JPQL, like other OO query languages, allows dot-navigation syntax to express in a compact

way what amounts to joins in a relational setting. Unlike its OCL counterpart, only the last

association end in a path expression may have multiplicity > 1. In order to retrieve all objects

reachable over some association from objects in a certain collection, a cartesian product can be

specified. Together with other usual restrictions (only those associations ends that are visible

can be navigated, fields for primitive values cannot be further navigated), the WFRs for path

expressions amount to a number of constraints, which are formalized next, with reference to

the metamodel classes depicted in Figure 2.5.

In Listing 2.5, forAll() is used to iterate over the segments of a path expression to check

whether each association end participating in the join is visible at the type (AbstractSchema)

of its predecessor. Since a path expression always starts with an identification variable that

stands for an entity, visibility should also be checked for it as shown in Listing 2.6.

JPQL allows non-single-valued association ends to appear only as the tail of a path expres-
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Listing 2.7: Navigations follow single-valued intermediate steps

context AssocPathExp

inv : let pathLength : Integer = self .chainAssocs−>size()

in self .chainAssocs−>forAll( f : ejb3qlmm::schema::AssocField |
if self .chainAssocs−>indexOf(f) < pathLength

then f.oclIsTypeOf(ejb3qlmm::schema::SingleValuedAssocField)

else true

endif )

sion. The invariant in Listing 2.7 checks whether every navigation step (except the last) is an

instance of SingleValuedAssocField.

Not only path expressions should meet this chaining rule, but state fields too, given that

a state field may contain a sequence of embedded class fields and only one simple field (List-

ing 2.8).

There are two kinds of state field path expressions in the JPQL metamodel: those starting

with an identification variable and those starting with a single-valued association path expres-

sion. For a state field path expression starting with a single valued path expression, its state

field should be visible at the type of its last association field. If the state field has a sequence

of embedded class fields, the first one should be visible at the type of its last association field;

if the state field has no embedded class field, the simple state field should be visible at the

type of its last association field (Listing 2.9).

Join declarations in a FROM clause also form a chain, where the join fields should be visible

at the type of its base, which in turn can be a range variable declaration or a join declaration

(Listing 2.10).

2.4 Static Semantics and Database Schema

The well-formedness rules of JPQL can be made more precise by taking into account the

particular database schema on which JPQL queries are to run. Also for other purposes, such

as the translation from OCL into JPQL, the database schema has to be taken into account

to obtain correct results. JPQL database schemas are instances of the metamodel depicted in

Figure 2.3. The translation from OCL into JPQL surfaces in the context of the refinement of
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Listing 2.8: Chaining rule for embedded class fields

context StateField

inv : let pathLength : Integer = self .chainEmbedded−>size()

in if self .chainEmbedded−>notEmpty()

then self .chainEmbedded−>forAll(

f : ejb3qlmm::schema::EmbeddedClassField |
if self .chainEmbedded−>indexOf(f) > 1

then let predec : Integer =

( self .chainEmbedded−>indexOf(f))−1

in self .chainEmbedded−>at(predec).

type.embeddedClassFields−>includes(f)

else true

endif )

else true

endif

a Platform Independent Model (PIM) to a Platform Specific Model (PSM), as advocated by

model-driven development. In this case, the PIM is expressed in EMOF+OCL and the PSM

in terms of Java Enterprise Edition, including JPQL.

In a nutshell, PSM-level queries include details about tables and columns not present at

the PIM level. For example, an EMOF+OCL model abstracts the realization mechanism for

{ordered} association ends. A particular PIM to PSM refinement will choose one of several

mapping patterns to realize the {ordered} feature (involving at least an additional column,

Listing 2.9: Chaining rule for state field path expressions

context StateFieldPathExpwithSingleValuedAssocPathExp

inv : let sf : ejb3qlmm::pathExp:: StateField = self . stateField in

if sf .chainEmbedded−>isEmpty()

then self .path.type (). oclAsType(ejb3qlmm::schema::Entity)

. simpleStateFields−>includes(sf. terminalField )

else self .path.type (). oclAsType(ejb3qlmm::schema::Entity)

.embeddedClassFields−>includes(sf.chainEmbedded−>first())

endif
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Listing 2.10: Chaining rule in FROM clauses

context IdVarDecl

inv : self .branches−>forAll( b |
self .type (). associationFields −>includes(b. joinField ) )

possibly additional tables). As a result, the automatic translation to JPQL of OCL queries

relying on ordered collections must take the chosen pattern into account, making explicit use

of it in the platform-specific representation. Patterns for mapping OCL constructs to SQL’92

(with stored procedures) have been reported in [55].

Another area where the information contained in the database schema influences the pro-

cessing of JPQL ASTs is schema evolution. At the very least, whenever changes are propagated

from a logical-level EMOF-based model to physical database schemas, an impact analysis to

detect which queries become invalid is desirable. This scenario makes unavoidable the com-

bined processing of JPQL ASTs and database schema information, as it implies cross-artifact

consistency checks. This analysis is made simpler by having both kinds of information conform

to EMOF + OCL models.

2.5 Related Work

2.5.1 Metamodeling-based Approaches

The automatic conversion of an EBNF-based language description into an EMOF-based one

has been addressed before [3], and is covered in more detail in the larger context of Integrated

Development Environments for DSLs (Chapter 7). The resulting class models are more com-

pact than their EBNF counterparts, make use of generalization and namespaces, and may

contain additional well-formedness rules.

Language metamodels based on EMOF+OCL ease the task of maintaining consistency

across different software artifacts in a single software repository. For example, a repository

may warn about JPQL queries requiring full table scans, resulting from Cartesian products

where the fields involved in the selection condition are not indexed. Finding such queries

involves access to both a representation of the database physical schema and to the AST of

the JPQL queries.
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2.5.2 Grammar-based Approaches

The hierarchies for word, tree, and hedge grammars are described in Ch. 2 of [24]. Language

definition approaches based on regular hedge grammars enjoy an active community, as they are

expressive enough to capture XML dialects. Initially, research focused on proving properties

about the formalism itself: uniqueness of interpretation (of a given tree against a grammar),

closure (of tree grammars) under union, algorithms for document validation, term rewriting

properties (confluence and determinism). More recently, the focus has moved to establish such

formalism in the state of the practice. This involves the engineering issue of inter-operating

with existing (legacy) tools which use different internal representations (compilers, editors,

source code navigators, documentation generators, style checkers and static analysis tools).

2.6 Summary

Improving the quality of enterprise-class software systems requires at some point advanced

decision procedures, which in turn build upon precise language definitions. Our case study

shows by construction how to achieve these goals.

It is difficult to process JPQL in the current state of the practice, where language aspects are

not specified declaratively. For example, the type of the resultset of a SELECT statement can

be determined statically (JSR-220 explains informally how). An OCL function encapsulating

that algorithm can be used in deciding whether a dynamically built query will be rejected by

the ORM engine. Ideally, such checks should be performe at compile time.

Language-processing algorithms can rely on tree walkers and visitor skeletons generated from

language metamodels. For JPQL, visitors are needed for: translating to SQL’92, predicting

execution time, or computing the depends-on relationships between materialized views. These

and other use cases become possible once the metamodeling infrastructure reported in this

chapter is in place.

30



2.6. Summary CHAPTER 2

Figure 2.2: Metamodel fragment for the UPDATE statement
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Figure 2.3: Metamodel for logical database schemas in JPQL
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Listing 2.11: OCL encoding of type compatibility for assignments in an UpdateItem

−− ”The new value specified for an update operation must be

−− compatible in type with the state−field to which it is assigned”

context UpdateItem

inv WFR 4 10 A :

if left . oclIsKindOf(ejb3qlmm::pathExp:: StateField )

then

−− LHS is typed with SupportedJavaType

if not rightNewValue.oclIsKindOf(

ejb3qlmm::stmts::RHSUpdateItemSupportedJavaType)

then false

else let

t1 : ejb3qlmm::schema::SupportedJavaType

= left .oclAsType(ejb3qlmm::pathExp::StateField ). type (),

−− RHS is either SimpleArithExp, StringPrimary ,

−− BooleanPrimary, DatePrimary, or EnumPrimary

t2 : ejb3qlmm::schema::SupportedJavaType

= rightNewValue.oclAsType(

ejb3qlmm::stmts::RHSUpdateItemSupportedJavaType).type()

in ejb3qlmm::schema::SupportedJavaType::

areTypeCompatible(t1, t2)

endif

else

−− LHS is typed with AbstractSchema

if not rightNewValue.oclIsKindOf(

ejb3qlmm::stmts::RHSUpdateItemEntity)

then false

else let

t1 : AbstractSchema = left.oclAsType(

ejb3qlmm::schema::SingleValuedAssocField ). type,

−− RHS is either RHSNull, IdVarDecl, or EntityInputParam

t2 : AbstractSchema = rightNewValue.oclAsType(

ejb3qlmm::stmts::RHSUpdateItemEntity).type()

in t1 = t2 −− TODO spec incomplete: inheritance?

endif

endif
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Type systems are an often neglected area in DSL language engineering. This state of af-

fairs can be traced back to the perception that the specification and implementation of type-

checking is too time consuming, given its interdependence with all the language constructs

of the DSL in question. Additionally, most DSLs are translated into an statically type-safe

language which provides a “safety net” to catch type unsafe programs. We present in this

chapter a technique for the declarative specification of type-checking rules at the DSL meta-

model level. Such rules rely on the same syntactic machinery as other well-formedness rules

(i.e., are expressed in terms of EMOF + OCL) and are thus machine-processable. We show

the resulting productivity and quality advantages in comparison to a manual implementa-

tion for an industrially-relevant DSL, EMOF extended with Generics, which moreover has a
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rich type system. The methodology described in this chapter can be applied to specify the

type-checking rules of other DSLs for which an EMOF metamodel is available.

The EMF infrastructure allows the programmatic manipulation of models as first-class cit-

izens by making available (among others) reflection and persistence services that significantly

increase the productivity of the development of modeling tools. A cornerstone of such infras-

tructure is the language in which models are expressed (Ecore). The type system of Ecore adds

generics to the type system of Essential MOF [170]. Models expressed in Ecore can be seen

in turn as a shorthand notation for types in Java, thanks to the code generation capabilities

delivered with EMF. It is these generated classes that are used as a software component in

tools for DSLs (Domain Specific Languages), with the Ecore-based model specifying the ab-

stract syntax for the DSL in question [77]. Ecore can equally well be used to capture the data

model of a general-purpose application, although we focus on the DSL scenario throughout

this thesis.

The modeling abstractions supported by Ecore can be conceptualized as a subset of those

available for UML2 class models. This subsetting does not reduce expressiveness, as every

datamodel expressed in UML2 can be reformulated as a corresponding Ecore + OCL model.

Several advantages result from focusing on a well-defined set of constructs. For example, an

implementation supporting Object-Relational Mapping (ORM) of Ecore-based models must

deal with considerably fewer special cases than its UML2 counterpart.

The structure of this chapter is as follows. Sec. 3.1 reviews definitions around type systems,

serving as background for the characterization of EMF Generics in Sec. 3.2, including the OCL

formulation of well-formedness for type expressions. Subtyping between parameterized types

is formalized, after discussing conformance of a parameterized type to its declaration. Related

work, e.g. tooling support for modeling with generics, is covered in Sec. 3.3. Conclusions and

plans for future work are discussed in Sec. 3.4.

3.1 Type Systems

The grammar of a programming or modeling language specifies the set of syntactically legal

programs. Not all of them are useful: those (programs, models) on which the translator would

fail are discarded by the well-formedness rules (WFRs) for sentences in the language. For

example, requiring all usages of an identifier to refer to a declaration that is in scope is a

38



3.1. Type Systems CHAPTER 3

common WFR. Typing rules add another hurdle that well-formed programs should overcome:

they allow determining (preferably at compile-time) the most specific type of each expression,

with the purpose of rejecting those programs that are type unsafe, i.e., those which may cause

at runtime the assignment of a value of type T1 to a location declared to hold values of type

T2, with T1 not a subtype of T2. Type safety alone does not rule out all unwanted runtime

behaviors: correctly typed programs may crash, never terminate, or produce incorrect results.

The decision procedures for analyzing properties of interest beyond type-safety are the realm

of Hoare-style program verification [94] or model-checking tools [142]. In contrast to these

specialized techniques, type systems have a successful track record in terms of cost/benefit

(specification effort vs. variety of unsafe situations detected), thus explaining all the effort

that goes into their engineering. The designers of a type system must balance natural ten-

sions among expressiveness, performance of type inference, and usability of the resulting type

system.

More in detail, specifying a type system involves:

1. Making explicit the rules by which new types can be defined. Together with the set of

built-in types, types so constructed constitute the universe of types for a given program

or model.

2. Building upon this vocabulary of valid types, the link to the grammar of the language

is established in the form of typing rules, i.e., a procedure to assign (sometimes infer) a

unique type for each well-formed expression in the language. This inference is not per-

formed in isolation but taking into account an environment of visible 〈identifier, type〉
pairs.

3. Finally, the subtyping relationship between types allows determining, in conjunction

with the type annotations from the previous item, whether the program is type safe.

This algorithm is embodied in the type checker

The mechanism of choice to define type construction expressions is usually an EBNF gram-

mar with additional WFRs, generating a set of valid types instead of valid sentences. The

need for WFRs for type expressions can be seen for example in the context of generic type

declarations, i.e., those owning one or more type parameters which may impose constraints

for type arguments to fulfill. Not every syntactically-correct parameterized type (listing type
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substitutions) conforms to its type declaration. Types are generally compile-time entities, but

EMF always reifies them at runtime for reflection. Java 5 supports reflection of typing infor-

mation in the form of java.lang.reflect classes, with much improved support available in Java 6

(javax.lang.model.util.Types).

Similar to Java before generics, a classifier declaration in Ecore before 2.3 did not own any

type parameters and thus was a constructor for just one type. Instead, a classifier with type

parameters defines a set of types, one for each conformant substitution by a type argument.

For example, a list that keeps its items automatically sorted may be declared as

class OrderedList<T extends Comparable<? super T>> { . . . }

The declaration above makes clear that T admits any type argument as long as it conforms

to Comparable<? super T>. Interface Comparable allows comparing two values of type T or

supertypes thereof. For example, if an ordered list is to contain String items a comparator for

Object will also do, as strings are objects. Bounded generics allow writing generic algorithms

which minimally depend on the type of the input, while preserving static type-safety. The

idea of factorizing object capabilities into fine-granular types was first introduced by ML [89].

Angle brackets are used for two different purposes in Java 5. In the example above, the

outermost pair of angle brackets encloses a type parameters section, while the innermost pair

encloses a type arguments section. A type parameters section occurs in the context of type

construction, while no new type is introduced by type arguments (they act like queries re-

turning types already defined). In the example, the fragment ? super T denotes a set of types,

each of them lower bounded by T (lower bounded by being generics-speak for supertype of ).

Subtyping is formalized in Sec. 3.2.3. The ? is not actually a type argument but a wildcard

standing for any of several possible type arguments. A wildcard can only be used in places

where a type argument is expected, however it should not be considered to be the name of a

specific type. For instance, each occurrence of ? in Pair<?,?> in general stands for different

types, and ? is not a subtype of ?. By convention, the unqualified wildcard ? is a shorthand

for ? extends Object.
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3.2 Well-formed Types in EMF Generics

Two main constructs are subject to well-formedness checking: (a.1) the declaration of a generic

type, and (a.2) a parameterized type, i.e., an invocation of (a.1) with type arguments. The

OCL WFR for (a.1) is given in Sec. 3.2.1, as a prerequisite for answering:

(b.1). whether a given parameterized type is a valid invocation of its declaration (Sec. 3.2.2)

(b.2). subtyping relationship between two parameterized types (Sec. 3.2.3)

The precise formulation of these queries over ASTs is not straightforward given the rich

structure of references that (a.1) and (a.2) may exhibit. For example, determining (b.1) must

take into account two different scopes for type parameters (that of the declaration and that of

the invocation) where moreover wildcards may occur (except in bounds of type parameters in

a.1). For the same reason, the case-analysis of transformation algorithms operating on ASTs

of type expressions is intricate.

Figure 3.3 shows the new classes (ETypeParameter and EGenericType) added to the meta-

model of Ecore to support genericity. Only legal instantiations of this metamodel will result

in legal Java types. The reader is invited to compare the readability of the OCL formula-

tion vs. the current realization in EMF, which takes the form of commented procedural code

in org.eclipse.emf.ecore.util.EcoreValidator (“specification by reference implementation”). More-

over, OCL invariants can be compiled into Java, allowing the automatic detection of violations

of WFRs during AST tree-building or transformation, before further processing takes place.

The WFRs for the non-generics fragment of Ecore are covered elsewhere [193, 170].

3.2.1 Declaration of a Generic Type

Informally, well-formed ASTs of (a.1) consist of an EClassifier with a non-empty list of EType-

Parameter, which from then on are in scope for the whole type declaration (e.g. class C <T

extends C<T>> is legal, §8.1.2 in [95]). A type parameter owns a possibly empty list of

upper bounds, later used to answer (b.2). Each such bound is represented in the AST as an

EGenericType which may represent:

� a reference to a type variable (in scope for a.1), acting as a terminal node, as no type

arguments can be specified
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� a reference to a non-generic type

� a reference to a generic type, either with or without type arguments (in the latter case

a so called raw type reference).

Listing 3.3 on p. 48 contains the OCL formulation of the sketched WFRs.

3.2.2 Type Invocation

Again informally, a parameterized type (a.2) consists syntactically of a name reference to

a generic type (a.1), followed by one or more type arguments. At the AST level, all these

constructs are instances of EGenericType, with conventions on their connectivity used to deter-

mine the role played by the instance (conventions fixed when the abstract syntax was chosen).

Details are given below as individual WFRs are reviewed. Syntactically valid type arguments

can be any of:

� references to type variables in scope for the type invocation. This scope is introduced by

a generic type or operation declaration in which the type invocation occurs, and is not

to be confused with the scope of type variables for the referred generic type declaration.

� references to types (raw type reference, parameterized type reference, or reference to

non-generic type)

� wildcards (?, ? extends oneUpperBound , ? super oneLowerBound). Each of these bounds,

just like bounds in a generic type declaration, cannot be a wildcard itself. Instead, it

can assume any of the forms described in the two previous items.

The start situation when answering (b.1) are ASTs for a parameterized type P1 = G <

T1, ..Tn > and its declaration D1 = G < A1, ..An >. P1 and D1 are not directly comparable as

usages of type variables belong to disjoint scopes and as P1 may contain wildcards. A process

termed capture conversion ([95], §5.1.10) rewrites those wildcards into appropriately bounded

fresh type variables (whose lifetime is limited to answering b.1). The resulting type invocation

has the form P2 = G < X1, ..Xn >. The next rewriting takes place on the declaration D1 by

substituting all occurrences of type variables declared in D with the type arguments from P2.

Each Ai, i = 1..n is rewritten to Ai[V (Aj) ← Xj , j = 1..n], where V (Aj) stands for the type

variable introduced by Aj . The resulting working expression D2 is not a declaration anymore

42



3.2. Well-formed Type Expressions CHAPTER 3

but a parameterized type (a.2) sharing the same scope of type variables as P2. The final step

involves iterating over each actual type argument tpi in P2, checking if it is a subtype of each

upper bound of the type argument at the ith position in D2. In case any of these comparands

refers to a type variable, type argument containment (explained in the next subsection) is

used.

3.2.3 Subtyping Between Two Parameterized Types

Subtype and Supertype are binary relations on types. They are partial orders (i.e., reflex-

ive, antisymmetric, and transitive) and transpose of each other. It is sufficient to define

directSubtype (or directSupertype) to have Subtype and Supertype univocally determined.

Direct subtype, symbolized <1, consists of:

� an enumeration of pairs of predefined types (i.e. for the BuiltInType × BuiltInType
subset of Type× Type)

� a partition of the remaining cases into categories with a membership condition for

each. For example, in the type system of Java 5, the partition with pairs of the form

〈NullType, C〉 (where C is a class or interface type) has the constant membership con-

dition True. As a consequence, null, the only value conforming to the type NullType,

can always be assigned to a location declared to hold instances of C, for any declared

type C.

Besides answering whether subtyping holds between two types, it is sometimes possible to

conclude whether two type expressions T1, T2 (involving type variables and wildcards) exhibit

subtyping, i.e., whether the set of types denoted by T1 is necessarily a subset of that denoted

by T2. This procedure, type argument containment (§4.5.1.1 in [95]) is depicted visually in

Figure 3.1 and formalized for the Ecore metamodel in terms of OCL as shown in Listing 3.1.

A type argument is either a wildcard, a raw type invocation, a parameterized type invo-

cation, or a reference to a type variable. Therefore, type argument containment alone does

not provide an answer in all cases where two arbitrary type arguments are compared for

subtyping. An important special case is the comparison of two parameterized types with-

out wildcards or type variables: it succeeds only when they refer to the same generic type

and their arguments match exactly: none of List<String>, List<Object> is subtype of the
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Figure 3.1: Graphical display of the rules for Type Argument Containment. Arrows point at

the container argument

other, for otherwise type-unsafe updates would be allowed. The rules in Figure 3.1 imply

that upper-bounded wildcards exhibit covariant subtyping with respect to their bounds. In

contrast, lower-bounded wildcards give rise to contravariant subtyping.

3.3 Related Work

3.3.1 Typing of Object-Oriented Programs

Emfatic [50] is an Eclipse-based text editor that simplifies the creation of Ecore-based models

thanks to an intuitive textual notation. As part of the activities reported in this PhD thesis,

Emfatic was extended to handle generics, allowing bidirectional translation .emf ↔ .ecore.

Generics-aware type checking of Ecore models is relevant for the Eclipse MDT implementation

of OCL. A discussion of typing for Generics OCL can be found in [138].

Bruce explains in [30] the formal machinery required for analyzing the type system of OO

languages, including a discussion of the design decisions made for several languages currently

in use. Determining whether the rules of a proposed type system (defined as in Sec. 3.1)

actually reject all type-unsafe programs is a topic on its own, with researchers increasingly

relying on mechanized proofs, for example for Java [175].

Before generics, EMF developers would routinely add potentially unsafe downcasts. A

refactoring to automatically parameterize Java classes [129] can be used to remove them.

Another discussion of type inference in Java 5 can be found in [179].
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Listing 3.1: Type Argument Containment

context EGenericType::contains(TA : EGenericType) : Boolean

def : ( self = TA) or

if self . isUpperBoundedWildcard()

then −− left branch in Figure 2

if TA.isUpperBoundedWildcard()

then self .eUpperBound.isSuperTypeOf(TA.eUpperBound)

else self .eUpperBound = TA

endif

else if self . isLowerBoundedWildcard()

then −− right branch in Figure 2

if TA.isUpperBoundedWildcard()

then self .eUpperBound.isSuperTypeOf(TA.eUpperBound)

else self .eUpperBound = TA

endif

else false

endif

3.3.2 Improvements to the Java Type System

A proposal has recently been made to extend the type checking rules of Java to support

immutability [211], without extending the syntax of the language (initially, by relying on

custom type arguments for Generic types, and in a second stage, by using the type-level

annotations made possible by the ongoing JSR-308, Annotations on Java types1).

Under the proposed scheme, an object may be mutable or immutable, and a reference may

be mutable, readonly, or immutable. Their differences are as follows [211]:

� Class immutability : No instance of an immutable class may be changed; examples in

Java include String and subclasses of Number including Integer and BigDecimal. Java’s

type system has no way of expressing or checking this property.

� Object immutability guarantees that an object cannot be modified, even if other instances

of the same class can be. For example, some instances of List in a given program may be

immutable, whereas others can be modified. Object immutability gives strong guarantees

1http://groups.csail.mit.edu/pag/jsr308/dist/jsr308-checkers.html
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Listing 3.2: Different cases for JSR-308 annotations on Java types

@Interned String intern () { ... } // return value

int compareTo(@NonNull String other) { ... } // argument

String toString () @ReadOnly { ... } // receiver

@NonNull List<@Interned String> messages; // generic argument

myDate = (@ReadOnly Date) readonlyObject; // cast

that can be used for pointer analysis and optimizations, such as sharing between threads

without synchronization, and to help prevent hard-to-detect bugs. For example, the

documentation of the Map interface in Java states that “Great care must be exercised if

mutable objects are used as map keys. The behavior of a map is not specified if the value

of an object is changed in a manner that affects equals comparisons while the object is a

key in the map.”

� A readonly reference (or a const pointer in C++) cannot be used to modify its referent.

However, the referent might be modified using an aliasing mutable reference. Reference

immutability is required to specify interfaces, such as that a procedure may not modify

its arguments (even if the caller retains the right to do so) or a client may not modify

values returned from a module.

The type checking rules for immutability could also be applied to executable languages

that adopt EMOF as native object model. JSR-308 and the immutability check are initially

planned to become generally available in the Java 7 timeframe.

In the EMF implementation of EMOF, annotations are less structured than in JSR-308:

each model element may contain a number of annotations, each consisting of a String (its

source) and dictionary of (key, value) pairs, both Strings, as depicted in Figure 3.2. Executable

DSLs aimed at EMOF would also benefit from structured annotations as those made possible

by JSR-308. For illustration, examples from usages of JSR-308 annotations are shown in

Listing 3.2.
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Figure 3.2: Annotations in the EMF implementation of EMOF

3.4 Evaluation

Type-checking rules formulated as OCL invariants at the DSL metamodel level are neces-

sary to achieve certified model transformations (Chapter 9). This certification comprises the

design-time (symbolic) analysis of behavior of a transformation algorithm, for all possible

executions that satisfy stated preconditions, to ensure termination and the establishment of

stated postconditions. This capability is necessary if model compilers are to be considered on

par with their 3GL counterparts.

47



CHAPTER 3 3.4. Evaluation

Listing 3.3: WFRs for generic type declarations

context EClassifier

inv consistentTypeParameters :

allDifferent ( eTypeParameters.name ) and

eTypeParameters−>forAll( tp | tp. isConsistent (eTypeParameters) )

context ETypeParameter::isConsistent( tpsInScope :

Collection(ETypeParameter)) : Boolean

def : self .name <> '' and ( self.eBounds−>isEmpty() or

self .eBounds−>forAll( tr |
tr . isConsistentTypeReference (tpsInScope) ) )

context EGenericType::isConsistentTypeReference(

tpsInScope : Collection(ETypeParameter)) : Boolean

def : not isWildcard () and (

( self . isReferenceToTypeParameter()

and tpsInScope−>includes(self.eTypeParameter) )

xor

( self . isReferenceToClassifier () and

−− self. eClassifier is the declaration of the generic type

self . eClassifier . isValidTypeInvocation ( self .eTypeArguments) ) )

context EGenericType::isReferenceToTypeParameter() : Boolean

def : eClassifier −>isEmpty() and

not eTypeParameter−>isEmpty() and eTypeArguments−>isEmpty()

context EGenericType:: isReferenceToClassifier () : Boolean

def : not eClassifier −>isEmpty() and eTypeParameter−>isEmpty()
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Listing 3.4: WFRs for type invocations

context EClassifier :: isValidTypeInvocation ( −− see 4.5 in JLS3

−− typeArgs contains the type arguments of the type invocation

typeArgs : Sequence(EGenericType) ) : Boolean

def : if not self . isGenericTypeDeclaration ()

then typeArgs−>isEmpty()

else typeArgs−>isEmpty() −− raw type

or isValidTypeInvocationAfterCaptureConversion (

captureConversion(typeArgs) )

endif

context EClassifier :: isValidTypeInvocationAfterCaptureConversion (

typeArgs : Sequence(EGenericType) ) : Boolean

pre: typeArgs−>isEmpty()

or typeArgs−>forAll( ta | not ta. isWildcard () )

context EClassifier :: isValidTypeInvocationAfterCaptureConversion (

typeArgs : Sequence(EGenericType) ) : Boolean

def : −− this operation has an OCL−specified precondition, see above

typeArgs−>isEmpty()

or Sequence( 1..typeArgs−>size() )−>forAll(index |
eTypeParameters−>at(index).isValidTypeSubstitution(

typeArgs−>at(index), typeArgs ) )

context ETypeParameter::isValidTypeSubstitution( −− 4.10.2 in JLS3

−− ccta is a capture−converted type argument, i .e. not a wildcard

ccta : EGenericType,

typeArgsForAllTypeParams : Sequence(EGenericType) ) : Boolean

def : self .eBounds−>forAll(si |
si . isSuperTypeOf(ccta,typeArgsForAllTypeParams) )

49



CHAPTER 3 3.4. Evaluation

EG
en

er
ic

Ty
pe

+e
U

pp
er

Bo
un

d
0.

.1
+e

Lo
w

er
B

ou
nd

0.
.1

+e
Ty

pe
A

rg
um

en
ts

0.
.*

EN
am

ed
El

em
en

t

+i
ns

ta
nc

eT
yp

eN
am

e 
: S

tri
ng

EC
la

ss
ifi

er

EC
la

ss

+e
G

en
er

ic
Su

pe
rT

yp
es 0.
.*

+e
Al

lG
en

er
ic

S
up

er
Ty

pe
s

0.
.*

ET
yp

ed
El

em
en

t

ET
yp

eP
ar

am
et

er
EO

pe
ra

tio
n

+e
Ty

pe
Pa

ra
m

et
er

s

0.
.*

+e
Ty

pe
Pa

ra
m

et
er

s
0.

.*

+e
G

en
er

ic
Ty

pe

0.
.1

+e
Bo

un
ds

0.
.*

+e
Ty

pe
Pa

ra
m

et
er

0.
.1

+e
G

en
er

ic
Ty

pe
s

0.
.*

+e
G

en
er

ic
E

xc
ep

tio
ns

0.
.*

+e
R

aw
Ty

pe
1

+e
C

la
ss

ifi
er

0.
.1

F
ig

u
re

3.
3:

F
ra

gm
en

t
of

th
e

E
co

re
m

et
am

o
d
el

d
ea

li
n
g

w
it

h
G

en
er

ic
s

50



4 Logical Consistency of Metamodels

Contents

4.1 Application of Alloy Model Generation to Description Logics . . . . . 53

4.2 Translation from Description Logics . . . . . . . . . . . . . . . . . . . 55

4.2.1 Translation Rules for ALC . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Translation of SHIQ and SROIQ . . . . . . . . . . . . . . 57

4.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Model Inspection by Counterexample Extraction . . . . . . . . 58

4.3.2 Counterexamples for a Subsumption Assumption . . . . . . . 60

4.3.3 Counterexamples for a Concept Equivalence Assumption . . . 61

4.4 Evaluation of Practical Usefulness . . . . . . . . . . . . . . . . . . . . 62

4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

The transformation components in a model-driven toolchain manipulate program and model

representations. Such components are expected to enforce contracts of the form: whenever

transformation receives well-formed input and terminates, its output will be well-formed. Im-

plicit is the possibility for such well-formedness rules (WFRs) to be satisfiable for finite pro-

gram and model representations. We call the WFRs in that case to be logically consistent and

set out to find an automated procedure to determine whether an arbitrary EMOF + OCL

metamodel is logically consistent. As pointed out by Calvanese and De Giacomo:

The properties of various classes and associations may interact to yield stricter

multiplicities or typing than those explicitly specified in the class diagram. Detect-

ing such cases allows the designer for refining the class diagram by making such

properties explicit, thus enhancing the readability of the diagram. [40, p. 74]
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For example, the following consequences from the class model in Figure 4.1 render it logically

inconsistent [40]:

� the cardinality of the extent of class CellPhone is zero

� same goes for MobileOrigin

� the concepts Phone and FixedPhone are synonyms (i.e., they always overlap exactly)

Exercise: solution

PhoneBill PhoneCall

MobileOrigin

Phone

CellPhone FixedPhone

1..1 1..*

Origin

place: String

call

0..*

call

0..* 0..*

from

{covering, disjoint}

1..1

from

MobileCall

reference

Γ |= ∀x. CellPhone(x) ⊃ false

Γ |= ∀x. MobileOrigin(x) ⊃ false

Γ |= ∀x. Phone(x) ⊃ FixedPhone(x)

Γ |= ∀x. Phone(x) ≡ FixedPhone(x)

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 1 80

Exercise: solution
PhoneBill PhoneCall

MobileOrigin

Phone

CellPhone FixedPhone

1..1 1..*

Origin

place: String

call

0..*

call

0..* 0..*

from

{covering, disjoint}

1..1

from

MobileCall

reference

+ additional constraint
∀x, y. MobileCall(xc) ∧Origin(z) ∧ call(z, xc) ∧ from(z, xp) ⊃ CellPhone(xp)

Γ |= ∀x. CellPhone(x) ⊃ false

Γ |= ∀x. MobileOrigin(x) ⊃ false

Γ |= ∀x. Phone(x) ⊃ FixedPhone(x)

Γ |= ∀x. Phone(x) ≡ FixedPhone(x)

Γ |= ∀x. MobileCall(x) ⊃ false

D. Calvanese, G. De Giacomo Description Logics for Conceptual Data Modeling in UML – Part 1 81

Figure 4.1: An unsatisfiable class model for a phone system [40, p. 80]

This chapter focuses on answering the question whether the static semantics of a DSL are

logically consistent, by finitizing this decision problem for a Relational Logic formulation. The

presented decision procedure is applicable outside the EMOF + OCL context. For this reason,

the reported case study is formalized in terms of Description Logics (ALC and SHIQ).

The structure of this chapter is as follows. A more detailed motivation and terminology

is introduced in Sec. 4.1. The translation from ALC and SHIQ into Relational Logic is

covered in Sec. 4.2. Two sample case studies are analyzed in Sec. 4.3. The chosen logic engine

also allows for visually inspecting, in an interactive manner, the obtained counterexamples.

We argue that the capability to perform model exploration (in addition to model finding and

model checking) is essential when working with complex formalizations. The performance

measurements of Sec. 4.4 reveal the strengths and weaknesses of the approach. Sec. 4.5

concludes by providing an outlook on future applications of SAT-based model finders.
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4.1 Application of Alloy Model Generation to Description

Logics

Model checking and model generation (aka model finding) are well-established methodologies

for formally verifying properties of possibly time-evolving systems. A recent survey can be

found in [118]. Usually, some aspects of real-world systems have to be abstracted away in

order to make them accessible to formal logical modeling: continuous vs. discrete behavior,

granularity, stochasticity, etc. Nevertheless, model-checking tools are successfully applied in

practice. Indeed, improvements in the underlying decision procedures (most notably SAT

and BDDs [22]) together with higher-level specification languages have broadened the appli-

cability of these techniques. New application fields have been identified recently. One such

field comprises solving selected problems arising in ontology management and evolution as a

complement to dedicated DL engines.

The model generation problem for Description Logic is postulated as follows. Given an

ontology O, which is a pair (T ,A) of a TBox T and an ABox A, find an interpretation I
which satisfies all axioms of T and A. In case of a model checking problem the goal is to prove

whether a given interpretation is a model.

In order to support the ontology development process in an incremental way, our thesis is

that well-known model-generation tools can be adopted accordingly and provide major benefits

for human ontology designers. In this work we evaluate pros and cons of applying an existing

model checking and generation tool in this context.

In fact, the ontology designer is often not interested in just testing the satisfiability of

an ontology by checking whether one single model exists, but possibly wants to inspect a

number of generated models instead. This way, unintended models might be identified. This

kind of modeling methodology has been proven to be very effective in software engineering

(e.g., [120]). The ontology designer should be offered a possibility to adjust the ontology

by examining automatically generated relational model structures. Model generators support

this process quite well whereas for checking the satisfiability of ontologies and computing the

taxonomy tableau algorithms have been proven to be very effective. Thus, it seems attractive

to augment tableau provers to also support model generation. Current tableau algorithms are

not well applicable as model generation procedures since they only return (a description of)

a so-called single canonical model. Instead, model finders are able to enumerate all models
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systematically. This can indeed be useful for ontology design tasks.

To illustrate this, we discuss the following simple example. Let A,B be concepts and R

be a role. Suppose the satisfiability of the following concept is checked by both a DL system

and a model finder: (∃R.A) u (∃R.B). The model generated by a tableau algorithm is shown

on the left-hand side of the vertical bar in Figure 4.2. However, the ontology designer may

be more interested in inspecting models computed by a model finder (see Figure 4.2, to the

right of the vertical bar). The latter four models are not considered by the rules of tableau

prover because if the left structure is model, then the structures to the right of the bar are also

models. Thus, it suffices to consider only one model (the one to the left of the bar) in order

to show satisfiability. In order to evaluate an ontology (i.e., the concepts, roles, and axioms

in it), considering all models is nevertheless interesting as we argued above. Thus, it makes

sense to investigate contemporary model finders, study the state of the art in this field from

a practical point of view, and identify possible limitations.

i

j: {A}

R R

k: {B}

R R

j: {A, B}

i

Ri: {A, B}

Ri: {A}

j: {B}

R

Ri: {B}

j: {A}

R

Figure 4.2: Models of (∃R.A) u (∃R.B)

In our case study, we adopt a particular finite model finder, namely Alloy Analyzer 3.0 [120],

whose language is based on relational calculus and thus allows for straightforward represen-

tation of ALC knowledge bases. The technique reported here is not the first attempt at
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rephrasing ontology languages in Alloy, yet it has been developed independently. In [201],

case studies have been published where an ontology has been formulated (and further ana-

lyzed) in Alloy, Z, and (recently) HOL. Unlike our approach to capture the semantics of ALC
constructs directly, the authors define a translation schema that considers the meta-level of the

ontology language in terms of individuals for concepts and properties as well as relationships

among these individuals. We show results achieved so far for several case studies:

� Model inspection (Sec. 4.3.1);

� Visual display of counterexamples for a subsumption assumption (Sec. 4.3.2) and for a

concept equivalence assumption (Sec. 4.3.3);

� Finding models forALC terms whose satisfiability analysis is expensive for contemporary

tableaux-based reasoners (Sec. 4.4).

In the next section we address the translation rules for DL into Alloy, starting with the base

logic ALC.

4.2 Translation from Description Logics

The logic underlying the Alloy Analyzer is Relational Logic (RL) whose syntax, type rules

and semantics are described in [119]. This logic is more than a syntactical variation of first-

order logic, because it includes transitive closure. An automatic model finder requires the

specification of a scope, a bound on the number of atoms in the universe (cardinalities of

concepts). This limitation is not as dramatic as it might seem, given the so-called small-scope

hypothesis :

First-order logic is undecidable, so our analysis cannot be a decision procedure:

if no model is found, the formula may still have a model in a larger scope. Nev-

ertheless, the analysis is useful, since many formulas that have models have small

ones. [...] Given a relational formula, we can construct a boolean formula that has

a model exactly when the original formula has a model in some given scope. [119]

Given that ALC exhibits the finite model property, it is thus amenable to circumvent the

finite-scope limitation. In fact, we can compute worst case concept cardinalities according to
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the maximum concept branching factor and the maximum depth of nested existential quanti-

fiers.

4.2.1 Translation Rules for ALC
Definition 1 (Alloy Translation Rules for ALC Concepts) If A is a concept name, C,

D are concepts, R is a role name, the following translation rules can be applied to ALC
concepts in order to obtain semantically equivalent Alloy formulas:

A A

C uD C & D

C tD C + D

¬C univ - C

∀R.C univ - (R.(univ - C))

∃R.C R.C

Here, A, C, D, R denote Alloy relations, &, +, - are set operators (intersection, union and

difference, respectively), “.” stands for the relational join operator. The unary relation univ

represents the set containing every instance of the universe (interpretation domain).

Definition 2 (Alloy Translation Rules for ALC TBox and ABox axioms) We summa-

rize translation rules for ALC terminological and assertional axioms into Alloy.

� In ALC, expressions > (universal concept) and ⊥ (unsatisfiable concept) are used as

abbreviations for A t ¬A resp. A u ¬A, where A is a concept name. In Alloy, we define

the TOP relation as a covering subset of univ, and BOTTOM as the subset of TOP

containing no instances:

sig BOTTOM in TOP {} fact { #BOTTOM = 0 }.

A signature (denoted as sig) introduces a set of atoms. The declaration sig A { }
introduces a set named A. An abstract signature has no elements except those belonging

to the extension of its subsignatures.

� Elementary descriptions are atomic concepts and atomic roles.

