
From the Institute of Information Systems
of the University of Lübeck

Director: Prof. Dr. Ralf Möller

Time Series Data Mining
for Context-Aware Event

Analysis

Dissertation
for Fulfillment of

Requirements
for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Mona Lange
from Hamburg

Lübeck 2016

First referee: Prof. Dr. Ralf Möller

Second referee: Prof. Dr. Stefan Fischer

Date of oral examination: May 24, 2017

Approved for printing. Lübeck, June 1, 2017

Abstract

Data-communication networks contain a multitude of data
sources for data mining such as network traffic, vulnerabil-
ities detected by vulnerability scanners or events reported
by security sensors such as intrusion detection systems, in-
trusion prevention systems, or firewalls. Thereby, data are
automatically produced within monitored networks. By ap-
plying time series data mining techniques, we are able to
use these data to provide context-aware event analysis.

In contrast to related work, our context-aware event anal-
ysis approach does not focus on modeling an attacker, but
aims to automatically learn ongoing workflows and antici-
pate negative effects of threats. Negative effects of threats
could entail network dependencies leading to a chain of
events, difficult to anticipate for network operators.

Network traffic analysis allows us to develop a deeper
understanding of an event’s context within a monitored
network. For this purpose we propose to automatically
recognize network dependencies from network traffic. To
learn network dependencies, we introduce a methodology
based on the normalized form of cross correlation. Cross
correlation is a well-established methodology for detecting
similar signals in feature matching applications. We term the
network dependency discovery approach Mission Oriented
Network Analysis (MONA). Network dependencies iden-
tified by MONA are the foundation for mining workflows
based on network traffic. Workflow models describe the
underlying dependencies of network devices and network
services within data-communication networks. Thus, linking

iv

events to workflows observed within a network, allows us
to understand an event’s context.

The context-aware event analysis approach introduced by
this work is systematically evaluated with real-life case stud-
ies conducted within an energy distribution network. In
addition, we compare MONA’s performance and sensitivity
to other state of the art network dependency mining method-
ologies. This systematic comparison shows that MONA
outperforms the state of the art.

Zusammenfassung

Daten-Kommunikationsnetzwerke enthalten eine Vielzahl
von Datenquellen für Data-Mining, wie zum Beispiel: Netz-
werkverkehr, Schwachstellen, welche von Schwachstellen
Scannern entdeckt wurden oder Ereignisse, die von Sicher-
heitssensoren wie Intrusion-Detection-Systemen, Intrusion-
Prevention-Systemen oder Firewalls berichtet werden. Da-
durch werden Daten innerhalb überwachter Netzwerke au-
tomatisch produziert, und das Anwenden von Zeitreihen-
Data-Mining-Techniken ermöglicht uns, diese Daten zu ver-
wenden, um kontextsensitive Ereignisanalyse zur Verfügung
zu stellen.

Im Gegensatz zu verwandten Arbeiten, konzentriert sich
unsere kontextsensitive Ereignisanalyse nicht auf das Model-
lieren von Angreifern, sondern zielt darauf ab, fortlaufende
Arbeitsabläufe (Workflows) automatisch zu lernen und neg-
ative Auswirkungen von Bedrohungen zu antizipieren. Neg-
ative Auswirkungen von Bedrohungen könnten auf Grund
von Netzwerk-Abhängigkeiten zu einer Kette von Ereignis-
sen führen, die von Netzbetreibern schwer zu antizipieren
sind.

Die Analyse von Netzwerkverkehr ermöglicht es uns, ein
tieferes Verständnis für den Kontext eines Ereignisses in
einem überwachten Netzwerk zu entwickeln. Zu diesem
Zweck schlagen wir vor, auf der Basis von Netzwerkverkehr
Netzwerk-Abhängigkeiten automatisch zu erkennen. Um
Netzwerk-Abhängigkeiten zu lernen, führen wir eine Me-
thodik ein, welche auf der normalisierten Form von Kreuz-

vi

korrelation basiert. Kreuzkorrelation ist ein bewährtes Ver-
fahren zum Ermitteln ähnlicher Signale in Anwendungen,
welche übereinstimmende Merkmale suchen. Wir beze-
ichnen diese Netzwerk-Abhängigkeiten Ermittlungsmeth-
ode als Missions-Orientierte Netzwerk Analyse (MONA).
Durch MONA identifizierte Netzwerk-Abhängigkeiten sind
die Grundlage für das Lernen von Arbeitsabläufen auf
der Basis von Netzwerkverkehr. Arbeitsablauf-Modelle
beschreiben die zugrunde liegenden Abhängigkeiten von
Netzwerkgeräten und Netzwerkdiensten in Datenkommu-
nikationsnetze. Somit erlaubt uns das Verknüpfen von
Ereignissen und beobachteten Arbeitsabläufen innerhalb
eines Netzwerks, den Ereignis-Kontext zu verstehen.

