
Time Series Data Mining 
for Context-Aware Event Analysis

Mona Lange

• IT security difficult to maintain / plethora of IDS/IPS/FW events What is the problem?
• Event fusion, filtering, prioritization / detecting important activities How do I address it. 

Mission-criticality tradeoff handled appropriately
• No human in the loop USP

Characterization of the field of research
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Context: Critical Infrastructures – ACEA



Automatically Acquired: Vulnerabilities
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devices



Automatically Acquired: Network Topology
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vulnerabilities



Attacks: Reactive and Proactive View
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Objective of this Research

• Online: Context-Aware Event Analysis
• Normalize heterogeneous events from multiple sources
• Filter and fuse events
• Prioritization by operational impact assessment 

based on important activities ("workflows") 

• Offline: Time Series Data Mining
• Learn to identify workflows based on mining network traffic
• Formally represent workflows as stochastic processes
• Mission Oriented Network Analysis (MONA)
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Context-Aware Event Correlation
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Support for Other Modules

• Enables other modules to work at all (normalization)
• Reduces load due to fusion and filtering
• Prioritization allows subsequent modules 

to focus on mission-critical events such that…
• ... attacks can be matched and ...
• ... relevant response plans can be generated ...
• ... in realtime
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Direct Dependency: A -> B, if A requires B to satisfy certain requests 
from its clients [Chen, Xu, al.]
Indirect Dependency: A -> B; A -> C, if request A -> B and  A-> C are 
caused by the same activity

Network Service Dependency

[1] L., Kuhr, Möller: Using a Deep Understanding of Network Activities for Workflow Mining, In: KI 2016, Springer
[2]  L., Möller: Time Series Data Mining for Network Service Dependency Analysis, In: International Joint Conference SOCO 16-CISIS 16-ICEUTE, Springer



Detecting Dependencies
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Normalized Cross-Correlation



HMM for Workflow Modeling
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Context-Aware Event Correlation
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Workflows for Event Prioritization
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[3] Kott, L., Ludwig: Assessing Mission Impact of Cyber Attacks: Towards a Model-Driven Paradigm, In: IEEE Security Privacy, 2016



Using Workflows for Event Prioritization
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Using a list of mission-critical network devices, workflows can be used to identify whether 
mission-critical network devices are affected. 

Event Prioritization
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• Production environment 19.7.16 for about 7 hours
• LLC successfully deployed 
• Overall >6M Syslog messages were received
• Due to the criticality of the production environment, 

IPS sensors and FWs block unexpected attempts of 
communication (white listing). 

– Therefore, as was expected, no LLC alerts were produced
– Only events were processed 

• LLC is able to perform within an operational environment 
• Reduce the overall number of reported events 

by at least a factor of 2

LLC – Scalability Tests
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LLC – Scalability Tests
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• Emulation environment
• Functionality

– Provides input for
both HOC implementations

– Used in operational workshop
w/o any problems

• Performance
– 10,000 events/sec 2CPUs
– 100,000 events/sec 4CPUs
– 1000,000 events/10sec 4CPUs

LLC – Functionality and Performance Tests

[4] L., Kuhr, Möller: Using a Deep Understanding of Network Activities for Network Vulnerability Assessment, PrAISe@ECAI 2016
[5] L., Kuhr, Möller: Using a Deep Understanding of Network Activities for Network Vulnerability Assessment, In: ECAI 2016 
[6] L., Kuhr, Möller: Using a Deeper Understanding of Network Activities for Security Event Management, In: International Journal of Network 

Security & Its Applications (IJNSA), 2016



MONA: Performance Analysis
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Summary

• Online: Context-Aware Event Analysis
ü Normalize heterogeneous events from multiple sources
ü Filter and fuse events
ü Prioritization by operational impact assessment 

based on important activities ("workflows") 

• Offline: Time Series Data Mining
ü Learn to identify workflows based on mining network traffic
ü Formally represent workflows as stochastic processes
ü Mission Oriented Network Analysis (MONA)
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