Atomic concepts are declared in Alloy as non-empty subsets of TOP. For example, A is

declared as atomic concept: sig A in TOP {} fact { }.
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Atomic roles are specified in Alloy with a set TOP as both domain and range. For

example, the role hasChild is an atomic role:

abstract sig TOP { hasChild : set TOP }.

� If C is an atomic concept and D is a concept, then C v D is called generalized concept

inclusion, or GCI. GCIs are translated into Alloy using the set operator in (subset):

fact {C in D}.

� Concept definitions of the form A ≡ C, where A is an atomic concept, are called equality

axioms. Equalities are translated using Alloy’s set equality operator =: fact { A = C }.

� Instances of a given concept description are called individuals. If i is an individual, then

it can be defined in Alloy as follows: sig i in TOP {} fact { #i = 1 }.

In Alloy, a multiplicity keyword placed before a signature declaration constrains the

number of elements in the signature’s set. E.g., the keyword one allows for defining a

signature whose set contains exactly one element. Thus, one sig i in TOP {} declares

instance i, having the same effect as the specification above. To implement the unique

name assumption, additional constraints are generated to ensure that these singleton

sets are pairwise different, for example: fact { no ( polyneikes & iokaste ) }.

� If a, b are individual names, C is a concept and R is a role name, than the following

assertions about named individuals can be built by using constructs above:

C(a) (concept membership assertion), R(a, b) (role membership assertions)

In terms of Alloy we define concept membership assertions as fact { a in C } and

role membership assertions as fact { a -> b in R } (-> denotes the relational product

operator).

4.2.2 Translation of SHIQ and SROIQ
Alloy’s underlying logic is expressive enough to encode SHIQ or even SROIQ formulas. As

an outlook, tables below depict the Alloy formulation of SHIQ and SROIQ concepts and

role constructors as well as of additional role constructs possible in Alloy. Here, :> denotes

the range restriction and ~ is the relational transpose operator defined over binary relations.
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The operator # applied to a relation gives the cardinality of the relation as an integer value.

The binary relation iden relates all the instances of the universe to themselves.

SHIQ concepts Alloy translation

≤ nR.C { a : univ | #(a.(R :> C)) =< n }
≥ nR.C { a : univ | #(a.(R :> C)) => n }
inverse ~R

SROIQ concepts Alloy translation

{o} sig i in TOP { } fact { #o = 1 }}
∃R.Self (R & iden).univ

Further role terms Alloy translation

R u S R & S

reflexive transitive closure *R

SHIQ allows for defining role hierarchies, which is a finite set of role inclusion axioms

R v S where R and S are roles, and transitive roles (R ◦ R v R). In Alloy, we achieve the

same expressibility using the set operator in and the relational composition (join) operator .:

R in S and (R . R) in R.

In SROIQ, a role inclusion axiom is of the form w v R, where w is a finite string of roles

(e.g., S1, S2) and R is a role name. The appropriate translation into Alloy is: (S1 . S2) in R.

4.3 Case Studies

In what follows, we illustrate advantages of our proposal in the context of ontology design by

discussing several case studies.

4.3.1 Model Inspection by Counterexample Extraction

As an introductory example of model inspection, we use the Oedipus example (see [13, p. 73]).

In this example, the following ABox with some facts about the Oedipus story is supposed:

hasChild(iokaste, oedipus) hasChild(iokaste, polyneikes)

hasChild(oedipus, polyneikes) hasChild(polyneikes, thersandros)

Patricide(oedipus) ¬Patricide(thersandros)
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Now, we want to find out whether some individual exists that have a child that is a patricide

and that itself has a child that is not a patricide. This can be seen as a problem of checking

the satisfiability of the concept

hasPatricideChildWithNonPatricideChild

≡

(∃hasChild .(Patricide u ∃hasChild .¬Patricide))

Applying ALC translation rules to the Oedipus knowledge base, we obtain the Alloy specifi-

cation shown in Listing 4.1.

Alloy presents the following model (Figure 4.3). We will discuss next how it relates to the

ontology given above. In summary, Iokaste is shown to have a patricide child (Oedipus in this

model) who in turn has a non patricide child (a choice of individuals in this model).

TOP0
(thersandros)

TOP2
(hasPatricideChildWithNonPatricideChild, iokaste)

TOP3
(oedipus, Patricide)

TOP1
(polyneikes)

hasChild

hasChild

hasChild

hasChild

hasChild

hasChild

Figure 4.3: Oedipus example
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Alloy offers a choice of customization capabilities for visualizing models but we will stick

with the default settings. Particular models can be shown graphically as “snapshots” where

individuals are represented as rectangles. Each such rectangle is identified by the internal

name used by Alloy (e.g., “TOP1”) which appears on the upper part of the rectangle. Arcs

between rectangles stand for binary relations (roles), a label on the arc makes clear which

role is being referred to. For each individual, the sets (concepts) it belongs to are shown as a

comma separated list of labels on the lower part of the rectangle in question. Absence of one

such labels means that the individual does not satisfy that concept. For example, the labels

of the node “TOP2” “iokaste, hasPatricideChildWithNonPatricideChild” reveal that the individual

iokaste is described by the concept hasPatricideChildWithNonPatricideChild. Browsing further

models will show other constellations under which this concept is satisfied. Note however that

in this particular model, polyneikes is considered to have himself as child (nothing in the TBox

prevents this). Inspecting models may lead to adjust the ontology with further axioms.

4.3.2 Counterexamples for a Subsumption Assumption

We use the following example from [13, p. 82] to demonstrate how a subsumption relation can

be explained using Alloy. Assume that we want to check whether (∃r.a) u (∃r.b) is subsumed

by ∃r.(a u b). This is equivalent to the satisfiability test of the concept

ifUnsatisfiableThenSubsumes ≡ (∃r.a) u (∃r.b) u ¬(∃r.(a u b))

Letting Alloy analyze the predicate ifUnsatisfiableThenSubsumes results in several models.

If left to its own devices, Alloy presents a model that minimizes the number of individuals.

Alloy can be instructed however to look for models of a certain shape. We will do just that

in order to display the solution presented in [13, p. 82], which is computed by a tableau

algorithm. In order to achieve this, we will constraint those model we are interested in to

those having exactly three individuals, with no individual in a nor b having a role filler over

r. The model we are looking for is depicted in Figure 4.4. The technique described above

is, of course, generally applicable and results in shorter response times as only a subset of all

possible models is explored.

To gain a better understanding for this result, one must recall that labels of particular

individuals (nodes) contain concept names the individual belongs to. Absence of some concept
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TOP0
(ifUnsatisfiableThenSubsumes)

TOP2
(b)

TOP1
(a)

r r

Figure 4.4: Model of the concept ifUnsatisfiableThenSubsumes

TOP0
(counterExample, dog, 

dogholder, hound, person)

hasDog

Figure 4.5: Model of the concept counterExample

name C in the label of an individual means that the individual belongs to the concept ¬C.

Therefore, the node TOP1 explicitly has b in its label and implicitly ¬a. A similar explanation

holds for the node TOP2.

4.3.3 Counterexamples for a Concept Equivalence Assumption

As a next test case we assume the following simple TBox:

dogholder ≡ (person u (≥ 1 hasdog .dog))

houndholder ≡ (person u (≥ 1 hashound .hound))

dog ≡ hound , hashound v hasdog

Suppose we expect that concepts dogholder and houndholder must be equivalent. In order to

check this automatically, we can let the Alloy Analyzer generate models of the concept:

counterExample ≡ (dogholder u ¬houndholder) t (¬dogholder u houndholder)
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One model found by Alloy as a counterexample is shown in Figure 4.5 on p. 61. In this model,

the individual named TOP is found that belongs to the concept dogholder but not to the

concept houndholder . The reason is that the roles hasdog and hashound are not equivalent.

4.4 Evaluation of Practical Usefulness

In order to empirically study the performance of model generation with Alloy we have chosen

a benchmark originally proposed for comparing DL systems (DL-98 systems comparison).

We consider k-branch, which evaluates satisfiability-testing performance for large concept

expressions without reference to a TBox. Progressively larger expressions (from size 1 to

size 21) are presented in two variants: all k-branch-p expressions are unsatisfiable while all

k-branch-n expressions are satisfiable. These (and other) benchmarks are available online1.

We also used RacerPro 1.9.1 beta to measure the times for (un)satisfiability checking with a

tableau prover.

Summing up, Alloy exhibits a competitive performance for satisfiable input concepts if mod-

els can be found with up to 10 individuals. If models have more than 10 objects, performance

quickly degrades (in particular, if unsatisfiable concepts are used as input). Apparently, BDD

optimizations used in these systems cannot cope with combinatorial explosion, as more mod-

els are explored by Alloy than by tableau-based algorithms. Thus, there is good news when

models are small enough (as full information can be presented to the ontology designer). If

large model structures have to be explored, we found that model generators such as Alloy are

not applicable.

As explained in the Alloy literature, the guiding principle for their construction was the

“small scope hypothesis”, which k-branch does not exhibit. Had we chosen a benchmark

where this is the case, the results would have been more favorable to Alloy. For compari-

son, the time spent by RacerPro in this problem for different problem sizes is also shown in

Table 4.1 and Table 4.2. The results of Alloy’s runs are shown for different scope sizes (we

did not yet implemented an algorithm to compute the scope size according to the maximum

concept branching factor and maximum depth of nested existential quantifiers as mentioned

in Sect. 4.2).

As we can conclude from the measurement results, modern highly-optimized tableau-based

1http://dl.kr.org/dl98/comparison/data.html
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# Alloy, 10 inds Alloy, 15 inds RacerPro
1 265 110 3
2 110 328 5
3 1,797, NMF 5,281 24
4 1,422, NMF 21,921, NMF 31
5 2,562, NMF 43,687, NMF 164
6 1,469, NMF 31,125, NMF 288
7 6,828, NMF 61,625, NMF 681
8 6,906, NMF 42,625, NMF 1,809
9 6,250, NMF 53,000, NMF 4,392

10 7,375, NMF 4,970,229, NMF 9,714
11 7437, NMF 3,024,688, NMF 23,623
12 17,50, NMF 575,407, NMF 51,266
13 27,640, NMF 4,215,123, NMF 119,628
14 4,281, NMF 3,654,211, NMF 294,519
15 38,577, NMF 1,282,483, NMF 765,325

Table 4.1: Concept satisfiability benchmarks (k-branch-n, all times in milliseconds, NMF =

no model found, # = problem size)

# Alloy, 10 inds Alloy, 15 inds RacerPro
1 47 94 1
2 1,532 531 2
3 875 44,624 4
4 1,281 34,421 5
5 2,610 30,953 11
6 9,828 56,422 24
7 5,781 63,935 29
8 1,984 41,578 218
9 6,578 70,466 113

10 58,718 716,200 225
11 12,500 520,077 638
12 30,484 345,288 711
13 6,500 409,849 1,099
14 10,624 811,636 3,517
15 11,719 3,129,982 4,143
16 5,066 845,979 11,742
17 7,219 1,204,383 24,594

Table 4.2: Concept unsatisfiability benchmarks (k-branch-p)

provers far outperform model finders such as Alloy. However, in order to improve the usefulness

of tableau-based reasoners also for ontology design tasks, it may be a good idea to equip

them with model generation capacities like those provided by model finders for identifying

63



CHAPTER 4 4.5. Outlook

unintended models. In the other direction, namely for increasing performance of model finders,

DL prover techniques might also be helpful (given the expressivity of the input formulas is in

the DL fragment). A tableau prover could be used for satisfiability checking. If there exists a

model, the tableau describes a canonical model, which could be further modified in order to

derive all models in the sense of model finders. If the expressivity is too high, models might

be infinite, however, so the details of this idea have to be investigated carefully.

4.5 Outlook

While originally addressing interactive systems, in particular communication protocols, model-

checking techniques are now applied to general imperative algorithms, as exemplified by the
+CAL algorithm language [142]. Given that +CAL allows specifying pre- and postconditions

alongside imperative statements, it constitutes a viable mechanism for automatically testing

the optimized implementation of a decision procedure. Indeed, model checkers might also

be successfully applied to develop robust and scalable optimized description logics systems.

Unlike testing, model checking may dramatically reduce development effort.

The crucial requirement for integrating model finders in practical applications like model-

driven and ontology development tools is the efficiency of constraint-solving engines they are

based on. One of the recent investigations in producing high-performance tools is a Kodkod, a

SAT-based model finder designed for a relational logic [196]. Besides of promising performance

results, the system provides for further relevant features like optimized handling of assertional

knowledge (in Alloy, specifying partial solutions is possible only in the form of additional

constraints that increases the complexity of the solving process). Also looking into the future,

SAT-solving algorithms designed to take advantage of multicore processors show promise [147].

64



4.5. Outlook CHAPTER 4

Listing 4.1: Oedipus knowledge base expressed in Alloy’s Relational Logic

module oedipus

abstract sig TOP { /* atomic roles */ hasChild : set TOP }
sig BOTTOM in TOP {} fact { #BOTTOM = 0 }

/* atomic concepts */

sig hasPatricideChildWithNonPatricideChild in TOP {}
sig Patricide in TOP {}

/* individuals */

one sig polyneikes in TOP {} one sig iokaste in TOP {}
one sig thersandros in TOP {} one sig oedipus in TOP {}

/* pairwise disjointness of individuals */

fact{no(polyneikes & iokaste)} fact{no(polyneikes & thersandros)}
fact{no(polyneikes & oedipus)} fact{no(iokaste & thersandros)}
fact{no(iokaste & oedipus)} fact{no(thersandros & oedipus)}

/* equality axioms */

fact { ( hasPatricideChildWithNonPatricideChild ) =

(hasChild .( Patricide &(hasChild.((univ − Patricide )))))}
/* concept assertions */

fact { oedipus in Patricide }
fact { thersandros in ( univ − Patricide ) }

/* role assertions */

fact { oedipus −> polyneikes in hasChild }
fact { iokaste −> polyneikes in hasChild }
fact { polyneikes −> thersandros in hasChild }
fact { iokaste −> oedipus in hasChild }

pred show() { #univ = 4 } run show for 4
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Static semantics play a crucial role in DSL metamodeling as they shape the contracts that

model transformations should abide by. Additionally, well-formedness rules are also leveraged

in authoring environments to catch malformed DSL expressions at their origin, before further

inconsistencies are introduced in the software development process.
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In this work, static semantics are formulated in OCL. One important language service,

compilation from OCL to Java, was not supported by the Eclipse Modeling infrastructure

which focused instead on parsing, AST building, and interpretation of OCL. In the context of

that infrastructure, OCL compilation is more than a nice-to-have:

� DSL programs constitute the Model in an MVC (Model-View-Controller) architecture.

For example, a graphical editor generated with Eclipse GMF follows the MVC paradigm.

Response time determines the user acceptance of interactive authoring environments.

OCL compilation is thus an important factor for DSL tooling.

� Outside the context of static semantics, OCL is a viable means to encode a number

of functional requirements in general software development (pre- and postconditions,

queries).

� Attempting to manually formulate usages of OCL collection operators in terms of Java

Collections is error prone, given that there is no one-to-one correspondence between the

semantics of similarly named operators.

This chapter discusses the design decisions made when developing the OCL to Java compiler

currently integrated in the Eclipse Modeling infrastructure. The structure of this chapter is as

follows. The interplay between that infrastructure and our compiler is covered in Sec. 5.1. The

techniques for OCL translation described in Sec. 5.2 can be applied to other target languages

(e.g., database query languages).

Sec. 5.3 provides details about the compilation algorithm, which comprises a conversion

from OCL types to Java counterparts (Sec. 5.3.2) and the translation of OCL constructs

proper (Sec. 5.3.3). The architecture of our compiler is extensible, Sec. 5.4 presents candidate

extensions after reviewing representative LHS → RHS translation patterns. A particular case

of OCL AST processing is refactoring, the topic of Sec. 5.5. Sec. 5.6 delves into performance

evaluation. The integration of compiled code with other artifacts produced in an MDSE

toolchain is the focus of Sec. 5.7. Finally, Sec. 5.8 discusses related work and concludes the

chapter by evaluating the benefits of the approach.
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5.1 Target Software Architecture

The operation of a compiler [12] can be broken down into phases: (1) lexical analysis; (2) pars-

ing a stream of tokens into a language-independent Concrete Syntax Tree (CST); (3) trans-

forming such CST into a language-specific Abstract Syntax Tree (AST). During this phase,

usages are resolved to their declarations, and symbol tables are built for later use in succeeding

phases, as for example during (4) semantic analysis, where the static semantics are checked.

For example, a program may be syntactically valid yet not pass type checking, with type

checking being a case in point of well-formedness. For input that has progressed this far, the

remaining phases can generate executable code: (5) translation to intermediate code, (6) de-

tection of unreachable blocks, (7) optimization (e.g. constant propagation) based on control

and dataflow analyses, (8) detailed decisions of instruction selection and register allocation.

In our setting, the output language is a high-level language (Java 5), moreover constrained

to a number of code idioms. The particular patterns to generate partly depend on user

preferences. For example, either (a) POJO-style (Plain Old Java Objects) or (b) EMF-enabled

style can be chosen. The latter is suitable whenever EMF services will be accessed at runtime

(reflection, dynamic object model, interaction with Eclipse editors). As an example of (b),

method signatures generated for OCL invariants follow the contract expected by the EMF

Validator Framework.

Similarly, there are code idioms resulting from OCL itself (most notably, the implicit source

argument resulting from OCL’s compact syntax).

Regarding the input languages, the basic activities of parsing, AST building, and well-

formedness checking for Ecore + OCL are carried out by reusing building blocks provided

by the Eclipse Modeling infrastructure [78] (compare with the effort required to access, for

example, the ASTs and symbol tables prepared by the front-end of a C++ compiler). Although

well-formed ASTs are available, the translation algorithm still has to account for the mismatch

between OCL and Java:

� OCL is (mostly) a function-based language, where functions are not first-class citizens.

No OCL constructs allow returning arbitrary functions as values or receive them as

arguments. A limited form of lambda abstraction is available in loop expressions, where

the body defines a function that will be mapped (as in Haskell’s map) to each element

in the source collection, with an accumulator to reduce the final result.
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� Some OCL types have no direct counterpart in the Java libraries. For example, OclInvalid

represents the result of applying a function outside its domain, while Bag represents an

unordered collection allowing duplicates.

� OCL defines a number of built-in functions (the OCL Standard Library) whose Java

counterparts are defined in org.eclipse.ocl.util.

� Some capabilities expected by OCL are not provided by either the EMF or Java object

systems, and have to be provided by generated code, e.g. keeping track of allInstances()

of a given type.

On the plus side, EMF support for parametric polymorphism (Chapter 3) is in line with

the strongly-typed nature of OCL and makes for a seamless transition from OCL collection

types to those from the java.util package.

5.2 Processing of OCL Abstract Syntax Trees

The techniques applied to process OCL Abstract Syntax Trees (ASTs) are summarized in

this section, including (a) patterns for OCL visitors, (b) taking advantage of Java 5 Generics

when customizing visitors, (c) achieving conciseness by encapsulating the walking order, and

(d) keeping track of input-output relationships across a chain of visitors. These techniques

allow for the formulation of translation algorithms as sets of LHS → RHS substitutions (thus

facilitating their analysis), at the same time having a straightforward realization in terms of

visitors.

The MDT OCL framework supports all the way from parsing a textual OCL expression

to interpreting it on some object population, for both Ecore and UML2 class models. This

requires some infrastructure, which MDT OCL provides as visitors for:

� validating the concrete-syntax tree (CST) prepared by the parser

� resolving identifiers to declarations, i.e. transforming a CST into an abstract syntax tree

(AST)

� interpreting an OCL AST against an object population
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Listing 5.1: Handler to unparse an IteratorExp

protected String handleIteratorExp ( IteratorExp<C,PM> callExp,

String sourceResult , List<String> variableResults ,

String bodyResult) {
StringBuffer result = new StringBuffer();

String name = callExp.getName();

result .append(sourceResult).append(”−>”).append(name).append('(');

for ( Iterator <String> iter = variableResults . iterator ();

iter .hasNext();) {
result .append(iter .next ());

if ( iter .hasNext()) { result .append(”, ”); }
}

result .append(” | ”).append(bodyResult).append(')' );

return result . toString ();

}

The functionality listed above is accessed over an interface following the façade design pattern,

org.eclipse.ocl.OCL. Although this section does not focus on issues related to concrete-syntax

trees, two remarks are in order. First, CST classes are internal, i.e. not part of the public API

of the MDT OCL component. And second, the validation of a CST is actually performed by

the same visitor in charge of the CST to AST conversion.

OCL expressions cannot be understood in isolation, they always appear in the context

of some model element, which determines the other model elements that are in scope. For

example, the formal arguments to an operation can be referred in a precondition but not in a

class invariant. Any of the following model elements may office as context:

� a class (each OCL invariant has a class as context)

� a class property (for example, an OCL query to compute a derived attribute has that

attribute as context)

� an operation (pre- and postconditions, body expressions)

For the sake of clarity, OCL ASTs can be depicted as in Figure 5.4 on p. 82. The algorithm

to build such views has been implemented as part of the tool OCLASTView [78]. These views
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make clear the structure of OCL ASTs. For example, given an unparenthesized fragment,

realizing the correct interpretation (based on operator precedence rules) is immediate with

the visual depiction, as shown in Table 5.1.

Unparenthesized form

currentLevel.name = ’Silver’ implies

card.color = Color::silver and

currentLevel.name = ’Gold’ implies

card.color = Color::gold

Correct interpretation

( (currentLevel.name = ’Silver’)

implies (card.color = Color::silver)

) and (

(currentLevel.name = ’Gold’

implies card.color = Color::gold))

Table 5.1: Revealing precedence rules of operators in an expression

5.2.1 Basic API for Visitors

The occurrences of OCL language constructs are internally represented as instances of the

OCL metamodel classes (depicted in Figure 5.1). In the AST shown in Figure 5.4, the root is

an IteratorExp. This particular iterator (a forAll with two iterator variables) evaluates whether

the boolean condition expressed in its body is true for all pairs of items in the source collection

(the source collection being self.participants, whose type is OrderedSet(Customer)). As a whole,

this forAll reports whether items with duplicate names exist. The tree representation depicts

iterators with the source collection as first child, the iterator variable(s) as next children, and

the body as last child (in keeping with the lexical order in the textual syntax). More diagrams

of the OCL 2.0 metamodel can be found in the latest specification by the OMG (May 2006,

[171]).

The nodes in an OCL AST stand for a function application (internal node) or for a read

access (leaf node). The default post-order visit order for internal nodes (implemented in class

AbstractVisitor) is usually satisfactory, as it accommodates for nodes standing for arguments

to be visited before the function application itself. For example, the default visit order for an
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Listing 5.2: The default visit order for an IteratorExp

public T visitIteratorExp ( IteratorExp<C, PM> callExp) {
T sourceResult = callExp.getSource (). accept(this );

List<T> variableResults;

List<Variable<C, PM>> variables = callExp.getIterator();

if ( variables . isEmpty()) {
variableResults = Collections .emptyList ();

} else {
variableResults = new java.util . ArrayList ( variables . size ());

for ( Variable<C, PM> iterVar : variables ) {
variableResults .add( iterVar .accept(this ));

}
}
T bodyResult = callExp.getBody().accept(this );

return handleIteratorExp ( callExp , sourceResult ,

variableResults , bodyResult);

}

IteratorExp is determined by the Java method visitIteratorExp and its accompanying handleIt-

eratorExp shown in Listing 5.2. Informally speaking, an OCL iterator expression evaluates its

body for each item in the source collection. Such body expression usually involves an accu-

mulator variable, with the value computed for the body being assigned to the accumulator

variable, thus making it available for the next iteration (an OCL iterator combines map and

reduce of functional programming [110]). The metamodel of IteratorExp is depicted in Fig-

ure 5.2. Incidentally, forAll is special in that it is the only OCL iterator construct allowing

more than one variable, as a shorthand to nesting forAlls (the example in Figure 5.4 em-

ploys this shorthand to evaluate the body expression over the Cartesian product of the source

collection).

The implementation in Listing 5.2 performs no processing at all, it just visits all nodes.

Instead, an unparsing visitor (to obtain the textual representation back from an AST, shown

in Listing 5.1) returns a string of the form:

sourceCollection→iteratorName( iteratorVariables | iteratorBody )

An unparser needs only override handleIteratorExp(), as visitIteratorExp() takes up the re-
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OclExpression

initExpression 0 .. 1

body 1

IfExp
ifOwner

condition

thenOwner

thenExpression elseExpression

elseOwner
0 .. 1

0 .. 1

0 .. 1

OclExpression

CallExp

LoopExp

IterateExp IteratorExp Variable

loopExp 0 .. 1

loopBodyOwner 0 .. 1

initializedElement

iterator *

0 .. 1resultbaseExp 0 .. 1

0 .. 1

1

1 1

Figure 5.2: Containment associations for IfExp and LoopExp

current duty of visiting the children nodes, moreover passing results (Strings in this case)

as actual arguments to handleIteratorExp(). In case the default visit order is not deemed

appropriate for some particular scenario, its visit... methods can be overridden to achieve

another order. This is necessary, for example, when evaluating an OCL if-then-else-endif: the

else part is to be evaluated only in case the condition part evaluates to false. This is what

EvaluationVisitorImpl.visitIfExp() does.

5.2.2 Usage of Generics when Processing OCL ASTs

Given that MDT OCL aims at supporting both Ecore and UML2 class models, the decision was

made by its authors to use Generics [79] (also known as parametric types) to avoid duplicating
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the code base. This was a tradeoff, as Java 5 supports intersection types (e.g. a type argument

T may be required to implement two interfaces A & B) but not union types, which would

be fitting to the need to specify that the class context of an OCL invariant can be either

an (Ecore) org.eclipse.emf.ecore.EClassifier or an (UML2) org.eclipse.uml2.uml.Classifier. Still,

static type-safety is achieved by following programming conventions about type substitutions,

summarized in Tables 4.2 and 4.3.

Type org.eclipse.emf.ecore

parameter (unless otherwise specified)

PK EPackage

C EClassifier

O EOperation

P EStructuralFeature

EL EEnumLiteral

PM EParameter

S EObject

COA org.eclipse.ocl.ecore.CallOperationAction

SSA org.eclipse.ocl.ecore.SendSignalAction

CT org.eclipse.ocl.ecore.Constraint

CLS EClass

E EObject

Table 5.2: Expected type arguments in the Ecore-specialization of MDT OCL

5.2.3 Common Steps in Writing OCL Visitors

Usually it makes sense to consider first what output is wanted for leaf nodes in OCL ASTs.

These nodes are recognized because AbstractVisitor defines their handler to simply return null;

no children nodes are visited, and thus no handler... methods are defined for such constructs.

In summary, leaf nodes are handled by the methods shown in Listing 5.3 on p. 78 (where the

return type T is a type parameter of the visitor class).

Some notes on the usage of these methods follow: visitVariableExp() handles usages of vari-

ables in OCL expressions. From a VariableExp it is possible to access the declaration of the
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Type org.eclipse.uml2.uml

parameter (unless otherwise specified)

PK Package

C Classifier

O Operation

P Property

EL EnumerationLiteral

PM Parameter

S State

COA CallOperationAction

SSA SendSignalAction

CT Constraint

CLS Class

E org.eclipse.emf.ecore.EObject

Table 5.3: Expected type arguments in the UML2-specialization of MDT OCL

referred variable, i.e. to access an instance of org.eclipse.ocl.expressions.Variable<C, PM>. Two

novelties of OCL 2.0 are the built-in literal values null and OclInvalid which may appear in

the textual syntax. Generally the result of an operation invocation on OclInvalid or with an

undefined argument is undefined except in the following cases, as prescribed by the OCL

specification [171, pp. 2-10 in Sec. 2.4.11], all of them irrespective of the lexical order of the

arguments:

� true or Anything is true

� false and Anything is false

� false implies Anything is true

� if Condition then thenPart else elsePart endif has the value dictated by the condition

regardless of the value of the not-chosen branch (in particular, such branch may evaluate

to OclInvalid).

In terms of the OCL metamodel, non-leaf nodes are those whose metaclasses define one or

more composition associations, as for example IfExp, IterateExp, and IteratorExp (Figure 5.2).

Their handlers in a visitor usually piece together the results of visiting the owned parts.
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Listing 5.3: Methods in a visitor to handle leaf nodes

public T visitVariableExp (VariableExp<C, PM> v);

public T visitTypeExp(TypeExp<C> t);

public T visitUnspecifiedValueExp (UnspecifiedValueExp<C> unspecExp);

public T visitStateExp (StateExp<C, S> stateExp);

public T visitIntegerLiteralExp ( IntegerLiteralExp <C> literalExp);

public T visitRealLiteralExp ( RealLiteralExp<C> literalExp);

public T visitStringLiteralExp ( StringLiteralExp <C> literalExp);

public T visitBooleanLiteralExp (BooleanLiteralExp<C> literalExp);

public T visitNullLiteralExp ( NullLiteralExp<C> literalExp);

public T visitInvalidLiteralExp ( InvalidLiteralExp <C> literalExp);

public T visitEnumLiteralExp(EnumLiteralExp<C, EL> literalExp);

public T visitUnlimitedNaturalLiteralExp (

UnlimitedNaturalLiteralExp literalExp )

The metamodel classes which are subtypes of CallExp contain a reference to an additional

implicit argument (not shown in the textual syntax between the parentheses of the argument

list). This source expression can be obtained by invoking getSource() on the CallExp. For

example, the metamodel fragment in Figure 5.1 on p. 69 shows that a PropertyCallExp is a

subtype of CallExp. Accordingly, the OCL grammar allows: self.age >= 18, where age stands

for a property (an attribute), with self being the source expression (an instance of VariableExp).

This implicit source should be visited just like other arguments. Additional OCL constructs

owning sub-expressions occur in connection with the initializers of variables and the arguments

of operation calls.

Besides the handlers discussed so far, the remaining methods follow similar patterns, how-

ever some comments are in order:

� some types in the method signatures are not shown in the fragment of the OCL meta-

model depicted in Figure 5.1 (that is the case for the constructs TupleLiteralPart, Col-

lectionItem, CollectionRange, Variable, and CollectionLiteralPart). As Figure 5.3 shows

(p. 79), not all OCL constructs have counterparts subtyping OCLExpression in the meta-

model (Figure 5.1 depicts only the classes branching off from OCLExpression).

� MDT OCL follows Chapter 12 of the OCL specification [171] and includes the Expres-
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sionInOcl metaclass. This metaclass does not subtype TypedElement but Visitable and

constitutes the container for context variables (self, result) and for those variables stand-

ing for operation parameters (if any). AbstractVisitor.visitExpressionInOCL() will visit

those owned parts, invoking method AbstractVisitor.handleExpressionInOCL() for each of

those results.

� @pre may be used in a postcondition as the postfix of a property, to indicate the value

the property had before execution of the operation. More in detail, the FeatureCallExp

metaclass defines the isMarkedPre property. Unfortunately, Section 8.3.2 “FeatureCall

Expressions” of the OCL spec [171] omits the description of the FeatureCallExp metaclass.

However, it is at least clear that a VariableExp cannot be marked @pre.

Figure 5.3: Metaclasses for language constructs not subtyping OCLExpression
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5.2.4 Further Techniques to Process OCL ASTs

A visitor is not limited to letting other components know of its processing only through return

values, it may also update instance state at the visitor level. This is frequently the case with

chains of visitors: a visitor receives as argument in its constructor the previous one, in order

to access the updated instance state (after the received visitor has completed its processing).

Also in the context of visitor chains, it is possible to keep track of the input-output re-

lationships at the node level in the form of bidirectional maps (one-to-one, one-to-many, or

many-to-many). This practice enables use cases such as round-trip engineering (updating the

output expression modifies the input, or at least signals what nodes in the input AST are

out-of-synch with their counterpart). For example, when using the OCL → Java compiler,

offering the capability to debug at the OCL source-code level requires keeping track of the

correspondence between OCL AST nodes and generated Java statements, as the Java debug-

ger reports its progress in terms of Java line statements (this is related to JSR–45: Debugging

Support for Other Languages, [126]).

Whether an OCL expression is interpreted or compiled, one way to make OCL evaluation

faster consists in computing at compile-time as much as possible of the expression, as a result of

analyses such as constant folding or strength reduction or common sub-expression elimination

or partial redundancy elimination (compiler-implementation terminology) or partial evaluation

(functional programming terminology).

In general, AST rewritings usually involve leaving most of the input AST as-is, which

requires most handlers in a visitor to just return a cloned version of the input. It would be

cumbersome to duplicate over and over that strategy whenever a reducer visitor is written.

Instead, utility classes such as OCLCloner [78] encapsulate such behavior by default. A new

visitor need only override those methods where it may detect an opportunity for applying

a reduction, invoking the non-overridden version in case the preconditions for the reduction

are not fulfilled. For example, in the context of compile-time arithmetic simplification, the

method visitOperationCallExp() is shown in Listing 5.4:
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Listing 5.4: Code sketch of AST rewriting relying on an AST cloning utility class

@Override

protected Visitable handleOperationCallExp(

OperationCallExp<C, O> callExp,

Visitable sourceResult ,

List<Visitable> argumentResults) {
int opcode = callExp.getOperationCode();

if (! isArithmeticOp( callExp )) {
return super.handleOperationCallExp(callExp, sourceResult ,

argumentResults);

}
OCLExpression<C> newSource = (OCLExpression<C>) sourceResult;

OCLExpression<C> newArg =

(OCLExpression<C>) argumentResults.get(0);

if (!( newSource instanceof NumericLiteralExp)

|| !(newArg instanceof NumericLiteralExp)) {
return super.handleOperationCallExp(callExp, sourceResult ,

argumentResults);

}
/*

* actual reduction comes here

*/

5.3 Compilation Phases

5.3.1 Information Initially Available to the Compiler

The ASTs prepared by MDT OCL encode not only structural aspects of OCL (operators,

operands, precedence) but also reveal the statically computed types for each sub-expression,

down to the leaf nodes (literals, read access to variables). Not all of this type information

has been explicitly stated by the developer, but is inferred from the types of arguments and

the involved operation. Less frequently, a type declaration itself may be implicit and the

resulting type has no user-visible name (this is the case for tuple literals and for implicit

iterator variables in loop expressions).
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The translation algorithm comprises (a) types conversion and (b) expressions translation.

The latter involves a structural mapping that considers one node at a time of the input

OCL AST, and produces a Java counterpart. This translation has to abide by the type

conversion, i.e. the Java type of an output expression has to conform to that specified by the

rules elaborated in Sec. 5.3.2. Translation (b) requires information available locally at each

input node. Such nodes stand for a function application (internal node) or for a read access

(leaf node). As explained in detail in Sec. 5.3.3, the translation of a function application is

constructive: provided that the arguments have already been translated, the output for the

function application as a whole will be well-formed.

Regarding the possible OCL constructs, Figure 5.1 depicts the relevant fragment of the

OCL metamodel [171], i.e. the classes whose instances are nodes in an AST (for more details,

see [78]). For illustration, one such AST is shown in Figure 5.4, depicting the static dataflow

of an OCL expression. For simple expressions, such AST depiction has the same shape as

the dynamic dataflow (i.e., the tree of call stack activations). For OCL expressions involving

recursion or loops, the dynamic dataflow is data-dependent and a visual representation would

involve unwinding the call hierarchy for a particular execution trace.

The OCL Standard does not specify the order in which AST building should take place, but

it cannot be arbitrary: def statements can be used to add: (a) attributes, (b) references and

(c) operations to a class model specified in Ecore. In order for other OCL expressions to parse

correctly (as they may contain usages of these newly added model elements), the declaration

part of all def statements is processed first, affecting an in-memory copy of the original input

model. Thereafter, ASTs are built for the initialization part of the def statements and for

the remaining OCL statements. An example of mutual forward references occurring in the

initializers of def statements is depicted in Figure 5.5.

context A

def dA: sa : String = refToB.sb

context B

def dB: sb : String = refToA.sa

Figure 5.5: Mutual forward references in the initializers of def statements
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5.3.2 Types Conversion

The declared types appearing in a particular Ecore + OCL specification are a subset of the

universe of types resulting from applying OCL type construction operators to the union of

the OCL built-in types and those in the user-specified class model. The subtype relationship

over the types universe is a partial order. The types conversion implemented by our compiler

must map this graph G into an isomorphic graph H (whose nodes represent Java 5 types).

This isomorphic mapping is a bijection f between the vertices of G and H such that any two

vertices u and v from G are adjacent if and only if f(u) and f(v) are adjacent in H. This

ensures that, if two nodes in the target graph are connected, such statement about subtyping

is valid under the subtyping relationship of Java 5 (§4.10 in [95]).

Type formation in OCL is summarized in Figure 5.6 and covered in Sec. 8.2 of the OCL

2.0 Standard [171]. In fact, the OCL → Java types conversion can be made more concise by

translating into Ecore types [79] (which are shorthands for the Java 5 types that will appear

in the code generated by the EMF CodeGen component). The algorithm to achieve this

conversion appears on Tables 5.4 and 5.5, as pairs of LHS → RHS transformations from

OCL types into Ecore types. This algorithm is applied to instances of Ecore’s ETypedElement

(attributes and references in classes, formal parameters and return type in operations) after

ASTs have been built as discussed at the end of Sec. 5.3.1.

5.3.3 Expressions Translation

The internal nodes in an OCL AST stand for the application of a function to its argu-

ments. The OCL constructs subclassing CallExp receive, besides the argument list, an ad-

ditional source expression as implicit argument. In the example shown in Figure 5.4 on p. 82,

self.participants→forAll(c1,c2 | . . . ), the source expression of the forAll is self.participants.

In general, the Java code generated to compute the function application could assume that

the values of arguments are available in local variables. This recursive pattern fits perfectly

the visit order that can be followed by subclassing org.eclipse.ocl.utilities.AbstractVisitor. To

enforce the pattern, each method in the compilation visitor (one for each OCL construct)

should abide by the following contract:

(a) visit nodes standing for arguments so that Java statements to compute them are added

to a visitor-local running list; and
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OCL type Ecore counterpart

(wrapped inside an EDataType<T> with

instanceClassName as below)

Collection(T ) java.util.Collection<? extends T>

Sequence(T ) java.util.ArrayList<? extends T>

Set(T ) java.util.HashSet<? extends T>

OrderedSet(T ) java.util.LinkedHashSet<? extends T>

Bag(T ) org.eclipse.ocl.util.Bag<? extends T>

Boolean, Integer EBoolean, EInt

String, Real EString, EDouble

TupleType A dedicated EClass is added to the in-memory copy of the input

model, with structural features standing for the tuple’s fields

VoidType

All OCL-defined expressions return some value, including body

statements defining EOperations. The Java counterpart of Void-

Type is a void method return type, but such methods cannot be

defined with OCL.

MessageType Not handled by our compiler, MessageTypes denote method invo-

cations, which are not reified in Java.

ElementType

This metaclass appears in the OCL standard just to introduce

vocabulary for later use in English sentences. There is no “Ele-

mentType” as such, the item type of a collection must be one of

the types defined above.

Table 5.4: Types present in OCL since version 1.0

(b) return the name of the local variable where the result of the expression rooted at the

visited node will be available (the upstream node will need this name to complete its own

code generation)

While performing (a) for each argument to an OCL function invocation, the name of the local

variable holding the argument’s value can be obtained: this name was returned as per (b).
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OCL type Ecore counterpart

AnyType EObject

InvalidType
As in Java, there is no name in Ecore for the type whose only

allowed value is null. Whenever an OCL expression would evaluate

to InvalidType, the Java counterpart will compute null.

TypeType

“TypeType” appears in the OCL specification only in diagrams (in

particular, no definition for it is given). Its apparent intent, type

reification, is already handled by the Ecore metamodel and the

above definitions, which suffice for ASTs involving oclIsTypeOf(),

oclIsKindOf(), and oclAsType().