Der im Rahmen dieser Arbeit eingeführte kontextsensi-
tive Ereignisanalyse-Ansatz wird systematisch mit realen
Fallstudien eines Energieverteilungsnetzes getestet. Zusät-
zlich vergleichen wir Leistung und Sensibilität von MONA
mit anderen Stand der Technik Methoden des Lernens von
Netzwerk-Abhängigkeiten. Dieser systematische Vergleich
zeigt, dass MONA dem Stand der Technik überlegen ist.

Contents

1 Introduction 1
1.1 Research Objectives 2
1.2 Scientific Contributions 4
1.3 Dissemination Activities 5
1.4 Outline of the Dissertation 7

2 Network Dependency Analysis 11
2.1 Introduction . 12
2.2 Network Model 13
2.3 Network Service Dependency Analysis 28

2.3.1 Network Service Dependencies 29
2.3.2 Normalized Cross-Correlation 34

2.4 Evaluation . 40
2.4.1 Real-life Case Study 42
2.4.2 Comparative Evaluation 48

2.5 Discussion . 66

3 Workflow Mining 71
3.1 Introduction . 72
3.2 Workflow Model 75

3.2.1 Event Logging 75

vii

viii Contents

3.2.2 Probability Space 80
3.2.3 Hidden States Model 85
3.2.4 Hidden Markov Model Workflow . . . 90
3.2.5 Extensions to Factorial Hidden Markov

Model Workflow 103
3.2.6 Real-life Case Study 104

3.3 Network Vulnerability Assessment 113
3.4 Discussion . 119

4 Event Prioritization and Correlation 121
4.1 Introduction . 122
4.2 Method Description 125

4.2.1 Event Normalization 126
4.2.2 Alert Verification and Enrichment . . . 129
4.2.3 Event Fusion 139

4.3 Operational Impact based Event Correlation . 145
4.3.1 Network Activities 146
4.3.2 Event Prioritizing 147

4.4 Evaluation . 148
4.4.1 Event Verification and Correlation

Evaluation 149
4.4.2 Benchmarking Syslog Message Pro-

cessing Time 156
4.4.3 Real-life Case Study 158

4.5 Discussion . 160

5 Related Work 163
5.1 Mission Impact Modeling 164

5.1.1 Cyber Attack and Defense Modeling . 165
5.1.2 Mission-based Event Correlation and

Prioritization 166
5.1.3 Mission modeling 168

Contents ix

5.2 General Event Correlation and Prioritization
Approaches . 171

5.3 Network Dependency Discovery 173
5.3.1 Active Network Dependency Discovery 173
5.3.2 Passive Network Dependency Discovery174

5.4 Workflow Mining 176
5.4.1 Petri net-based Workflow Models . . . 177
5.4.2 HMM-based Workflow Models 179

6 Concluding Discussion 183

Bibliography 191

Curriculum Vitae 207

Chapter 1

Introduction

Current conventional network security approaches focus on
perimeter protection instead of identifying the most busi-
ness critical assets and protect those. Although Stuxnet1

and Flame [MR12] have taught us that in order to protect
critical infrastructures against advanced persistent threats,
perimeter protection simply is not enough. To underpin
this statement, we refer to the director Sean McGurk of the
National Cybersecurity and Communications Integration
Center (NCCIC) at the Department of Homeland Security2:

“In our experience in conducting hundreds of vulnera-
bility assessments in the private sector, in no case have we
ever found the operations network, the Supervisory Control
and Data Acquisition (SCADA) system or energy manage-
ment system separated from the enterprise network. On
average, we see 11 direct connections between those net-
works. In some extreme cases, we have identified up to 250
connections between the actual producing network and the

1Ralph Langner and Perry Pederson. “Bound to Fail: Why Cyber Security
Risk Cannot Simply Be “Managed” Away.” In: Cyber Security Series.
Foreign Policy at Brookings, Feb. 2013.

