A Logic-based Approach To Multimedia Interpretation

Dissertation Presentation

Atila Kaya

Chairman: Prof. von Estorff
Reviewers: Prof. Möller
Prof. Neumann
Prof. Grigat

Hamburg, 28th of February 2011
Agenda

• Motivation and Research Objectives
• My Approach in Detail
• Case Studies and Evaluation
• Summary and Outlook
Cognitive Robotics

Agent

Sensors

Actuators

Environment

Percepts

Actions
Multimedia Interpretation

Software Agent

Analysis

Interpretation

Multimedia Repository

Documents

Retrieval

r (a, b)
Multimedia Interpretation

Software Agent

Analysis

Interpretation

Documents

Retrieval

Multimedia Repository

Person, Pole
Pole Vault Trial
Processing Pipeline

1. Surface-level Information Identification
2. Multimedia Interpretation
 - Symbolic descriptions
 - Deep symbolic descriptions
3. Model
Thesis

- Develop a logic-based approach
- Implement & Evaluate
Multimedia Interpretation In Detail
Interpretation through abduction

Abduction Reason from observations (evidence) to explanations \(\Sigma \cup \Delta \models \gamma \)
Abduction: Key problems -> Solutions

• Definition of the space of abducibles
 -> Rules
• Limiting the number of explanations
 -> Preference relation
An Interpretation Example

Yelena Isinbayeva of Russia on her way to victory
(Getty Images)
Interpretation Example Continued

N2: Pole Vault Trial
N1: Person
F1: Face
B1: Body
P1: Pole
Interpretation Example Continued

N1: Person, Pole Vaulter
N2: Pole Vault Trial

F1: Face
B1: Body
P1: Pole
Interpretation Example Continued

Yelena Isinbayeva of Russia on her way to victory
(Getty Images)
Interpretation Example Continued

Yelena Isinbayeva of Russia on her way to victory (Getty Images)

N1: Person, Pole Vaulter
F1: Face
B1: Body
P1: Pole
PN1: Person Name
C1: Country Name

N2: Pole Vault Trial

N3: Person, Pole Vaulter
Personal Contributions

Abduction Definition of the preference relation & the strategy parameter

Interpretation Development & Implementation

Fusion Development & Implementation

Evaluation
Case Studies and Evaluation

Scenario Text analysis results (ABoxes) of 500 webpages with athletics news

Runtime Performance and Scalability
Time spent \rightarrow runtime performance
Increase in analysis ABox size \rightarrow scalability
Case Studies and Evaluation

\[x = \text{number of fiat assertions} \]
\[y = \text{time spent in minutes} \]

\[x = \text{number of all assertions} \]
\[y = \text{time spent in minutes} \]
Case Studies and Evaluation

Scenario 100 webpages with athletics news

Quality of Interpretation Results
Compare human-annotated versus automatically generated ABoxes (precision and recall)

Results
High-quality rich semantics descriptions
Summary

• For the MMI Problem: Solution proposed
• Several alternatives: Search space combinatorial
• Proposed solution implemented: Useful results
• Intelligent CMS (PhD Thesis Espinosa 2011)
• CASAM project
• Publications
Publications (Peer-reviewed)

Book Chapters

Journal Articles

Conference Papers

Publications (Peer-reviewed)

Conference Papers

Workshop Papers

Publications (Peer-reviewed)

Workshop Papers

Outlook

Agent

Sensors

Actuators

Environment

Percepts

Actions
Thank you for your attention