Table 5.5: Types added to OCL 2.0

Listing 5.5: Template of the code generated for an IfExp

/* 'NCS' below stands for the nearest common supertype

for the types of the Then and the Else branches */

NCS if123 = null;

// statements generated by getCondition (). accept( this )

// returning the local variable name 'cond456'

if (cond456) {
// statements generated by getThenExpression().accept( this )

// returning the local variable name 'then789'

if123 = then789;

} else {
// statements generated by getElseExpression (). accept( this )

// returning the local variable name 'else789 '

if123 = else789;

}
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Listing 5.6: The translation of an OCL primitive literal is a Java literal

@Override

public String visitBooleanLiteralExp (

BooleanLiteralExp<EClassifier> literalExp ) {
return literalExp .getBooleanSymbol().toString ();

}

For example, the code generated for an if C then E1 else E2 endif appears in Listing 5.5,

making clear that generated local variables will be in scope (and assigned) by the time they

are used: the local variable containing the result of C is in-scope and assigned by the time

it is referred in the generated if statement. The above scheme also “scales down” to AST

leaf nodes, as shown in Listing 5.6. As a further example, the visitor method in charge of

compiling an OCL let statement is shown in Listing 5.7. A more comprehensive input-output

pair (involving iterators and implicit variables) can found in Listing 5.15 on p. 98.

The compilation algorithm is encapsulated in class CompilationVisitor. The implementation

of OCL visitors in general is discussed in [78], including techniques such as the encapsulation

of walker code, instantiation of type-parametric visitors with type substitutions, and tracking

the input-output relationship between AST nodes along a chain of visitors.

The complete list of translation rules cannot be reproduced here because of space reasons

(such rules are, in essence, syntax-triggered substitutions). The analysis around termination

and determinism of the compilation algorithm relies on its formulation as a number of pattern-

based substitutions of the form LHS → RHS, where each OCL construct is matched by

only one LHS. The transformation algorithm can be shown to correctly preserve meaning if

each rewrite transformation is proved meaning-preserving. The rewrite rules are terminating

because they decrease the number of occurrences of OCL constructs available for matching,

and are confluent given that the LHSs partition the set of shapes that OCL constructs may

take (each OCL construct being matched by one rewrite rule). In this pattern-matching

strategy, translation operates bottom-up from the leaves of the AST.
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Listing 5.7: Visit order for a let expression: initializer, in-part

@Override

public String visitLetExp (LetExp<EClassifier , EParameter> letExp) {
OCLExpression<EClassifier> initExpr =

letExp . getVariable (). getInitExpression ();

// add the Java stmts for the initializer part of the letExp

String srcInitVal = initExpr .accept(this );

String srcJavaType = getSrcType(letExp.getVariable (). getType());

String srcVarName = letExp.getVariable (). getName();

addAssignment(srcJavaType, srcVarName, srcInitVal );

// add the Java stmts for the in part of the letExp

String res = letExp.getIn (). accept(this );

return res ;

}

5.4 Translation Patterns

After the semantic analysis phase is complete, a 3GL compiler translates abstract syntax

into abstract machine code, pending detailed instruction selection. To avoid the combinato-

rial explosion between compiler frontends and target processor architectures, an intermediate

representation is used (Figure 5.7). In case of our OCL compiler, the target architecture

consists of generally accepted mechanisms in stack-based, garbage-collected OO programming

languages (C#, Java, Smalltalk). Therefore, some translation patterns are presented at a con-

ceptual level in terms of Java syntax for the RHS part, with the assurance that no Java-only

mechanisms are being resorted to.

OCL loop operations, of both the iterator and iterate() varieties, constitute frequently used

collection operations that deserve custom code to be generated for each. The distinction

follows the abstract syntax (Listing 5.14 on p. 97).

Usually, an invocation of iterate() contains only a single iterator variable, and thus the

resulting RHS looks as reproduced in Listing 5.8. As for more than one iterator variables,

nested loops are added.
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Figure 5.7: Compilers for five languages and four target machines: (a) without an IR, (b) with

an IR (reproduced from [12])

Listing 5.8: Pattern for the translation of OCL loop operations

... compile sourceResult here

... compile initialValue here

<accumulatorType> <accumulatorVarName> = <initialValue>;

for (<iterVarType> <iterVarName> : <sourceResult>) {
<accVarName> = ... compile iterate body here

}

5.4.1 Extending the Compiler

Early on the decision was made to base our compiler on Ecore instead of UML2. The modeling

abstractions in Ecore are a subset of those in UML2. In detail, Ecore does not allow: class-

scoped features or operations, association classes, association-end qualifiers (which office as

primary keys to identify an item in a collection), and the marking of operations as isQuery().

With the expressive power of OCL however, every datamodel that can be expressed in UML2

can be reformulated as a corresponding Ecore + OCL model (for example, a Singleton pattern

can be stated with an invariant of the form Type→allInstances()→size() = 1). MDT OCL

provides uniform support for both UML2 and Ecore, by relying on bounded type parameters.

We thus see no principle obstacle to refactor the codebase of the compiler to take as input an
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UML2-based model instead of an Ecore-based one.

The detection of the minimal subset of invariants that need rechecking (due to updates to

the object population, intercepted at runtime) has been addressed a number of times. One

technique to achieve detection relies on AspectJ and is described by Dzidek [27]. Altenhofen et

al. also address this problem [7]. Existing approaches re-evaluate from scratch each invariant

in the potentially affected set, upon detecting an update to any location referred from the

AST of the invariant. However, it would be enough to evaluate those nodes upstream of the

updated one, propagating values as long as the new value differs from the cached previous

value (using memoization, Chapter 12). Recursion and looping result in the dynamic dataflow

not matching the shape of the compile-time AST (Sec. 5.3.1), an issue to consider to avoid

false-positives (invariants that actually need no rechecking) as well as, more importantly,

mispredictions (overlooking re-evaluating an invariant whose value has actually changed).

Another area for future work consists in re-architecting our (batch) compiler to support

incremental compilation. This would require reacting to the deltas that the Eclipse workspace

notification mechanism provides.

5.5 Refactoring of OCL Expressions

The presence of OCL constraints in an integrated Ecore + OCL model implies that refactorings

at the class model level can no longer ignore their effect on the syntax, well-formedness, and

semantics of the associated OCL constraints. A desirable property for refactorings is for them

to be semantics preserving. What exactly is meant by that requires more precision. For

example, every refactoring loses some semantics: a refactoring for speed results in programs

having a different observable behavior from the original ones (which are slower).

Kniesel [132] frames the problem of refactoring in the context of conditional program trans-

formations, where preconditions guard against unwarranted applications of a source-level

transformation. In the case of OCL, the authors of [155] cleverly define an OCL refactoring to

be semantics preserving provided the following conditions are met: (a) there is a one-to-one

correspondence between old and new OCL constraints; and (b) every possible evaluation of

each new constraint results in the same value as its old version on the image of the system

snapshot (how to compute the image function for each refactoring is not spellt out in detail).

Taking as starting point the list of refactorings proposed by Fowler [75], an adaptation to
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Listing 5.9: Example of Verbose Expression

context LoyaltyProgram

def verboseTransactions : Set(Transaction) =

self . partners−>collect ( i ProgramPartner : ProgramPartner |
i ProgramPartner. deliveredServices )−>collect (

i Service : Service | i Service . transactions )−>asSet()

Listing 5.10: Concise formulation of the fragment in Listing 5.9

context LoyaltyProgram

def conciseTransactions : Set(Transaction) =

self . partners . deliveredServices . transactions−>asSet()

the OCL language is made. Exemplarily, one refactoring is proved to be semantics preserving

(by structural induction on the shapes of the fragments of OCL ASTs participating in the

refactoring), although in the chosen case (moving an attribute to another class over an asso-

ciation with one-to-one multiplicity) the result is intuitive. The Eclipse-based tool RoclET1

aims at implementing the refactorings described in [155].

Sometimes, a simpler version of a verbose expression can be obtained without change in

meaning, thus promoting readability. Listing 5.9 shows a sample verbose version, while List-

ing 5.10 displays its simplified counterpart. Rules for simplifying expressions (for both im-

proved performance and readability) can be found in [88].

Correa and Werner [46] offer a catalog of code smells for OCL, i.e., patterns that go against

established programming practice, for example by impairing readability or by complicating

the evolution of the expressions. Typical smells include magic numbers, and-chain (several

Boolean expressions anded together instead of broken apart into separate definitions), Law of

Demeter [148], and duplicate code. To overcome their shortcomings, a number of refactorings

are put forward. For example, Implies Chain denotes a chain of implies operators, that can

be simplified by replacing the occurrences of implies with and except for the last one. Line 1

of Listing 5.11 shows the example of Implies Chain and the next line shows the result after

refactoring.

1RoclET, http://www.roclet.org/
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Listing 5.11: Example of Implies Chain

a1 implies a2 implies .. implies aN implies b

(a1 and a2 and .. and aN) implies b

Listing 5.12: Nested loop in an invariant, resulting in a cartesian product

context LoyaltyProgram

inv : self . participants −>forAll( c1 |
self . participants −>forAll( c2 |

c1 <> c2 implies c1.name <> c2.name ))

To our knowledge, no detailed algorithms have been presented in the literature for the

following language processing tasks: (a) detecting unused derived operations or attributes

(not an error, but a symptom that a typo may have occurred); (b) replacing an arbitrary

(complex) subexpression with the invocation to a defined operation. Notice this may involve

passing as explicit arguments some bindings in the scope of the caller but not in the scope of

the callee; (c) finding unused explicit arguments; (d) computing the average complexity of an

expression in big-O notation; (e) inlining a def usage (also called macro expansion). This is

the counterpart to factoring a subexpression into a separate definition.

5.6 Performance

Measuring wall-clock time, compiled code runs up to six times faster than its interpreted

counterpart (twice as fast on average). In all cases, elapsed times for the interpreter do not

include runtime parsing and AST building, as these operations can be amortized among several

evaluations. The largest speedups correspond to nested loops, as is the case for the invariant

shown in Listing 5.12 evaluated over 10000 instances (84 sec vs. 580 sec). Better speedups

could be achieved if our compiler were an optimizing compiler [206]. Some compile-time

optimizations (e.g. constant propagation) are performed by the JIT (Just-in-Time) compiler

of Java anyway. Additional algorithms for OCL rewriting appear in [78] and [88].

The remaining examples in this section are also based on the Royal & Loyal case study [78].

The chart displayed in Table 5.6 compares the elapsed times for the constraints shown in
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Listing 5.13: A representative set of OCL expressions

context Customer

def a: wellUsedCards : Set( CustomerCard )

= cards−>select( transactions . points−>sum() > 10000 )

context Customer

inv b: self .programs−>collect(partners)

−>collectNested( deliveredServices )−>isEmpty()

context ProgramPartner

inv totalPointsEarning : deliveredServices . transactions

−>select( oclIsTypeOf( Earning ) ). points−>sum() < 10000

context TransactionReport

inv cycle : card . transactions−>includesAll( lines . transaction )

OCL query Interpreted (sec) Compiled (sec)

Customer.a 0.31 0.16

Customer.b 1.41 1.28

ProgramPartner.totalPointsEarning 2.50 1.69

TransactionReport.cycle 0.16 0.03

Table 5.6: Execution time of representative OCL expressions

Listing 5.13 (the first two bars corresponding to the first OCL expression, and so on).

5.7 Integration in an MDSE Toolchain

Ecore + OCL specifications, while declarative, still lack any form of behavioral specification, as

is possible with statecharts, or Event-Condition-Action rules. If such behavioral specifications

were available, fully working components could be generated by a model compiler (as done by

Executable UML [182] tools, which usually target the C programming language). Even without

behavioral specifications the productivity and quality gains are significant: Figure 5.8 on p. 96

depicts a screenshot of an EMF-generated tree editor that allows authoring sentences of a

custom DSL. Ad-hoc queries and method invocations can be performed through a (generated)

OCL Interpreter. A problems view contains entries for OCL invariants currently broken for

the object population being edited. No single Java statement was manually written to realize
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this editor. Alternative concrete syntaxes (embedded, textual) are the topic of Chapters 6

and 7 resp.

5.8 Related Work and Evaluation

Another OCL → Java compiler has been available for Eclipse since 2005, the Octopus IDE2

(developed by Warmer and Kleppe, the original authors of OCL). Octopus provides syntax-

aware text editors for integrated UML + OCL specifications. The main differences with our

work are: (a) Octopus adopts a code generation strategy where separate helper methods com-

pute subexpressions, we inline instead such computations; (b) the notification, serialization,

and reflection mechanisms that most EMF-based editors rely on are not present in the POJO-

style code generated by Octopus. In particular, (c) ad-hoc OCL queries (i.e., known only at

runtime) cannot be evaluated, a task that MDT OCL supports with OCL Interpreter (and

associated GUI).

The availability of compilers constitutes an acid-test for the specifications of their input

languages. The metamodel approach to language specification [77] has proved to be a step

forward, provided that the same level of precision attained by previous language definition

techniques is followed (i.e., formulation of static semantics as OCL invariants, including typ-

ing rules). Several synergy effects can be realized from the unified mechanism for constraining

object models that OCL offers (synergies in the fields of program verification, software repos-

itories, and automatic generation of tools, to name a few). Their impact is amplified by the

availability of such capabilities on the Eclipse platform.

2http://octopus.sourceforge.net/
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Listing 5.14: Case selection for iterate()

@Override

public String visitIteratorExp (

IteratorExp<EClassifier , EParameter> iteratorExp) {
String sourceResult = iteratorExp .getSource (). accept(this );

switch (OCLStandardLibraryUtil.getOperationCode(

iteratorExp .getName())) {
case PredefinedType.EXISTS:

return createExistsIterator ( iteratorExp , sourceResult );

case PredefinedType.FOR ALL:

return createForAllIterator ( iteratorExp , sourceResult );

case PredefinedType.SELECT:

return createSelectIterator ( iteratorExp , sourceResult );

case PredefinedType.REJECT:

return createRejectIterator ( iteratorExp , sourceResult );

case PredefinedType.COLLECT:

return createCollectIterator ( iteratorExp , sourceResult );

case PredefinedType.COLLECT NESTED:

return createCollectNestedIterator ( iteratorExp , sourceResult );

case PredefinedType.ONE:

return createOneIterator ( iteratorExp , sourceResult );

case PredefinedType.ANY:

return createAnyIterator ( iteratorExp , sourceResult );

case PredefinedType.SORTED BY:

return createSortedByIterator ( iteratorExp , sourceResult );

case PredefinedType.IS UNIQUE:

return createIsUniqueIterator ( iteratorExp , sourceResult );

case PredefinedType.CLOSURE:

return createClosureIterator ( iteratorExp , sourceResult );

}
assert false ;

return null ;

}
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Listing 5.15: The noAccounts invariant translated into Java

public boolean invariant noAccounts(DiagnosticChain diagnostics ,
Map<Object, Object> context) {

/* context LoyaltyProgram
inv invariant noAccounts :
−− when the LoyaltyProgram does not offer the possibility to earn
−− or burn points, the program members do not have LoyaltyAccounts
partners . deliveredServices
−>forAll(pointsEarned = 0 and pointsBurned = 0)
implies memberships.account−>isEmpty() */
org. eclipse . ocl . util .Bag<RandL.Service> collect1 =
org. eclipse . ocl . util . CollectionUtil .createNewBag();

for (RandL.ProgramPartner i ProgramPartner :
org. eclipse . ocl . util . CollectionUtil .asSet(this . getPartners ())) {
collect1 .addAll(org. eclipse . ocl . util . CollectionUtil .asSet(
i ProgramPartner. getDeliveredServices ()));

}
Boolean forAll2 = true;
for (RandL.Service i Service : collect1 ) {

if ( forAll2 ) { Boolean equal3 =
Boolean.valueOf( i Service .getPointsEarned() == 0);

Boolean and4 = equal3;
if (and4) { Boolean equal5 =

Boolean.valueOf( i Service .getPointsBurned() == 0);
and4 = equal5;
}
forAll2 = and4;

}
}
Boolean implies6 = forAll2 ;
if (!( implies6 )) {
implies6 = Boolean.TRUE;

} else {
java . util . List<RandL.LoyaltyAccount> collect7 =
org. eclipse . ocl . util . CollectionUtil .createNewSequence();

for (RandL.Membership i Membership :
org. eclipse . ocl . util . CollectionUtil .asOrderedSet(

this .getMemberships())) {
collect7 .add(i Membership.getAccount());

}
implies6 = (new Boolean(collect7.isEmpty()));

}
if (!( implies6 )) {

if ( diagnostics != null) { diagnostics .add( . . . ); }
return false ;
}
return true;
}
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The Eclipse Java Development Tools (JDT) excels at supporting the editing and navigation

of Java code, setting the bar for newer IDEs including those for Domain Specific Languages

(DSLs). In spite of the progress made by IDE generation (covered in Chapter 7), it may

not initially be clear for a new DSL whether its later use will justify the development of

dedicated tooling. In order to avoid falling back to encapsulating new language abstractions

as “frameworks and XML dialects”, we explore in this chapter an alternative path, embedded

DSLs, by automating the generation of the required APIs from EMOF models describing the
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abstract syntax of the DSLs in question [80]. To evaluate the approach, we present a case

study (statecharts) and discuss the pros and cons with respect to other approaches.

Most embedded DSLs, while offering a user-friendly syntax, are fragile in the sense that their

expressions may not comply with the full static semantics of the DSL in question. Productivity

studies recommend that errors should be reported while the frame of mind is still focused in

the error location. To address this issue, we leverage the extension capability of Eclipse to

detect at compile-time malformed DSLs expressions. The technique relies on mainstream

components only: Eclipse Modeling Framework, OCL, and JDT. Additionally, support for

embedded DSLs can be improved beyond well-formedness checking by performing language

processing as a background task. The prototype described in this section (DSL2JDT) has

been contributed to the Eclipse Modeling Framework Tools project1.

The structure of this chapter is as follows. Sec. 6.1 examines current support for embedded

DSLs specially focusing on the (lack of) static semantics checking. Once the value proposition

of this technique is clear, Sec. 6.2 covers the patterns in the generated API that support guided

interactive editing, a feature not present in traditional DSL embedding. Sec. 6.3 discusses

how compile-time checking is actually realized, this turns out to be pleasantly simple (but not

simplistic) given our decision to leverage existing infrastructure. The situation is different for

DSL-aware language processing proper (i.e., beyond well-formedness checking) as reviewed in

Sec. 6.4. Related work and an appraisal of the proposed technique conclude this chapter.

6.1 Embedded DSLs and Static Semantics

Nowadays, software development involves a number of DSLs, yet no first-class citizenship is

given to them, i.e. IDEs are not aware of the full static semantics for (combinations of) DSLs.

Popular examples of DSLs used in combination with Java include SQL, BPEL, and JSP,

but the list can also be extended to include notations focused on certain aspects of system

functionality (business rules, access control, databinding between GUI forms and underlying

model objects, etc.). Providing integrated IDEs for such DSLs has proven hard. A Java IDE

aware of SQL would for example flag those embedded SQL statements that become invalid

after refactoring the database schema. Supporting such scenarios is easier if both host and

embedded languages are designed with cooperation in mind, as is the case with Microsoft’s

1Eclipse Modeling Framework Tools project, http://www.eclipse.org/emft
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Listing 6.1: Relational calculus expressions for the KodKod relational engine

public class KodKod {
/**

* Returns a formula stating that all vertices

* have at least one color , and that no two adjacent

* vertices have intersecting colors .

* @return a formula stating that all vertices

* have at least one color , and that no two adjacent

* vertices have intersecting colors .

*/

public Formula coloring () {
final Variable n = Variable .unary(”n”);

final Formula f0 = n.join ( color ). intersection (Color ). some();

final Formula f1 =

n. join ( color ). intersection (n. join (graph). join ( color )). no();

return (f0 .and(f1 )). forAll (n.oneOf(Node)); }
}

LINQ (Language INtegrated Query) [160]. Experience has also shown that any complex-

enough DSL is doomed to reinvent constructs that are taken for granted in general-purpose

languages (cf. control-flow constructs in RDBMS stored procedures, in the XSL language by

the W3C for XML transformation, and in QVT-Operational [173]), thus strengthening the

case for integrated tool support.

The conventional wisdom around DSL tooling is that one may either:

1. provide minimal compile-time checking of DSLs. This is the path followed by XML prac-

tice with errors being discovered at runtime when document instances are interpreted,

or

2. invest effort in developing dedicated plugins for editing DSLs with custom syntax (be it

textual or diagram-based), checking at compile time the Abstract-Syntax-Trees (ASTs)

for all involved software artifacts.

The economics of the two alternatives are clear: the “dedicated IDE” approach is technically

better but also justifiable only for DSLs with a large user base. Actually, most of the tooling
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cost for a DSL comes from supporting its concrete syntax. Most of the benefits of a DSL

however result from the analyses and transformations performed on its abstract syntax. Given

that this “back-end infrastructure” is common to all DSL implementation alternatives we take

it as starting point for our generator of APIs for DSL embedding. Besides allowing for early

feedback on the DSL being engineered, the resulting risk minimization is useful in another

way: if the DSL proves successful enough to warrant development of a dedicated IDE, no

development effort is thrown away. With DSL2JDT the embedded DSL code can still be used

in such IDE, as it depends only on the abstract syntax of the DSL, which is independent from

its concrete syntax.

As far as we know, the APIs of all existing embedded DSLs have been developed manually.

The code snippet in Listing 6.1 (for a relational calculus DSL2) illustrates some frequent

idioms. Basically, repetition of enclosing lexical contexts is avoided, thus reducing syntactic

noise.

In effect, the Content Assist feature of the JDT and the type system of Java 5 are leveraged

to enforce some of the well-formedness rules of the embedded DSL (KodKod) when expressing

ASTs for it in the host language (Java 5). Additionally, method chaining facilitates editing

when used in conjunction with so called progressive interfaces : whenever the DSL grammar

calls for a mandatory construct, the preceding method in the chain returns an interface with

a single method declared in it (standing for the successor in lexical order in the underlying

DSL grammar) so that the IDE offers a single choice.

Java APIs like those used above, by themselves, do not capture all relevant well-formedness

rules (WFRs) of any but the simplest DSLs. Our approach toward DSL embedding allows

evaluating at compile-time such constraints, provided they can be discovered by the EMF

Validation Framework using reflection (as is the case when using our OCL Compiler). The

combination of generated APIs and compile-time well-formedness checking surpasses the “DSL

in XML” approach in terms of usability and safety, moreover relying on mainstream tech-

nologies. Additional techniques (in-place translation, statement-level annotations, and DSL-

specific views) may be optionally adopted to further increase the usability of embedded DSLs,

as discussed in Sec. 6.4.

2KodKod relational engine, http://web.mit.edu/emina/www/kodkod.html
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6.2 Code Idioms in APIs for Embedded DSLs

Statecharts often serve as examples in discussions on model-driven tooling and this section

follows that tradition. Being a graphical formalism, any usability points that their embedding

can attain should be welcomed with appreciation: a basic statechart metamodel (Figure 6.1)

devoid of any annotation for concrete syntax is given as sole input to our translation procedure.

The screen capture in Figure 6.2 shows the resulting API being used to instantiate a statechart

describing the behavior of a telephone.

Figure 6.1: Metamodel for the Mini Statechart DSL

What does the generated API for the statechart DSL look like? Consider for example class

Region containing zero or more Vertex and zero o more Transition. At edit time, Content Assist

should offer first subVertex(...) as completion proposal (only). After accepting that suggestion,
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Figure 6.2: Embedded DSL statements for a Statechart DSL

the next method in the chain should be transition(...) (only). And that’s just two structural

features. Well, the fragment of the expression builder defining such API is reproduced in

Listing 6.3.

As can be seen, three parts are generated for each concrete class:

� a factory method that encapsulates a more verbose factory invocation.

� The AST node freshly instantiated as per the previous item is not directly returned

but wrapped first in a decorator (class RegionBeingBuilt in this case) which selectively

discloses update methods on the wrapped AST node. Such update methods are grouped

into batches (three in this case, from RegionBeingBuilt0 to RegionBeingBuilt2).

� the last invocation in a method chain will be toAST(), which unwraps the AST node

from its expression builder and returns it.

The choices offered by a progressive interface are not as linear as the example above might

suggest. One of the heuristics applied by DSL2JDT to improve usability involves optional

fields. A contiguous run of optional fields is offered in a single batch of options, allowing to

spring any of them. In order to access the next batch of options, the mandatory constituent

(the one coming up right after the run of contiguous options) is to be chosen from Content

Assist.

Other rules applied by DSL2JDT include:
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� Alternative items, i.e. those resulting from an enumeration, result in content suggestions

being packed in a single batch of options. For example, the items for the kind enumer-

ation result by default in methods kindLocal(), kindInternal(), and kindExternal() being

generated. If the number of options becomes unwieldy, one may choose instead to have

a single update method (an update method taking an enumeration literal as argument).

� For boolean fields so called yes/no methods can be specified. For example, on()/off()

are more readable in embedded DSL statements than setIsOn(false).

� Classes owned over strong composition and declaring only primitive fields are instanti-

ated with a single method invocation, where the field values are received as arguments.

For example, a field xyPos with type Point2D will be set with the method invocation

xyPos(-1,1) rather than the more verbose setXYPos(new Point2D(-1,1)).

6.3 Checking Static Semantics During Editing

As already stated, we want to engage the IDE in checking the static semantics of DSL expres-

sions. Given the reflection capabilities of EMF and the existing GUI for JUnit in the Eclipse

Java editor, this task is greatly simplified:

1. each group of embedded DSL statements (making up a DSL expression) is encapsulated

in a dedicated Java method that returns a self-contained AST, obtained by finishing a

method chain with toAST()

2. a JUnit test is created for each method above, invoking the default EMF validation on

the AST root node. That way, the particular WFRs of all the nodes in the tree will

be evaluated, without having to enumerate them explicitly (EMF determines all the

applicable validators using reflection).

3. Although not shown here, debugging the unit tests with an exception breakpoint of As-

sertionError allows inspecting detailed diagnostic messages for each malformed AST node.

In a generated IDE such functionality has to be implemented from scratch (Sec. 7.4.1).

For example, the static semantics for the AST of Figure 6.2 can be checked with the code in

Listing 6.2. Semantics checks need not be limited to those expressible in OCL. If embedding
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XQuery3, full static type analysis can be performed by reusing existing Java libraries4:

Given an XQuery expression, the tool uses the normalization rules specified in

the W3C XQuery Formal Semantics document to convert the given expression to

an expression in a core grammar (a subset of the XQuery grammar). . . . Given

a normalized expression, the tool again uses the static typing rules specified in

the W3C XQuery Formal Semantics document to determine the output type of the

expression. . . . The Static Analyzer also checks for semantic errors (such as passing

an empty expression to a function call where an integer argument is expected).

As long as tests are manually coded following the pattern above, all embedded DSL state-

ments will be checked for well-formedness. If the developer overlooks testing some embedded

expression, its well-formedness will be known only at runtime (potentially remaining as a bug

waiting for happen). This problem is due to the opaque nature (as far as the JDT is con-

cerned) of the embedded DSLs: there is no infrastructure so far to explore the Java code being

edited, looking for occurrences of DSL embeddings to check, thus ensuring coverage of WFRs.

Achieving such coverage automatically is possible with JDT extensions for DSL-awareness,

the topic of next section.

Listing 6.2: JUnit test for compile-time checking of static semantics

public class TestTelephone extends junit .framework.TestCase {
public void testTelephoneExample() {

StateMachine dslExpr = C.telephoneExample();

assertTrue (MyEcoreUtil.isWellFormed(dslExpr ));

}
}

3XQuery, http://www.w3.org/XML/Query/
4XQuery Normalizer and Static Analyzer, http://alphaworks.ibm.com/tech/xqnsta
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6.4 Processing DSL Statements Beyond Checking of Static

Semantics

6.4.1 Existing IDE Infrastructure for DSL Processing

The Eclipse Java editor incrementally checks static semantics during editing. A similar capa-

bility for embedded DSLs can be achieved by implementing a compilation participant5, which

allows extension plugins to (a) be notified when a full or incremental build is starting or when

a working copy (in a Java editor) has been updated. “During these notifications, types can

be added, changed or removed, build markers can be created, or errors can be reported to the

Java editor” (reproduced from the Eclipse Developer documentation3). For the record, there

are at least two other approaches for performing Java language processing: (a) annotation

processors and (b) an Eclipse workbench builder. Annotation processors are ruled out as they

cannot explore the AST of Java method bodies, and thus cannot access the embedded DSL

statements. A workbench builder can inspect the AST of the Java compilation units being

built, and would otherwise be a viable solution were it not for one of the use cases of interest,

in-place translation, where such Java AST is modified, as will be seen shortly.

Although a compilation participant can be directly written to support the use cases in this

section, existing tools and frameworks that simplify the inspection and manipulation of Java 5

ASTs are another implementation venue. For example, SpoonJDT6 allows defining spoonlets,

Java classes that can be plugged in a pipes and filters architecture to process Java ASTs.

SpoonJDT also contributes preference pages to configure spoonlets to be active on a per project

basis. Interestingly, spoonlets can be developed (and debugged) in the same workspace where

the target projects reside (with a compilation participant a second Eclipse instance is required).

Finally, a converter from JDT Core ASTs to EMF-based counterparts is available. SpoonJDT

has been used to perform in-place code additions (not in-place translations, however) such as

adding Javadoc and preconditions to existing methods.

We review next by means of example the requirements for an IDE to qualify as DSL-aware,

beyond checking of static semantics. The areas to cover include (a) in-place translation, (b)

statement-level annotations, and (c) DSL-specific views.

5http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv/

reference/api/org/eclipse/jdt/core/compiler/CompilationParticipant.html
6http://spoon.gforge.inria.fr/TutorialJDT/TutorialJDT
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We believe that the additional implementation effort can be justified if such functionality

is encapsulated for reuse across DSLs. Given our intention to explore the IDE generation

approach (the topic of Chapter 7), full DSL-awareness for the JDT was not realized as part

of this PhD thesis. However, most if not all of the issues that embedded DSLs aim to solve

will also show up in dedicated IDEs, and thus an analysis of design decisions proves useful.

6.4.2 In-place Translation

GUI programming using APIs like Swing or JFace can get quite verbose, a situation that

has sparked a number of GUI description languages (mostly in the form of XML dialects,

usually for interpretation at runtime). Representative examples include XUL7, AIUML8, and

XForms9, but there are many others10.

Such languages are a prime candidate not only for embedding, but also for in-place trans-

lation: we want a JDT extension to expand snippets in a GUI description language into their

verbose Swing (or JFace or ...) formulation. That way, Java code appearing afterwards may

refer to the GUI widgets implicit in the GUI description snippet (for example, to wire event

handlers to the widgets, as many GUI description languages only specify the structural and

layout aspects of a user interface, not its behavior).

The idea is so compelling that others have already implemented it, however not in the

interactive Eclipse JDT but as a batch compiler. This compiler can process the JavaSwul

DSL. For example, a GUI may have a menu hierarchy, that a compact JavaSwul snippet can

describe in just a few lines (Figure 6.3). Its Java counterpart stretches over 63 lines and

refers to classes JMenuBar, JMenu, JMenuItem, JRadioButtonMenuItem, JCheckBoxMenuItem,

and methods setMnemonic(), getAccessibleContext(), setAccessibleDescription() (among others)

as well as enumeration literals of non-obvious interpretation such as KeyEvent.VK 1 and Ac-

tionEvent.ALT MASK. It can thus be concluded that Swing programming is low-level.

JavaSwul is a language extension rather than a language embedding. Similar to any ex-

tension, providing tool support for it requires (a) extending the Java grammar with new

productions and (b) writing so called assimilators to desugar JavaSwul snippets into Java

ASTs. The resulting syntax looks better (once the user has managed to get it right without

7XUL, https://www.mozilla.org/projects/xul/
8AIUML, http://www.alphaworks.ibm.com/tech/auiml
9XForms, http://www.w3.org/MarkUp/Forms/

10http://en.wikipedia.org/wiki/List_of_user_interface_markup_languages
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. . .

menu item {

text = "Both text and icon"

icon = "images/middle.gif"

mnemonic = b

}

menu item {

icon = "images/middle.gif"

mnemonic = d

}

menu separator

menu radiobutton {

text =

"A radio button menu item"

group = a

selected = true

mnemonic = r

}

. . .

Figure 6.3: DSL snippet declaratively describing a GUI (left) and runtime rendering (right)

Content Assist) and has more degrees of freedom than the Java idioms used so far (method

chaining, static imports, variable length argument lists). In contrast, the approach to em-

bedding favored by DSL2JDT does not require up-front knowledge of the productions of the

Java grammar. Moreover, one could in principle use a compilation assistant to behave as

an assimilator (i.e., weave information gathered from the surrounding Java AST nodes and

the embedded snippets into the output). In contrast, self-contained embeddings include all

the input required for expanding a DSL snippet into plain Java, because of a simple reason:

whenever missing input is detected, the DSL metamodel can be updated to make room for it.

6.4.3 Statement-level Annotations

Several language processing applications call for decorating Java programs with additional

structured information. A lightweight approach to providing such metadata (short of extend-

ing Java syntax) involves defining custom annotations. These and other usages of annotations

will only increase. Two examples can be mentioned:

� As part of the ongoing JSR-308 (Annotations on Java types), extensions to the Java 7
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syntax are proposed11. The current prototype patches OpenJDK for parsing and for

generating bytecode in an extended class format.

� Similarly, Harmon and Klefstad [107] propose a standard for worst-case execution time

(WCET) annotations at the statement level, metadata that is important for Real-Time

Java.

The JSR-308 project and the proposal about annotations for WCET require modifications

to the Java grammar, parser, and compiler, thus explaining why those efforts take so long

in the making. This integration burden is unfortunate as it stifles innovation, making more

difficult the early adoption of language extensions. As we have seen, embedded DSLs are a non-

intrusive way to enrich Java programs with non-Java information. From the point of view of

language processing, they lower the cost of proofs of concept. If implemented together with the

other use cases described in this section, the resulting IDE extensions are also comparable in

usability with dedicated IDEs, given that the additional language constructs they manipulate

are just that: syntactic extensions to Java, not completely new grammars.

6.4.4 DSL-specific Views

Some graphical notations are considered standard, with textual counterparts playing a minor

role although they convey the same information (for example, musical notation vs. MIDI

sequences, bond diagrams vs. chemical formulas, etc.) In these cases, the usability of an

embedded DSL would be increased by displaying alongside the textual formulation a read-

only view of its 2D or 3D representation. This may be derided as a poor man’s WYSIWYG,

but as with DSL embedding we see instead a lot of leverage being gained from a no-frills

architecture. And not to be forgotten, textual notations improve the accessibility of IDE

tooling for the visually impaired.

In fact, some Eclipse-based plugins already adopt this “editable text mapped to readonly

diagram” metaphor, only that one-way view update is triggered by the build process or a user

action. This to make sure that the data source has reached a stable state, unlike the case

during interactive editing.

11JSR-308 (Annotations on Java types), http://groups.csail.mit.edu/pag/jsr308
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6.5 Related Work

Language tooling is a vast field. We summarize two areas directly related to DSL embedding:

(a) proposed embeddings in a functional/object language (Scala12), and (b) well-formedness

checking over XML artifacts.

6.5.1 DSL Embedding in Scala

The syntax of Java 5 contributes to the readability of internal DSLs (variable length argument

lists, static imports). Still, DSLs embedded in Java cannot circumvent the subject.verb(object)

bias of the language: no additional infix operators can be defined nor existing ones overloaded.

In Scala, binary operators can be overloaded. The resulting advantages for DSL embedding

are reported by Dubochet [62]. In turn, DSL embedding in functional languages has a long

tradition, Leijen and Meijer were already reporting in 1999 how to embed SQL in Haskell [145].

Although superficially similar to other embedding efforts like SQL/J, the DSL embeddings

we’re talking about do not require modifying the front-end of a compiler, as is the case with

SQL/J.

Scala allows for a more compact notation, and the same techniques reported in this chapter

can be applied in its IDE to take care of well-formedness checking at compile time. That

might suggest Scala is a better choice for DSL embedding. We see it differently. To us,

what all these examples have in common is the tension between language-level as opposed

to IDE-level extensibility, a matter that exceeds the particular host-embedded language pair

being considered. Our reasoning can be summarized as follows: as long as the JDT (including

extensions) allows for reasonable solutions, it pays off to stick with it for DSL embedding. In

any case, the debate will likely go on among the language camps.

Improvements to Content Assist in JDT can be leveraged by all DSL embeddings in Java.

For example, ideas around framework-completion as a planning problem have been explored in

Prospector [153]. Unlike with custom generated IDEs, they benefit users of DSL embedding

without additional effort from their part.

12Scala programming language, http://www.scala-lang.org
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6.5.2 Static Analysis of XML Artifacts

The proliferation of XML dialects has prompted checking good old static semantics for them

too. Hessellund [112] has identified typical kinds of integrity constraints to check across XML

artifacts developed for consumption by some framework (for example, referential integrity

constraints across configuration files in projects extending the Apache Open for Business

(OFBiz) framework). Once such constraints have been made explicit in Prolog, a tool takes

charge of checking them. Additionally, those editing operations that are feasible for the current

editing state are found, much like Content Assist works in the JDT:

Given a portfolio of metamodels specified in SmartEMF, i.e., DSLs conforming to

Ecore, we can represent languages, domain constraints, and models in a uniform

way. All artifacts are mapped into a single constraint system implemented in Prolog

that facilitates constraint checking and maintenance, and allows us to infer possible

editing operations on a set of models.

Taking into account the large number of XML dialects in use today, it makes sense to

think about ways to embed them in Java, while keeping the XML format as a serialization

format (for communication between machines, not humans). Although the Scala programming

language supports textual syntax for XML embedding, the Scala IDE does not check the static

semantics of whatever DSL that XML represents.

6.6 Summary

We see many application areas for embedded DSLs, with the discussion about in-place trans-

lation, statement-level annotations, and DSL-specific views just showing some of the possibil-

ities. All along we have tried to maintain the main value proposition of well-designed DSLs:

offering an easily consumable form of expert knowledge. We think that and embedded DSL

is only easier to consume. In particular, the capability to perform in-place translation brings

together two seemingly opposite camps: those favoring “abstractions in DSLs” and those pro-

moting design patterns. As we have seen, in-place translation keeps side by side the source

DSL statements and their Java translation which exhibits the design patterns captured by the

DSL abstractions.
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The ASTs we embed with DSL2JDT have all been self-contained: their terminals are

compile-time constants. We also skipped on providing any kind of refactoring support for

the embedded DSL, as they are necessarily DSL-specific. Similarly, staged compilation, par-

tial evaluation, and weaving (to account for the surrounding Java AST nodes) are all very

interesting yet unsupported use cases from the DSL2JDT perspective. Completing the in-

frastructure put forward in this article is a first step toward enabling the implementation of

DSL-aware language processing in the JDT.
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Listing 6.3: Fragment of the embedded DSL API for the construct Region

// start of the method chain for class Region

public static RegionBeingBuilt0 region () {
return new RegionBeingBuilt(

miniSC.MiniSCFactory.eINSTANCE.createRegion());

}
// steps of the method chain

public interface RegionBeingBuilt0 {
public RegionBeingBuilt1 subVertex(miniSC.Vertex ... items );

}
public interface RegionBeingBuilt1 {

public RegionBeingBuilt2 transition (miniSC. Transition ... items );

}
public interface RegionBeingBuilt2 {

public miniSC.Region toAST();

}
// the class holding state between method invocations in a chain

public static class RegionBeingBuilt implements

RegionBeingBuilt0, RegionBeingBuilt1, RegionBeingBuilt2 {
private final miniSC.Region myExpr;

RegionBeingBuilt(miniSC.Region arg) { this .myExpr = arg; }
public RegionBeingBuilt1 subVertex(miniSC.Vertex ... items) {

this .myExpr.getSubVertex().clear ();

this .myExpr.getSubVertex().addAll( java . util . Arrays . asList (items ));

return this ;

}
public RegionBeingBuilt2 transition (miniSC. Transition ... items) {

this .myExpr.getTransition (). clear ();

this .myExpr.getTransition (). addAll( java . util . Arrays . asList (items ));

return this ;

}
public miniSC.Region toAST() { return this.myExpr; }
}
// ...
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Languages are vehicles for abstractions. The active use of such abstractions however goes

hand in hand with tooling, whose availability has a decisive impact on productivity, as large

as that enabled by DSLs in the first place. This realization has spurred projects aiming at

generating IDEs from metamodel-based language definitions1.
1A note on terminology: in this chapter the terms integrated development environment and authoring
environment are used interchangeably. Same goes for interactive source editor and DSL text editor
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There are at least two large problem areas encompassed under IDE generation: inter-DSL

functionality and guarantees about generated artifacts.