2Subcommittee on National Security, Homeland Defense, and Foreign
Operations. Cybersecurity: Assessing the Immediate Threat to the United
States. May 2011. (Visited on 09/30/2015).

1

2 1. Introduction

enterprise network.”
If data communication networks in cyber-physical systems,

such as operations networks, SCADA systems, or energy
management systems, are interconnected with enterprise
networks, they need to be included in an infrastructure’s
operational risk assessment. Taking the overall infrastruc-
ture into account provides contextual information for further
event analysis. Contextual information allows network op-
erators to determine what ongoing network activities could
potentially be threatened by security events or be affected by
software vulnerabilities.

In the context of this chapter, initially the research ob-
jective is introduced in Section 1.1. Afterwards, scientific
contributions are presented in Section 1.2. Then, all dissemi-
nation activities are discussed in Section 1.3 and an overall
outline is given in Section 1.4.

1.1 Research Objectives

Malicious actors exploiting cyberspace have been identified
by the United States intelligence community as the top na-
tional security threat3. Similarly, Dell’s annual threat report
states a 100% increase in SCADA attacks4. This report is
based on an analysis of data collected by Dell’s global re-
sponse intelligence defense network that consists of millions
of security sensors in more than 200 countries. Due to the
rise of cyber attacks on data-communication networks, cyber
security has become a high priority to organization with
data-communication networks.

3James R. Clapper. Statement for the Record, Worldwide Threat Assessment of
the US Intelligence Community. Feb. 2014. (Visited on 05/03/2015).

4Dell Inc. Dell Security Annual Threat Report. Feb. 2015. (Visited on
10/19/2014).

1.1. Research Objectives 3

To protect against this new threat, more and more security
sensors such as Intrusion Detection Systems (IDS), Intrusion
Prevention Systems (IPS), and Firewalls (FWs) are deployed
in order to monitor enterprise networks. Security sensors
create a continuous stream of security events that have to
be monitored by network operators. In addition, often vul-
nerability scanners are deployed to continuously monitor
enterprise networks for new present vulnerabilities. If a
known vulnerability within a monitored network is detected,
network operators are notified. Generally, the resources for
preventing an exploitation of all reported vulnerabilities are
not available. Therefore, network operators are challenged
by a time series consisting of large volumes of events occur-
ring at a high pace. In order to face this new challenge, we
propose a methodology for context-aware event analysis.

In order to be able to analyze events that occur within data-
communication networks, we rely on contextual information
to better understand the event. Within data-communication
networks, cyber assets (e.g., network devices or network
services) interact due to an underlying higher purpose. This
common higher purpose that causes cyber assets to interact
within a network is also referred to as workflow. Workflows
within a data-communication network can depend on mul-
tiple cyber assets. Knowing what cyber assets are affected
by an event allows us to analyze events based on contextual
information. Let us assume a security event suggests that
a company’s cyber asset might be compromised. If a cyber
asset is required to complete an essential task for a company,
then a security event targeting this cyber asset should be
prioritized over a security event which is targeting a cyber
asset contributing to a non essential task for the company.
Thereby, we conclude that the context of a security event
provides a basis for event analysis.

4 1. Introduction

An event’s context consists of the ongoing workflows
within the monitored network. Unfortunately, workflows are
often not documented, and they are difficult to discover by
relying on human expert knowledge (see Chapter 3). How-
ever, in monitored networks huge amounts of data are avail-
able, and by applying data mining techniques, we are able
to extract information of ongoing workflows. From a data
mining perspective, we are interested to test the potential of
applying data mining techniques to real-life applications.

1.2 Scientific Contributions

As previously mentioned, data-communication networks
produce huge amounts of data which are available for data
mining. Monitored data-communication networks produce
network traffic, streams of events reported by security sen-
sors or vulnerability scanners. Vulnerability scanners report
on known vulnerabilities, which are detected within a moni-
tored network. The main goal of the research presented in
this thesis is to use data mining techniques to analyze this
information. This information is automatically produced
within a monitored network, and allows a context-aware
event analysis.