Inter-DSL Functionality

An authoring environment is essentially more complex than an interactive source editor. That

additional complexity has an impact on any declarative formalization one might hope to

achieve. An interactive source editor supports intra-DSL functionality, based on awareness of

a single DSL. Examples of such functionality include Content Assist and visual feedback about

breaches of the static semantics of DSL in question. An authoring environment supports the

integrated manipulation of software artifacts usually written in a mixture of general-purpose

languages and DSLs (e.g., Java + SQL + BPEL), signaling inter-DSL breaches of static

semantics [112] and providing navigation mechanisms between artifacts (e.g, type hierarchy

view, or navigation between queries and DB schema).

Some of the editors in an authoring environment are diagram based, thus raising the need

for bidirectional mappings between (alternative) concrete syntaxes and the abstract syntax

for each DSL. In fact, the study of presentation oriented editors [188, 133] is a field in itself

with dedicated conferences2.

Guarantees About Generated Artifacts

IDE generation also inherits all the sub-problems that the generation of software components

implies. In effect, even in the more limited case of generating an interactive source editor,

it is not the case anymore that the generated software will directly run on an operating sys-

tem. Instead, it will run in an application container (in our case, the Eclipse tool integration

platform). Such container is a framework, and therefore imposes a number of interaction pro-

tocols that hosted components should abide by. In other words, an IDE generator should, in

principle, generate a number of software artifacts (high-level code and configuration files) that

simultaneously fulfill all of the following: (a) syntactic conformance; (b) type safety; (c) behav-

ioral compatibility (Lamport’s safety properties); (d) realization of the expected functionality

of the IDE in question (Lamport’s liveness properties); (e) non-functional requirements (e.g.,

reasonable response time for programs smaller than a certain size).

2International Conference on the Theory and Application of Diagrams, http://www.cmis.

brighton.ac.uk/diagrams2008/index.php
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Structure of this Chapter

As can be concluded from the above, the IDE generation problem in its general form is vast. No

spectacular progress around it has been achieved (neither by others in the research community

nor in this PhD work). In this chapter, useful contributions toward characterizing the general

problem and solutions to specific areas are provided.

After reviewing the state of the art (Sec. 7.1), the main aspects of the generation of DSL text

editors are addressed, in terms of components (Sec. 7.2) and functionality (Sec. 7.3). Two case

studies are discussed next: the IDEalize generator (Sec. 7.4) and OCL Tools (Sec. 7.5), both

developed as part of this PhD work. IDEalize [86] makes use of the OCL compiler presented

in Chapter 5: well-formedness rules specified in OCL are checked in the background for the

document being edited, providing the user with feedback on breaches of intra-DSL static

semantics. Sec. 7.6 reviews related work while Sec. 7.7 charts likely future developments in

the field.

7.1 State of the Art in IDE Generation

All prototypes reported in the literature take some form of language definition as input. The

completeness of such definitions varies: (a) definition of textual syntax; (b) specification of

basic well-formedness, for example, “each usage is in scope of its single previous declaration”;

(c) specification of type-safety, to avoid runtime executions where a value of type T2 is as-

signed to a location declared to hold values of type T1, with T2 not a subtype of T1; and

(d) specification of the behavior of programs written in the DSL.

Items (b) and (c) can be captured in a metamodel with OCL invariants. Regarding the

definitions of dynamic semantics, existing prototypes [187] usually adopt state transition sys-

tems or Petri-nets as semantic domain. The specification of dynamic semantics for arbitrary

DSLs is not addressed in this PhD thesis, given the variety of runtime environments targeted

by different DSLs. A unified mechanism to specify behavior should be equally applicable

to such varied DSLs as BPEL (supporting asynchronous communication, triggers, exception

handling); JPQL (query formalisms); and UML2 Statecharts. However, the formalization

of static semantics developed for a DSL metamodel can serve as starting point for that of

dynamic semantics.

The Eclipse IDE Meta-tooling Platform (Eclipse IMP) [43], started by IBM Research as the
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Figure 7.1: Inter-dependencies between language processing tasks in Eclipse IMP (reproduced

from [43])

SAFARI project, uses an open compiler infrastructure [111, 168] to jumpstart the customiza-

tion of back-end language services. Such services include compilation into an intermediate

representation, and control-flow and data-flow analyses. For static program analyses, Eclipse

IMP provides building blocks such as pointer analysis, call-graph construction, effects analysis,

and type inference. The author of a DSL is expected to write a translator into an internal

representation, possibly defining along the way new instruction types. Only if none of the

existing constraint handlers can be used as is (which is uncommon, as most DSLs fall in the

imperative language category) is it necessary to write a custom constraint handler that takes

into account the new instructions.

For illustration, the inter-dependencies between language processing tasks in Eclipse IMP

are summarized in Figure 7.1.
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7.2 Generation of Parsing Infrastructure

In non greenfield scenarios it is often the case that an existing EBNF grammar is available,

most likely with a dedicated text editor. Such scenarios have prompted the development of

tools to derive an EMOF model from an EBNF grammar. Is the resulting model a language

metamodel? Not really:

� the Concrete Syntax Trees (CSTs) thus built are similar to those prepared by a parser,

before the phase where usages are resolved to declarations (i.e., before their conversion

to Abstract Syntax Trees)

� an EMOF model purely generated from an EBNF grammar will lack any constraints to

capture static semantics, which are more directly expressed at the AST level rather than

at the CST level.

CSTs are ideal for generating structured text (for example, for consumption in a pipes and

filters architecture). However, this is not a precondition: unparsing can be performed directly

from a (well-formed) AST. Given that no layout information is kept there, pretty-printing has

to be specified separately, for example using the Box language [52].

IDEalize reuses a generator of parsing infrastructure for EBNF grammars (Gymnast [49])

and additionally generates infrastructure for:

1. runtime conversion of concrete syntax trees (CSTs) from a Plain Old Java Object

(POJO) representation (returned by the parser) into an EMOF-based one,

2. maintaining at runtime bidirectional maps between CST and AST nodes

3. usability features such as content outline, folding, and syntax highlighting

4. runtime checking of well-formedness

Some of the functionality of an IDEalize-generated text editor is fully realized by superclasses,

requiring no customization. For example, navigation history falls in this category. Other

interfaces require the generation of custom code, such as those for post-parsing processing, in

particular to add problem markers for semantic-level checks.
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Besides OCL validation, another practical advantage of EMOF-based CSTs is the possibility

to manipulate them using QVT (Chapter 10), which are supported in the Eclipse Modeling

Platform.

The steps to transform an EBNF grammar into an Ecore-based model are:

� for the whole grammar a dedicated root EPackage in an .ecore is created

� for each sequence production (SeqRule) a concrete EClass is created. The components

of a sequence can be either optional subsequences (enclosed in (. . .)?) or subsequences

consisting of SimpleExpr. A SimpleExpr in turn may refer to a token or to any rule. The

items in an optional subsequence are mapped to EStructuralFeatures with lowerBound =

0, while non-optional ones also get mapped to EStructuralFeatures but with lowerBound

= 1.

� each alternative production is translated into an interface I, all classes for subcases of

the production will have I among its supertypes.

The following optimizations for readability of the resulting .ecore constitute heuristics also

embodied by the mapping rules above:

� a repetition (ListRule) contained in a sequence production is mapped to a field whose

multiplicity matches the repetition bounds. The field type is not an artificial container

for the ListRule but directly the item type.

� user-defined tokens which consist of a fixed number of alternatives are handled as enu-

merations

At runtime, an IDEalize-generated CST converter will also maintain a bidirectional map

between nodes in their different representations, which allows the generated IDE to support

use cases like the following:

1. clicking on a text region containing a reference to a type, and following the CST-to-AST

map, allows obtaining the AST node for the type declaration. With it, all the usages

of such type can be obtained from a usages-declarations map. The CST node for each

usage (obtained by consulting again the CST-to-AST map, this time in reverse) contains

the start and end offsets needed to highlight all usages in the text, thus implementing

the Mark Occurrences functionality common in IDEs (Sec. 7.5.2)
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2. semantic validations anchored at AST nodes can similarly be used as starting points

to create Problem Markers for the corresponding text regions, with these regions being

determined again using the automatically maintained CST-to-AST map

7.3 Functional Categories to Support by DSL Text Editors

It is useful to classify potential functionality of an interactive source editor in terms of its

runtime information requirements:

1. Usability features independent from the document being edited

� templates, including associated preferences page

� actions on the toolbar and menu bar, in particular retargetable actions (i.e., those

actions such as Content Assist whose UI activators are shared between different

editors)

� new file wizard, so that the document does not start empty but in syntactically

valid state (thus avoiding spurious parse errors the moment background parsing

springs into action)

2. Usability features directly working on the document text

� document partitioning, show range indicator, automatic indentation

� bracket matching (brace, parenthesis, etc.)

� AutoEdits (for example, SmartBrace: after typing { in the Java editor, an indented

newline and a closing } are added below it). Another example is AutoIndent.

� Double-click strategy (e.g., double-clicking an opening brace selects all the text up

to the matching closing brace)

3. Usability features requiring access to the CST or AST

� Hover over text fragment, hyperlinks

� Mark occurrences, Select in Outline

� Context menu, for example Go to Declaration
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� Hovers over vertical ruler annotations

� Views, for example Type Hierarchy

� Content formatting, Content assist

7.4 Case Study: Textual Notation for a Statechart

Language

We subscribe to the idea that tools to generate IDEs should support in the ideal case both

a human-readable textual notation as well as a visual one (although IDEalize as of now does

not generate a graphical editor, leaving for the user the task of manually updating the code

to make both editors work together3). Given that plenty of visual editors are available for

statecharts, we break with that tradition and generate a textual editor. OCL constraints at

the CST-level are used to detect badly formed statecharts.

Statecharts improve on the readability of finite state machines by allowing hierarchy on

states and parallelism on transitions. In a nutshell, besides plain states and initial pseudo

states, so called composite states are allowed. Two kinds of (non-empty) composite states are

possible: or-states and and-states. Each or-state contains a complete statechart and when

active one of its contained top states is active. An and-state contains two or more parallel

regions, each of which can again include a whole statechart.

A transition is labeled with (a) the event it will listen to, with zero or more parameters;

(b) a boolean condition (the guard) which must hold for the transition to be taken; and (c) an

action part, i.e. a list of statements. All three parts are optional: a transition without an

explicit event implicitly reacts to a completion event, and a missing guard is interpreted as

true. Finally, more than one outgoing transition can be activated by an event. When one or

more of their guards is enabled, the resulting behavior is non-deterministic (any of the the

enabled transitions can be taken).

3Integrating EMF and GMF Generated Editors, http://www.eclipse.org/articles/article.

php?file=Article-Integrating-EMF-GMF-Editors/index.html
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Listing 7.1: Fragment of our Statechart Grammar

sequence stateChartDecl : ” statechart ” name=ID LCURLY vertexDecls

( finalStateDecl )? RCURLY ;

abstract vertexDecl : pseudoStateDecl | stateDecl ;

sequence pseudoStateDecl :

kind=pseudoStateKind name=ID

(LPAREN outgoing=transitionDecls RPAREN)? SEMI;

sequence stateDecl : ”state” name=ID LCURLY inStateDecl

( transitionDecls )? RCURLY ;

sequence compositeState : (entry=pseudoStateDecl)? regionDecls

( exit =pseudoStateDecl)?;

sequence regionDecl : ”region” name=ID LCURLY vertexDecls RCURLY ;

sequence transitionDecl : ” transition ” kind=transitionKind

name=ID LCURLY inTransitionDecl SEMI RCURLY ;

7.4.1 Arguments In Favor of a Textual Notation

The KIEL project [181] aims at simplifying the modeling, analysis and understanding of

complex statecharts. One line of activity involves supporting a textual notation, and some

of its advantages are conveyed by the example of adding a parallel and-state (which in the

text editor just involves typing “—— await C”), as opposed to performing a mouse-keyboard

exercise to shift neighbor states and travel from canvas to drawing palette a number of times.

The metamodel of UML2 Statecharts [169, 172] is adopted as a basis for our grammar. An

industrial-strength IDE for statecharts (i.e., an ExecutableUML [182] IDE) would also require

additional syntax, e.g. to edit class models and the action language. Listing 7.1 depicts a

fragment of the grammar for the statechart DSL (the complete version can be found in [86]).

Using the grammar2ecore plug-in of IDEalize, an Ecore-based representation of the grammar

can be generated (the “CST-level metamodel”). At this level OCL invariants are defined

to constrain those that can be converted to ASTs (those ASTs in turn, will be subject to
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Listing 7.2: Some OCL-based WFRs

context PseudoStateDecl

−− an initial pseudostate may have just one outgoing transition

inv singleOutgoingForInitial : self .kind = PseudoStateKind:: initial

implies self .outgoing−>size() <=1

context RegionDecl

−− there may be at most one initial pseudostate per region

−− (a region is a grouping of states at the same level )

inv singleInitialWithinRegion :

self . vertexDecls−>select (v | v. oclIsKindOf(PseudoStateDecl))

−>select(v | v.oclAsType(PseudoStateDecl).kind = PseudoStateKind:: initial )

−>size() <= 1

context RegionDecl

−− state names must be unique within a region

inv uniqueNameOfStateWithinRegion:

self . vertexDecls−>select(v | v. oclIsKindOf(StateDecl))−>isUnique(name)

context CompositeState

−− one or more regions uniquely named

inv uniqueNameOfRegionWithinState: self.regionDecls−>isUnique(name)

additional checking).

Several WFRs can be declared, as shown in Listing 7.2, with accompanying explanations

for each listed as inlined comments.

7.4.2 An Example : Statechart of Telephone Object

The OMG specification of UML2 contains an example statechart, and we encode it in the

generated IDE. For comparison, its embedded DSL formulation is discussed in Sec. 6.2.
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7.5 IDE support for OCL

Having made the case for IDEs for DSLs in general, this section focuses on provisioning one

such IDE for OCL. OCL Tools, developed in the context of this PhD work, has been contributed

to the Eclipse Model Development Tools (MDT) Project, with the aim of providing first-

class support to modelers working with OCL specifications. Such support includes editing,

code generation, execution, and interactive debugging of the OCL constraints given for an

underlying Ecore model, thus constituting a natural complement to the compiler described in

Chapter 5.

7.5.1 OCL Text Editor

The standard steps when developing a modern text editor using the Eclipse JFace Text frame-

work comprise customizing syntax highlighting, content assistance and content formatting.

Underlying all those features, document partitioning is an aspect not directly visible at the

UI level but affecting the implementation of the aforementioned functionality. Document par-

titions are contiguous, non-overlapping regions of text. Each such partition is associated with

an specific content type, for which a different behaviour is relevant (for example, comments in

a Java source file are one such partition, where Content Assist should behave differently from

the way it does in non-comment regions). Another useful feature of a text editor is folding

[56]. This capability is present in the OCL text editor, shown in Figure 7.6.

The OCL text editor supports in addition other usability features, as described below:

1. Syntax highlighting with dedicated colors for keywords, literals, operation invocations

of the OCL Standard Library, and comments.

2. AutoEdit of opening/closing braces: For example, after typing a left-parenthesis,

the corresponding right-parenthesis is added automatically. As expected, this feature is

disabled inside the comment content type.

3. AutoEdit for new line: In the Java editor, the SmartBrace feature places the cursor in

a new, indented line after typing an opening curly brace and pressing Enter. Additionally,

a closing curly brace is placed in yet another new line. Similar functionality in the OCL

editor is triggered upon typing a colon and pressing Enter.
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Figure 7.3: Content Assist Example

4. Content assist (Figure 7.3). Displays a combo box with a list of choices for syntactically

valid completions. Content assist gets activated after typing a dot separator or the →
characters. It can also be manually activated by pressing Ctrl + Space as a shortcut.

5. Current line highlighting and Show range indicator. In the Java editor, “Show

range” displays a ruler bar to convey the extent of a method body. In the OCL case,

similar visual clues are provided for the text regions over which packages and contexts

extend.

6. Text Folding. Individual OCL expressions can be folded. In Figure 7.6, to the left

of the text fragment “context transaction” a folding mark is available to expand that

expression.

7. Templates. A time saving feature for frequently used constructs in OCL specifications,

for example for the iterate construct. Additonal templates can be added, and those

available can be reconfigured through a preferences page.

8. Preference pages. Through these pages the configuration of Highlight Matching Brack-

ets can be controlled, together with the colors for syntax highlighting and text templates.
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9. Problem and warning markers. This feature displays at the UI level messages

gathered as part of AST building, reacting to updates in the document being edited.

Based on the error(s) reported by the parser the editor displays them as problem markers

(text underlined with red squigglies) in the Problems View.

10. Outline view (top right pane in Figure 7.6). This standard view shows the hierarchy

of the defined OCL expressions for the whole document. The root package context is

displayed on top. As children, subPackages and contexts are shown (be it classifier,

operation, or property context).

11. OCL AST View (lower pane in Figure 7.6). This view saves time in visualizing the

types of subexpressions of (long) OCL expressions, also providing feedback about default

precedence order in not fully parenthesized expressions.

7.5.2 A Usability Feature in Focus: Mark Occurrences

Figure 7.4 depicts the user view of this feature: upon placing the text cursor on some usage

(the association end transactions in this case) all other usages for the same declaration are

highlighted. This functionality requires querying the CSTs and ASTs that have been built by

background processing. We review the necessary queries over CST and AST in this section,

as the technique is directly applicable to the editors of other DSLs.

Upon detecting a change in the cursor position, the innermost AST node if any (of the kinds

listed below) that encloses such position are found.

1. PropertyCallExp. In this case, an association end or an attribute is being referred to.

2. OperationCallExp. For example, if the cursor is placed on isEmpty() then each occurrence

of isEmpty() will be marked.

3. Clicking on the declaration of a Variable in a LetExp results in each occurrence of the

defined variable being highlighted in in part. A sample expression of this kind appears

in Listing 7.3.

4. Clicking on the usage of a variable (a VariableExp AST node) results in each occurrence

of the variable being marked.
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Figure 7.4: Mark Occurrences Example

Listing 7.3: Example of LetExp

let popularTrans : Set(Transaction) =

result−>collect( deliveredServices )

−>collect( transactions )−>asSet()

in (popularTrans−>forAll(date. isAfter (d)))

and (popularTrans−>select(amount>500.00)−>size()) > 20000

Having found the innermost enclosing ASTNode, the counterparts to highlight can be found

by querying or navigating the AST. Navigating from a usage to its declaration can be done

in one step, as the AST directly supports it (e.g., a Variable has getInitExpression() and ge-

tRepresentedParameter()). As another example, having found a PropertyCallExp, its getRe-

ferredProperty() can be invoked, which returns the property (the EStructuralFeature in case

of Ecore binding). In Figure 7.5, the highlighted line shows a usage (self.program) for which

occurences will be marked. The reverse lookup is not directly supported by the AST: once a

EStructuralFeature is available, custom code has to be written to find other usages in the same

context. There are two alternatives for performing this lookup:
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Figure 7.5: A sample PropertyCallExp OCL AST View

� Using a visitor. OCLExpression is a subtype of Visitable and thus may accept custom

Visitors. A visitor can be created for each kind of ASTNode of interest, one such visitor

will have just one handler checking whether the visited element is a usage of the decla-

ration passed to its constructor. If so, the usage can be appended to a List declared as

instance variable of the visitor.

� Keeping a map. The second alternative involves keeping a one-to-many Map with

the declaration as key and usages as values. In the case of PropertyCallExp with Ecore

binding, the map is defined as OneToManyMap<EStructuralFeature, PropertyCallExp>.

The algorithm for Mark Occurrences comprises the following steps:

1. Find the CST node for the given cursor position.

2. Obtain the corresponding AST node for the selected CST Node.

3. Find the specific part of AST node which is selected by the cursor. The getStartPosi-

sition() method of ASTNode returns the start position of the full expression. The get-

StartOffset() method of CSTNode returns the start offset relative to the editor starting

point.

4. Find other usages of the same declaration

5. Obtain their corresponding CST Nodes and mark their occurrences in the text area.
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7.5.3 Candidate Extensions

Beyond the “basics” discussed so far, additional features are thinkable to make the OCL text

editor more useful.

1. Content formatting. Unlike traditional pretty-printing, content formatting takes place

interactively and not in a batch manner.

2. Double click action. A sensible reaction to double-click is selecting an enclosing

fragment, as required later for cut&paste, just like in the Java IDE of Eclipse. Moreover,

repeated double-clicks should result in progressively larger fragments being selected,

following the composition hierarchy for subexpressions in the OCL AST.

3. Hyperlinks for variables and types. For this, besides querying the CST and AST for

OCL expression it is also necessary to collect information about declarations available

at the AST of the underlying Ecore class model so that usages of a variable or type in

OCL can be traced back to their declaration.

4. Hover over text fragment. To display hints about usage of the underlying OCL

construct (similar to hovers displaying Javadoc comments in the Java editor).

5. Show in EMF type hierarchy. Visualizing the Type Hierarchy is necessary when

working with but the most basic class models (alternatively, one might rely on a separate

graphical view to display it as discussed in Sec. 6.4.4).

6. Refactorings. As with their Java counterpart, having tool support for refactorings

(and for detecting code smells) increases productivity. Several refactorings for OCL

have already been documented in the literature (Sec. 5.5). Proposals run the gamut

from renaming (a variable or a type), to more complex refactorings such as detecting

and removing redundant expressions.

Feedback from the developer community is critical to harvesting real-world and complete

OCL specifications. Actually, harvesting such specifications reveals a chicken-and-egg prob-

lem: those specifying a system have a reduced incentive to invest effort in preparing OCL

specifications if they are to remain paper-only and thus not automatically enforceable. On

the other hand, the developers of OCL tooling are reluctant to target a small audience. The
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OCL Tools component is well positioned to break this cycle, providing immediate benefit to

the authors of OCL specifications, and accelerating the synergies of the Eclipse ecosystem.

7.6 Related Work

Alanen and Porres [3] describe in pseudocode algorithms for bidirectional EBNF ↔ MOF

transformations. More recently Wimmer and Kramler [207] address the conversion between

sentences in the grammar and instances of its MOF-based model. Kunert [137] specifically

pays attention to improving the usability of the resulting MOF model (by leveraging the

additional expressive power of MOF over EBNF, e.g., inheritance).

Many industrially relevant DSLs (BPEL, XForms) and scientific notations (MathML, sev-

eral ontology languages) have been defined with an XML notation as preferred exchange

representation. While useful for computer interoperability, such notations are nowhere nearly

as legible as human-oriented notations (although documents in such languages are always

meant to be written by humans). Two interesting lines of activity to overcome the readability

problem are: (a) dual syntaxes for DSLs; and (b) verbalization into controlled natural lan-

guage. It is expected that, in the future, IDE generators will also accept as input, besides

metamodel-based language definitions, bidirectional mapping instructions to support human-

readable text representations. So far, this functionality is provided by separate prototypes, as

described next.

7.6.1 Dual Syntaxes

The main roadblock to supporting XML-based and non-XML grammars for the same DSL is

the duplication of effort required to maintain separate grammar, parser, AST manipulation

and serialization infrastructure. Brabrand, Møller, and Schwartzbach present in [21] a solution,

where a single declarative specification allows generating reversible transformations for both

syntaxes:

Consider the typical situation where an XML language, described by some schema

formalism, has been given an alternative syntax. An obvious validation check is that

the translations of alternative documents will always result in valid XML documents

. . . XSugar performs a static analysis that conservatively approximates this check.
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When the analysis reports success, it is guaranteed that syntactically correct input

always results in valid output.

It should be noted that the XSugar algorithm does not allow arbitrary transformations

between ASTs, but rather only those which involve reorganization (as opposed to processing)

of existing nodes.

7.6.2 Verbalization into Controlled Natural Language

In the context of ontology engineering, interest in the verbalization of ontologies has material-

ized in at least two prototypes for languages in the OWL family: Attempto [127] (whose main

application area are Discourse Representation Structures) and NaturalOWL [48]. Algorithms

to paraphrase a formal specification into English have been developed by the (Controlled)

Natural Language research community. For example,

∀x.Number(x) ∧ Prime(x) ∧ LessThan(x, 3)⇒ Even(x)

can be rewritten into Every prime number less than 3 is even. These ideas have been realized

for OCL in the context of the KeY project, with the tool OCLNL [36]. Admittedly, some

paraphrasings sound unnatural, for example:

context Copy

inv : Copy. allInstances ()−>forAll(c1,c2

not (c1=c2) implies not (c1.barCode=c2.barCode))

is translated as

for the class Copy the following invariants hold :

for all copies c2 , c1 in the set of all instances of Copy

if it is not the case that c1 is equal to c2

then this implies that it is not the case that

the bar code of c1 is equal to the bar code of c2

However, a big advantage of turning a formal spec into controlled natural language is the

larger audience that can review it (and thus find errors).
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7.7 Outlook

The declarative formulation of static semantics is nowadays regarded as central for tooling ac-

tivities. Still, current implementations of mainstream IDEs have yet to embrace this paradigm

[186]. There is thus a tension between advanced research prototypes on the one hand (relying

on vertical technology stacks) and mainstream IDEs on the other (offering standard frame-

works). Two cases in point are guided model editing [189] and framework completion [199, 185].

In the former, suggestions about valid updates given the current editing state are automati-

cally computed, considering all the artifacts in a software project. In the latter, the steps to

realize a unit of functionality when extending a framework are controlled by the IDE.

In order to offer multiple candidate solutions and to allow backtracking to previously con-

sistent states, as required by both guided model and framework completion, a CLP(FD)

formulation (constraint-logic problem with finite domains) is usually favored. A comparison

of different formalisms when querying large code bases [53] reveals that not all logic engines

are up to the task. As Jeff Ullmann put it once [198]: It is not possible for a query language

to be seriously logical and seriously object-oriented at the same time. For example, Ullmann

subordinates object-orientation to object-identity: no two tuples instantiated in different ways

may be equal, which is at odds with the least-fixpoint semantics of Datalog [198, 53]. While

fully agreeing with Prof. Ullmann, we believe to have mitigated some of the identified problems

by developing optimizations for querying object graphs using OCL, as reported in Chapter 11

(for the secondary-storage case) and in Chapter 12 (for the main-memory case). Another

contribution of this thesis in the context of IDE generation is addressed in Chapter 8, i.e. the

conditions guaranteeing bidirectionality in multi-view synchronization.
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Most modeling languages provide different visual notations to highlight different aspects

of the System Under Development (SUD). Most notably, UML2 defines a total of thirteen

diagram types, grouped into three categories (structure, behavior, and interaction). In general,

the same situation arises for Domain-Specific Modeling Languages (DSMLs). There is thus no

escape from using several notations when modeling non-trivial software systems, a fact that

vendors of modeling tools acknowledge by providing multiview capabilities. At some point in

the development process the issue of inter-view consistency [64] requires automation due to

the complexity of the SUD. For example, determining consistency between a sequence diagram

and the statechart for a single traffic-light may be done manually. However, tool support is
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required for models of realistic complexity (railroad crossings, reservation systems, consumer

electronics, etc.)

The definition of a modeling language that introduces views is thus expected to provide an

algorithm to determine whether a set of views is consistent. Using metamodeling terminology,

the check for consistency is formulated as follows: (a) for each diagram type a metamodel

has been defined, whose instances constitute the views manipulated by the modeler, including

geometric information; (b) each such metamodel defines its intra-view Well-Formedness Rules

(WFRs); and (c) additional WFRs ensure consistency encompassing several views. Given

that WFRs are boolean-valued predicates over an object population, a yes/no answer can be

provided about the consistency of the integrated model, i.e., the set of all views prepared by the

modeler. Unless inter-view consistency is addressed at the level of the language definition itself,

disagreement will otherwise ensue. For example, the workshop series Consistency Problems in

UML-based Software Development was devoted to overcoming such disagreement for UML 1.x.

As useful as they are, yes/no answers about consistency contribute only partially to produc-

tivity. In a multiview setting, additional use cases demand automation (multiview synchro-

nization, model refactoring [155, 46], and model completion [189]). In this chapter, we address

the multiview synchronization problem (defined below), leveraging on the lessons learnt from

the related problem of inter-view consistency: we rely on a formal technique and address this

concern at the language definition level.

Keeping multiple views in-synch requires propagating changes in two directions: (a) change

requests validated against the WFRs of the integrated model are to be reflected on views; and

(b) user-initiated view updates are to be processed in the opposite direction. The algorithm

for realizing (a) is fixed once a view definition is available: given that the integrated model

includes geometric information, updating views amounts to evaluating a function again. The

situation is not so simple for (b), where partial information is available. For example, a

particular view definition may select only those items at odd-numbered positions in a list.

Inserting into the view then raises the question as to where to add an item in the underlying

list (which is part of the integrated model). Such kind of decision problems are not solved by

the current best-practices around tool implementation: Model-View-Controller architecture

(MVC), runtime evaluation of WFRs expressed in OCL, transparent undo/redo. Rather, the

particular realization of (b) is left to the criteria of tool vendors, thus opening the door to

non-standard implementations. Our contribution in this chapter improves on this state of
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affairs, not by building a tool with multiview synchronization capabilities (which is a task for

industry) but by disclosing the inner workings of such solution (which industry refrains from

doing).

The structure of this chapter is as follows. Competing methodologies around view update

are reviewed in Sec. 8.2, followed in Sec. 8.3 by the application of one of them to the multiview

synchronization problem, comprising the definition of EMOF-level operators for view specifi-

cation (Sec. 8.3.1) that are well-behaved from a bidirectionalization point of view (Sec. 8.3.2).

Given that any realistic multiview modeling tool will rely on the available MVC frameworks

for diagram manipulation, these practical aspects are discussed in Sec. 8.3.3. Sec. 8.4 places

the reported techniques in perspective, and Sec. 8.5 examines likely adoption scenarios.

8.1 Benefits of the Proposed Approach

The lack of tool compatibility (and sometimes correctness) around multiview synchronization

stems from the fact that the specific policy governing synchronization is encoded manually in

the Controller module of MVC (by each tool vendor, usually in an imperative language). In

contrast, a declarative formulation, available as part of the language definition itself, allows

both generating such implementation as well as statically analyzing the bidirectional trans-

formations at design time. We call this approach DMVC, for Declarative MVC. The resulting

productivity gain is particularly relevant for DSMLs, as the cost of developing tooling for them

has to be amortized over a much smaller number of projects than for their general purpose

counterparts. The DMVC approach is in line with recent advances in the definition of visual

notations, where geometric constraints are used at runtime to automate the maintenance of

diagram layouts, as discussed in detail by Grundy [152] and exemplified in an Eclipse-based

modeling tool generator1.

Our proposed architecture for DMVC builds upon a bidirectional transformation engine

fulfilling formal guarantees. Given a view definition written by the DSML author, the en-

gine can automatically derive its corresponding backward transformation. Importantly, the

backward transformations [194] thus obtained can cope with many-to-one mappings (i.e., non-

injective functions, where different inputs are mapped to the same output, as for example in

f(x, y) = x + y). This is achieved with stateful transformations, which track the information

1Marama meta-tools, https://wiki.auckland.ac.nz/display/csidst/Marama+Tatau
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Database View
View definition

recombine old S with new T

Updated
S

S

Updated
T

T

Figure 8.1: A bidirectional transformation, consisting of forward and backward functions [178]

needed to complement that lost by the mapping (in the example, keeping a copy of either x or

y allows handling user updates to x+ y). Additionally, it is common practice for a backward

transformation to take as input, besides the updated view, the original source. The intuition

behind this scheme is depicted in Figure 8.1 (reproduced from [178]).

Statefulness and recombination distinguish our problem space from plain function inversion,

which is enough in the particular case where each of (source, view) can be fully reconstructed

from the other, i.e., whenever there is a one-to-one correspondence (a bijection) between source

and target domains. As argued by Stevens [194], such situations constitute the exception rather

than the rule in multiview modeling languages. For example, dual syntaxes [21] do exhibit

this property: a human-oriented syntax is defined for pretty-printing Abstract Syntax Trees

(ASTs), while an accompanying XML-based syntax is defined for tool interchange. An MVC

editor displaying a dedicated view for each representation needs no further information than

the contents of an updated view in order to refresh the other, as no information is elided in

the alternative syntaxes. In terms of our adopted approach, bijections are handled the same

as the non-injective case (the latter being the “interesting” one from the point of view of

multiview synchronization). In summary, the proposed bidirectional transformation language

increases the productivity of the tooling process for DSMLs, as well as the quality of the

resulting multiview IDEs.
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8.2 Candidate Approaches Distilled

All the approaches reviewed in this section share the common goal of enabling bidirectional

transformations between pairs of data structures, with differences spanning the preferred rep-

resentation (e.g., unordered trees vs. semi-structured data) and the available transformation

operators (which may or may not allow user updates to alter the transformation as a side-

effect, among other features). Besides highlighting the innovative aspects of each technique,

their comparison is necessary to introduce terminology to better characterize the multiview

synchronization problem.

For ease of reference, candidate approaches are loosely grouped into (a) general purpose tech-

niques (program inversion, data synchronization, and virtual view update); and (b) techniques

aiming at supporting model transformations (graph-grammar based and QVT-Relations). Ad-

mittedly, this classification has more to do with the current level of adoption in the model-

driven community than with any inherent capability of each approach.

8.2.1 Program Inversion, Data Synchronization, and Virtual View

Update

Program Inversion

We discuss this technique first as it constitutes the basis for our proposal. Program inver-

sion [157] in the context of functional programming refers to determining, given a function

f(x1, . . . xn), its inverse, so as to obtain the arguments given a result. A further insight con-

sists in choosing the building blocks for expressing view definitions such that they fulfill three

bidirectional properties. Informally, such properties require that (a) unmodified views are

transformed back into the same source that gave origin to them (i.e., backward transforma-

tions introduce no spurious information); (b) all updates on a source (that affect a view) can

be canceled by updates on the view (i.e., the user has means to restore the integrated model to

a previous state by just acting on the view); and (c) the backward transformation is oblivious

to the order in which updates took place (what counts is the end state). Moreover, any com-

position of building blocks fulfilling these properties defines again a well-behaved bidirectional

transformation. Matsuda [157] provides a Haskell implementation of this algorithm2.

2Generation of backward transformation programs based on derivation of view complement func-
tions, http://www.ipl.t.u-tokyo.ac.jp/~kztk/bidirectionalization/
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The principles above have been applied to particular cases: Liu [150] presents a Java library

for the bidirectional transformation of XML documents (the transformation operators consti-

tuting the BiXJ language). A subset of XQuery is translated into BiXJ in [149], thus allowing

using a mainstream language for view definition, again with a prototype realization avail-

able3. Along the same lines, Xiong [210] translates of a subset of ATL (Atlas Transformation

Language), thus achieving bidirectionality4.

Data Synchronization

Algorithms developed to synchronize intermittently connected data sources (such as file sys-

tems or address books between mobile and stationary devices) can also be applied to keep com-

plex software artifacts in-synch. An exponent of this approach is the Harmony project [74],

whose engine5 implements Focal, a language with building blocks that allow writing only

functions that always behave as lenses, i.e., bidirectional transformations. Focal is a low-level

language operating on tree-shaped data structures (specifically, edge-labeled unordered trees).

Standard encodings for mainstream data structures (lists, XML) are available, as well as li-

braries of higher-level lenses defined in terms of primitive ones. The design of Focal reflects

its theoretical underpinnings in the field of type systems for programming languages, as static

assurances can be obtained about the detailed type of inputs and outputs, to avoid runtime

checks. In contrast, implementations such as BiXJ resort to returning a default value (e.g.,

unchanged input) or to throwing an exception whenever a function argument lies outside the

function’s domain.

The capabilities of EMOF-based modeling infrastructures (in particular undo/redo and eval-

uation of OCL invariants) grant a large degree of tolerance to inconsistent input, a feature that

proves extremely valuable during the initial exploratory phases of DSML language engineer-

ing (which comprises the definition of transformations for each view). Moreover, experience

shows that modelers frequently perform a series of editing operations which temporarily re-

sult in WFRs being broken. We aim at preserving this flexibility, to avoid usability problems

similar to those that plagued syntax-directed text editors. In summary, we strike a balance

between static assurances and ease of use by relying on runtime checks to capture side condi-

3BiXJ and Bi-CQ, http://www.ipl.t.u-tokyo.ac.jp/~liu/
4Bi-ATL, http://www.ipl.t.u-tokyo.ac.jp/~xiong/modelSynchronization.html.
5Harmony Project, http://www.seas.upenn.edu/~harmony.
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tions not enforceable at design-time. If needed, static assurances beyond those amenable to

static type checking can still be obtained by applying the techniques reported in Chapter 9.

Update of Virtual Views in Databases

The view update problem has been studied in the context of databases, where the mechanism

to define views is taken as given (relational algebra or calculus) and the kinds of view updates

that may be propagated back without loss of information are determined. Recent work focuses

on updating virtual and materialized XML views (also incrementally). Most results have been

incorporated into the program inversion and data synchronization techniques [157, 74].

8.2.2 Graph-grammars and QVT-Relations

Triple Graph Grammars (TGGs)

TGGs [98] build upon directed typed graphs and graph morphisms. Informally, a TGG trans-

formation rule consists of three graphs (left, interface, and right) and two morphisms (from

the interface graph to each of left, right) which together describe the correspondence between

embeddings of these graphs in source and target. In other words, such rule also states the

inter-consistency conditions between source and target, besides specifying a transformation.

Figure 8.2 depicts an example, the compilation of if-then-else into lower-level constructs (con-

ditional jumps). Before a TGG transformation can be applied, its positive and negative appli-

cation conditions are evaluated. These conditions demand a required context (certain nodes

or edges must exist) or forbid a context (certain nodes or edges must be absent) connected in

a certain topology. An extension of TGG transformations to accommodate N -way relations is

offered in [134]. For our purposes, this capability is not necessary as our architecture revolves

around a single integrated model (i.e., to synchronize N different view types N bidirectional

transformations are defined). Graphical IDE support is available6, and modularization has

been proposed to cope with large-scale transformations. Similar to other rewriting techniques,

the control flow aspect of a complex transformation (when to apply which rules) suggests

breaking up large transformations into several more focused ones, to be applied sequentially.

6Some TGG-based tools: (a) MOFLON, http://www.moflon.org/; (b) MoTE/MoRTEn (as
FUJABA plugins), http://wwwcs.uni-paderborn.de/cs/fujaba/projects/tgg/; (c) AToM3,
http://atom3.cs.mcgill.ca/
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Figure 8.2: Sample TGG-based translation (if-then-else into conditional jumps, [146])

As with the data synchronization approach, an encoding of EMOF models is necessary

(in this case, into directed typed graphs), as well as expressing transformations in terms of

graph morphisms guarded by application conditions. In our setting, some features of the

program inversion approach (Sec. 8.2.1) prove beneficial over TGGs: (a) OCL expressions in

view definitions can be used directly by Matsuda’s bidirectionalization algorithm [157]; and

(b) no explicit rules need be declared to delete view elements not supported anymore by source

elements. The runtime overhead of encoding EMOF models into graphs can be reduced with

the Adapter design pattern, at the cost of an indirection level (as with any approach, these

design decisions would need to be revisited if the modeling infrastructure natively managed

models in the format of the transformation engine).

QVT-Relations

QVT-Relations was designed to encode input-output relationships by means of pattern-matching

guarded by preconditions. At any given point in time, all but one of the models participating

in a transformation are considered as non-updatable, thus constraining the solution space to

a well-defined set of (updates, instantiations, deletions) on the target model.

Erche et al. [69] point out that metamodel-based language specs do not specify the connec-
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tion between concrete and abstract syntax and propose QVT-Relations to bridge that gap.

Given that such transformations are bidirectional, their architecture aims at solving the same

problem space as Declarative MVC. There is no detailed discussion in [69] on whether every

QVT-Relations transformation is well-behaved in terms of the conditions defined by Matsuda

et al. [157] (Sec. 8.2.1). Irrespective of the particular transformation mechanism adopted,

Duboisset [63] recognizes that not all geometric constraints relevant for concrete visual syn-

taxes can be expressed in EMOF + OCL metamodels, offering as an example topological

constraints in spatial databases. It is clear that QVT-Relations can support roundtripping

over one-to-one mappings, however a discussion of its capabilities to back-propagate updates

on non-injective views is missing in the literature. Our approach around geometric constraints

is covered in Sec. 8.3.3.

Our integration of bidirectionalization for EMOF does not involve QVT-Relations. As a

pre-requisite to comparing its expressive power with that of our approach, the formalization

of QVT-Relations is addressed in Chapter 10.

8.3 Integration in an EMOF-based Modeling Infrastructure

After settling on the bidirectional program inversion technique [157], the interfacing of its

functional inversion algorithm with current metamodeling infrastructure has to be addressed.

A canonical approach consists in encoding EMOF models into inductive data types to auto-

matically apply the inversion algorithm to each view definition, expressed as an affine function

in treeless form [157]. Alternatively, a fixed catalog of bidirectional operators can be defined

for EMOF models, fulfilling the three stated bidirectional properties. Both alternatives are

explored, in Sec. 8.3.2 and Sec. 8.3.1 resp. Briefly, the advantage of the canonical approach

is the open-ended set of base operators that can be defined, while the existing EMOF-based

ones can only be recombined. On the other hand, adopting the EMOF-based operators avoids

the detour to the inductive-data-types representation. Besides the performance gain, usabil-

ity is also improved, as modelers are accustomed to conceptualizing transformations in terms

of EMOF-level constructs. In any case, the approaches are not mutually exclusive, and any

of them can be adopted to define views (injective or not) as part of the Declarative MVC

(DMVC) architecture (Sec. 8.3.3).

A possibility consists in finding a subset of QVT-Relations amenable to encoding with
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bidirectional operators. Given that DSML authors already master the concepts required to

understand the building blocks of bidirectionalization, directly using them results in making

available their full expressive power. In a next step, subsets of OCL and QVT-Relations, which

are already EMOF-aware, can be recast in terms of the operators in the next two subsections.

8.3.1 Operators for Two-way Transformations: TwEcore

Each operator consists of a forward and a backward function. Borrowing notation from [115],

JXKF (s) stands for the application of the (possibly composite) operator X to the source s

in the forward direction, resulting in a view t. The backward function, JXKB(s, t′) takes as

argument the unmodified source s, the updated view t′, and returns a pair (s′, X ′) consisting

of an updated source s′ as well as a possibly updated operator X ′, to be used in further

invocations. This statefulness is exemplified by X = twRenameProp(old, new), to rename the

property p named old, where s denotes an EMOF class. In this case JXKF (s) is a clone of s

save for renaming the cloned property p from old to new. In turn, JXKB(s, t′) = (s′, X ′) where

t′ may have user updates, including renaming of property p itself. The backward function

returns in s′ such changes save for any renaming of p, whose name is restored to old. An

updated property name new’ provided by the user on the view t′ is recorded instead in the

state of X ′ = twRenameProp(old, new’). Therefore, a successive application of X will involve

again the latest name entered by the user.

The basic example of a composite transformation is function composition, represented by X

= twSeq(X0 . . .Xn), where the simpler transformations X0 . . .Xn are applied so that s′i is the

updated source for ti (0 ≤ i ≤ n− 1). The definition for this generic operation is reproduced

from [115] (see Figure 8.3).

In addition to the operator definitions, an EBNF-based concrete syntax is necessary to

facilitate the discussion and exchange of view definitions (an area for future work in TwEcore).

In terms of implementation, such syntax proves useful as it enables the interpretation of ad-

hoc, or dynamically generated, view-definition scripts. In fact, this use case was foreseen by

the authors of [157] and is supported in a Haskell-based bidirectional XML editor where users

can update not only sources and views, but also transformations connecting them.

Regarding correctness, the operators defined in TwEcore are similar to those in [157, 74] for

which formal proofs have been elaborated (proofs about the three bidirectional properties of

Sec. 8.2.1). In this sense, and also based on our experiments, the TwEcore operators behave
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Figure 8.3: Definition of twSeq generic operator

as they should. These assurances could be formalized once and for all (instead of relying on

extensive but not exhaustive testing) by building upon the techniques reported in [84, 11].

8.3.2 Encoding of EMOF Models Using Inductive Data Types

This subsection explores the implications (for multiview synchronization) of implementing an

EMOF infrastructure using functional programming (FP) instead of Java. The advantages of

this approach are: (a) several bidirectionalization algorithms are naturally expressed with FP;

(b) functional programs are more amenable to static analysis than their OO counterparts; and

(c) most of the proposed new language features for post-Java languages originate in FP7. The

Declarative MVC architecture does not impose a functional realization, with this subsection

serving as outlook for readers sharing an interest in functional programming.

Porting an EMOF infrastructure to the functional paradigm comprises devising encodings

for (a) EMOF data structures, and (b) algorithms for views and transformations in EMOF.

Regarding (a), given that EMOF models are typed, labelled graphs, the encoding proposed

by Erwig is applicable [70]. Regarding (b), the algorithms to port fall into two categories:

(b.1) those already formulated in terms of OO concepts (e.g., written in QVT-Relations,

ATL8, or Java); and (b.2) those written as affine functions in treeless form, as expected by the

7Scala programming language, http://www.scala-lang.org/
8ATL, ATLAS Transformation Language, http://www.eclipse.org/m2m/atl/
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algorithm for well-behaved bidirectionalization of Matsuda et al. [157]. For (b.1) an encoding

style is required that at least preserves the type-checking capabilities of the OO representation.

The OOHaskell approach (Kiselyov and Lämmel [130]) fulfills these requirements by exploit-

ing the type checking and type inference mechanisms of Haskell. As a result, Haskell-based

processing following an OO style never results in a runtime errors like “method not found”

that the OO version would have detected at compile-time.

While the pragmatic approach of TwEcore (and BiXJ, Bi-XQuery, and Bi-ATL) accelerates

the construction of proofs of concept for DMVC tools, the same benefits could be achieved in

a modeling infrastructure based on functional programming.

8.3.3 Diagrammatic Views and Geometric Constraint Solvers

Besides diagrammatic support, additional infrastructure-level issues must be addressed in

the context of existing MVC frameworks, as for example the management of object IDs in

source and views. On the one hand, such IDs are necessary for keeping the (source, view)

correspondences upon which bidirectionalization will act. However, it is not practical to display

in user-level views an ID for each AST node, even if these IDs are kept read-only. This tension is

solved by means of a widespread feature in MVC frameworks, data binding (for GUI widgets9,

with similar functionality also available for Eclipse Graphical Modeling Framework10). Such

facility maintains a straightforward one-to-one correspondence between an AST node and its

screen real-estate, as part of which updates resulting from UI-level gestures are applied as-is

to their data-binding-managed counterpart. As a result, this interaction does not have to

cope with injectiveness and remains outside our DMVC framework, but the larger objective of

making coexist ASTs (with IDs) and views (without them) is accomplished. The interactions

managed by Data Binding are bracketed as (A) in Figure 8.4 on p. 152.

In case an update to the integrated model requires adding figures to a diagram view, default

values need to be provided for the figure’s position, size, layer, color, etc. While these values

cannot be computed by the bidirectional transformation engine, they can still be managed

declaratively with the help of a geometric constraint solver (e.g., [156]) which assumes the

role of a local Controller in one of the MVC subsystems depicted in Figure 8.4 (i.e., it pro-

cesses a subset of the view-level change requests, forwarding the non-filtered ones to the main

9JFace DataBinding, http://wiki.eclipse.org/index.php/JFace_Data_Binding
10Eclipse GMF, http://www.eclipse.org/gmf/
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Controller). Constraint solvers are responsible for enforcing geometric invariants, such as area

inclusion or non-overlap between 2D regions.

The constraints on the layout of figures mandated by a visual syntax do not usually comprise

the heuristics (such as crossings minimization) that distinguish a diagram with a comfortable

layout from another which is hard to decipher. After computing a layout that fulfills those

cognitive quality measures, small user edits should not cause a full re-arrangement, as becom-

ing familiar with a new layout places a cognitive load on the user. This dynamic aspect is not

normally considered in graph layout algorithms [61]. Moreover, capturing all relevant visual

aesthetics of a given visual notation is nowhere near straightforward, as their relative weight

on diagram understanding may be discovered only after extensive use [61, p. 5]:

A followup study reveals a visual aesthetic not previously considered by the graph

drawing community. This new aesthetic, continuity, is the measure of the angle

formed by the incoming and outgoing edges of a vertex. For the task of finding

a shortest path between two vertices, continuity can become even more important

than edge crossings. This demonstrates how the ultimate goal of maximizing hu-

man cognition of graphs can sometimes differ from optimizing well known visual

aesthetics.

Admittedly, geometric constraint solvers are yet to gain acceptance in graphical modeling

frameworks. So far they are used in specialized CAD tools and in toolkits for parametric

diagramming. Their contribution to declarativeness, and therefore to reducing programming

effort, is crucial for an end-to-end Declarative MVC architecture.

8.4 Related Work

The expression “GUI generation” is commonly equated to mean CRUD (Create-Retrieve-

Update-Delete) GUIs, which barely can be used. The problem with generators of CRUD

GUIs is that the only information they consider comes from a class model without OCL. On

another extreme, some research prototypes demand an explicit User Task Model to gener-

ate GUIs [176], with such Task Model specifying the workflows to support at the GUI level.

While the generated GUIs exhibit a distinctly better usability, the price to pay is the cum-

bersome maintenance of these detailed task models. Somewhere in between approaches such
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Listing 8.1: Enabling an action in the UI

public void selectionChanged(

IWorkbenchPart part, ISelection incoming) {
// Selection containing elements

if (incoming instanceof IStructuredSelection ) {
selection = ( IStructuredSelection ) incoming;

setEnabled( selection . size () == 1 &&

selection . getFirstElement () instanceof ContactsGroup);

} else { // Other selections , for example containing text

setEnabled( false );

} }

as WebML [23] promote a lightweight notation for workflows that takes into account differ-

ent user roles, is amenable to refactoring and incremental development, while being platform

independent.

A venue worth exploring consists in leveraging OCL and statechart specifications when

generating a GUI, by establishing a mapping between GUI gestures on the one hand and

statechart events and class methods on the other (saving the OCL and model-compilation

aspects, the advantages of a similar approach are documented by Horrocks in [114]). Those

events which are not allowed for the current statechart state, as well as those operations

whose preconditions are not fulfilled, should be grayed out in the GUI. Letting generators

weave this functionality into their output would increase the Return-On-Investment from the

effort invested in refining a model spec with statecharts, OCL, and business rules.

The code snippet in Listing 8.1 is typical of GUI programming (for the Eclipse RCP frame-

work [158]) and determines whether a GUI-level action should be enabled, depending on the

current selection. A question to ask is: which part of this code cannot be generated from

information already available in the set of models that our tools process? In fact, all of it can

be generated, and in this case, no further customization is necessary. As another example,

tutorials on the APIs for GUI programming go long ways to detail how to constrain the targets

of a reference offered in a combo box. Without demanding programming, the same can be

achieved by an OCL invariant specifying the set of valid items for a structural feature. Sim-

ilarly, only those actual arguments to an operation which fulfill the precondition (assuming
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one such precondition constrains them) should be offered for selection. The proposed genera-

tor, either targeting a forms-and-menus interface or a diagrammatic-based one, can follow this

contract. The proposed architecture opens the door in the future to generation of multi-modal

UIs, given the platform-independent nature of an EMOF + OCL + Statecharts model.

8.5 Evaluation

The complexity around keeping views in-synch in multiview authoring environments requires

a comprehensive solution. As shown in this chapter, one such solution relies on metamodeling,

well-behaved bidirectional transformations, and geometric constraint solvers. Current EMOF

infrastructures have paved the way for extensions such as bidirectionalization and geometric

constraint solving.

Existing tools for general-purpose modeling have been developed following a traditional

(non-declarative) MVC architecture, and are not expected to migrate overnight to a new

paradigm. Instead, the primary candidates to benefit from Declarative MVC are Domain-

Specific Modeling Languages (DSMLs). More generally, we argue that applying to DSMLs

the same (metamodel-based) definition techniques as for UML 1.x will impair their adoption, as

such techniques overlook the connection between concrete and abstract syntax, do not handle

multiview synchronization, and lack precise semantics for backpropagating updates from non-

injective views. The techniques brought together in this chapter address those weaknesses

identified in previous efforts around the definition and tooling of DSMLs.

151



CHAPTER 8 8.5. Evaluation

«V
ie

w
»

St
at

ec
ha

rt
 D

ia
gr

am (te
nt

at
iv

e)
ch

an
ge

re
qu

es
ts

(c
om

m
itt

ed
)

up
da

te
 c

om
m

an
ds

«C
on

tro
lle

r»
G

eo
m

et
ric

 C
on

st
ra

in
t S

ol
ve

r
«C

on
tro

lle
r»

(A
ut

oI
nd

en
t, 

C
od

eF
or

m
at

tin
g,

 e
tc

.)

«V
ie

w
»

St
at

ec
ha

rt
 D

oc
um

en
t

(c
om

m
itt

ed
)

up
da

te
co

m
m

an
ds

(te
nt

at
iv

e)
  u

pd
at

e
no

tif
ic

at
io

ns

«M
od

el
»

La
yo

ut
-a

w
ar

e 
m

od
el

«M
od

el
»

C
on

cr
et

e 
Sy

nt
ax

 T
re

e 
(te

xt
 la

yo
ut

)

Tw
Ec

or
e 

vi
ew

de
fin

iti
on

«C
on

tro
lle

r»
D

at
aB

in
di

ng
 F

ra
m

ew
or

k

«V
ie

w
»

Fo
rm

s-
ba

se
d 

U
I

«M
od

el
»

EM
O

F-
ba

se
d 

G
U

I s
ta

te

In
te

gr
at

ed
 M

od
el

 ("
M

od
el

 B
us

")

Tw
E

co
re

 v
ie

w
de

fin
iti

on
Tw

E
co

re
 v

ie
w

de
fin

iti
on

(A
)

In
te

ra
ct

io
ns

au
to

m
at

ic
al

ly
m

an
ag

ed
 b

y
D

at
a 

Bi
nd

in
g

fra
m

ew
or

ks

(B
)

Bi
di

re
ct

io
na

l
tra

ns
fo

rm
at

io
ns

su
pp

or
tin

g
st

at
ef

ul
ne

ss
,

re
co

m
bi

na
tio

n,
an

d 
m

an
y-

to
-o

ne
m

ap
pi

ng
s

F
ig

u
re

8.
4:

S
of

tw
ar

e
A

rc
h
it

ec
tu

re
fo

r
a

M
u
lt

iv
ie

w
D

es
ig

n
E

n
v
ir

on
m

en
t

su
p
p

or
ti

n
g

B
id

ir
ec

ti
on

al
it

y,
in

st
an

ti
at

ed
fo

r
a

st
at

ec
h
ar

t
ed

it
or

su
p
p

or
ti

n
g

th
re

e
k
in

d
s

of
v
ie

w
s:

d
ia

gr
am

,
te

x
tu

al
sy

n
ta

x
[1

81
],

an
d

fo
rm

s-
b
as

ed

152



9 Design-time Certification of

Transformation Algorithms
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The increasing reliance on model-driven software development calls for model compilers

to assume the role of today’s compilers, i.e., reliability of these components is of utmost

importance. We describe how to certify model transformations in this context by bridging

the gap between the languages in which such transformations are specified (Essential MOF,

OCL, OO programs) and the decision procedures needed to verify properties expected of

such transformations. Two major aspects are investigated in this chapter: (i) valid output

is obtained for each valid input, (ii) the output satisfies certain properties. Results from

application projects validate our approach, which internally applies model-driven techniques
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to the certification process itself by mapping transformation specifications into the +CAL

model-checking language.

Model-Driven Software Engineering (MDSE) is gaining consensus in the Software Engineer-

ing community as a viable technology to improve both productivity and quality. In order for

MDSE to deliver on its full potential, commensurate progress is required to increase the quality

of emerging model transformers and compilers. In this chapter, a method and its associated

tooling are presented to reach that goal for a representative class of model transformations,

operating on languages for which an EMOF + OCL metamodel is available. This method

involves the automatic translation of the input and output metamodels into a formalism for

which a decision procedure is available to answer whether a given procedural transformation

exhibits certain properties of interest. Two basic desirable guarantees for such transforma-

tions are (a) that all output sentences belong to the target language [116], and (b) that the

transformation function covers the whole input language for which it was designed [202]. Ex-

perience with current model-driven tooling shows that these basic requirements are not always

met. Beyond these general requirements, guarantees specific to a given transformation are also

desirable. For example, an optimized implementation should produce the same result as the

non-optimized version. Once these analyses have been performed, the follow-up problem is

compiler correctness, i.e., ensuring that the transformations are semantics-preserving.

Nowadays, model compilers are in operation for various kinds of application tasks. For

instance, transformations into Java Enterprise Edition (Java EE, defined in JSR-220) are

very popular and include: DASL [93], SecureUML [31], and WebML [42]. These DSLs allow

for the specification of three-tier enterprise systems at a high level of abstraction and have

metamodel-based descriptions. Similarly, platform-specific metamodels are available. For

example, the persistent query language of Java EE (JPQL) has been metamodeled in [77]:

all the normative restrictions formulated in English in Ch. 4 of JSR-220 are recast as OCL

invariants. Instantiations of the JPQL metamodel satisfying those invariants are valid abstract

syntax trees (ASTs) for particular JPQL queries.

In the current state of the practice, the WFRs on the input and output ASTs are evaluated at

transformation-time, for each application of the transformation. We aim instead at certifying

transformation algorithms at design-time, to make runtime-checks redundant, but moreover

to get model compilers right early on, instead of patching them as new cases are discovered

which were overlooked before widespread deployment.
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As decision procedure for the task described above we adopt model-checking as described

in [142]. A model-checker manipulates execution traces, which can be conceptualized as trees

of states (each state also called a system snapshot), with root states derived to cover all initial

conditions. Candidate successor states are computed from all actions enabled in the current

state.

Once a transformation algorithm has been specified, at algorithm-design time the model-

checker can detect situations where the transformation does not terminate, or terminates

without establishing the properties of interest. The coverage achieved by the admittedly finite

analysis of a model-checker is much higher than testing because (a) states can be manipulated

symbolically, and (b) several properties of interest depend on the shape of an object graph

rather than on its size or concrete attribute values (the “small scope hypothesis” [120]). For

example, the condition “two lines intersect” can be manipulated without considering concrete

crossing points. Model-checkers can detect these situations, taking a single state as represen-

tative of all those exhibiting such shape.

In summary, the contribution of this chapter is twofold. First, we eliminate the laborious

task of preparing a model-checkable specification for nontrivial MDSE transformations by

reusing the EMOF + OCL WFRs for the static semantics contained in the metamodels of the

languages participating in the transformation. Second, we demonstrate how to support the

development of robust transformation algorithms by employing a model-checking engine. In

particular, we investigate the language +CAL and use the corresponding model-checker TLC1.

The significance of the approach is demonstrated using an application scenario concerning a

well-known graph transformation problem (Schorr-Waite). This problem involves an in-place

transformation, which are known to be harder to analyze than functional transformations.

The structure of this chapter is as follows. Sec. 9.1 elaborates on static semantics and derives

set-theoretic definitions for EMOF + OCL metamodels. Afterwards, it is exemplified how OCL

pre- and postconditions are mapped to +CAL. This is followed (in Sec. 9.2) by a discussion

of the steps to follow when applying the proposed model-checking-based certification method,

including an analysis of a sample transformation (Sec. 9.3). Alternative and complementary

approaches to model-based verification are discussed in Sec. 9.4.

1TLC – The TLA+ model checker, http://research.microsoft.com/users/lamport/tla/tlc.
html
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9.1 Formalization of Essential MOF + OCL for Model

Checking

+CAL [142] is a specification language designed to replace pseudo-code for writing high-level

descriptions of algorithms. A +CAL algorithm manipulates mathematical objects in a series

of steps. The granularity of a step is chosen by the algorithm designer, ranging from a single

built-in statement to a composite step involving several +CAL statements. A step exhibits

transaction semantics: intermediate results are not visible to concurrently executing processes

and system invariants are required to hold only at step boundaries.
+CAL includes control-flow statements typical from block-structured programming (if-then-

else, while-do, sequential composition), as well as constructs for expressing non-deterministic

and concurrent algorithms. For the purposes of this work, we focus on the sequential subset

of +CAL. Mathematical expressions and logical formulae may appear in +CAL programs

whenever a construct calls for a value (e.g., in the condition part of an if-then-else, in an

assert statement). In fact, the properties an algorithm should exhibit are routinely expressed

as mathematical assertions on the input and output data (in our case: ASTs), with the model-

checker being able to compute them for finite system snapshots.

The proposed certification method comprises the following steps:

1. Automatic translation of the definitions contained in the participating EMOF + OCL

metamodels into +CAL (these definitions allow the transformation algorithm to refer to

well-formed ASTs).

2. Expressing a model transformation as a +CAL algorithm operating on ASTs.

3. If appropriate, annotating the transformation with assumptions about its input, be-

yond the constraints expressed in the metamodels of input ASTs. The invoker of the

transformation is responsible for satisfying these assumptions.

4. Annotating the transformation with assurances about the system state (in particular

about the output ASTs) after every successful run of the transformation on valid input

(i.e. on well-formed input satisfying the assumptions made in the previous item). The

algorithm is responsible for satisfying these assurances.
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Figure 9.1: Sample EMOF model

Following Design-By-Contract [162], the assumptions in (3) are called transformation pre-

conditions and the assurances in (4) transformation postconditions. This terminology partly

overlaps with that of Hoare logic, where a (precondition, postcondition) pair fully specifies the

transformation between the pre and post states (no procedural statements are necessary). The

checks that Design-By-Contract performs at runtime can be carried out at transformation-

design time thanks to model-checking. As to the language for pre- and postconditions, besides
+CAL some or all of them can be expressed in OCL, whose translation into +CAL is discussed

in the next two subsections. Using +CAL directly may however prove beneficial given the

growing number of third-party libraries of mathematical theories defined for it.

9.1.1 Translating EMOF into +CAL

The translation of a user-specified OO class model (expressed in EMOF) results in definitions

of sets, relations, and +CAL [142] procedures to allocate instances and manipulate links

and attributes, constituting a certified building block that simplifies the expression of the

transformation algorithm. Our encoding of EMOF + OCL into +CAL leverages previous

work on set-theoretic semantics of UML and OCL [18]. In the context of UML, a thorough

analysis of the logical consistency of the MOF 2.0 specification is reported in [9]. Our work

focuses on the more recent EMOF. An example transformation of EMOF language constructs

can be found in Figure 9.2, which shows the invariant for the bidirectionality constraint stated

in the class model in Figure 9.1

In the example, there are only safety properties (the min-max bounds, lack of duplicates on

the BsForAoverD association end, bidirectionality over D) which are trivial yet cumbersome

to formalize by hand. In general, the generated specification contains logical predicates (such

as InvariantsDirectionality in Figure 9.2) to check after every execution trace whether the
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Figure 9.2: Bidirectionality expressed in +CAL

constraints implicit in EMOF constructs and all OCL invariants are maintained. As a whole,

these checks guarantee that the output sentence belongs to the output language, for all possible

runs of the MDSE transformation algorithm.

9.1.2 Translating OCL into +CAL

OCL prescribes that, at the end of a transaction, each system snapshot should fulfill the

specified invariants. Lacking transaction demarcation, it is generally agreed that invariants

in an OO program should hold after object construction and after the execution of each

public operation. The concept of transaction boundary is directly supported by +CAL step

granularity. The efficient evaluation of invariants can be challenging (Chapter 12). Usually

an operation involves a small number of updates which leave most invariants unaffected.
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Being +CAL based on a temporal logic, there is no shortage of expressivity to encode OCL

invariants, with the model-checker evaluating them in the background as execution traces are

considered. Model-checkers can take into account the data-flow dependencies of formulae so

as to approach non-redundant yet complete evaluation. This shortens the time elapsed from

submitting an algorithm till counterexamples are found, thus increasing the productivity of

the transformation designer. As already mentioned at the beginning of this section, OCL

pre- and postconditions are translated as assertions into +CAL, i.e., they are no substitute

for the specification of the input-output transformation, which must be given as imperative

statements.

The conversion from OCL to +CAL is performed by visitors over ASTs of OCL expressions,

similar to the work of [18]. A metamodel of +CAL was prepared for this purpose. This AST-

to-AST conversion could in principle be verified with the techniques described in this chapter.

An example of bootstrapping the verification of a transformation is offered by the algorithm

to translate from +CAL to TLA+ (Temporal Logic of Actions [141], the logic underlying
+CAL), which is itself specified in TLA+.

9.2 Certification Process

Certification of an algorithm is an iterative process. Whenever it can be shown at design time

that an algorithm is bound to fail at runtime (i.e., for some inputs does not terminate, breaks

metamodel invariants, or does not fulfill its part of the contract in establishing postconditions)

the model-checker not only indicates failure but presents an execution trace leading to that

situation (a counterexample). The algorithm designer may apply a combination of (i) refor-

mulating the algorithm to handle the situation that caused the failure, (ii) strengthening the

preconditions (making the algorithm applicable to a subset smaller than well-formed ASTs),

or (iii) weakening the postconditions. The practical limit to postcondition weakening is that

the output must still be well-formed, as demanded by metamodel invariants.

9.2.1 Directly Specifying Transformations in Terms of EMOF

As a further means to increase certification productivity, a textual syntax for an object-oriented

programming language (“Executable EMOF”, or xEMOF for short) could define statements to

manipulate instances of metamodels, as a high-level notation to express model transformation
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algorithms. The rationale for this is the large number of transformations already expressed

in terms of the Visitor design pattern [76]. In a green field scenario, a language such as

xEMOF would also prove useful by reducing the conceptual distance between a transformation

algorithm and its implementation, thus shortening the certification process.

A language such as xEMOF is not just a thin layer of syntactic sugar over +CAL. Instead,

the translation is non-trivial because (a) method-dispatch in an object-oriented language de-

pends on runtime-types instead of only declared types, (b) method overloading similarly com-

plicates method selection, and (c) the interplay between inheritance and object initialization

has to be taken into account. A more realistic modeling of Java, including for examples excep-

tions (which introduce alternative return paths and require bookkeeping to correctly unfold

the activation frames in the call-stack) would not add expressive power yet complicate the

translator.

Besides those transformations expressed in terms of visitors, another large group of existing

transformations relies on pattern-matching mechanisms followed by in-place transformations

(ATL [125], QVT [173], graph-grammars [8]). Provided they manipulate EMOF-based ASTs,

their execution engines can similarly be formulated in terms of +CAL reusing the translation

performed by our prototype (see Sec. 9.1).

9.3 Certifying a Non-trivial In-place Transformation:

Schorr-Waite

9.3.1 A Graph-marking Algorithm for Garbage Collection

The Schorr-Waite 2 algorithm performs a depth-first traversal of a directed graph, starting

from a specific node called the root. Given that memory is at a premium during garbage

collection, Schorr-Waite offers a constant upper bound on memory usage by avoiding keeping

a stack with the nodes in the current path. Instead, as new nodes are visited, the link that

was followed last is reversed in place. Upon going back along the current path, the algorithm

reconstructs the original topology. Pointer reversal avoids thus the introduction of a stack.

Schorr-Waite is complex enough to serve as a reference case in source code verification [117,

159], as it involves modifying in-place an AST-like pointer-rich data structure, yet intuitive
2An animation of Schorr-Waite appears on slides 15 to 34 of http://www.info.uni-karlsruhe.
de/lehre/2005WS/uebau1/folien/06-Speicherbereinigung_v1.pdf
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enough that its operation can be explained succinctly. To our knowledge, this is the first

account on model-checking Schorr-Waite. Although we manually crafted in +CAL the Schorr-

Waite algorithm, the discussion in the previous subsection and also, e.g., the results of [37]

indicate that this manual effort can be reduced if not eliminated in the near future.

The correctness and termination of Schorr-Waite have been proved long ago, both as man-

ually written proofs and with assisted theorem provers [159]. These Hoare-style proofs are

validation rather than verification, in that not a Java or Java-subset implementation is verified

(with, say, JML [35] or Spec# [54]) but instead a formalization of the implementation is made

to imply correctness and termination. An exception to this (for the C language) in Caduceus

is reported by Hubert and Marché in [117]. Besides an up-to-date review of related work,

hints are included as to why JML proved problematic.

Many improvements have been made over the initial Schorr-Waite algorithm. Real-world

garbage collection in today’s JVMs is quite more elaborate. Therefore model-checking Schorr-

Waite is of interest as an exercise only. Besides, not even the guarantee that the implemen-

tation will behave as in the checked (finite) concrete worlds can be achieved, because again

were dealing with a hand-written formalization of the implementation, i.e. in best case we are

doing validation instead of verification.

The practical relevance of model-checking an algorithm is addressed by Daniel Jackson, the

author of Alloy [120]:

The tradeoff is no different in principle from the one you face when deciding

whether youve tested a program enough. In practice, though, exhausting a scope of

10 gives more coverage of a model than handwritten test cases ever could. Most

flaws in models can be illustrated by small instances, since they arise from some

shape being handled incorrectly, and whether the shape belongs to a large or small

instance makes no difference. So if the analysis considers all small instances, most

flaws will be revealed. This observation, which I call the small scope hypothesis, is

the fundamental premise that underlies Alloys analysis.

Alloy [120] is a formalism based on relational logic, designed to simplify modeling the

dynamics of software programs. An Alloy model consists of signatures, relations, facts and

predicates. Signatures are used as templates for the uninterpreted entities of a system (called

atoms), connected over relations. Analyses are expressed in terms of facts (what can be
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Listing 9.1: Declaration of an object population in Alloy

pred aStore ( s : Store ) {
#s.rootSet = 2

#allNodes(s) = 6

#s.unreachable = 2

}

assumed about atoms and their relations) and predicates (to express constraints on atoms

and relations). The Alloy Analyzer is both a model generator as well as a checker. Typically,

both functionalities are used in tandem by letting the tool explore, for all finite concrete worlds

structurally conformant to the specification, which assertions in the form of predicates hold.

Internally, the Alloy Analyzer formulates an Alloy specification as a SAT problem.

Back to Schorr-Waite. We will define in Alloy an object Store as a singleton which contains

a root set of references to Node which in turn may refer to a set of Node. All instances of

Node taken together are considered allocated, be they reachable or not from the root set. The

root set must be a subset of all the allocated nodes. As in garbage collection, those nodes

not (transitively) reachable from the root set should be marked as garbage. The remaining

correctness condition after a run of Schorr-Waite is that the topology of the input graph should

be preserved (remember that the algorithm temporarily reversed pointers to avoid an explicit

stack).

A possible store given as input is depicted on Figure 9.3, where unreachable nodes are

signalled with red arrows. To compute them, a declarative definition was made in Alloy, a

definition that will be used as yardstick to check the output of the algorithm.

The data constellation in question was built by declaratively specifying it (Listing 9.1) by

requiring a total of six nodes, only two reachable from the root set, and unbounded connectivity

between the allocated nodes.

The limitations of model checking are known: if only concrete worlds with 5 nodes had been

allowed, e.g. by means of run aStore for 5 then no instances of the predicate aStore would have

been found.

The memory model above highly abstracts that of Java. Two examples were this is the case

are mentioned. First, the JVM defines different degrees of reachability. An intuitive depiction

is shown on Figure 9.4 on p. 164. Second, the model does not allow reasoning about pointer
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Figure 9.3: A possible initial store

aliasing. For that, another mapping is needed: from memory addresses to values. With that,

references do no point directly to values, but to addresses.

9.3.2 Alloy Formalization of Operations

The main points can be seen in the Alloy formalization in Listing 9.3, for the operation to

add a previously allocated but unreachable node to the root set (which may result in other

nodes becoming reachable). Notice that pre, post, and frame conditions are specified for the

operation.

In order to obtain an “interesting” trace, we will request it to result in additional nodes

(other than the one just added to the root set) becoming reachable as a consequence of the
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Java heap
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objects (garbage)

Weak reference objects
Root set

of references

Weakly reachable objects

Strongly reachable object

Figure 9.4: Elements in a Java Heap

first invocation of the operation. This is achieved with the Alloy predicate in Listing 9.2.

With predicate addTwo we request the model checker to find a trace with three snapshots,

such that the 2nd and 3rd snapshots result from performing the just defined operation. We

can play the snapshots one at a time as in a slide show to better see which unreachable nodes

are added to the root set, moreover color-coding the status (root set, reachable, etc.) of nodes

in the post-image.

9.3.3 Model Checking with +CAL

As to the readability of +CAL, Listing 9.5 on p. 170 shows the encoding of the Schorr-Waite

graph-marking algorithm (the Java formulation appears listed in Listing 9.4 on 169).

The correctness guarantees we expect are: (a) termination, (b) that all nodes reachable

from the root (and only those) are marked, and (c) that the algorithm leaves the topol-

ogy unchanged. These guarantees are encoded as assertions: the results computed by the

implementation are compared with those resulting from mathematical definitions which are

executable in +CAL. Two assertions are found at the end of Figure 9.5: Topology(pointsTo)
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Listing 9.2: Additional nodes becoming reachable after an addition to the root set

pred addTwo ( s0, s1, s2 : Store) {
some disj n0 , n1 : Node |
#(n0.points − s0.reachable − n0 ) > 0 and

addToRootset (n0, s0, s1) and

addToRootset (n1, s1, s2) and

#Node = 6

}
run addTwo for 3 but 6 Node

returns (as a set of edges) the reachability information which was updated in-place, for com-

parison with the original topology (a discrepancy would result in a counterexample). Similarly,

the last assert compares the set of reachable nodes (as computed by Schorr-Waite, i.e. those

nodes having markBit set to true) with the set obtained as the transitive closure of the g.edge

(mathematical) relationship applied to the root.

We model-checked the +CAL algorithm in Figure 9.5 considering graphs with up to 10

nodes, finding that acceptable runtimes can be achieved (see also [140] for the empirical

behavior of TLC). Thus, we conclude that the proposed method is practically significant for

MDSE. As mentioned before, due to the small scope hypothesis [120], many, if not all, problems

will be found using this problem size.

9.4 Related Work: Alternative and Complementary

Approaches

The method reported in this chapter allows for the validation of model transformation algo-

rithms. If implemented carefully, the assertions made for an algorithm carry over to its imple-

mentation. This manual coding step in a language such as Java introduces the possibility of

a non-conforming implementation. We argue that validation of transformation algorithms is

still necessary: a faulty transformation algorithm, however correctly implemented, will not im-

prove quality. In addition, metamodel-based approaches (involving OCL specifications) allow

for a high expressiveness of constraints to be validated.

A straightforward solution to the manual implementation problem consists in devising a
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translator from the language in which the transformation was certified (+CAL) into Java, and

certifying this translator. Assuming that verification of a (manually or automatically derived)

Java implementation is required, the OCL invariants contained in the metamodel can still be

reused by translating them to JML [35] as discussed in [103]. As with all source-code level

verification approaches, a larger state space has to be explored, thus reaching practical limits

more quickly than for the model-level counterpart as a result of the faithful representation of

Java Virtual Machine abstractions. For example, expressions in Java may have side-effects

while OCL expressions are guaranteed to be read-only. Adopting EMOF models as the only

mechanism to define state allows us to consider only those state evolutions allowed by EMOF,

reducing the state space to explore. This is in tune with the principle of reasoning at the

highest-level of abstraction possible, because it’s more efficient.

The application of TLA+ has been investigated also in other software engineering contexts.

In the field of enterprise software architectures, model-checking of web service protocols is

reported in [121]. An Eclipse-based text editor to support editing +CAL and TLA+ specifi-

cations is described in [99].

Another formalization of OCL with tool support for verification is KeY [17] which targets

different verification use cases from the ones addressed in this chapter. Its execution language

is JavaCard, with both JML and a dedicated Dynamic Logic as verification backends.

Brucker et. al. [33] describe in detail a tool to transform UML+OCL into a formalization

processable by a theorem prover. The same team has also mechanized a Hoare-calculus for an

idealized object-oriented programming language [32]. In principle, both tools can evolve into

an integrated proof environment for object-oriented programs. As of now, verification based

on interactive theorem-provers is not fully automatic (that’s where the interactive comes in),

requiring assistance from the user who has to understand the underlying logic and the de-

duction rules. Once a language-processing algorithm has been formulated in an imperative

language amenable for Hoare-analysis, those verification conditions that cannot be automat-

ically derived by the tool have to be specified manually. Proof tactics are then to be applied

(automatically or assisted by the user) to discharge the verification conditions and therefore

the (Hoare) pre- and postconditions for the algorithm as a whole. +CAL is translated to

TLA+, Temporal Logic of Actions [141]. There is as of now no mechanized Hoare-calculus

(theorem-prover supported) for +CAL. However, Merz [161] has made progress on mechaniz-

ing TLA+ in Isabelle [166].
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9.5 Evaluation and Future Work

Given the remarkable progress during the last decade in the areas of model-checking and

in anchoring the semantics of metamodeling, there is no reason preventing combining their

strengths to increase the reliability of model compilers. Our findings confirm that language

metamodeling techniques contribute not only to the productivity of MDSE but also to its

quality. Our prototype aims at enabling the interchange of standard metamodels and certified

transformations within the software engineering community, reaping the benefits of network

effects. Integrated model-driven toolchains for enterprise-scale projects involve metamodels

for several languages, whose development costs would be prohibitive if done from scratch and

in isolation by separate teams. We foresee the institution of peer-reviewed, public repositories

of machine-checked metamodels and transformations in the near future.
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Listing 9.3: Alloy predicates allowing symbolic manipulation of Java heaps

module mg/schorr waite

sig Node { points: set Node }
sig Store {

alloc : set Node ,

root : set Node ,

reachable : set Node ,

unreachable : set Node

} {
/* invariants of Store (part 1 of 2) */

Node = alloc

root in alloc

reachable = root.*points

unreachable = alloc − reachable

}
fact {
/* invariants of Store (part 2 of 2) */

all s : Store | s . reachable + s.unreachable = s. alloc

and s.reachable not in s .unreachable

}
pred addToRootset ( n : Node, s, s ' : Store) {

/* precondition */

n in s .unreachable and n not in s ' .unreachable and

/* postcondition */ s ' . root = s.root + n and

/* frame */ s . alloc = s' . alloc

}
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Listing 9.4: The Schorr-Waite algorithm in Java

private void schorr waite (Node r) {
Node current, prev , next;

current = r;

prev = null;

while (true) {
while ( current != null && !current.markBit) {

current .markBit = true;

current . flag = 0;

if ( current . points . length > 0) {
/* current refers to a non−atomic object */

next = current. points [ current . flag ];

current . points [ current . flag ] = prev;

prev = current;

current . flag ++;

current = next;

}
} // end of while current

// retreat

while (prev != null && prev.flag == prev.points. length) {
int lastIndex = prev.points . length − 1;

next = prev.points [ lastIndex ];

prev . points [ lastIndex ] = current;

current = prev;

prev = next;

} // end of while prev

if (prev == null) {
return;

}
/* visit subgraph to the right of prev (there ' s always one,

otherwise retreat would have occurred ) */

Node backref = prev.points [prev . flag − 1];

prev . points [prev . flag − 1] = current;

next = prev.points [prev . flag ];

prev . points [prev . flag ] = backref;

current = next;

prev . flag ++;

}
}
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Listing 9.5: Schorr-Waite expressed in +CAL

--algorithm test {

variables

g \in VertexGraph; root \in g.node;

alloc = [ v \in g.node |-> MemnodeForVertex[v] ];

pointsTo = [ v \in g.node |-> SetToSequence( Targets[v,g] ) ] ;

current = root; next = Null; prev = Null;

i = 1; backref = Null; bQuit = FALSE;

startTime = 0; endTime = 0;

{ while ( ~bQuit ) {

\* go down the leftmost branch

while ( ( current /= Null) /\ (alloc[current].markBit = FALSE) ) {

alloc[current].markBit := TRUE;

alloc[current].flag := 1;

if (Len(pointsTo[current]) > 0) {

\* current points to other objects

i := alloc[current].flag; next := pointsTo[current][i];

pointsTo[current][i] := prev; prev := current;

alloc[current].flag := alloc[current].flag + 1;

current := next;

};

}; \* end of while current

\* retreat, all objects pointed from current have been visited

while ( /\ ( prev /= Null )

/\ ( alloc[prev].flag = Len(pointsTo[prev])+ 1) ) {

i := Len(pointsTo[prev]); next := pointsTo[prev][i];

pointsTo[prev][i] := current; current := prev; prev := next;

}; \* end of while prev

if (prev = Null) { \* we have retreated back to the starting point

bQuit := TRUE;

};

if (~bQuit) {

\* visit subgraph to the right of prev (there's always one)

i := alloc[prev].flag -1; backref := pointsTo[prev][i];

pointsTo[prev][i] := current;

next := pointsTo[prev][alloc[prev].flag];

pointsTo[prev][alloc[prev].flag] := backref;

current := next; alloc[prev].flag := alloc[prev].flag + 1;

};

};

assert (Topo(pointsTo) = g.edge);

assert (ReachableFrom[g,root] = { v \in g.node : alloc[v].markBit });

}

}
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Program transformation is the mechanical manipulation of programs, as performed for ex-

ample during compilation, refactoring, generative programming, or reverse engineering. Both

term rewriting [25] and graph rewriting [8] have been tried as formalisms for program trans-

formation, with the former outnumbering the latter as reports in the literature are concerned.