The context of an event consists in the workflow which
is targeted by an event. This context can automatically be
learned from network traffic. Based on this contextual infor-
mation, events are analyzed based on the targeted workflow.
Events consist of reports from security sensors or from vul-
nerability scanners. The major contributions of this thesis
are as follows:

• Inspired by time series data mining techniques, we pro-
pose a novel non-intrusive network service dependency

1.3. Dissemination Activities 5

discovery approach referred to as Mission Oriented
Network Analysis (MONA). We discuss alternative ap-
proaches to MONA and systematically evaluate merits
and drawbacks.

• We also introduce network dependency analysis as a
foundation for network traffic based workflow discov-
ery. Within a case study based on an energy distribu-
tion network we show that the introduced workflow
discovery approach can be applied to real-life data-
communication networks.

• We show how automatically discovered workflows can
be exploited in order to provide a foundation for ana-
lyzing events reported by security sensors (IDS, IPS, or
FWs).

• We provide correlation techniques for reducing the
overall rate of reported events. For these event corre-
lation techniques, we show within a case study based
on an energy distribution network that they are able to
reduce the overall rate of events reported by security
sensors.

1.3 Dissemination Activities

Various parts of this thesis have been published previously
in order to disseminate research results. The following list
provides an overview of dissemination activities in chrono-
logical order.

Published:

Alexander Kott, Mona Lange, & Jackson Ludwig. “As-
sessing Mission Impact of Cyber Attacks: Towards

6 1. Introduction

a Model-Driven Paradigm.” In: IEEE Security and
Privacy. IEEE, 2016.

Mona Lange & Ralf Möller. “Time Series Data Mining
for Network Service Dependency Analysis.” In: 9th
International Conference on Computational Intelligence
in Security for Information Systems (CISIS 2016). San
Sebastian, Spain: Springer-Verlag Berlin Heidelberg,
Oct. 2016.

Mona Lange, Felix Kuhr, & Ralf Möller. “Using a Deep
Understanding of Network Activities for Workflow
Mining.” In: 39th Annual German Conference on Arti-
ficial Intelligence (KI 2016). ISBN: 978-3-319-46072-7.
Klagenfurth, Austria: Springer-Verlag Berlin Heidel-
berg, Sept. 2016, pp. 177–184.

Mona Lange, Felix Kuhr, & Ralf Möller. “Using a Deep
Understanding of Network Activities for Network
Vulnerability Assessment.” In: 22nd European Con-
ference on Artificial Intelligence (ECAI 2016). ISBN:
978-1-61499-671-2. The Hague, Netherlands: IOS
Press, Aug. 2016, pp. 1583–1585.

Mona Lange, Felix Kuhr, & Ralf Möller. “Using a
Deeper Understanding of Network Activities for Se-
curity Event Management.” In: International Journal
of Network Security & Its Applications (IJNSA). June
2016.

1.4. Outline of the Dissertation 7

Mona Lange & Marina Krotofil. “Mission Impact As-
sessment in Power Grids.” In: NATO IST-128 Work-
shop on Cyber Attack Detection, Forensics and Attribu-
tion for Assessment of Mission Impact. Istanbul, Turkey:
Information Systems Technology Panel, June 2015.

Mona Lange et al. “Event Prioritization and Correla-
tion based on Pattern Mining Techniques.” In: 14th
International Conference on Machine Learning and Appli-
cations and Workshops (ICMLA 2015). Miami, Florida:
IEEE, Dec. 2015.

Dissemination activities also included leading an exploratory
research team by hosting two workshops (Lübeck, Brussels)
and being a guest editor for a special issue called “model-
driven paradigms for cyber defense” in the Journal of De-
fense Modeling and Simulation: Applications, Methodology,
Technology:

Mona Lange. “Model-Driven Paradigms for Integrated
Approaches to Cyber Defense.” In: NATO IST-ET-
094. , Team Leader , Information Systems Technol-
ogy Panel, 2015-2016.

In addition a talk on Mission Impact Modeling for Industrial
Control Systems was given:

Mona Lange & Marina Krotofil. “Mission Impact
Modelling for Industrial Control Systems.” In: 1st
SCADA Security Conference Latin America. Rio de
Janeiro, Brazil, 2014.

1.4 Outline of the Dissertation

The purpose of the research presented in the context of this
thesis is to introduce time series data mining for context-

8 1. Introduction

aware event analysis. Our contribution is divided into differ-
ent chapters and we provide a brief introductory outline of
their content in the following.