In principle, model transformations in model-driven software engineering can also benefit from

the same theoretical framework. In practice, the design of (industrially relevant) languages
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for model transformation usually lacks a formal foundation. Approaching an industrial case

study with a formal mindset is thus a three-step process: (a) candidate formalisms are re-

viewed, (b) existing industrially-relevant DSLs are analyzed, and (c) a post-fact formalization

is proposed. As Simeon and Wadler argue in The Essence of XML [192]:

. . . there is value in modeling these standards. In particular, such models may:

(i) improve our understanding of exactly what is mandated by the standard, (ii) help

implementors create conforming implementations, and (iii) suggest how to improve

the standards

The structure of this chapter is as follows. Sections 10.1 and 10.2 provide an overview of

term rewriting and our approach toward the formalization of QVT-Relations. In Sec. 10.3, the

main constructs of this model transformation language are described: templates for pattern

matching, relations for constraining model elements, as well as the update semantics. With

that background, the dynamic semantics of QVT-Relations are formalized in Sec. 10.4, which

allows uncovering a bug in the UML2RDBMS transformation of the QVT standard. Sec. 10.5

summarizes related work, and Sec. 10.6 evaluates the approach.

10.1 Term Rewriting

A language supporting the abstractions of the domain of declarative transformations facilitates

their formulation, by offering constructs reflecting term rewriting, traversal strategies, and

the possibility to take into account the context of a rewriting, a capability supported by

dynamic scoped rules. These abstractions and the underlying representation of programs as

algebraic terms have been applied successfully in a number of case studies both in industry

and academia. We focus on the Stratego language [25] as representative of this paradigm. As

with any abstractions, they are not a panacea: usability difficulties that Stratego-like DSLs

exhibit are reviewed by Lämmel et al. [139].

The formal operational semantics of Stratego [25] have not been mechanized. A promising

approach for its mechanization is Relational Logic, given its successful application to graph

transformation systems [16] and algebraic datatypes [136].
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Previous work regarding verification of Stratego transformations includes the semi-automatic

analyses supported with an interactive theorem prover [209]. Initial considerations toward a

Hoare-style logic for Stratego are addressed in [128].

The abstractions for program transformation embodied by Stratego have been expressed as

design patterns in other languages (for example, in Haskell1). Regarding Java, MatchO [200]

is a library encapsulating functionality for object-based pattern matching and for traversal

combinators. Although MatchO greatly simplifies strategic rewriting in Java, existing Stratego

libraries need to be encoded imperatively and the advanced capabilities of Stratego (such

as dynamic scoped rules) have similarly to be encoded manually. The manual steps are

error prone, validating an Stratego algorithm may thus be not immediately transferable to its

MatchO-based implementation.

Although the matching problem has been throughly addressed for object graphs [180], sup-

porting language constructs are conspicuously missing in modern OO languages. This gap

is solved with design patterns (Visitor [76] and the traversal combinators of MatchO). An

exception to this state of affairs is the Scala programming language, which essentially makes

term rewriting built-in. The design of the pattern matching facilities in Scala are described

by Emir in his PhD thesis [34].

10.2 Formalization Approach

In recent years, EMOF + OCL has gained acceptance as the approach of choice to define

the structure and static semantics of software artifacts. This consolidation has motivated the

need for expressing model transformations and inter-model consistency checking in a compact

manner. Examples include: (a) high-level compilation (e.g., from BPMN into WebML [23]);

(b) refinement (e.g., spelling out the possible behaviors sketched in a UML Activity Diagram

by means of a set of Statecharts); and (c) round-tripping between alternative notations (e.g.,

between a block-structured BPEL process and its tree-based visualization).

In order to address the above scenarios (including the incremental and bi-directional evalu-

ation of transformations), QVT-Relations [173] was designed to encode input-output relation-

ships with pattern-matching expressions guarded by preconditions.

At any given point in time, all but one of the models participating in a transformation

1Programmable rewriting strategies in Haskell, http://www.cs.vu.nl/Strafunski/
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are considered as given (i.e., non-updatable), thus constraining the solution space to a well-

defined set of (updates, instantiations, deletions) on the target model. To realize round-tripping

between two models, upon occurrence of an update on one of them, the transformation is to

be evaluated in the direction of the other, thus bringing them back in-synch.

Actually, the well-formedness guarantee for transformations needs to be certified at design-

time on a per-transformation basis, in order to avoid runtime exceptions that would disrupt

the operation of a model-driven toolchain (in terms of compiler technology, an analogy would

be a Java compiler failing to produce valid bytecode for well-formed input, because of an

internal exception).

In order to perform such certification in a mechanical way, we enlist the services of Alloy2,

a logic engine developed at MIT by Daniel Jackson [120]. Two capabilities of Alloy prove

particularly useful: (a) the expressive power of its formalism, Relational Logic, which extends

First-Order Logic with equality and transitive closure; and (b) visualization, which simplifies

grasping the counterexamples found.

An Eclipse-based plugin for Alloy is available3, although we intend to keep the operation

of counterexample-finding transparent to the author of QVT transformations. Regarding the

toolset used, screen captures were obtained from medini QVT 4. Another QVT-Relations tool

is ModelMorf 5. Both are as of this writing free of charge for non-commercial use.

10.3 Static semantics, OCL Formulation

The universe of discourse of a transformation is limited to the classifiers defined in one or

more metamodels that the transformation expects as parameters. A metamodel is defined by

means external to the transformation, and groups classifier definitions into packages. Thus, a

fully qualified name to uniquely pinpoint a classifier comprises a parameter name (as different

parameters may conform to the same metamodel), a fully qualified package name, and a

classifier name. Unlike in ordinary OO programs, where variables range over instances of

classes like Employee and Car, the variables of a transformation range over model elements,

e.g., “all the attributes owned by class C that have primitive type”. Although M0-level

2Alloy, http://alloy.mit.edu/
3Eclipse plugin for Alloy, http://code.google.com/p/alloy4eclipse/
4medini QVT, http://projects.ikv.de/qvt, open-source (EPL) since early 2008
5ModelMorf, http://www.tcs-trddc.com/ModelMorf/index.htm
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Figure 10.2: QVT AST subtree

instances could also be manipulated, this usage is not anticipated by the specification.

Another concept present throughout QVT-Relations is pattern matching, which the abstract

syntax decomposes into relation domains (“domains” for short), domain patterns (“patterns”),

templates (of object and collection kinds), and variables. Their main points are covered before

presenting well-formedness rules (WFRs) for them. For a transformation to be valid each of

its top-level and transitively invoked relations should evaluate to true (which boils down to

certain patterns matching). Referring to the metamodel fragment depicted in Figure 10.1 on

p. 173, the AST nodes of relations and domains are easy to spot after their concrete syntax

representation, which tags them with the keywords relation and domain. For the other AST

nodes, no such mnemonic is available: curly braces may enclose the items in a template

and the predicates in a pattern. Figures 10.2 and 10.3 compare an AST subtree with its

textual serialization to showcase pattern nesting: variable a (an UmlAssociation) will bind

to an instance whose fields have values as indicated, in particular those for umlSource and
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Figure 10.3: Text fragment corresponding to the AST in Figure 10.2

Listing 10.1: Properties in an object template must belong to the matching class

context QVTTemplate::PropertyTemplateItem

inv property part of class :

self . objContainer . referredClass . eAllStructuralFeatures

→includes(self. referredProperty )

umlDestination being in turn patterns. The pattern for umlSource (highlighted) introduces a

variable for later use (sc). The two equalities required for a binding to succeed (umlKind =

'Persistent' and umlName = scn) are grouped by an object template (as opposed to a collection

template) to denote that a single object will be matched.

10.3.1 WFRs for Templates

As may be concluded from the sample object template highlighted in Figure 10.3, the prop-

erties it lists should belong to the class being matched. The corresponding WFR is shown

in Listing 10.1. The frame of reference for the WFRs in this subsection is the QVTTemplate

package, reproduced in Figure 10.4 on p. 178.

After using the term pattern in an informal (but not misleading) way, the question arises:
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Figure 10.4: Metamodel view of QVT templates [173, Sec. 7.11.2]

what is the counterpart in the concrete syntax of a Pattern AST node? Recalling the example

in Figure 10.3, no Pattern as such is displayed but only one DomainPattern whose sole purpose

is to own a single TemplateExp (and to inherit a collection of Variable declarations reachable

over bindsTo, more on that later). It is templates then that specify matching equalities, and

save for primitive domains (as in primitive domain prefix : String;) we’ve found no single case

of a DomainPattern without its (more important) TemplateExp, thus raising the question as

to why the standard defines such composition as optional [173, p. 33]. Instead of showing

another class diagram, this time the same information is presented in Emfatic6 notation in

Listing 10.2. Not shown is the optional composition between a RelationDomain (owner) and

its single DomainPattern (part).

6Emfatic, a text editor for EMF class models, http://wiki.eclipse.org/Emfatic
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Listing 10.2: Where do patterns go in the AST?

class DomainPattern extends QVTBase.Pattern {
!ordered val QVTTemplate.TemplateExp templateExpression;

}
class Pattern extends EMOF.Element {

!ordered ref EssentialOCL. Variable[*] bindsTo;

!ordered val Predicate[*] #pattern predicate ;

}
class Predicate extends EMOF.Element {

!ordered val EssentialOCL. OclExpression[1] conditionExpression ;

!ordered transient ref Pattern[1] #predicate pattern ;

}

The distinction between (boolean) Predicate and the conditionExpression it owns can be seen

in Listing 10.3, a postcondition for a relation. That fragment has been annotated to reveal

the internal structure of a where postcondition. Although Patterns and Templates both look

similar in the textual syntax (both appear as curly braces enclosing boolean conditions and

boolean equalities, resp.) they serve different purposes: a Template not only rules out non-

matching object constellations but also specifies how to give initial values to the properties

of a new model element. A Pattern instead, fitting to its role as a pre or postcondition, may

contain arbitrary boolean expressions in addition to equalities. The well-formedness of these

constructs is assured to a large extent by the WFRs of the OCL subexpressions, and thus

the QVT-specific WFRs need only check for example that usages of variables occur in visible

scopes.

Listing 10.3: What QVT Patterns are made of

where { −− a Pattern owned by a Relation, owning Predicates

ClassToKey(c,k); −− Predicate with RelationCallExp as condition

prefix = cn; −− condition is an OperationCallExp: equals ()

}−− cn, a variable declared in the relation owning the where
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Listing 10.4: Template with precondition

domain relations rp :Pattern

{ predicate = pd:Predicate {
conditionExpression = re:OclExpression {} }

} { not re .oclIsTypeOf( RelationCallExp ) };

As stated in the QVT metamodel, navigating the conditionExpression association end of

Predicate leads to an OclExpression, for example ClassToKey(c,k) in Listing 10.3. However,

nowhere in the OCL 2.0 standard is RelationCallExp to be found as an OCL construct. This is

possible however because QVT extends the OCL metamodel, as follows: (a) RelationCallExp

is made a subclass of OclExpression [173, p. 33]; and (b) TemplateExp a subclass of LiteralExp

[173, p. 30]. Therefore, whenever QVT states “an OCL expression”, a mental translation

should be made to consider the new cases. For example, each PropertyTemplateItem in a

PropertyTemplate (Figure 10.4) may have as value (as depicted in Figure 10.3) a full-fledged

template for nested pattern matching, because of (b).

Just to complete the picture on TemplateExp, it should be mentioned that it can have a

precondition, as the where association end on OclExpression shows (Figure 10.4). This name

choice constitutes an irregularity in the metamodel, as QVT-Relations reserves the words

when for preconditions and where for postconditions. In any case, the example in Listing 10.4

(reproduced from [173, p. 160]) shows a template followed by its precondition.

The referredClass of an ObjectTemplateExp should be assignment-compatible to the type

of the variable that its instances will bind against, as shown in Listing 10.5. The function

assignmentCompatible(classifierLHS, classifierRHS) encapsulates the check whether all values of

type classifierRHS are a subset of those of type classifierLHS. In the abscence of parametric

polymorphism, such check reduces to determining whether they coincide or the former can be

found transitively among the eSuperTypes ancestors of the latter. In the presence of Generics

(as supported by the Eclipse EMF extension of EMOF) additional cases arise, depending on

whether classifierLHS and classifierRHS stand for type invocations (all type arguments have

been provided) or not (in which case each such type stands for all permissible type invocations,

as in Java 5) [79].

An object template that is part of an enforce domain may result, when evaluated, in an object
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Listing 10.5: Type conformance (first invariant) and Variable agreement (second invariant)

context QVTTemplate::ObjectTemplateExp

inv bindingVariableTypeConformance :

not bindsTo→isEmpty()

implies assignmentCompatible(bindsTo.eType, referredClass )

context QVTRelation::DomainPattern

inv varOfRootTemplateEqRootVarOfRelDomain :

not templateExpression→isEmpty()

implies templateExpression .bindsTo =

relationDomain. rootVariable

being created. Given that the transformation author specifies the type T of the template’s

variable, T is required in this case to be a non-abstract class, otherwise a QVT engine would

face a non-deterministic choice among potentially several subclasses of T . On the other hand,

although variables passed as actual arguments to a relation invocation may match a freshly

instantiated object, they may be be abstract: if they do match a new instance, it is only

because an enforce domain was at play, a situation as that for T above.

[173, Sec. 11.3.4] requires “A domain pattern has a distinguished root template expression

that is required to be bound to the root variable of the relation domain that owns the domain

pattern”. This WFR appears in Listing 10.5 (second invariant). With metamodel classes

whose sole purpose is to own another (each Predicate owns an OclExpression) expressiveness

is not increased. Given that the two aspects of pattern matching (guard and slot fillers)

are kept separate from each other (as Predicates and Template resp.), the OCL WFRs that

check their agreement must constantly navigate from one to the other. The same difficulty

will be addressed by toolsmiths devising algorithms to process QVT expressions, for example

compilation of QVT instead of interpretation [163].

An area where the concrete syntax of QVT-Relations needs clarification involves the<when>

and <where> productions, reproduced below, as they (a) do not generate a RelationCallExp

(the production <OclExpressionCS> on [173, p. 39] overlooks this case); and (b) they can in-

stead generate arbitrary templates (assuming that <LiteralExpCS> generates any LiteralExp,

in particular a TemplateExp). Allowing a template as part of a pre or postcondition appears
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Listing 10.6: Conformance between actual and formal args in an invocation

context QVTRelation::RelationCallExp

inv actualFormalsConformance :

argument→size() = referredRelation.domains→size() and

argument→forAll(arg | let i : Integer =

self .argument→indexOf(arg) in

assignmentCompatible(

referredRelation .domain→at(i).eType, arg.eType))

problematic, unless interpreted strictly as a side-effects-free query. In any case, it is not crystal

clear whether templates are allowed in when and where clauses:

<when> ::= 'when' '{' (<OclExpressionCS> ';')* '}'
<where> ::= 'where' '{' (<OclExpressionCS> ';')* '}'

10.3.2 WFRs Around RelationCallExps

Unlike the situation for a transformation, the specification does not include provisions for a

relation to specify its list of expected arguments. The actual arguments for an invocation

are required by tool vendors to match in order and type the declarations of relation domains.

Therefore, as soon as a domain is added or otherwise the lexical order of domain declarations

is changed, all existing invocations need to be refactored. Exchanging the declarations of two

domains of the same type is a recipe for trouble: while existing invocations remain syntactically

valid, the transformation will not behave as before. The situation would be no different in

case actual arguments were assigned by name to formal ones: changing the name of a domain

declaration would again require performing non-local changes in the invocations (Listing 10.6).

The specification states that a top-level relation cannot be invoked (i.e., cannot appear

in a where clause) [173, p. 164], although it can appear in a when clause (an example of

the latter can be found in the UML2RDBMS transformation). The corresponding WFR is

shown in Listing 10.7. The function collectRelationInvocations() receives as single argument

a (possibly composite) OclExpression. Its verbose definition requires an if-then-else-endif for

each branching in the OclExpression inheritance tree. A visitor-based formulation is much

more compact. The QVT specification authors faced the same problem, as the incomplete
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Listing 10.7: A top-level relation cannot be invoked

context QVTRelation::Relation

inv noInvocationsToTopLevels :

not self .where→isEmpty() implies

self .where. allRelationInvocations ()→forAll( ri |
ri . referredRelation . isTopLevel = false )

context QVTRelation::DomainPattern

def allRelationInvocations () : Set(RelationCallExp) =

self .oclAsType(Pattern). allRelationInvocations ()→union(

collectRelationInvocations (templateExpression .where))

context QVTBase::Pattern

def allRelationInvocations () : Set(RelationCallExp) =

predicate . conditionExpression

→select(c | c.oclIsKindOf( RelationCallExp ) )

.oclAsType(Set(RelationCallExp))

definition of getVarsOfExp(OclExpression) [173, p. 145] shows (as part of the normative QVT-

Relations to QVT-Core transformation). The recurring case distinctions that this tree-walking

involves cannot be encapsulated into an OCL utility function because of OCL’s inability to

pass functions as arguments.

10.3.3 Interplay Between Relation Overriding and the Target Model

For any given transformation, the specification requires only one model parameter to be con-

sidered as target at a time. Referring to Figure 10.5 on p. 194 and Listing 10.8, an initial

(and wrong) attempt at capturing this WFR would involve finding out, for all Rules compris-

ing a Transformation, those Domains which are marked isEnforceable. If more than one model

parameter is reachable from them, the WFR would have been broken. This formulation is

actually overrestrictive, as QVT-Relations allows a Relation (subclass of Rule) to override

another. What counts, then, are the domains of the applicable relations. The specification

states [173, p. 27]: “The overriding rule is executed in place of the overridden rule when the

overriding conditions are satisfied. The exact semantics of overriding are subclass specific”.
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Listing 10.8: An over-restrictive formulation of the one-target-model constraint

context QVTBase::Transformation

inv onlyOneTargetModel :

rule .domain→select(isEnforceable)→collect(typedModel)→size() <= 1

Problem is, the specification is silent on the customization of this criterion for Relation. But

a reasonable assumption is that a more specific (i.e., subclassing) relation takes precedence,

provided its when guard is fulfilled. The resulting partial-order may still return in the general

case two or more non-comparable relations (e.g., two enabled relations directly overriding a

third one). This runtime non-determinism about which rule to apply requires clarification

from the specification authors. In terms of an Alloy-based analysis, non-determinism can be

detected at design time.

10.3.4 Types of Members of a CollectionTemplateExp

Collection templates allow matching against a set, ordered set, bag, or sequence; using a

notation inspired in that for function parameters in Haskell. For example, to match against

a set-valued attribute, expected to contain at least three strings including “ab”, a preamble

with three fillers is specified followed by the concat operator: col:Set(String) { 'ab', s,

++ remainingElems }. In general, the preamble lists a fixed number of elements, which may

include, besides literal constants and nested templates, variables (s in the example) and the

special wildcard which matches against anything (that we don’t care to reference later).

Different occurrences of need not refer to the same element, unlike multiple occurrences

of the same named variable. A new set containing all of the original elements other than

those matched by the preamble will be bound to the variable after ++ (remainingElems in

the example, would also have been allowed). The concrete syntax for CollectionTemplateExp

appears in Listing 10.9 (it is not clear how an arbitrary OCL expression can be generated from

the alternative <identifier> | <template>, but the spec intends to allow such expressions).

As shown in Figure 10.4 on p. 178, a CollectionTemplateExp owns one or more OCL expres-

sions to denote elements in the preamble. However, unless further constrained by a WFR,

such expressions do not necessarily result in a type-conformant element. The OCL invariant

in Listing 10.10 performs this type-check.
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Listing 10.9: Concrete syntax for collection templates

<collectionTemplate> ::= [< identifier >] ' : ' <CollTypeIdentCS>

' ( ' <TypeCS> ')' '{' [<memberSelection>] '}'

<memberSelection> ::= (<identifier> | <template> | ' ')

( ' , ' (< identifier > | <template> | ' '))*

'++' (< identifier> | ' ' )

Listing 10.10: Type conformance of members in a CollectionTemplateExp

context QVTTemplate::CollectionTemplateExp

inv typeConformingMembers :

member→isEmpty() or member→forAll( m |
isUnderscoreWildcard(m) or

assignmentCompatible(bindsTo.getItemType(), m.getType()))

10.3.5 A Sidenote on Terminology

The choice of terms and abbreviations favored by the standard can easily lead to misunder-

standings. Some choices appear to stem from the desire to achieve consensus between the

QVT-Core and QVT-Relations camps (both using for example the term pattern) which also

resulted in creating a sense of agreement by sharing abstract superclasses, e.g., Domain (in

the QVTBase package) is extended by both RelationDomain (in QVTRelation) and CoreDomain

(in QVTCore). Same situation arises between Rule, Relation, and Mapping. Besides the name

overcrowding, some logical connections end up being split across packages. For example, the

fact that a Relation owns RelationDomains can only be found by inspecting QVTBase, where a

Rule owns Domains. Not incorrect, but arguably counterintuitive: with that decision, a ded-

icated WFR is now needed for Relation (namely, domain→size() >= 2). On the other hand,

it is not clear why certain facilities are not shared between QVT languages. For example,

QVT-Operational allows adding new operations to classes [173, Sec. 8.1.8], even to primitive

types, as in: query String::withUnderscore():String = ” ”.concat(self). There appears to be no

principle obstacle to supporting this concept of open classes in QVT-Relations too.
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10.4 Dynamic Semantics, Alloy Formulation

An Alloy specification [120] declares concrete worlds, each consisting of set-theoretic relations

connecting atomic symbols (“atoms”), for analysis in different snapshots of interest. Three

kinds of analyses are possible [120, p. 150]:

� With model finding, visual depictions of all the finite concrete worlds that satisfy the

specified constraints can be obtained (an analysis triggered with run predicate). Finding

no concrete worlds is a strong indicator that the specification is inconsistent, i.e., all

constraints cannot be satisfied simultaneously (however, some predicates could have

been fulfilled in a larger finite scope).

� For unsatisfiable predicates, Unsat Core can be used to highlight the relevant portions

of the Alloy specification that contributed to unsatisfiability.

� Assertions can be given, which are claimed to follow from the rest of the specification.

Counterexample finding, triggered with check assertion, reveals finite concrete worlds

that are conformant save for the broken assertion. Regression testing is similar in spirit

to this analysis, only that not as encompassing.

As to Alloy’s expressiveness about state evolutions over time, no dedicated syntax is pro-

vided (in contrast to imperative-style transformations [84]). Instead, Hoare-style pre and

postconditions are preferred, where values in the pre and post snapshots are denoted by dif-

ferent variables, e.g., p and p’. Internally, Alloy encodes analyses as boolean satisfiability

(SAT) problems. SAT solvers have experienced dramatic performance improvements during

the last decade. With the arrival of multicore processors and novel optimizations [196] further

gains are expected. Moreover, Alloy offers a Java API for integration, used for example by

its Eclipse plugin. Therefore, an integration in a QVT tool is feasible, with QVT-Core and

QVT-Operational also standing to benefit from formal analysis.

The lack of dedicated Alloy syntax for EMOF’s String and numeric types has been pointed

out as a disadvantage, as well as a missing counterpart for the OCL Standard Library, which

is reused by QVT-Relations. These difficulties can be overcome by automating the encoding

of the appropriate Alloy abstractions. For example7, if all a transformation T requires from

7http://tech.groups.yahoo.com/group/alloy-discuss/message/1266
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Listing 10.11: A more detailed abstraction for Strings in Alloy

abstract sig Character{}
one sig A, B, C, D, E extends Character{} −− etc.

one sig CharacterOrd {
First , Last : set Character ,

Next: Character −> Character

}{ −− some facts about this single linear order on Character

Character in First .*Next −− every elem is in the total order

no First .(˜Next) −− first element has no predecessor

no Last .Next −− last element has no successor

( all e: Character | {
(e = Last || one e.Next) −− each except last has one succ

(e = First || one e.(˜Next)) −− one pred except first

(e ! in e.ˆNext) −− there are no cycles

}) −− enumeration of (prev, next) pairs elided

}

Strings is comparison for equality, then the following Alloy definition will do: sig String{}.
If, additionally, string comparison appears in T, then a more detailed abstraction (a linear

ordering over the Character type, shown in Listing 10.11) should be generated by the en-

coding algorithm. Together with the definition sig String{content : seq Character}, the OCL

condition a = b.concat(c) can then be represented as in sig Example{ a, b, c : String }{
a.content=b.content.append[c.content]}.

10.4.1 Methodology

Given that a transformation implicitly manages correspondences between model elements some

notion of identity is necessary to warrant modification or deletion of the “right” counterpart

from those available in the target model, or the creation of a genuine counterpart instead of a

duplicate. QVT-Relations adopts the concept of keys from relational databases, in the form of

per-class sets of fields. Actually, a metamodel definition has by itself no provision to enforce

keys, and tools are expected at transformation-application time to detect key duplicates. In

terms of the Alloy formulation (Listing 10.14 on p. 190), keys are rephrased as constraints, and

only duplicates-free models are considered during certification, thus contributing to scalability:
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Listing 10.12: Predicates to enforce deletion of a part upon deletion of its owner

pred enforceDeletionOfParts [

wholes : set univ ,

parts : set univ ,

owningRel : wholes −> parts,

deletedOwners : set univ /* for enforce mode */ ] {
// if owner has been deleted , so must have been part too

all p : parts | let owner = owningRel.p |
( (owner in deletedOwners) => (p in deleted []) )

}

// when the owner has been deleted so must have been its parts

fact { enforceDeletionOfParts [ this /Package, PackageElement,

elements, (SimpleUML/Package − this/Package) ]

enforceDeletionOfParts [ this /Class , this / Attribute ,

attributes , (SimpleUML/Class − this/Class) ]

}

the more constrained the input, the more pruning of the search space that a symbolic engine

such as Alloy can perform early on (for a näıve generate-and-test methodology the opposite

is the case, as significant effort is invested in the generation phase before the test phase can

discard cases).

The basic steps to encode the definitions of OO classes and associations into some formalism

are similar, as a comparison of the encodings into First-Order Logic [18], Relational Logic [10],

Description Logic [39], and Constraint Satisfaction [39] shows: classes are formalized as sets

of atoms (paying attention to disjointness and coverage) with additional predicates to capture

the semantics of the specified relationships (inheritance being captured as subset, composition

by ruling out multiple simultaneous owners as well as lack of owner, and multiplicities as

restrictions on the number of links between atoms related by an association). Given that a

transformation may result in deletions, the effects on parts owned over composition have to

be included in postconditions (Listing 10.12).

The encoding of QVT-Relations into Alloy starts with the model type parameters of a trans-

formation T, i.e., the metamodels whose instances are passed as arguments to T. Given that
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Listing 10.13: Class encoded in Alloy with WFRs for transformation compliance

abstract sig ForeignKey extends RModelElement {
fkColumns : some Column, −− at least one Column required

refersTo : one Key

}{−− an FK in table T cannot contain columns not in T

all c:fkColumns | owningTable[ this ] = owningTable[c]

−− column types should match those of the PK being referred

fkColumns.type = refersTo.keyColumns.type

}

different arguments may conform to the same model type, a separate population is required

for each argument: pairwise disjoint subsets are defined. After that translation, Alloy can

generate conforming arguments for T, to automatically explore the input space. In case the

analyses should be limited to certain inputs, the pertinent definitions are declared abstract

with a number of singletons populating them, thus preventing model finding from stipulating

additional atoms. For checkonly domains a similar strategy is followed: without extra con-

crete definitions extending the abstract sets, the given populations are constant. Listing 10.13

depicts the Alloy declaration for class ForeignKey, with two WFRs for transformations.

At this point, functions can be encoded for (a) the templates in checkonly domains; and

(b) querys defined alongside relations in T. Although such definitions may in turn involve

pattern matching, the need to encode a particular search order is circumvented by letting

Alloy bind variables to valid values: a predicate is specified parameterized with the variables

and matching conditions that show up in the template of interest. Behind syntax, a set

comprehension is at work. In Alloy, {x1:e1, x2:e2, ..., xn:en | F} denotes a set-theoretic

relation with all tuples of the form (x1, x2, . . . , xn) for which the constraint F holds, and where

the value of xi is drawn from the value of the bounding set expression ei. The translation so

far allows detecting whether some QVT-Relations variable is predestined never to be bound,

as a result of the interplay between metamodel constraints and matching conditions. This

kind of conclusion cannot be arrived at with testing alone, unless prohibitively exhaustive.
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Listing 10.14: Formulating QVT-Relations-keys as exemplified by Table(schema, name)

/*

Keys are unique within each model parameter, not metamodel wide

( i .e ., instances in different model parameters may have the

same values for their key attributes , those instances are

still considered different ). That is why declarations

like the ones below should also be present in the declarations

for other domains (of type SimpleRDBMS) in case

they were also input to the transformation .

*/

fact {
all t1 , t2: this /Table |

( t1.name=t2.name and

SimpleRDBMS/owningSchema[t1] = SimpleRDBMS/owningSchema[t2]

) implies (t1 = t2)

}

10.4.2 Case Study

In order to facilitate methodological comparison, we formalize the running example of the

QVT specification (UML2RDBMS, transforming class models to relational database schemas,

[173, Annex A.1]) to later analyze whether well-formed output is obtained for each well-formed

input. A counterexample is depicted in Figures 10.6 and 10.7, exhibiting duplicate column

names in an output Table. The input shown involves two superclasses declaring primitive

attributes with the same name, which are mapped as-is by SupperAttributeToColumn. The

transformation can be fixed by assigning a different attribute-prefix for each such superclass

(SupperAttributeToColumn had already the means to do this, but the prefix being passed was

empty). The Alloy specs used to debug the transformation are available for download8.

For example, the relation ClassToTable is mapped to all c:umlDomain/Class,

t:rdbmsDomain/Table | guardClause[c,t] implies postCond[c,t] . After identifying its essential

features, the uncluttered visualization in Figures 10.6 and 10.7 was obtained. Subsequently,

8Alloy formulation of UML2RDBMS, http://www.sts.tu-harburg.de/~mi.garcia/pubs/2008/
qvtr/
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a commercial QVT-Relations tool was used to run the transformation for the reported in-

put, obtaining the predicted malformed output but no warnings. The Alloy response times

remained below one minute for most analyses performed.

10.5 Related Work

Anastasakis developed a translation from UML class models and an OCL subset into Alloy

[10], with details on OCL coverage provided in the tool documentation9. In follow-up work, a

transformation between workflow notations was manually encoded in Alloy to certify output

well-formedness [11]. Dingel [57] uses Alloy to rectify the definition of the UML2 package

merge operation.

The ideas of programs as proofs and verifying compilers are still today holy grails in Com-

puter Science. Although the mechanization of such theories is not explored in this PhD thesis,

an introduction and a summary of current progress is offered for the interested reader. Another

recent review can be found in Sec. 1.2 (“The Verification Landscape”) of [45].

In essence, any attempt at proving properties about programs relies on proof techniques

(e.g., well-founded induction) which are independent from any particular domain. A read-

able introduction to such techniques, with case studies drawn from the field of programming

languages is Winskel’s classic The Formal Semantics of Programming Languages [208]. Ad-

ditionally, paper proofs from that book can be compared with their HOL mechanization,

discussed by Nipkow in [165]. Another very complete introduction offering context to proof

techniques is the lecture Computer Supported Modeling and Reasoning by Basin, Wolff, and

Brucker, whose materials have been made available by the authors10.

Part of the ground rules for verification of OO programs with theorem-prover is typed

lambda calculus [104], as it has strongly influenced the formalizations of OO languages for

reasoning about typing (heralded by Abadi and Cardelli’s A Theory of Objects [1]). Regarding

Isabelle/HOL implementations, a proof of Church-Rosser is elaborated by Nipkow in [164].

An extension to the concurrent case has been developed by Caromel and Henrio in [41], but

no mechanization for their work is as of now available. Regarding the syntactic device of

Isabelle’s built-in meta-logic, most results are brought together by Baader and Nipkow in the

book Term Rewriting and all That [14].
9UML2Alloy, http://www.cs.bham.ac.uk/~bxb/UML2Alloy/index.php

10http://www.infsec.ethz.ch/education/ws0405/csmr/material
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The general approach to mechanizing a Hoare-logic in the Higher-Order Logic (HOL) is

explained by Gordon [94] (Harrison [109] covers the same topic). Mechanizations of large

subsets of the Java programming language have been achieved by von Oheimb [174], Klein

[131], and Hanbing Liu [151]. Brucker and Wolff follow a different approach: rather than

starting with an already defined language, object-oriented concepts are refined into checkable

implementations. The resulting toolset [32] allows sequential program verification. An inte-

gration with the HOL-OCL mechanization [33] is planned. The faithful formalization of an

existing language as opposed to an abstraction is alone in terms of raw size a difficult problem.

For example, a shallow embedding of expressions from an object language into an underlying

logic allows reusing the proof techniques for the logic in question. However, a more faithful

approach consists in formalizing the object language itself, including for example arithmetic.

The IEEE-based arithmetic of Java has been mechanized by Rauch and Wolff [183], being an

example of a deep embedding.

A theorem-prover-based validation of transformations (expressed as rules of a Triple Graph

Grammar) has been accomplished by Leitner [146].

Although some researchers believe that program verification will never be fully automated

for unrestricted programming languages, efforts in this field are expected to continue expanding

the application area of these techniques.

10.6 Evaluation

The notation in Annex B of the QVT specification is not suitable as semantic anchor (unlike

Relational Logic) because it only exhibits a vague resemblance to First-Order Logic (FOL)

and cannot be mechanically checked.

The UML2RDBMS transformation does not aim at encoding all the rules required for realis-

tic Object-Relational Mapping11 (for example, no provision is made to handle many-to-many

associations). Therefore, a minimal criteria was adopted (the aforementioned well-formedness)

as it suffices to demonstrate the methodology. An industrial-strength transformation should

additionally be certified to preserve the “semantics” in terms of the languages for input and

output (thus guaranteeing compiler correctness [91]). In the example, we do not check whether

the resulting database schemas have the same expressive power as the input class models. As

11Scott Ambler on ORM, http://www.agiledata.org/essays/mappingObjects.html
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it turns out they don’t: although foreign keys are generated for many-to-one associations,

such foreign keys are not included in the tables for subclasses, unlike the columns for inherited

attributes. QVT-Relations cannot be expected to be aware about the semantics of all the lan-

guages whose sentences it may transform. As a consequence, compiler correctness has to be

validated separately, by manually specifying verification conditions that cannot be extracted

mechanically from the transformation under study.

Ideally, the translation from QVT-Relations into Alloy should be tool supported, as well as

the subsequent analyses (coverage of input language, and well-formedness of output sentences),

for example by building upon our Eclipse-based OCL compiler [87, 78] and the metamodel of

QVT-Relations.

Given the progress experienced by logic engines in terms of efficiency, portability, and com-

ponentization, we believe the time is right for adopting the best-practice of anchoring the

semantics of software modeling standards in decidable formalisms, as demonstrated in this

chapter for QVT-Relations.
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Figure 10.5: Metaclass QVTBase::Transformation
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Figure 10.6: Counterexample, Input
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Table with
non-unique
column names

(. . .)

(. . .)

Figure 10.7: Counterexample, Output (fragment)
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Software Repositories
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The efficient detection of run-time violations of integrity constraints (or their avoidance

in the first place) has not been satisfactorily addressed for the combination of object model

and constraint definition language most widely accepted in industry, namely OMG’s Essential

MOF and Object Constraint Language (OCL). We identify the dimensions relevant to this

problem, and classify existing proposals by their position in the solution space. After this

comparative survey, we propose a solution for the efficient integrity checking of invariants

expressed in OCL over the Essential MOF data model, and describe the software architecture

of its implementation using object-relational mapping technology.

As MDSE techniques are applied to development processes of ever increasing complexity,

additional demands are placed on the infrastructure supporting those processes. Software
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repositories [58] play a vital role in the management of software artifacts conforming to an

EMOF data model, checking the integrity constraints given as OCL invariants. The task of

runtime integrity checking has proven non-scalable if performed without regard for optimiza-

tion techniques, yet many EMOF software repositories in use today do not adequately address

this concern. Solving this industrially relevant problem requires identifying a calculus expres-

sive enough to handle OCL yet tractable enough that optimizations of collection operations

are feasible. Moreover, an empirical evaluation of the proposed approach should validate the

findings before real-world deployment.

Integrity checking is an instance of the model-checking problem, i.e., determining whether a

concrete world satisfies predicates. In turn, query evaluation is an area thoroughly studied in

the academic literature. We follow the engineering approach of coherently combining existing

scientific knowledge to solve an industrial problem. Our work falls just short of building a

concrete product based on the technology choices made (because that’s a task for industry).

Rather, we disclose the detailed reasoning behind our approach (which industry refrains from

doing).

The structure of this chapter is as follows. Sec. 11.1 reviews the strategies for integrity

checking available to repository designers. Sec. 11.2 covers the often overlooked interplay

between expressiveness of the constraint language and runtime cost of integrity checking.

Sec. 11.3 presents a technology choice that balances these conflicting requirements. A review of

the difficulties associated to checking computationally-complete OCL can be found in Sec. 11.4,

followed by the translation rules into the chosen calculus (Sec. 11.5) and a sample of the

optimization techniques thus enabled (Sec. 11.6). Related work (Sec. 11.7) includes pointers

to the main-memory case and to recent progress on integrity checking in the SQL/relational

setting. Sec. 11.8 discusses the insights gained as a result of the presented formalization.

11.1 Integrity Checking in Software Repositories

Given the ubiquity of EMOF and OCL in MDSE, it comes as no surprise that software repos-

itories are required to manage artifacts conformant to EMOF + OCL metamodels [184]. In-

frastructural functionality expected of such repositories includes scalability, concurrent access,

integrity checking and enforcement, versioning [135], and view maintenance. These capabilities

in turn are needed to support higher-level use cases such as: traceability between requirement
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specifications and implementation artifacts, impact analysis, refactoring, and avoidance of

architectural erosion [185].

The implementers of some EMOF + OCL software repositories in use today have not paid

enough attention to the formal foundation of those languages, with the end result that it

cannot be determined anymore whether some tool behaviors are correct or not. Analyses of

ambiguities in past revisions of the MOF and OCL specification can be found in [9] and [33].

A formalism that offers rigorous precision is a good start, yet Fegaras and Maier define in [71]

additional criteria for a calculus to be suitable for a query language:

� Coverage: whether the calculus has enough expressive power to represent all concepts of

the query language. In the case of OCL, these concepts include aggregation, duplicate

values, sort orders, several collection types (sets, bags, ordered sets, lists), negation, and

user-defined (potentially recursive) functions.

� Ease of manipulation: expressions in the calculus should lend themselves to uniform

matching and rewriting, such as in type-checking or optimization.

� Evaluation fitness : whether all valid query plans can be derived from an expression in

the calculus. A formalism that expresses queries at too low a level of abstraction acts

as a barrier to effective evaluation.

By relying on a formal calculus that is suitable with respect to OCL, precise definitions

for the problems of query optimization, integrity checking, and view maintenance become

possible, and correctness of their solutions can be examined. Efficient implementations are

the next step. Before discussing a calculus that fulfills the above criteria, we elaborate on

the alternative approach of directly anchoring the semantics of EMOF + OCL in terms of

the Relational Data Model, turning OCL into a surface syntax. This would acknowledge the

fact that results from the object-oriented and deductive database communities have become

mainstream in SQL3 and are thus likely to be efficiently supported by conformant DBMSs.

We see however some disadvantages with this approach:

� Pre-SQL3 relational formalisms do not fulfill the coverage criteria as defined above.