Network Dependency Analysis

Chapter 2 shows how a deeper understanding of network
activities can be derived by analyzing network traffic. To au-
tomatically learn network dependencies from network traffic,
we propose a methodology based on the normalized form of
cross correlation, which is a well-established methodology
for detecting similar signals in feature matching applica-
tions. We term the network service dependency discovery
approach Mission Oriented Network Analysis (MONA).

To test MONA’s ability to identify existing network service
dependencies in data-communication networks, we conduct
a real-life case study within an energy distribution network.
In addition, a comparative evaluation systematically com-
pares MONA to three other network service dependency ap-
proaches: Sherlock [Bah+07], NSDMiner [Nat+12] and Orion
[Che+08]. The comparative evaluation relies on synthetically
generated networks based on the network simulator ns-35.
The empirical validation quantitatively evaluates MONA
with respect to three other network service dependency dis-
covery methodologies. As described in Figure 1.1, network
dependency analysis operates on the level of granularity of
network services, applications and network devices.

5Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN
simulator for NS-3. Tech. rep. NDN-0005. NDN Project, July 2012.

1.4. Outline of the Dissertation 9

Granularity:
fine→ coarse

Network
Dependency

Analysis

Workflow
Mining

Network
Device

Network
Service

ApplicationApplicationApplication Business
Function

Figure 1.1: Network Dependency Analysis and Workflow
Mining are adjacent knowledge domains.

Workflow Mining

Chapter 3 describes workflow mining based on network ser-
vice dependency discovery. Discovering workflows relies
on heuristics to mine structural descriptions. The problem
statement of workflow discovery is similar to network de-
pendency analysis, which aims to identify sequences of em-
ployed network services. This becomes even more apparent
when we are looking into passive network dependency ap-
proaches for business-driven IT management [KGE06]. Work-
flow mining within data-communication networks aims to
identify ongoing tasks executed within a company. Thereby,
workflow mining operates at the level of granularity of net-
work devices and business functions. Often workflow min-
ing abstracts ongoing tasks beyond the granularity level of
business functions. For example, business functions are used
to identify a company’s structure.

As illustrated in Figure 1.1, we propose that network ser-
vice dependency analysis and workflow mining are adjacent
knowledge domains. Moreover, we introduce time series
data mining as a methodology for deriving workflows within
data-communication networks.

10 1. Introduction

Event Prioritization and Correlation

To protect data-communication networks, cyber security sen-
sors are deployed to monitor networks for potentially ma-
licious activities. Cyber security sensors report malicious
activities in the form of events. Moreover, distinct cyber
security sensors often report events in heterogeneous data
formats. Unfortunately, often the number of reported events
is too high for network operators to monitor them. Therefore,
in Chapter 4 we propose event prioritization and correlation
to address this issue. In order to analyze events reported
by distinct cyber security sensors, we introduce a methodol-
ogy for normalizing events with heterogeneous data formats.
Normalized events are clustered, and we use learned work-
flows to prioritize events based on contextual information.
The introduced event prioritization and correlation approach
is tested in a real-life case study conducted within an energy
distribution network.

Related Work

Research on context-aware cyber security has led to an am-
ple variety of scientific contributions over the last decades.
Hence, in Chapter 5 we give an overview over different
approaches to context-aware cyber security and related pre-
vious work to the approaches in this thesis as to demonstrate
a substantial advance in the state of the art.

Concluding Discussion

Chapter 6 discusses our contribution with respect to related
work and with respect to new application areas. Moreover,
we present promising directions for future work.

Chapter 2

Network Dependency
Analysis

To solve the problem of reliably uncovering network depen-
dencies, in the context of this work, we propose a method-
ology called Mission Oriented Network Analysis (MONA).
MONA is non-intrusive, does not require a modification of
existing software, and relies on passively collected network
traffic. The following chapter is organized as follows: First,
a general introduction to network dependency analysis is
given in Section 2.1. Second, the underlying network model
is introduced in Section 2.2. Third, the proposed network
service dependency methodology is discussed in Section 2.3.
Lastly, a systematic evaluation is provided in Section 2.4.