Queries involving aggregation or sort orders have to be formulated as a mixture of

relational algebra interspersed with control structures. Only those fragments bracketed

between control structures are amenable to optimization.
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� Post-SQL3 extended-relational formalisms strongly resemble the calculus adopted in our

approach. Algorithms for incremental view maintenance based on these formalisms can

thus serve as a foundation for our solution architecture.

� It is more efficient to manipulate query plans at the highest level of abstraction possible.

Once optimized, object-level queries can be cast in terms of relational algebra thus

opening the way for further potential optimizations.

� EMOF concepts cannot be mapped one-to-one to relational “counterparts”, thus making

a direct relational anchoring non-trivial in itself. For example, a relational view may

contain the primary keys of its base relations, while each object in an object view has a

globally unique object-ID.

11.2 Expressiveness and Runtime Cost of Integrity Checking

There is a mutual dependency between the expressiveness of a constraint language and the

computational complexity of evaluating integrity constraints upon updates to database state.

Three categories can be distinguished:

1. Design-time avoidance of integrity violations : By carefully limiting the expressive power

of the data model and constraint language, it is possible to determine at database schema

design time whether some ordering of update transactions may violate the integrity

constraints. After this proof has been carried out (e.g., based on algorithm model-

checking as shown by Lamport in [142]) no run-time checks are needed. An example of

this approach for a variant of the F-Logic language is presented in [143]. Actually there

is still a run-time overhead in that each transaction is augmented with its generated

weakest precondition. Those fragments of the precondition which cannot be proved to

be implied by the database invariants have to be checked at runtime.

2. Run-time integrity checking with efficient evaluation: For more expressive constraint

languages, not all integrity checks can be skipped at runtime. Nevertheless, the eval-

uation of those remaining checks can be made more efficient than that for arbitrary

formulas in first-order predicate logic (PSPACE-complete in the worst-case for finite ob-

ject graphs [195]). We aim at identifying the subset of OCL whose expressive power fits
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in this category. An algorithm for incremental view maintenance [5] optimizes integrity

checking, as discussed in Sec. 11.3.

3. Run-time integrity checking with best-effort evaluation: For some specific combinations

of database schemas and full-OCL invariants, custom checks are derived whose efficiency

is comparable to that of category 2 above, sometimes using heuristics. For the remaining

cases, large data sets have to be scanned. This approach is followed in [38] and [7] where

the non-declarative subset of OCL is also adopted (including control structures and

negation).

The chosen complexity of integrity checking (second item above) does not preclude ad-hoc

queries from using full-OCL (and require full scans of entity extents in some cases). It seems

questionable, however, for the formulation of an integrity constraint to require computational

completeness, as the constraint is rendered non-declarative. Those constraints, if really needed,

are best enforced by the business logic that manipulates the software repository, e.g., following

Design-By-Contract [162], as recommended by best practices evolved over the years for the

architecture of multi-tier information systems.

11.3 Incremental Integrity Checking for OCL

Integrity enforcement comprises two runtime phases: (a) violation detection and (b) consis-

tency restoration. For each OCL invariant, a view to hold the object-IDs of those instances

not fulfilling it is defined (a denial view). At transaction commit time, all such views should

be empty, otherwise a consistency restoration policy is to be applied (rollback, compensating

action, or postponing consistency restoration altogether). Policies for consistency restoration

are outside the scope of this chapter. Given that most transactions leave the majority of

invariants unaffected, full recomputation of views after each update is impractical. Instead,

incremental maintenance is preferred, a process comprising design and runtime activities:

1. At database design time, each view definition is mechanically analyzed to determine

which update operations (when performed on certain data elements) affect the resultset.

2. For such events, actions are generated to react to them, taking as input the delta caused

by the update and using it to bring the materialized view into an up-to-date state (a

self-maintenance strategy as opposed to querying the base extents).
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3. At runtime, the planned actions are executed upon being triggered by the updates being

monitored, performing change propagation.

An efficient algorithm for incremental view maintenance in an EMOF + OCL context is

not as concise as the above summary might suggest because:

� Update operations on an object model are richer than their relational counterpart, given

the additional collection types available (lists, ordered sets, bags).

� Method overriding is an issue in that a subclass may redeclare a side-effects-free operation

(an OCL defined one), with that operation being used in an invariant. Instances of the

subtype should have the overriding definition evaluated in place of the overridden one.

� Updates may have side effects, which in turn may affect invariants. These side effects

result from inverse relationships maintained automatically in EMOF between two entities

(its closest counterpart in relational databases is referential integrity). For example, upon

deleting an instance which is bidirectionally linked to another, this second instance will

have its reference cleared.

A concrete realization of the above ideas, satisfying the complexity requirements introduced

in Sec. 11.2, is provided by the MOVIE algorithm for incremental view maintenance [5],

explained in detail by Akhtar Ali in his PhD thesis [4]. A thorough performance evaluation [6]

confirms its practical usefulness. The MOVIE algorithm is based on the translation of queries

into the monoid calculus and their subsequent optimization, as discussed in [72] and [101]. The

monoid calculus embodies the relational calculus, and has proven versatile enough to support

both traditional as well as innovative optimizations. The software architecture of the solution

proposed in this chapter comprises:

1. The design time mapping of a model expressed in EMOF into a relational database

schema (performed by a ready made component [68]). Data manipulation occurs at

runtime only as EMOF-level update operations that are intercepted and matched against

event patterns derived by MOVIE from view definitions for invariants.

2. The design time translation of OCL invariants into monoid calculus expressions. The

resulting event patterns (derived by MOVIE for runtime interception) correspond to
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EMOF-level update operations. The accompanying actions generated by MOVIE to

effect view maintenance are also EMOF-level updates.

The data definition, manipulation, and query languages (DDL, DML, DQL) of our solution

are: EMOF, EMOF-level update operations, and full-OCL. The (incrementally maintainable)

constraint language is the subset of OCL translatable into monoid calculus, and moreover valid

as input for MOVIE (as defined in Sec. 4.1.2.2 of [4]). Although full-OCL is our standard DQL,

nothing prevents the user from expressing read-only queries directly in SQL or in the ORM-

level query language, JPQL [66] (Java Persistence Query Language, sometimes referred to as

EJB3QL). Writing these “pass-through queries” in SQL requires knowledge of the mapping

decisions encapsulated in item 1 above.

The barriers to efficient evaluation introduced by full-OCL are covered next, followed by

an in-depth discussion of the translation of OCL into monoid calculus as a prerequisite to

applying the MOVIE algorithm.

11.4 Computationally Complete Constraint Language

Proposals using full-OCL for integrity constraints [38, 7] involve re-evaluating candidate bro-

ken invariants on a set of instances collected at runtime. The applied strategy consists in

minimizing the amount of relevant instances, instead of avoiding re-computing subexpressions

whose value has not changed (e.g., by caching their values). This is a major difference with in-

cremental view maintenance. The essential aspects of the full-OCL approaches are illustrated

with two examples, including the difficulties introduced by recursion. For a more detailed

presentation see Sec. 4 in [7].

A core aspect of [38] and [7] is the observation that for each data element on which an

OCL invariant depends, it is possible to derive a navigation-based query in the direction from

the data element back to the instance where the invariant is evaluated. On the wake of an

update on some data element, these navigation paths lead to a set of instances relevant for

re-evaluating the invariant in question. For example, in an scenario where Departments may

have good and bad Employees (Figure 11.1 on p. 204), an integrity constraint may require the

union of two sets (all bad employees and those good employees over forty) not to contain a

hobbyist:
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context Department

inv noHobbyist : badEmps−>union(goodEmps−>select(age > 40))

−>select(hasHobby)−>isEmpty()

Figure 11.1: The noHobbyist example: Departments and Employees

hasHobby age

badEmps goodEmps

hasHobby

Figure 11.2: Reachability for noHobbyist

Given a Department d, adding or removing employees (good or bad), as well as changing

their hobby status may affect the invariant noHobbyist when evaluated for d. However, for

this particular invariant, age updates are relevant only for good employees. This intuition is

reflected in the reachability paths shown as a tree in Figure 11.2. Thanks to bidirectional

associations, upon an update to a node in that tree, the fixed-length path to the root can
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be followed to find the Department instance (i.e., d) on which invariant noHobbyist should be

re-evaluated at transaction-commit time.

Special care is required for recursive functions ranging over dynamic data structures, as

illustrated by the forward-only list of Figure 11.3. In that example, the invariant lastWag-

onHasLightsOn is fulfilled for a Wagon w in a train as long its last wagon has the lights on.

In this case, a statically fixed back-navigation path will not achieve the desired result, as the

required number of links to traverse changes at runtime. A conservative approach consists

in re-evaluating recursive invariants for all instances of their contexts, thus achieving com-

pleteness at the expense of efficient evaluation. It is not clear from [38, 7] how recursion over

dynamic data structures is dealt with.

context Wagon

inv lastWagonHasLightsOn : f()

context Wagon::f()

def : if next.oclIsUndefined()

then hasLightsOn

else next.f()

endif

Figure 11.3: The lastWagonHasLightsOn example

11.5 Translation of OCL into Monoid Calculus

Queries translated into the monoid calculus refer to the same object-oriented schema as their

OCL counterparts. No schema mapping is needed because most EMOF constructs have a

direct counterpart in the monoid calculus, with the following exceptions: (a) EMOF-level or-

dered sets (no duplicates, insertion order preserved) are represented as monoid lists; (b) EMOF

dictionaries (Maps in Java) are represented as sets of (key, value) pairs, where pairs are monoid

lists. Under these conventions, for the purposes of side-effect-free queries, the result of evalu-

ating the monoid translation agrees with its original OCL formulation. For update purposes

instead, these conventions would not be consistent, as for example monoid lists do not capture
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the semantics of EMOF ordered sets (which require membership testing before insertion). We

do not claim to optimize updates, whose semantics are enforced by the ORM engine. The fact

that the same data schema is shared by both OCL and monoid expressions makes possible

to optimize the monoid formulation without the additional complication of data mapping.

No schema changes are introduced during rewriting for optimization. Finally, the optimized

version is semantics preserving with respect to its original formulation.

An internal node in the AST of an OCL class invariant stands for a function application,

with each subnode providing actual arguments. Some OCL constructs (e.g., let v = . . . in . . . )

add identifiers to the scope visible in subtrees. Such syntax can be removed by expanding

definitions, thus achieving the shape of “function application only” mentioned before. This

rewriting does not alter meaning as OCL has call-by-value evaluation semantics. Terminal

nodes are not tagged with function applications but with any of: (a) a literal constant; (b) the

predefined OCL variable self; (c) entity extents of the form ClassName.allInstances(). The

variable self ranges over an entity extent, namely that for the class where the invariant was

defined. Unlike UML, there are no class-scoped attributes or associations in EMOF. We as-

sume furthermore that invocations of user-defined, non-recursive functions have been replaced

with their definitions (this may involve substituting usages of formal arguments by their corre-

sponding actual arguments). To account for late binding (choosing a function definition based

on the actual type of a usage instead of its declared type) a potentially verbose case distinction

is needed. This is no principle obstacle with whole-model analysis : all possible actual types are

known at translation time and the actual type of an object can be queried with oclIsTypeOf().

After this preprocessing step, each internal node stands for the invocation of either an OCL

predefined function or a user-defined (directly or indirectly) recursive function.

11.5.1 The Monoid Calculus

The monoid calculus provides a uniform notation for collections such as lists, bags and sets,

based on the observation that the operations of set and bag union and list concatenation are

monoid operations (that is, they are associative and have an identity element). Monoids for

collection types are known as collection monoids. Operations like conjunctions and disjunc-

tions on booleans and integer addition are instead primitive monoids. Borrowing notation

from [72], a monoid of type T is a pair (⊕,Z⊕) where ⊕ is an associative function of type

T × T → T and Z⊕ is the left and right identity of ⊕. A monoid may be commutative (i.e.,
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when ⊕ is commutative), idempotent (i.e., when ∀x : x ⊕ x = x), or both. For example,

(+, 0) is a commutative and anti-idempotent monoid, while (∪, {}) is both commutative and

idempotent.

An expression of the form ⊕Je | e1 . . . enK is a comprehension over monoid ⊕. Unlike the

prominent role granted in functional programming languages to list comprehensions, the nota-

tion above uniformly captures collection operations, whose kind is revealed by the outermost

braces ([] for lists, {{ }} for bags, {} for sets). Each ei is a qualifier, which can either be a

generator of the form v ← E, where v is a variable and E is a collection-valued expression, or

a filter p (a boolean valued predicate). Informally, each generator v ← E sequentially binds

variable v to the elements of expression E’s value, making it visible in successive qualifiers.

A filter evaluating to true results in successive qualifiers (if any) being evaluated under the

current bindings, otherwise “backtracking” takes place. The head expression e is evaluated

for those bindings that satisfy all the filters, and taken together these values constitute the

resulting collection. For example, the following SQL-like nested query:

select distinct e(x)

from ( select d(y) from E as y where q(y) ) as x

where p(x)

is translated as { e(x) | x ← {{ d(y) | y ← E , q(y) }} , p(x) }
Applying a function f to each element in a collection (map f xs in Haskell) is thus expressed

as J f(x) | x ← xs K, while filter p xs becomes J f(x) | x ← xs, p(x) K. Comprehensions

in turn are syntactic sugar for monoid homomorphisms, which express structural recursion

on the collection constructor (++ for lists, ∪ for sets, ] for bags), as shown pictorially in

Figure 11.4 [100]. For example, taking ⊗ to be max(x,y) = case x<y of true → y | false → x

makes L−∞;maxMC find the maximum of collection C.

11.5.2 Translation Rules

Transformations for languages with a number of syntactic constructs (such as OCL) take the

form of LHS → RHS pattern-based substitutions, where each OCL construct is matched by

only one LHS. The transformation algorithm can be shown to correctly preserve meaning

if each rewrite transformation is proved meaning-preserving. This follows case by case from

definitions (in the respective semantic domains of OCL and monoid calculus). The rewrite rules
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Figure 11.4: Graphical representation of the homomorphism from monoid (↑, []) to (z,⊗) (the

latter not necessarily a collection monoid)

are terminating because they decrease the number of occurrences of OCL constructs available

for matching, and are confluent given that the LHSs partition the set of shapes that OCL

constructs may take (each OCL construct being matched by one rewrite rule). Translation

operates bottom-up from the leaves of the AST. For each node all required information is

available locally due to pre-processing: no lookup of the correct binding for an OCL variable

is needed as no such usages are left except for self.

Regarding the possible OCL constructs, Figure 5.1 on page 69 depicts the relevant fragment

of the OCL metamodel [171], i.e. the classes whose instances are nodes in an AST. As part

of preprocessing, some constructs have been desugared (LetExp, VariableExp), while others do

not appear in invariants (MessageExp). Occurrences of UnspecifiedValueExp, InvalidLiteralExp,

and NullLiteralExp stand for the result of applying a partial function outside its domain. Sta-

teExp and TypeExp are functions that access instance-level data (the current state, given an

associated statechart) and the actual type (which remains constant throughout the lifetime of

the instance, as EMOF lacks dynamic reclassification). Related to this, the boolean operation

oclIsKindOf() reports whether a pair of types belongs to the transitive closure of the direct

subtype relationship ≤1 of EMOF + OCL [79].

OCL constructs of the form LiteralExp are translated as follows: (a) a literal of the primitive

types (integer, real, string, or boolean) has a corresponding monoid constant, the same goes

for literals of a user-defined enumerations; (b) a collection literal of type ordered set or list is

translated as a monoid list, while set and bag collections have direct counterparts; (c) a tuple
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literal is translated as a set of pairs (tag, value).

The iterator expressions (LoopExp) comprise non-recursive subcases (Table 11.1). The re-

maining subcases are first desugared to their iterate() form as defined in the OCL standard

([171], Sec. 11.9 and A.3.1.3). iterate() in turn can be expressed as a left-fold. To capture

this primitive recursive function, the function composition monoid (◦, λx.x) is needed [72]

where the function composition, ◦, defined as (f ◦ g)x = f(g(x)), is associative but neither

commutative nor idempotent. Even though the type of this monoid, T◦(α) = α→ α, is para-

metric, it is still a primitive monoid. For a list L = [a1, a2, . . . , an], applying ◦[λx.f(x, a) |
a ← L] to z expands to (λx.f(x, a1)) ◦ . . . ◦ (λx.f(x, an))(z) which computes the left-fold

f(. . . (f(f(z, an), an−1), . . . a1). The formulation of OCL’s c→iterate(a ; acc=init | expr(acc,a))

is thus the comprehension ◦[λ acc.expr | a ← c](init). The expressive power of comprehen-

sions involving ◦ lies in their ability to compose functions that propagate a state during list

iteration. For example, the reverse of list L is ◦[λx.x++[a] | a ← L]([]). Actually, the OCL

standard defines the semantics of all LoopExp in terms of iterate(), but as can be seen from

Table 11.1 the additional expressive power is not necessary, and may complicate optimization

by hiding properties that ⊗ may exhibit (commutativity, idempotence).

In EMOF terminology, a class feature is either (a) an instance field or association end; or

(b) a method. Accessing the value of (a) is represented with PropertyCallExp. Invoking an

(OCL-defined, side-effect free) method is represented with OperationCallExp. Therefore, occur-

rences of these constructs are translated as function application in monoid expressions. The

sibling of PropertyCallExp (AssociationClassCallExp) is not relevant for EMOF, as class-scoped

structural features are not allowed. The pending cases of OperationCallExp not translated so

far comprise: (a) operations on the primitive types boolean, integer, real, and string; and

OCL Monoid calculus

c→select( e | boolExpr(e) ) J e | e← c , boolExpr(e) K
c→reject( e | boolExpr(e) ) J e | e← c , boolExpr(e) = false K
c→exists( e | boolExpr(e) ) ∨{ boolExpr(e) | e← c }
c→forAll( e | boolExpr(e) ) ∧{ boolExpr(e) | e← c }
c→collect( e | expr(e) ) J expr(e) | e← c K

c→one( e | boolExpr(e) )
1 = length( [ e | e← c , boolExpr(e)] )

where length(x) ≡ +[1 | e← x]

Table 11.1: Non-recursive subcases of LoopExp
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OCL Monoid calculus

c→count(m) +[1 | e← c, e = m]

c→excludes(m) ∧{e 6= m | e← c}
c1→excludesAll(c2) ∧{∧{e 6= m | e← c1} | m← c2}
c→includes(m) ∨{e = m | e← c}
c1→includesAll(c2) ∧{∨{e = m | e← c1} | m← c2}
c→isEmpty() c = J K
c→sum() +[e | e← c]

c→size() +[1 | e← c]

c1→product(c2) {(x, y) | x← c1, y ← c2}

Table 11.2: Standard OCL operations on all collection types

(b) collection operations (not to be confused with iterator operations). The first group can be

translated as-is given that all storage engines implement them natively. From the point of view

of optimization, they are handled as black-boxes. Translation rules for collection operations

appear in Tables 11.2 to 11.4, classified by computational complexity, complexity which is not

apparent from the uniform OCL syntax.

The implementation of OCL AST transformations is discussed in [78], including techniques

such as the encapsulation of walker code, instantiation of type-parametric visitors with type

substitutions, and tracking the input-output relationship between AST nodes along a chain

of visitors.

11.6 Optimizations with Monoid Calculus

The invariant noHobbyist (Figure 1 in Sec. 11.4) is amenable to a basic optimization, pushing

selections below joins (the predicate hasHobby = true appears only after building partial results,

performing it earlier increases selectivity). The vast body of query optimization algorithms is

not applicable to the surface syntax of OCL: the same concept can be expressed in so many

different ways that ease of manipulation (Sec. 11.1) is impracticable.

We claim that query optimization is required for two purposes in an EMOF + OCL setting:

(a) for ad-hoc queries, and (b) to optimize expressions obtained from OCL invariants before

their maintenance plans are derived by MOVIE. The case for (a) should be evident. As for

(b), the authors of [7] observe that invariant rewriting may disconcert users, who would be
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OCL Monoid calculus

c1→excluding(c2) Je | e← c1,∧{d 6= e | d← c2}K
c→append(m) c++[m]

c→asBag() {{e | e← c}}
c→asOrderedSet()

[e | e← c]
c→asSequence()

c→asSet() {e | e← c}
c→flatten() ⊕Je | s← c, e← sK
c→including(m) c⊕ JmK
c1→intersection(c2) ⊕Je | e← c1,∨{e = d | d← c2}K
c→prepend(m) JmK⊕ c
c1→union(c2) c1 ∪ c2
c1→symmetricDifference(c2)

same translation as for (c1→union(c2))→
excluding((c1→intersection(c2)))

Table 11.3: Overloaded collection operators (⊕ stands for the merge operator of the resulting

collection monoid )

faced with integrity violation errors based on expressions they have never seen before. As a

consequence, rewriting in general (and optimization in particular) is explicitly avoided. The

usability concern in question can be addressed in that error messages can be produced by

evaluating the original OCL invariant once it is known (by optimized evaluation) that it has

been broken. Actually, re-evaluation is inherent to the approach in [7], thus incurring no

additional overhead.

The primitive operations supported by storage managers or query engines correspond to

query algebra operators (semi-joins, selection supported by indexes, etc.) The monoid calculus

takes advantage of this fact by offering a uniform framework for query translation, rewriting

for optimization, and execution plan generation: query optimization can be made aware of the

physical schema (table partitioning applied as part of ORM), saving I/O costs. To illustrate

this kind of optimization, we show an end-to-end example of translation, optimization, and

plan generation aware of physical schema, adapted to the EMOF + OCL setting from [101].

Consider a database of Films and the actors appearing in them (recording in how many

scenes, scenes), together with the films’ directors, as shown in Figure 11.5.

Assuming that most queries access either actors or directors, it makes sense to vertically

decompose the logical schema into four tables (see Figure 11.6). Clustering table columns that
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c→at(i)
(◦Jλ(x, k).(if k = i then a elsex, k − 1) | a← cK

(NULL, length(x))).fst

c→first() ◦Jλx.a | a← cK
c→last() same translation as for c→at(c→size())

c→indexOf(m)
(◦Jλ(x, k).(if a = m then k else−1, k − 1) | a← cK

(−1, length(x))).fst

c→subOrderedSet(j,k) (◦Jλ(x, i). ifj ≤ i ≤ k then ([a]++x, i− 1)

c→subSequence(j,k) else (x, i− 1) K([], length(c))).fst

c→insertAt(k,m)
(◦Jλ(x, k).if i = k then ([m]++[a]++x, i− 1)

else ([a]++x, i− 1) | a← cK([], length(c))).fst

Table 11.4: Collection operations involving comprehensions of function composition

are frequently accessed together avoids unnecessary I/O, as its elements are stored physically

contiguous.

The OCL query below (in terms of the logical schema in Figure 11.5 on p. 213) returns the

titles of Hitchcock-style films: the director appears as an actor in exactly one scene.

Film. allInstances ()−>select( f |
f . directors −>exists( d |

f . cast−>exists( c | c. scenes = 1 and c.actor = d ) ) )

−>collect( f | f . title )

Its translation as a monoid comprehension is as readable as the OCL version:

{f.title | f ← film,

some{some{d = c.actor | c← f.cast, c.scenes = 1} |
d← f.directors}

}

Before optimization can start, the connection to the physical schema is established by re-

placing film by its definition in terms of the vertically decomposed tables, using the nest

operator to reconstruct the owned collections of actors and directors for each film. With

that, the monoid comprehension can be normalized: all variables ranging over collections

(i.e., f , d, c) appear first followed by a predicate in conjunctive normal form. This not yet

optimized formulation has a direct counterpart in query algebra (Figure 11.7 on p. 214), a
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Figure 11.5: EMOF logical schema for the films, actors, and directors database

tree of cartesian products. In principle, relational optimizations could start from there, thus

guaranteeing that monoid-based optimizations do not end up in execution plans worse than

relational optimization (e.g., exchanging two generators results in join reordering).

The semijoin E1./p E2 is a join variant that delivers only those left operand objects having

at least one join partner with respect to the join predicate p. Its implementation is efficient

because as soon as a join partner is found for an E1 object, then it is known to belong to the

result and no further E2 objects need be accessed. The monoid comprehension formulation

allows detecting those access patterns that correspond to semijoins. In the example, after

partial flattening of subqueries (not shown), the shaded subexpression in Figure 11.8 on p. 214

is one such case.

The resulting optimized formulation appears in Figure 11.9 on p. 215.

The resulting query plan expressed in relational algebra has a straightforward translation

into JPQL [66], the ORM-level query language. Further potential relational optimizations

may be performed by the RDBMS. In keeping with MDSE principles, this translation is

not implemented as string manipulations but as an AST-to-AST transformation [77]. Well-

formedness is thus ensured before delivering output for further processing.

Without the conceptual framework of the monoid calculus, applying similar rewritings di-

rectly on OCL ASTs would not have been feasible. This is further evidence to the claim that

integrity checking for EMOF + OCL should follow the approach proposed here.
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Figure 11.6: Physical schema for the films, actors, and directors database
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Figure 11.7: Query algebra formulation, non-optimized stage

11.7 Related Work

Database-centered Approaches

The influence of the Object Query Language (OQL) defined in the 1990s by the Object Data

Management Group (ODMG) cannot be understated, reaching to JPQL today. Trigoni [197]

formalizes type inference for OQL queries. Additionally, algorithms are provided for apply-

ing two semantic optimization heuristics: constraint introduction and constraint elimination.
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Figure 11.8: Semi-join access pattern
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11.7. Related Work CHAPTER 11
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Figure 11.9: Query algebra formulation, optimized stage

These refined heuristics take into consideration association rules discovered with data mining,

which are not as strong as integrity constraints (they may have exceptions in fact). Given that

these “rules” statistically hold most of the time, it pays off to monitor their validity at runtime.

Unless they become invalid, they can be used during optimization to increase selectivity and

to skip evaluations, thus improving performance. As with other heuristic techniques, safety

measures are built in to prevent the cost of analysis to exceed optimization speed-up.

Ritter et al. [184] also aim at integrity checking by translating OCL into a view definition

language, this time SQL’92. However, no systematic performance analysis is made. The

Dresden OCL Toolkit [55] compiles full-OCL into RDBMS stored procedures including control

structures, thus compromising query optimization in the general case.

A recent book on the subject of database integrity is [60]. Most contributions focus on the

relational case. The book [102] is devoted to view materialization.

Declarative Integrity Constraints for EJB

The EJB component model [66] is a major player in the field of Enterprise Software Archi-

tectures. Due to the resulting ecosystem around it, EJB has been explored as candidate

architecture for (transaction-oriented) software repositories. However, no general method-

ology has been found to generate EJB systems having throughput and performance levels

comparable to those manually built by experts.

Different approaches have been put forward to encode the behavior required for integrity

enforcement. An approach favored by industry involves business rules, i.e. sets of Event-

Condition-Action (ECA) statements such as:

� a time-triggered ECA rule: for example, “whenever a customer has a payment overdue

more than five working days stop receiving orders from that customer”

� a query-triggered rule: for example, “whenever a customer surpasses the limit of three

bad credit histories downgrade the customer’s status one level”
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Moreover, these rules should ideally be updatable at runtime (runtime adaptability), with

rule engines in charge of applying them to an object population. Object orientation brings

with it the expected issues of polymorphism and reference aliasing, which complicates two

analyses required for ECA-based specifications of behavior:

� Termination: to avoid keeping applying rules rules forever.

� Confluence: a property of term rewriting systems (and active rule systems), describing

that terms in this system always yield the same result, even if rewriting may take place

in more than one way.

Runtime adaptability may be required in case the metamodels evolve (similar to schema

evolution in database management). If the integrity constraints has been hardcoded in running

applications, the following seems unavoidable: (a) refactor the system to accomodate the new

constraints; (b) refactor the data schemas; (c) perform regression tests around constraints not

affected by the change; (d) perform data migration; (e) redeploy.

All in all, the business layer of an EJB system is responsible for enforcing liveness conditions

(by applying ECA-style rules) as well as safety conditions expressed in OCL invariants. A

model compiler could assume thus the responsibility of generating code enforcing the declara-

tive specification. Addressing EJB as target platform is not an easy fit for rule engines, whose

algorithms were designed for the main-memory case. If left unchanged, hitting the database

becomes the dominant cost factor for such algorithms, as rules get activated and the objects

they refer to are retrieved through ORM (Object Relational Mapping).

Early on it was recognized that näıve implementations of rule matching and firing are not

scalable, as they iterate over all objects and all rules at each working memory change. For 100

rules and 10,000 objects the näıve approach results in 1,000,000 tests at every change. Some

common heuristics were identified (most restrictive test first, detect shared tests across rules)

and were systematized in the Rete algorithm [73]. Queries defined with OCL can participate

in the matching condition of an ECA rule, as outlined in Sec. 12.7.

Assuming that a model compiler for integrity constraints targeting EJB is aimed at, what

resources can be leveraged? Design patterns to handle ECA rules have been proposed for

the EJB case [204] and some products include components realizing variations of the Rete

algorithm. However, no comprehensive solution to the proposed translation task has been

found in the literature.
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11.8 Evaluation

We have addressed an industrially relevant problem by going back to first principles, leveraging

research results from object databases to improve the efficiency of software repositories for

EMOF + OCL. Our choice of integrity checking mechanism does not require for the database

to be in a consistent state before an update can take place, yet reporting of integrity violations

is sound and complete (no false positives, no missed violations). This is deemed vital to account

for the realities of collaborative design environments.

Incremental view maintenance adds a measure of reactivity to the monitoring of invari-

ants. Unlike the more powerful Event Condition Action rules (ECA) of an active DBMS,

view definitions based on OCL invariants cannot make statements about events external to

the database state, nor range over several snapshots as in versioned data models [135] (values

in pre- and poststates can only be referred from OCL postconditions, not from class invari-

ants). OCL-based views are however sufficient to support a variety of use cases in software

repositories, such as monitoring the conformance of artifacts to coding and modeling con-

ventions [185]. Moreover, not all views need be maintained incrementally (as required for

integrity constraints): in some cases results are only periodically needed (e.g., after an inte-

gration build, or on a daily or weekly basis). Examples include: (a) detecting opportunities for

applying refactorings; (b) checking mutual consistency between artifacts and documentation;

and (c) deriving software metrics.

As usual, irrespective of whether an OCL-based view is tagged for incremental or batch

evaluation, it makes for concise composite queries. Materialized views naturally support OCL’s

derive statement, which is used to specify values for attributes or association ends. Looking

into the future, the proposed infrastructure can serve as a basis for supporting ECA and

versioning functionality through extensions to the OCL language.
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The combined expressive power of Essential MOF (EMOF) [170] and the Object Constraint

Language (OCL) [203] has proved satisfactory in Model-Driven Software Engineering (MDSE)

to define the abstract syntax and static semantics of custom Domain Specific Languages

(DSLs).

Given a DSL metamodel as input, a modeling infrastructure (such as Eclipse EMF) allows

generating components which are ready for integration into a Model-View-Controller archi-

tecture. However, these generated components fall just short of supporting two increasingly

important runtime scenarios: transparent concurrency and efficient evaluation of invariants.

To support them out-of-the-box, we describe extensions to the OCL compilation algorithm

of Chapter 5 to support shared-memory transactions [113] and incrementalization [191]. The

first technique allows for a programming style where ACID properties are enforced for a block

of statements, yet no coding of locking operations is required. In effect, the runtime system

keeps rollback logs and detects interactions which lead to failure of memory transactions. To

address the second concern (efficient evaluation of invariants), a similar interception mecha-

nism is used to detect those data locations that have been updated. Invariants dependent on

them are candidates for re-evaluation as their cached values may have become stale. Other

invariants are not affected, and their evaluation can be skipped.

As motivating example, consider a multi-user editor of statecharts. Such an editor allows

manipulating a single shared instance of the statechart metamodel. The runtime infrastructure

should enforce transaction bracketing to avoid those interleavings of read-write accesses by

distinct threads that corrupt the shared data structure. Additionally, the runtime engine

should report those pairs (instance, invariant ID) for invariants not evaluating to true on

certain instances at transaction commit. The need for concurrency management is not limited

to the multi-user case: a single-user tool may run background tasks, or a single user may

perform multi-step updates on different views of the same model (e.g., during round-tripping

between textual and visual views).

Relational databases also manage concurrency and support incrementalization (the latter via
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incrementally maintained, materialized views [102]). In Chapter 11 the incrementalization for

software repositories is addressed. However, the techniques reported next are also necessary:

between repository check-ins, an editing session works on a local copy. We spare editing

sessions from hitting the database inside transactions, improving usability for small datasets

by reducing latency and offloading the server.

Our incrementalization technique makes viable for EMOF an algorithm (DITTO, [191])

originally formulated to incrementalize a Java subset. By exploiting the semantics of EMOF +

OCL additional improvements are realized: (a) incrementalizing collection operations required

tracking each item as an implicit argument in [191], our formulation instead tracks the involved

collection objects, not their items. (b) Intermediate results are not cached in full, updates

to their base data are intercepted instead. (c) Certain cases of infinite recursion can be

detected. (d) Finally, only those mutator methods on collections that influence the outcome

of an evaluation trigger re-evaluation. The proposed memoization algorithm is applicable to

any EMOF realization, for example the Eclipse EMF implementation.

The structure of this chapter is as follows. Sec. 12.1 provides background, with Sec. 12.2

giving an overview of OCL incrementalization and an analysis of the termination behavior

of OCL. Sec. 12.3 details the compile-time aspects of our solution, while Sec. 12.4 covers

the runtime aspects, followed by a review in Sec. 12.5 of the design choices made. Sec. 12.6

addresses planned support for shared-memory transactions, with Sec. 12.7 discussing related

work and Sec. 12.8 concluding.

12.1 Preconditions for Incrementalization

12.1.1 Overlapping Subproblems

Techniques that allow reusing results already computed have been identified as beneficial long

before their application to computing. For example, in Dynamic Programming the properties

of overlapping subproblems and optimal substructure allow minimizing the number of compu-

tation steps, by basing the optimal decision for a given formulation of the problem in terms

of the optimal decisions for previously solved formulations. For example, the shortest path

to a goal from a vertex in a graph can be found by first computing the shortest path to the

goal from all adjacent vertices, and then using these optimal solutions to pick the best overall

path.
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The solution process is not only recursive, but moreover solving the same subproblem is

required more than once (thus the term overlapping). As another example, whenever two

successive Fibonacci numbers are computed, their previous Fibonacci number is required.

A näıve approach would waste time recomputing optimal solutions to subproblems already

solved. The term given in computer science to avoiding recomputing from scratch is memo-

ization, on which the next section expands. However, it can already be seen that just storing

solutions for subproblems in a cache may get out of hand if they are not going to be needed

anymore (i.e., a cache eviction policy is required).

12.1.2 Referential Transparency

Reusing the cached result of a function in a computer program (for another invocation with

the same inputs) is warranted provided that referential transparency holds. An expression

is said to be referentially transparent if it can be replaced with its value without changing

the meaning of the program. Given that referential transparency requires the same results

for a given set of inputs at any point in time, a referentially transparent expression must

be deterministic [205]. Examples of referentially opaque functions are those depending on a

mutable global variable (which may be modified from another thread if not from the current

one), or depending on an external source of events (e.g., an input device). In summary:

“The importance of referential transparency is that it allows a programmer (or

compiler) to reason about program behavior. This can help in proving correctness,

finding bugs that could not be found through testing, simplifying an algorithm,

assisting in modifying code without breaking it, or optimizing code by means of

memoization, common subexpression elimination or parallelization” [205].

Our proposed incrementalization technique must thus cope with functions that depend on

mutable data, with such data not being explicitly listed among the function’s arguments. The

functions of interest will themselves be side-effects free, as all expressions defined in OCL are.

12.2 Incrementalization

An incremental algorithm computes anew only those intermediate results that have been af-

fected by changed input, reusing cached results for non-affected subcomputations. Manual in-
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crementalization is error prone, thus motivating automation. Given a finite object population,

every no-args (i.e., parameterless) side-effects free method on it is amenable to incrementaliza-

tion. In terms of OCL this comprises: (a) class invariants, (b) derived object attributes, and

(c) derived no-args operations. The result of such parameterless methods are not constant,

given that they usually navigate the object structure (starting from self) when computing

their result, thus reading implicit arguments.

OCL invariants are beneficial both at debug time (as they combine the advantages of con-

tinuous testing and “declarative data-breakpoints”) as well as during production. Their main

disadvantage is the runtime slowdown (100x are not uncommon) when re-evaluated from

scratch, as they may involve traversing an entire data structure. An incremental algorithm,

instead, reuses the cached results of subcomputations whose inputs have not changed. This

fits the typical runtime behavior of OCL invariants: they aggregate further invariant checks

on fragments of a data structure, with those subcomputations usually returning “the same

previous value” (i.e., the success value) even for modified inputs, as most updates preserve

consistency. As a result, upstream computations do not become stale, and their evaluation

can be skipped. Pointer aliasing complicates keeping track of all program locations that may

mutate a given data location, with interception techniques coming to the rescue, as all updates

to data locations are only possible through well-known methods in EMOF (setters and their

counterparts to mutate collections).

Two candidate techniques to incrementalize OCL invariants are: (a) memoization [191] and

(b) view materialization [5]. A spreadsheet analogy can be used to explain the operation

of materialization: the availability of changed inputs triggers the recomputation of depen-

dent values, avoiding redundant recomputations by leveraging a dynamic dependency graph

(DDG). Because of object instantiation, updates, and garbage collection, the topology of the

DDG changes at runtime and has to be kept in-synch with the underlying object population.

Memoization happens instead on-demand: whenever a function is invoked, the cached values

for its inputs are compared to those in the current system snapshot. If they match, the cached

(“memoized”) return value can be reused. A big pitfall of unoptimized memoization involves

subcomputations (a special case of input): in order to compare their cached and updated

values, a subcomputation need in principle be invoked, which in turn may need to invoke its

own subcomputations (if any) to decide whether to reuse memoized returns value or not. For

example, assume the usual recursive formulation of the height() function on trees:
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context Node

def : height () : Integer =

if children−>isEmpty()

then 1

else 1 + children−>collect(c | c. height () )−>max()

endif

Given a node n and cached evaluations of height() for each of its children, knowing that such

set has not changed does not entitle to reusing the cached return value of n.height(), as the

topology downstream may have been updated. In terms of memoization, knowing that the

implicit arguments have not changed (the children of n in this case) does not preclude the

subcomputations (another kind of input) from having changed. Implicit arguments comprise

those data locations accessed directly by a function evaluation, not by its callees.

Optimistic memoization [191] instead assumes such subcomputations will behave as in the

typical case, thus skipping their invocation. This may lead to mispredictions, which are

detected in all cases, as will be seen in Secs. 12.3 and 12.4 (incrementalization is sound and

complete, i.e. neither false-positives are reported nor broken invariants are overlooked). The

next subsection presents an example of the DITTO algorithm in action, followed in Sec. 12.2.2

by the considerations that lead to our incrementalization algorithm for OCL.

12.2.1 The DITTO Instrumentation Algorithm

Code Instrumentation is a technique to (automatically) perform program transformations.

The most common scenario for instrumentation is profiling, i.e., gathering information about

the performance of the instrumented program at execution time. Instrumentation can be

classified according to the time where the program transformation takes place into:

� at compile time

– performed manually, by following programming conventions, as in the Java JMX

API [177]

– compiler assisted, as some compilers provide switches to generate the additional

instructions
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� at deployment time, in the case of Java at class load time, using a library for bytecode

manipulation (e.g., TOM [15])

� at runtime, where either: (a) the code is executed by a modified runtime environment,

(b) code is morphed as instructions are fetched, or (c) the whole interaction between

program and runtime environment is simulated in a simulator.

DITTO follows the bytecode instrumentation approach, while our proposal relies instead

on an automatic compile-time transformation.

In essence, DITTO caches a function evaluation by collecting additional information at

runtime besides computing its result. In particular, the actual arguments are recorded, with

such bookkeeping information being kept across invocations. Reading an object-field during

a function evaluation also results in the pair (instance, field ID) being tracked as an implicit

argument. During the update phase of a transaction, all setters are intercepted and thus a

mapping can support the lookup (using (instance, field ID) as key) of those function evalu-

ations that require re-evaluation (also called “refreshing the cached return value”). Another

event that forces recomputation is garbage collection of an implicit argument, a situation de-

tected by tracking instances with weak references1. At the time a weak reference is created

or a WeakHashMap entry is made, a listener is registered to be notified upon the referenced

object becoming unreachable.