For this evaluation, MONA is deployed within the disas-
ter recovery site of an electrical distribution network and
evaluated on a ground truth provided by network operators.
In addition, we create synthetic networks and insert network
dependencies randomly to evaluate MONA in comparison
to three state of the art methodologies: Orion [Che+08],
Sherlock [Bah+07] and NSDMiner [Nat+12]. A comparative
evaluation with NSDMiner, Sherlock and Orion shows that
MONA surpasses Orion, Sherlock and NSDMiner signifi-

11

12 2. Network Dependency Analysis

cantly.

2.1 Introduction

For analyzing how susceptible a network is to software vul-
nerabilities or attacks, it is essential to understand how ongo-
ing network activities can potentially be affected. A network
is built with a higher purpose or mission in mind and this
leads to interactions of network devices and applications.

We refer to these interactions with a common purpose as
network activities. Network activities can involve multiple
applications spanning distinct network devices. This leads
to network dependencies due to the following observation:
Applications within a common network activity rely on each
other to fulfill a common task. If an application is subject
to an attack, this can have an impact on other applications
within the network activity as they might rely on this appli-
cation to provide a service.

Currently, network service dependencies can be derived
through human labor. However, most enterprise networks
are subject to frequent modifications. Modifications in enter-
prise network for example consist of adding new hardware,
deploying new software or removing outdated hardware. In
addition, enterprise networks also often rely on applications
provided by third parties. Third party software can lead to
network operators not being aware of all existing network
service dependencies. We, therefore, conclude that knowl-
edge of all existing network service dependencies is often
not available.

A deeper network understanding implies knowledge of all
network activities within an enterprise network, including
understanding how network activities link to applications

2.2. Network Model 13

and, thereby, network devices. Such network activities result
in network service dependencies and we are challenged to
derive network service dependencies automatically through
data mining-based network service dependency discovery.
In order to automatically derive network service dependen-
cies by analyzing network traffic, we first introduce our
underlying network model in the following section.

2.2 Network Model

Modeling an IT network requires a basic understanding
[EB15] of the Open Systems Interconnection (OSI) model.
For understanding network connectivity, the following lay-
ers of the OSI model are of particular interest: data link
layer, network layer, transport layer and application layer.
We define a network device as a physical device on the net-
work, and Media Access Control (MAC) addresses are used
to identify network devices. The data link layer physically
links network devices using MAC addresses. However, the
data link layer only provides point-to-point connectivity. For
enabling network connectivity beyond a point-to-point com-
munication, a network layer protocol such as the Internet
Protocol (IP) is required. IP addresses are used to identify
source and destination of an end-to-end connection. In other
words, MAC addresses allow a point-to-point connection,
while IP addresses provide an end-to-end connection. There-
fore, switches and routers are used to forward packets, i.e.,
they act as intermediate hosts. Data-communication net-
works are built with a common higher purpose. This leads
to reoccurring interactions between distinct network devices
and services, which we call network activity patterns. An
example for such a network activity pattern is given in the

14 2. Network Dependency Analysis

following example.

client

server

client DNS server client

client load balancing server

load balancing server web server

web server

Database

web server

load balancing server

client

Timeline

request

DNS

response

DNS

request

HTTP

response

HTTP

request

HTTP

response

HTTP

request

SQL

response

SQL

Figure 2.1: Example for network activities.

Example 2.1 (A simple network activity). An example for
a network activity pattern in an IT network is given in Fig-
ure 2.1. Every node in Figure 2.1 represents a network device.
Client network devices are represented in blue and server
network devices are represented as red nodes. A majority
of communication protocols consist of request and response
pairs. Let us assume that a client wants to access a specific
web server. Achieving this might require a DNS lookup.
Assuming that IP addresses are returned, a load balancing
server receives a HTTP request. The load balancing server
passes on the HTTP request a web server. The requested
information is not available locally, but it is stored in an
external database. So the web server sends an SQL request
to the database. The database sends the information back to
the web server. The web server in its turn sends an HTTP
response to the load balancing server, which forwards the
HTTP response to the client that initiated the sequence of
tasks.

Via network interfaces available on a network device, the
network device can be connected to another subnetwork.
Hence, a sequence of tasks can require multiple network

2.2. Network Model 15

devices and subnetworks to be operational. The purpose of
network service dependency discovery is to capture these
interactions, and to describe how they link to network de-
vices and applications. A network model provides us with
the underlying ontology for network service dependency
discovery.

Network Device

MAC addresses are necessary to enable a majority of local or
metropolitan area networks, defined within IEEE 802 stan-
dards, such as Ethernet or WiFi based networking. MAC
addresses are used within local or metropolitan area net-
works to reach every device on the same network (cabled or
wireless). To allow routing across distinct networks, the In-
ternet protocol (IP) is used. So when a network device wants
to send a packet to another network device, it is first checked
whether the target is on the same subnetwork as the network
device itself. If it is on the same subnetwork, the destination
network device can be reached directly through its MAC
address for example via Ethernet or WiFi based networking.
Otherwise, if the destination network device is not on the
same subnetwork, the Internet protocol is used and the net-
work packet is sent to the configured router. Therefore, a
network device needs to be assigned to one MAC address in
order to be able to communicate within a subnetwork. If a
network device is supposed to be able to communicate across
one or more subnetworks, a network device is assigned one
or more IP addresses. In the following, we will start with
introducing our network device model.

Definition 2.1 (Network device). A network device is de-
fined as a non empty set of media access control (MAC) and
Internet protocol (IP) addresses MAC and IP, respectively

16 2. Network Dependency Analysis

(MAC ∩ IP = ∅), where

D ⊆ P(MAC) \ {∅} × P(IP)

is the set of network devices. Additionally, for a given IP
address, we are able to derive the corresponding network
device by

DEV : IP→ D.

♦

Following Definition 2.1 a device can of course be assigned
one IP address and one MAC address or a MAC address
can be linked to no IP address. Assigning multiple IP ad-
dresses to one MAC address and vice versa, allows a device
to be assigned multiple MAC addresses and IP addresses.
Being able to assign multiple MAC addresses to a network
device is needed as routers and switches supply multiple
point-to-point endpoints. However, switches do not neces-
sarily need to have IP addresses as they work on the data
link layer. From this it follows that they are not visible on
the network layer. Definition 2.1 allows modeling more com-
plex network device types, for example it allows modeling
network devices where one IP address is linked to multiple
MAC addresses as shown in Example 2.2.

Example 2.2 (Network device). A network device di as intro-
duced in Definition 2.1, which links a single MAC address
to a single IP address could be

di = ({MM:MM:MM:SS:SS:SS}, {XX.XX.XX.XX})

with an assigned 48 bit MAC address MM:MM:MM:SS:SS:SS
and a 32 bit IPv4 address XX.XX.XX.XX. The first 24 bits
MM:MM:MM represent the manufacturer of a network de-
vice with an organizationally unique identifier. The second

2.2. Network Model 17

24 bits SS:SS:SS represent the network interface controller
and are assigned to the adapter by the manufacturer. A
network device as introduced in Definition 2.1 can represent
multiple MAC addresses that are linked to one IP address.
An example for this is Google Public DNS. To keep response
time low, multiple servers all over the world exist. The clos-
est operational server is determined via Anycast1 routing.
So, two IP addresses both are able to send requests the IP
address 8.8.8.8, which is assigned to Google Public DNS,
but depending on their closest operational Google Public
DNS server, the server answering these requests might have
different MAC addresses. Similarly, Definition 2.1 allows for
modeling a router that links multiple subnetworks.

The network model introduced in this chapter, is used
to analyze network traffic. Within network traffic, network
devices cannot directly be observed. However, given a net-
work packet is sent by a network device dj with IP address
XX.XX.XX.XX, the corresponding network device dj can be
determined by applying fuction DEV(XX.XX.XX.XX) = dj.

Network Service

A network encompasses devices that are communication
endpoints or additional intermediate devices, over which
endpoints communicate. The underlying reason for network
packets being exchanged are applications hosted on network
devices communicating with other applications. Unfortu-
nately, based on observed network packets, it is not possible
to directly see which application wants to communicate. Ap-
plications communicate through network services, which are
linked to transport protocols such as Transmission Control

1J. Abley, K Lindqvist, and J. Abley. “RFC 4786: Operation of Anycast
Services.” In: Internet Engineering Task Force. 2006.

18 2. Network Dependency Analysis

Protocol (TCP) or User Datagram Protocol (UDP). Within
their segment header, TCP and UDP additionally specify
a port number p ∈ P. Network devices that are commu-
nication endpoints host applications, which communicate
through network services. In the following definition our
network service model is introduced.