In order to introduce terminology, a method to check whether a binary tree is locally sorted

(Listing 12.1) will be discussed next, reproduced with modifications from a DITTO presenta-

tion2.

For the fragment of the binary tree displayed in Figure 12.1(a), method isSorted() is invoked

for each of the nodes marked with an arrow, to compare the values (letters in this case)

displayed inside each node.

A visualization of the invocations for isSorted() appears in Figure 12.1(b). This unrolling of

the call stack is purely conceptual, as (without memoization) no record is kept of invocations

once they have terminated. Moreover, the arguments shown in the ovals (the contents of the

node passed as argument) have been chosen for ease of reference, the nodes as such are not

1An introduction to weak references is http://weblogs.java.net/blog/enicholas/archive/

2006/05/understanding_w.html. A longer but slightly out-of-date discussion appears in http:

//java.sun.com/developer/technicalArticles/ALT/RefObj/
2AJ Shankar, presentation at PLDI’07, http://ditto-java.sourceforge.net/ditto.ppt
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Listing 12.1: A method to check whether a binary tree is locally sorted

boolean isSorted(Tree t) {
if (t == null) return true;

if (t . left != null && t. left . value >= t.value) return false ;

if (t . right != null && t.right . value <= t.value) return false ;

return isSorted (t . left ) && isSorted(t. right );

}

 

B 

D 

C A 

(a) Fragment of a binary tree

isSorted(D)

isSorted(B

isSorted(A) isSorted(C)

)

(b) Call-stack unrolling for isOred-
ered()

Figure 12.1: Visualization of the invocations for isSorted()

named on the heap. This will cause no confusion as we’ll avoid the case of two different nodes

having the same value.

As depicted in Figure 12.2, a particular update on a tree consists in adding nodes L, N (the

second out-of-order) and removing node C, as part of a single transaction which should fail.

During such transaction, at least one field in each of M, L, and B has been updated (i.e., fields

that are read by isSorted(), for some invocations). This example is introductory in that there

is a one-to-one correspondence between nodes in the tree and nodes in the call stack unrolling,

thus simplifying deciding which memoized invocations need to be refreshed (after one or more

of its implicit inputs have been updated).
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Figure 12.2: Before and after update

The Dynamic Dependency Graph (DDG) contains thus stale information (although L is lex-

icographically smaller than M, N does not come in the alphabet before B). DITTO introduces

an optimization to minimize the cost of refreshing, once the invocations with modified inputs

have been identified. First, the invocation for M is replayed, which in turn activates for the

first time an invocation for node L (resulting in a node being added to the DDG). The prob-

lem with evaluating isSorted(L) is that it depends recursively on isSorted(B), whose cached

result is not only stale but also wrong. However, DITTO assumes (for now) that downstream

invocations need not be replayed (thus optimistic). This decision is suspect until replaying

isSorted(B) reveals a wrong assumption was made. In that case, a propagation from callees to

callers as depicted in Figure 12.3 will be performed.

12.2.2 Design Considerations

EMOF collections may act as both explicit and implicit arguments in an OCL expression,

with the former being possibly an intermediate result (computed as an OCL expression at the

invoker’s call site). In order to qualify as an implicit argument, a read-access must happen on
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Figure 12.3: Upstream propagation

a field of an application-level instance, as opposed to being performed upon an intermediate

result, which stays on the heap only during a call stack activation. Intermediate results do

influence the outcome of a function, however they can change only if their base data (implicit

arguments, subcomputations) has changed. Therefore, tracking updates to base data is enough

to signal the need for refreshing a cached computation.

Given that collection operations are quite common in OCL specifications, it pays off to devise

dedicated optimizations beyond those in DITTO, considering their distinguishing features:

(a) mutating a collection does not affect its object identity; (b) collection mutators are invoked

on the collection object itself, instead of on some object holding the collection in one of its

fields; (c) after passing a collection c as argument to a setter in a different instance, the same

collection c can be obtained through getters in different instances; (d) internally, collections are

realized as binary trees, linked lists, or some other data structure with fields having at-most-

one multiplicity. Instead of instrumenting at this low level we adopt a dedicated mechanism

other than (instance, field ID) to track collection arguments.

Our mechanism of choice to achieve incrementalization is thus collection-aware optimistic
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memoization, to be activated on-demand at transaction-commit time achieving the same ef-

fect as näıve evaluation of all invariants on all instances. Read accesses take place within

a transaction and thus do not observe partial results. The interaction with the mechanism

for shared-memory transactions (Sec. 12.6) is safe, as it can cope with both read and write

accesses. In effect, the incrementalization concern is orthogonal to memory atomicity, with

the former being layered upon the latter. Before presenting in detail our incrementalization

algorithm (Secs. 12.3 and 12.4), the next two subsections cover (a) an overview of the proposed

incrementalization technique in terms of an example, which allows introducing terminology;

and (b) the termination behavior of OCL expressions.

12.2.3 A First Example of OCL Incrementalization

The object models of Java and EMOF mostly overlap but neither of them is a proper subset of

the other. An EMOF implementation (such as Eclipse EMF) enforces the semantics of EMOF

by mediating the manipulation of Java objects through generated methods. For example,

besides assigning a new value, setters also take care of performing “reference handshaking” for

the participants in a bidirectional association. Reflecting the distinction between value and

object types, a “field” in an EMOF class can be either an attribute or a reference (with the

term structural feature covering both). Besides setters, a multiplicity-many structural feature

has additional methods used at runtime to update a collection c. Intuitively, not all of these

mutators will impact an OCL function taking c as argument. For example, adding an element

impacts c.size() while changing the position of an item does not. In terms of EMF, method

c.add(newElem) (for the collection in question) should be instrumented, while c.move(fromPos,

toPos) may be left as is. We exploit this fact by analyzing at compile-time the ASTs of OCL

expressions and by extending the EMF code generation process, applying techniques reported

in [78] and [87] resp.

The runtime behavior of incrementalization is illustrated with the invariant noOverlap on

Listing 12.2 (involving Departments for which two sets are kept, those of good and bad em-

ployees). Its non-instrumented translation into Java appears on Listing 12.3 on p. 246, while

the AST available at compile-time is depicted in Figure 12.4.

As in DITTO we collect additional information during a function invocation, associating it

to a node in the Dynamic Dependency Graph (a “DDG node” from now on). Such nodes can be

regarded as 5-tuples consisting of: (a) the unique identifier for the evaluated function, this ID
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Listing 12.2: Requiring two sets be disjoint

context Department

inv noOverlap :

self .goodEmps−>intersection(self.badEmps)−>size() = 0

Figure 12.4: Visual depiction using OCLASTView [78] of the AST for the invariant noOverlap

is obtained by reflection; (b) the self reference to the target instance; (c) the explicit arguments

passed by the invoker; (d) the data locations of implicit arguments, resulting from read accesses

to structural features performed during an execution of the instrumented function (but not

by its callees); and (e) subcomputations, represented as references to DDG nodes. Which

particular inputs of kinds (d) and (e) are accessed during a given activation can be traced

back ultimately to (b) and (c) values, as dictated by the logic of the invoked function. The

same implicit argument may show up in different DDG nodes, therefore mappings are used to

point from them into DDG nodes, thus speeding lookup (Cmap and Fmap, for collection and

non-collection arguments resp.).

Reasoning about the way DITTO builds DDG nodes for noOverlap requires breaking the en-

capsulation of the Department’s goodEmps and badEmps collections, instrumenting the accesses

to single-valued fields to add the (instance, field ID) pairs to the list of implicit arguments in

the current DDG node. Whenever a subcomputation is invoked, the DDG is searched using as
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key the triple (self, function ID, explicit arguments). Collections acting as explicit arguments

introduce a large overhead, as DDG lookups now involve testing for value-equality the actual

and recorded arguments. We avoid this penalty by instantiating a new DDG node only for

OCL functions with no collection arguments. The instrumented versions of these functions

still track accesses to structural features and subcomputations, only that they add them to

the DDG node at the top of a thread-local stack (Dstack). Such node stands for the caller of

the current function (there is always one caller, as all incrementalizable OCL constraints have

no arguments at all).

The described design decision (not having dedicated DDG nodes for some functions) is a

departure from traditional memoization, grounded on the observation that DDG nodes serve

two different purposes: (a) making readily available a return value, thus saving time; and

(b) tracking dependencies, as needed to detect when refreshing should be performed (thus as-

suring correctness). Our scheme still achieves (b), as implicit arguments and subcomputations

are collected (in the DDG node for the invoker). On the downside, some function invocations

that could have been found in the DDG (those for OCL-defined operations with coll-args) will

result in recomputation instead of memoization. We believe this tradeoff is balanced in our

favor.

Similarly, collection-valued functions also involve a time-space tradeoff. Of the OCL incre-

mentalizable functions, only derived attributes and operations may return collections, unlike

invariants. Given that the lookup of DDG nodes for this kind of functions will be fast (as they

lack collection arguments) we adopt the decision to have their instrumented version create

a new DDG node, caching their result using strong references. Without memoization, the

lifetime of some of these results would have been limited to single call-stack activations (i.e.,

strictly temporary results). Our design makes them outlive such invocations, thus increasing

the memory footprint. In the particular case of derived attributes and no-args operations,

the chosen scheme was the only sensible, as these OCL constraints are interpreted as defining

materialized views. Additionally, caching a collection return value results in an equality test

between collections, after the DDG node had been marked dirty and recomputed (the test de-

termines whether the new value should percolate up the invocation hierarchy). However, this

expensive comparison occurs less frequently, as compared to DDG lookup. For these reasons,

we believe the pros of memoizing coll-valued functions outweigh on average the cons, although

contrived cases can be construed where the opposite is the case.
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12.2.4 Termination Behavior of OCL Expressions

The evaluation of OCL expressions containing recursive function invocations is not guaranteed

to terminate in a finite number of steps (in the general case). However, the special case of

non-recursive expressions over a finite object population is relevant for our incrementalization

technique. For them, termination can be shown by case analysis on the structure of OCL

language constructs, as discussed next.

Applying a function outside its domain (e.g., requesting the first element in an empty list

or dividing by zero) results in OclInvalid: unlike in Java, no exception is thrown. A finite

population is obtained when applying allInstances() to a class (in contrast, the expression

Integer.allInstances() is not well-formed). OCL is a function-based rather than a functional

programming language: functions are not first-class-citizens, in that lambda abstractions can-

not be built with the available language constructs and thus cannot be passed as arguments

or returned as values. Regarding collection operations, the non-recursive subcases of LoopExp

amount to linear iteration (select, reject, exists, forAll, collect, one). The remaining subcases

can be desugared to their iterate form as defined in the OCL standard ([171], Sec. 11.9 and

A.3.1.3). iterate() in turn can be expressed as left-fold, a primitive recursive function with

a finite-depth tree expansion (under the stated assumptions of finite object population and

non-recursive invocation).

12.3 Incrementalization: Compile-time Tasks

The OCL-defined functions subject to instrumentation are determined by transitive closure

over the caller-callee relationship, taking as starting point the union of (a) class invariants,

(b) derived attributes, (c) and derived no-args operations. Whenever an operation is added

to this set, all its override-compatible operations in subclasses are also added. We call the

resulting set Instr. The declaration of each function in Instr can be uniquely identified at

runtime, as EMOF reflection assigns compile-time IDs that can be woven into the generated

instrumentation code (e.g., into the code to look up DDG nodes).
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12.3.1 DDG Lookup

The first Java statements generated for an OCL function f in Instr assign to the local variable

cDN the current DDG node, if any. This lookup is performed differently depending on whether

f has one or more collection arguments or not:

1. f has one or more coll-args. As no dedicated DDG nodes are kept for f, the return result

must be computed afresh (however, calls performed by f may be resolved in the DDG).

The current DDG node is peeked from Dstack (i.e. read but not popped).

2. otherwise, a lookup using (self, f ’s ID, explicit arguments) is performed against the

globally-shared DDG, with one of two outcomes:

a) if found, and the node is not dirty, the cached return value is returned to the caller.

Otherwise the function will be re-evaluated, which implies clearing the dirty bit,

the implicit arguments, and the subcomputations in the found node.

b) if not found, this is the first invocation for the triple in question. A new DDG

node newDN is instantiated, assigned to cDN, with its sets of implicit arguments

and subcomputations initially empty. Before adding newDN to the set of sub-

computations of the caller node (i.e., the node, if any, at the top of Dstack), an

optional check can be made whether doing so would establish a cycle in the DDG,

thus preventing some cases of stack overflow (but not runaway recursion where

explicit arguments are different for all invocations), a safety measure not present

in from-scratch recomputation nor in DITTO.

Finally, for functions in Instr lacking collection arguments (cases 2.a and 2.b), the generated

code pushes cDN into the thread-local stack Dstack, and pops it just before returning.

12.3.2 Implicit Arguments and Their Setters

Executions of the generated code having reached thus far can rely on a current DDG node,

reachable via the non-null cDN. The instrumentation code must abide by the evaluation se-

mantics of OCL constructs. For example, the condition part of an if-then-else-endif is evaluated

first, depending on which one of the two other branches will not be evaluated. Correspond-

ingly, only the inputs (implicit arguments and subcomputations) for the evaluated branch are
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to be added to cDN. This is achieved by choosing the order to visit subnodes of an AST sub-

tree according to the OCL construct in question. In the if-then-else-endif example, a visitor for

code generation will visit first the condition part, generating code that at runtime will leave

the result in a temporary local variable condPartResult. A Java “if (condPartResult) {s1} else

{s2}” is generated next, with the statement blocks resulting from visiting the then and else

subnodes of the OCL if subtree. Each of s1, s2 assigns to yet another temporary variable wich

will hold the result for the OCL if expression as a whole (as needed for example for subsequent

computation). Further details on OCL → Java translation can be found in [87].

The above code generation scheme accommodates the injection of statements to store ref-

erences to implicit arguments and to subcomputations just before they are accessed. For

example, when visiting an OCL PropertyCallExp AST node (which stands for a field read-

access) code to capture the target instance and the field declaration is generated. Such code

will add at runtime an entry with that key to Fmap (one of the two implicit args → DDG

nodes maps, the other being Cmap for collection mutators). The receiver of the getter indi-

cated by the PropertyCallExp will never be a temporary object: no OCL construct result in

objects being instantied by generated Java code, and thus must be application-level, possibly

referenced through a local variable or an explicit argument (in contrast, temporary collections

are instantiated, as can be seen in Listing 12.3 on p. 246). Moreover, the receiver object

is not a collection, as only method calls can be performed on OCL collections (represented

by OperationCallExp AST nodes). The accessed field may have multiplicity > 1. What code

(if any) is generated to instrument collection mutators other than setters is the topic of the

next subsection. The general rule that no derived results are tracked, but instead updates to

their base data, can thus be seen at play for field accesses. After all functions in Instr have

been visited, the set of structural features that may influence their results is known, and their

setters look up DDG nodes at runtime as described in Sec. 12.4.1.

12.3.3 Operations on Collections and their Mutators

DITTO considers no mutators other than field setters. If left uninstrumented, changes per-

formed through collection mutators (add(newElem), setItem(pos, elem), etc.) will go unnoticed

to the incrementalization infrastructure (intercepting these mutators is the counterpart to the

reduction in implicit arguments achieved by tracking collection objects instead of their items).

Instead of flatly instrumenting all collection mutators, the generated code will be qualified to

234



12.3. Compile-time Activities CHAPTER 12

monitor certain mutators, depending on the function taking the collection as argument. This

function must be one in the OCL Standard Library, as all user-defined functions fall under

the “subcomputations” category (Sec. 12.3.4), in particular those with one or more coll-args.

For incrementalization purposes, the OCL built-in functions taking (one or more) collection

arguments can be classified into: (a) those accessing each item in the collection; and (b)

those aggregating a result. All iterator constructs (for example, source→forAll(boolCond)

and source→select(boolCond), in general all subtypes of LoopExp in the OCL metamodel)

fall into the first category, while source → isEmpty(), and source→first() are examples of the

second category. The source fragment stands for a collection-typed subexpression providing

an argument for the function following the → (such source expressions are not limited to

providing collection arguments, as the AST in Figure 12.4 shows for the subtrees rooted at +

and =).

The analysis to determine the subset of collection mutators that triggers re-evaluation also

takes into account the most specific type of the source collection. For example, source→collect(

e | exprOnE) maps exprOnE to each e item in source. Given that OCL is strongly typed, it

can in general be known at compile time whether source is (a) set or bag, or (b) sequence or

ordered set. In the first case, the result of the collect() is invariant under reorderings of source.

Therefore, move(from, to) is not among the mutators to watch for when visiting the subtree

for source in the AST. Once a field access is reached in the course of that visit (i.e., a Property-

CallExp subtree is reached), the generated instrumentation code will not trigger a false-positive

upon invocation of move(from, to) on the source of the PropertyCallExp, which may itself be an

ordered collection, as for example the field holding chronologically ordered publications in class

Researcher in the expression self.publications→asSet()→collect(p | p.authors→size() )→max()

that finds the largest number of co-authors.

12.3.4 Subcomputations

After generating instrumentation code for operations on collections (as per the previous subsec-

tion) the only OperationCallExp subtrees not yet translated are those standing for invocations

to operations defined by the user using OCL. No special code is needed at the caller site other

than the usual invocation, as the current DDG node has already been pushed onto Dstack,

and the lookup of a DDG node for the callee (if any) is performed by the callee itself.

An error scenario to avoid is for a function f1 in Instr to invoke a non-instrumented function
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f2, as f2’s execution would not leave a trail of its dependencies, with the incrementalization

infrastructure later not being able to properly react to changes in f2’s inputs. This failure

scenario is ruled out by the construction procedure of Instr (transitive closure over the static

caller-callee relationship, including override-compatible methods in subclasses). Moreover,

there are no “volatile” functions in OCL (i.e. functions that return a fresh value on each

invocation, such as System.currentTimeMillis() or RAND()), thus reducing the amount of dirty

DDG nodes that would otherwise require recomputation.

12.4 Incrementalization: Runtime Tasks

12.4.1 Update Phase of a Transaction

During the compile-time phase described in Sec. 12.3.2, all setters potentially affecting a

function in Instr have been instrumented. At runtime, each such setter looks up in the

globally-shared Fmap zero or more DDG nodes, using (instance, field ID) as key, and marks

each found node as dirty. This step is no different from DITTO’s, save the implementation

technique (code generation in EMOF vs. Java bytecode instrumentation in DITTO). The

callers of the found DDG nodes are not yet marked as stale, because the assumption that

their return values will prevail is going to be validated at the time mispredictions are detected

and resolved. The previous value of a field was not stored in the Fmap entry, therefore any

setter invocation (even those leaving the same value as-is) results in one or more DDG nodes

being marked dirty. Again, a time-space tradeoff.

The code generated for collection mutators uses as key (collection, mutator ID) to look up

zero or more DDG nodes in the globally-shared Cmap. This map is populated by the code gen-

erated as per Sec. 12.3.3. Both Fmap and Cmap are implemented with Java’s WeakHashMaps,

so as not to interfere with the normal garbage collection of application-level objects when

becoming unreachable from other application-level objects.

12.4.2 Commit Phase Activities

Transaction commit involves four phases: (c.1) pruning DDG nodes with any garbage col-

lected input; (c.2) invoking computation of incrementalizable functions for new objects; (c.3)

refreshing dirty DDG nodes; and (c.4) handling mispredictions.
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Phase (c.1) Pruning

As updates are performed by application-level code, application-level objects being tracked as

(explicit or implicit) arguments may be garbage collected. Removing their entries from Fmap

and Cmap is taken care of by the WeakHashMap infrastructure, but the DDG nodes these

entries target must be explicitly pruned (they might be referenced from caller DDG nodes,

thus GC alone will not do the trick). Pruning a node also results in flagging as dirty all nodes

directly depending on it. Transitively dependent nodes however are not yet considered as stale

because the assumption that their return values will prevail is going to be validated at the

time mispredictions are detected and resolved. Pruning a node may leave some of its callees

unreachable over the subcomputations relation (this may also happen as a consequence of

refreshing in phase c.3). Such nodes may be kept in a dedicated, DDG-owned set to prevent

their GC (with the expectation of later use) or traded for memory right away. In the latter

case, recomputation of dirty nodes will repopulate the DDG with those subcomputations not

found by memoization.

Phase (c.2) Incrementalizing functions for new objects

OCL’s allInstances() are tracked using the AspectJ-based mechanism of [206], which reports the

instantiations made after the last run of commit-phase. On those instances, their instrumented

invariants, derived attributes, and derived no-args operations are invoked for the first time.

Phase (c.3) Refreshing dirty nodes

The optimal ordering to refresh dirty nodes is breadth-first over the subcomputations relation

as shown in [191]: assume f(x) and g(y) need refreshing, with g(y) a transitive callee of f(x).

Upon replaying f(x) it may well be the case that g(y) is not invoked anymore (neither directly

nor transitively through f(x)’s callees). Breadth-first search will thus not reach g(y). As with

previous callees not used anymore as subcomputations (as determined in the pruning phase),

if g(x) is not a top-level invariant, its unreachable DDG node may be left unpruned to survive

a number of incrementalization rounds, or traded for memory right away.
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Phase (c.4) Handling mispredictions

After the refresh phase, some nodes are marked as having a return value different from that

previously cached. The callers of such nodes are then suspect, as their own return values need

to be corroborated. Bottom-up refreshing (from callees to callers) proceeds until (a) a node

is reached where the cached and newly computed return values match; or (b) a root node

is reached (a node for a top-level invariant, derived attribute, or derived no-args operation).

Bottom-up walking always terminates (there may be several callers for the same DDG node,

but the DDG is acyclic).

By now, all of the incrementalizable functions have up-to-date values for all application-level,

not garbage collected objects.

12.5 Consequences of the Design Choices Made

The original description of optimistic memoization [191] restricts the usage of return values

from subcomputations by forbidding passing them as explicit arguments in further subcompu-

tations or using them in loop conditionals (both written in a Java subset). This conservative

measure is motivated by the real danger that a mispredicted return value could lead to in-

finite recursion or an exception being thrown in the memoized version, while from-scratch

recomputation would have terminated normally. The termination behavior of OCL expres-

sions (Sec. 12.2.4) allows relaxing this restriction, by forbidding only recursive invocations

from taking as explicit arguments the results of previous subcomputations (all other callees

terminate, in particular all functions in the OCL Standard Library). If this less restrictive ban

is also lifted, only those OCL-defined functions that would have looped forever in from-scratch

recomputation will not terminate when evaluated by optimistic memoization (even with cycle

detection in the DDG). In this sense, the chosen incrementalization technique is as robust as

the base case.

Incrementalization is oblivious to the particular way a function is computed, thus providing

leeway at compile time in choosing a particular implementation. For example, OCL provides

no dedicated syntax for expressing equijoins, with a custom function being usually defined

to encapsulate the rather awkward building of cartesian product and selection. In the long

run, OCL should be extended with query constructs as found in LINQ (Language INtegrated

Query, [19]). In the meantime, the product-selection pattern can be detected at compile-time,
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to generate instead an instrumented version using indexes as described in [206]. Another

optimization involves “small functions”, e.g., functions having only explicit arguments and

lacking both implicit arguments and callees: their DDG nodes are terminal and computing

them anew is faster than memoizing them. A visitor can be used to determine the average

complexity of an OCL expression [78] to choose these functions. Incidentally, the Java imple-

mentation of some functions in the OCL Standard Library (e.g., size()) already incrementalize

their computation.

12.6 Future Work: Shared-memory Transactions

12.6.1 Motivation

As of now, the compilation algorithm presented in Chapter 5 generates Java code following

the patterns of the EMF Framework, which assume the invoker to be responsible for achieving

synchronization in the multi-threaded case. An active research area, software transactional

memory (STM) [113] aims instead at devising translations from OO programs extended with

transaction bracketing, so as to relieve the programmer from explicitly specifying synchroniza-

tion. A concise description of the technique is provided by Hindman and Grossman [113]:

To make shared-memory multithreaded programming easier, many researchers have

argued for atomicity, also known as software transactions. Atomicity can com-

plement or replace existing synchronization mechanisms with the statement form

atomic { s } where s is a statement. Semantically, it means s must execute as though

there is no interleaved computation, i.e., no other threads are running. (The im-

plementation, of course, need not actually stop other threads provided it preserves

the semantics.) Furthermore, a language should also ensure fair scheduling: Long

transactions must not starve other threads.

In Java, synchronization mechanisms include intrinsic locking and the facilities added in

Java 5 as part of the java.util.concurrent package [92]. 3

Atomicity in the context of transactional memory implies that, within an atomic block of

statements: (a) no partial results from other threads are seen, whether those threads are

3For a bibliography on transactional memory see http://www.cs.wisc.edu/trans-memory/

biblio/index.html
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executing an atomic block or not; and (b) in case a transaction fails, its memory updates

are rolled back, so as to preserve property (a) for other threads. A transaction may fail for

a variety of reasons: an exception is thrown in its block, or the required locks cannot be

acquired. In general, the set of locks required for a transaction is not known statically and

depends on the branching and looping logic of the atomic block.

Design patterns for transactions are well known ([144], §. 3.6), and usually include:

� elaborate protocols to establish an ordering for lock acquisition and release (for resources

accessed by the transaction), as well as

� a logging mechanism to track the old and new value pairs for (instance, field) pairs

accessed.

Manually applying those patterns is inherently error-prone, thus calling for automation in

the form of compilation. Grossman [97] establishes an analogy between transactional memory

and garbage collection: If history repeats itself, transactional memory is posed to follow the

same evolutionary path as garbage collection, i.e. it is to become mainstream, albeit later than

predicted by researchers.

Simon Peyton Jones reviews in [122] the perils associated to the explicit-locking program-

ming model: (a) taking too few locks opens the door to data structure corruption; (b) taking

too many locks may inhibit concurrency or cause deadlock; (c) the language does not preclude

taking the wrong locks, as the connection “which data is guarded by which locks for which

operations” exists only in the mind of the programmer; (d) taking locks in a wrong order

eventually causes deadlock; (e) performing error recovery once data structure corruption has

taken place is extremely tricky; among others. Another shortcoming is the requirement to

know the internals of individually atomic operations, if they are to be bracketed into a com-

posite transaction: the set of required locks may be data-dependent and thus known only at

runtime. The fact that one can “glue” operations into a larger transaction without detailed

knowledge of the internal locking protocol is another advantage of atomic { s }.
As useful as it is, translation of Ecore + OCL into transactions-aware code is not the only

desirable feature that the resulting code may exhibit: automatic checking of OCL invariants

can also be woven in. In a nutshell, while transactional memory guarantees atomicity and

isolation (A and I in ACID), automatic checking of OCL invariants caters for Consistency [108]:
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We propose a simple but powerful new operation, check E, where E is an ex-

pression that must run without raising an exception after every transaction. Using

atomic blocks provides us with a key benefit over existing work on dynamically-

checked invariants: the boundaries of atomic blocks indicate precisely where in-

variants must hold. They may, and often must, be broken within transactions,

something that causes trouble in other systems.

Besides communication through locations in shared-memory, another mechanism useful in

distributed algorithms is synchronous communication over message channels. Donnelly and

Fluet [59] elaborate on the adaptation of transactionality to cover channel-based communica-

tion (also building upon Concurrent Haskell, as STM Haskell did for transactional memory).

The reduction in complexity in expressing distributed algorithm (e.g., three-way rendezvous)

is significant.

12.6.2 Runtime Detection of Data Races

Supporting shared-memory transactions effectively solves synchronization problems when ma-

nipulating EMOF-based models, however at the cost incurred by runtime instrumentation. It

is instructive to see what tradeoffs were made around these aspects for Java, and how their

design decisions might evolve in the near future.

The integration of concurrency constructs and object oriented programming received a lot

of attention at the end of the 1980s. Still, the first versions of Java went through a number of

improvements (e.g., regarding interruptability between threads, de-emphasis of thread groups)

until a stable design was reached with Java 5 (including a formal Java Memory Model and

multi-threading enabled data structures in java.util.concurrent). A driving force along the

whole design effort was increasing the raw performance of (correctly synchronized or not)

concurrent programs, to the point that JVMs are not required to detect data races at runtime.

Two accesses to the same data variable form a data race in an execution of a program if they

conflict (i.e., at least one of them is a write), they are done from different threads, and they

are not ordered by happens-before ([95, §17]).

Given the non-trivial definition of happens-before, a number of approaches have tried to

alleviate the ensuing complexity, ranging from subsets of Java whose programs can be statically

shown not to result in deadlock or data races [2, 96], to runtime monitoring to detect when
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a data race is about to happen, in order to throw a DataRaceException [67], thus assuring

that only correct computations may continue. Implementing the latter approach exhibits a

number of similarities with the techniques required in EMOF for shared-memroy transactions.

In particular, optimizations applicable to the JVM case can also be included in the (managed)

runtime for EMOF models. One such optimization is the compile-time determination of

assignments that cannot possibly result in a data race. Thus, their instrumentation can be

skipped. This kind of analysis is conducted by rccjava.

12.6.3 Initial Assessment

Composite transactions enable integrated refactorings, which span instances from different

metamodels and correspondingly require additional consistency checks (in the form of pre and

postconditions) beyond those of the transactions they compose. For example, the Rename

Attribute refactoring may be individually correct when only the namespace for an EMOF

class model is considered, however the existence of OCL constraints referring to that attribute

requires additionally checking whether a variable declaration with the same name already

occurs in a shared naming scope (to avoid an unintended name capture). Another scenario

for composite transactions is round-tripping, with a formal analysis of the conditions under

which bidirectional transformations are possible provided in [74] (see also ch:Bidirectional).

We aim to adapt and integrate into our compilation algorithm the techniques for shared-

memory transactions presented in [113]. The adaptations involve subsetting (as the EMOF

object model lacks arrays, native code, built-in classes, and static fields, methods, and initial-

izers) as well as new developments.

We believe incrementalization can coexist as-is with memory transactions. For example, a

rollback never turns objects made unreachable back into reachable (instead, the log prevents

them being garbage collected until successful commit). Therefore, pruning of DDG nodes

need not be undone. A rollback may however restore implicit arguments back to their values

at transaction start. In between, transaction progress marked DDG nodes dirty, which is not

undone as the ensuing redundant recomputation will not deliver a wrong result.

Grossman [97] establishes an analogy between mechanisms for shared-memory transactions

and those for garbage collection: both began being manually applied, later compiled as source-

to-source translations, to finally become part of the runtime system (JVM for garbage collec-

tion, with memory transactions still waiting to reach that stage).
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context Wagon

inv lastWagonHasLightsOn : f()

context Wagon::f()

def : if next.oclIsUndefined()

then hasLightsOn

else next.f()

endif

Figure 12.5: The lastWagonHasLightsOn example: data accesses traverse links known only at

runtime

12.7 Related Work

The efficient evaluation of OCL invariants is also the goal of [7], where a methodology is

presented to determine at compile-time the navigation paths from an updated (instance, field

ID) back to objects with one ore more invariants depending on it. This analysis is only possible

for non-recursive OCL expressions, as illustrated in Figure 12.5: a forward-only list of Wagons

is constrained by invariant lastWagonHasLightsOn, which is fulfilled for a train as long its last

wagon has the lights on. Our incrementalization mechanism can handle the addition, deletion,

or update of Wagons anywhere in the list, by updating the topology of the DDG. Computing

a reverse navigation path from the last to the first element in the list would instead require

unwinding the call hierarchy for a particular execution trace, which is known only at runtime.

Besides providing a detailed account of our algorithm and a termination analysis, our work

also differs from [7] in that we reduce the number of DDG nodes marked dirty by instrumented

collection mutators. Once an invariant is recomputed as per [7], it is done from-scratch: there’s

no memoization cache to hit, and therefore no materialized views can be maintained.

Discrimination networks [105] have been proposed for active databases as a generalization

of the original Rete algorithm [73]. Broadly speaking, there is a correspondence between

the distinguishing feature of Rete networks (storing materializations of partial rule bodies,

which are shared among all the activation conditions where they appear) and the sharing of

subcomputations in optimistic memoization (which also skips recomputation for successful

DDG lookups). Our implementation does not yet detect duplicate OCL fragments as in Rete:

two invariants with the same body but different names result in duplicate DDG nodes. This

is an area for improvement, made difficult by the fact that OCL expressions are many-form
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(different syntactical expressions for the same function). Other than that, we believe that a

derivative of the Rete algorithm handling full EMOF + OCL would strongly resemble our

proposal, modulo terminology.

Rete-based rule-engines employ a proprietary query language to express the activation con-

ditions of production rules, and force the programmer to specify a subset of the object pop-

ulation to monitor for updates (the working set). The semantics of OCL class invariants

call instead for tracking all instances. A compile-time analysis of the ASTs of such expres-

sions limits runtime instrumentation overhead to only those object-fields participating in some

OCL incrementalized expression. The alternative (monitoring all updates) has the potential

advantage of allowing incrementalizing ad-hoc expressions at runtime. As for invariants (an

important use case), this is not reasonable: invariants do not come and go. The best of

both worlds (low monitoring overhead and incrementalization of ad-hoc expressions) could be

achieved with instrumentation techniques that allow for (un-)deploying interceptors at run-

time, such as the debug API (the Java Virtual Machine Tool Interface, JVMTI). We cast

instead our solution in the MDSE field by extending a compilation algorithm for EMOF +

OCL, using Eclipse technologies.

Algorithms for efficient recalculation of spreadsheets are reviewed in [190]. Automatically

checking invariants at transaction boundaries (moreover, in the concurrent case) is addressed

for Concurrent Haskell in [108].

12.8 Evaluation

The acceptance of EMOF as the mainstream approach to metamodeling has spurred a number

of innovations in the tooling for authoring DSLs, most of them leveraging the Eclipse EMF

implementation of EMOF. The well-defined semantics of EMOF allows adding orthogonal

capabilities to EMOF-enabled runtime environments (e.g, transparent persistence, change

notification, versioning, refactoring support), thus increasing the appeal of the EMOF object

model. The open nature of the EMF compiler enables integration efforts like ours. We expect

support for incrementalization, tracking of invariants, and shared-memory transactions to be

generally usable across a variety of vertical domains. Some of these extra capabilities may find

their way into future virtual machines, with the openness of EMF lowering the entry barrier

to prototypical realizations that foster competition and innovation.
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More fundamentally, one might ask: Why are dedicated runtimes needed at all for modeling

infrastructures? Don’t existing runtimes (the Java Virtual Machine, Database Management

Systems) provide all necessary features? They support only partially some features critical to

reduce the cost of DSL tooling. For example, the JVM does support concurrency, and data

races can be avoided by careful programming — the required case-by-case reasoning results

from a trade-off where raw performance has been favored over a simplified programming model.

The runtimes used for MDSE restore the balance toward increased developer productivity. In

terms of consistency checking, given that no declarative specification is possible in Java to

make explicit what constitutes shared state (the state to be kept consistent across execution

interleavings), there is no automatic, fail-safe way to detect incorrect interleavings. The default

definition of data race in the JVM is agnostic toward application semantics: it precludes an

individual data location from being accessed without synchronization. In the general case, this

is neither a necessary nor sufficient condition for transactional semantics, and an inadequate

condition for MDSE runtimes, where software models exhibit shared state spanning multiple

objects.
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Listing 12.3: Non-instrumented Java translation of the noOverlap OCL invariant of Listing 12.2

public boolean noOverlap() {
Collection<Employee> intersection1 = null;

int size1 = this.getGoodEmps().size();

int size2 = this.getBadEmps().size();

// if either collection is empty, so is the result

if ( size1 == 0)

intersection1 = CollectionUtil .createNewSet(this.getBadEmps());

else if ( size2 == 0)

intersection1 = CollectionUtil .createNewSet(this.getGoodEmps());

if ( intersection1 == null) {
intersection1 = CollectionUtil .createNewSet();

// loop over the smaller collection and add only shared elems

if ( size1 > size2) {
for (Employee e : this .getBadEmps())

if (this .getGoodEmps().contains(e))

intersection1 .add(e);

} else {
for (Employee e : this .getGoodEmps())

if (this .getBadEmps().contains(e))

intersection1 .add(e);

}
}
boolean equal2 = intersection1 . size () == 0;

return equal2;

}
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The research hypothesis stated in Chapter 1 called for the application of formal techniques

in the design of (a) domain-specific languages, (b) their translation procedures, and (c) their

runtime systems. In this chapter we evaluate the evidence supporting the research hypothesis,

i.e., the contributions of this PhD work.

13.1 Evaluation of the Research Hypothesis

Well-formed ASTs are the focal point of runtime activities in a model-driven toolchain. We

say “activities” and not just “transformations” to encompass model authoring (guided editing,

visualization, navigation) and model analysis (consistency checking and restoration, as well as

DSL-specific analyses). The authoring and analysis of software artifacts expressed in different

DSLs distinguishes MDSE from compiler engineering. The enlarged set of problems addressed

in MDSE impacts the way DSLs are specified: (a) guided editing can be supported if the

DSL specifications can be formulated in terms of constraint logic programming, (b) consis-

tency checking in software repositories can scale if the employed constraint language falls in

a tractable complexity class. The list of examples can be extended: (c) multi-view authoring

environments exhibit correct behavior only if the view definitions are well-behaved for inver-

sion. These examples have been drawn from the contributions of this PhD work, thus backing

the argument that the design of DSL specifications should be formally founded.

Given that most model transformations are expressed (a) in a computationally complete lan-

guage, (b) following an imperative style with destructive updates; and operate on (c) structure-

rich graphs, it is then unavoidable for their formal verification to be complex. To a certain

extent, concurrency issues are also present, if not in individual transformations (which are

formulated as sequential algorithms) but in the interaction of multiple tools against a sin-

gle model repository. Without a formal approach, the resulting complexity is unmanageable.
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There is an additional element of “needless complexity” introduced by industry standards

lacking a formal foundation. For the reasons discussed in Chapter 10 there is value in for-

malizing such standards, beyond being a prerequisite to applying formal techniques when

analyzing model transformations. The contributions in this PhD thesis addressing translation

procedures support the argument that their verification is both feasible and advantageous,

given that the boundary conditions chosen (regarding data model, transformation language,

and verification conditions) are representative of those in software engineering practice. In

other words, complexity has not been defined away.

For the purpose of this PhD work, the runtime systems of interest are those manipulating

ASTs, i.e., tools in a model-driven toolchain. These runtime systems were classified following

the main-memory vs. secondary storage divide. In both cases, the significance of the automatic

consistency checking at transaction boundaries was highlighted from the beginning, and ways

were described to allow mainstream modeling infrastructures to support consistency checking.

Efficiency was achieved only through optimization techniques, and these in turn were made

possible by a proper formalization. Therefore, the argument that formalization is necessary

as part of the design of runtime systems has been confirmed.

13.2 Closing Remarks

Having tried a number of approaches to balance quality and cost (from agile processes to

offshoring to service-orientation), the software industry has embarked recently on a large scale

effort to embrace model-driven techniques. The resources being devoted to training and tool-

ing attest to the high expectations placed on these techniques, fueled by the perception that

they represent a “disruptive technology,” a phrase reserved for outstanding inventions. As we

have seen, there is nothing like magic behind model-driven techniques but rather incremental

advances made possible by building upon solid previous work. After following developments

around MDSE tools for some years, one might be left with the impression that decision makers

in industry have a tendency to underestimate the benefits (for the customer) resulting from

going back to first principles when designing such tools, and of applying existing theoretical

results to problem areas emerging in MDSE. In particular, few works leverage the experi-

ence accumulated in compiler technology to flesh out the architecture of model compilers. As

another example, laborious non-automated encodings of a software solution into formalisms
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amenable for verification are still the norm rather than the exception, although such workflows

are ideally suited to model-based techniques. As the market for model-driven tools matures,

i.e., as tool consumers demand better engineered products, the adoption of formal methodolo-

gies in MDSE will increase. A vendor-initiated push is not likely, as the necessary investments

are justified only in terms of financial indicators after the market need is there.

The good news is that the engineering of model-driven tools has no lack of theoretical

foundations on which to thrive, with recent activities in academia making a conscious effort to

include case studies and prototypes materializing proposed concepts, a strategy that has been

followed during this research. Such approach establishes a healthy feedback from industry

to academia, motivating further progress in the several fields that contribute to the software

sciences.
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