Definition 2.2 (Network service). Let S be a set of network
services (and let transport protocols Ψ = {UDP, TCP})

S ⊆ D×Ψ×P,

for a network device d ∈ D, a transport protocol ψ ∈ Ψ
and a port number p ∈ P. Within network traffic, observed
network packets can be linked to a source and destination
network device, a transport protocol Ψ and a port number
from P. This allows us to define a relation SERV, which links
a network device, a transport protocol and a port number to
a network service:

SERV : D×Ψ×P→ S.

To derive all network services hosted by a device dj, we de-
fine the relationship HOSTS(dj), which returns all network
services hosted by dj.

HOSTS : D → P(S)

In order to derive the device, on which a network service s
is hosted, we define

HOSTS−1 : S→ D,

and write HOSTS−1(si) (slightly misusing standard notation
as this not a bijective function). In general, a network service
si refers to network service number i ∈N0. However, within

2.2. Network Model 19

examples a network service number can also refer to a port
number.

To facilitate linking network services to network devices,
we associate service si with device dj by writing sj

i . Given a

service sj
i ∈ S, the corresponding device dj can be derived by

dj = HOSTS−1(sj
i).

♦

Example 2.3 (Network service). For example a network ser-
vice network time protocol (NTP) sj

i ∈ S

sj
i = (di, TCP, 123)

is hosted by a network device dj ∈ D on port number
123. Let us assume we observe network traffic and see
IP address XX.XX.XX.XX receiving a network packet on
TCP port 123. Relations SERV and DEV allows us to
link this information to network service sj

i , by applying
SERV(DEV(XX.XX.XX.XX), TCP, 123).

This allows us to derive all involved network services for
a given IP-address and port pair by HOSTS(DEV(sIP))→
P(S). Based on network traffic analysis we will detect net-
work services and determine how they communicate in an
end-to-end manner with each other. Aside from interme-
diate devices (e.g., routers and switches), network devices
can be categorized into client and server network devices.
In the following we will refer to client network devices as
clients and server network devices as servers. Clients and
servers are able to send requests. Servers additionally pro-
vide network services that answer these requests. In most

20 2. Network Dependency Analysis

communication networks, the number of clients by far sur-
passes the number of servers. Generally, requests are sent
through ports dynamically assigned by an operating sys-
tem, while the network service answering these requests are
linked to statically assigned ports.

Statically and dynamically assigned Ports

Requests are often sent through a dynamically assigned
port. Thus, these ports often change and retaining infor-
mation about the port number does not provide important
additional information. Dynamically assigned ports are
chosen from specifically assigned port ranges2. Ephemeral
port ranges are available for private, customized or tempo-
rary purposes. Although IANA recommends ephemeral
port ranges to range from 215 + 214 to 216, the range is
highly dependent on the operating system. Microsoft assigns
ephemeral ports starting as low as 1025 for some windows
versions and a lot of Linux kernels have the ephemeral port
range start at 32768. We follow the IANA recommended
ephemeral port range for clustering purposes.

Definition 2.3 (Cluster Network Service). Let S be a set of
services that are hosted by device dj. All network services
communicating through a dynamically assigned port are
grouped by

sj
∗ ∈ S,

as a representative, whereas ∗ represents a dynamically
assigned port and j represents the device a network service
is hosted on. ♦

2Joe Touch et al. “Service Name and Transport Protocol Port Number
Registry.” In: The Internet Assigned Numbers Authority (IANA). 2013.

2.2. Network Model 21

Known network services have to be linked to ports stat-
ically, such that other network services can routinely com-
municate requests with them. IANA-assigned ports are an
example for the effort of standardizing network services with
respect to their names and port numbers for network services
that run over transport protocols such as TCP, UDP, DCCP,
and SCTP. It should also be noted that multiple statically
assigned ports could be assigned to the same application.

Network Packet

In the following this network model is used to derive net-
work service dependencies based on network traffic. Net-
work traffic consists of network packets exchanged between
network devices through network services. The basic build-
ing block of our approach are network packets exchanged
between directly dependent network services.

Definition 2.4 (Network Packet). We define the set of net-
work packets P as network services S communicating over
time T ⊆N0

P ⊆ IP×P× IP×P×Ψ× T.

♦

Example 2.4 (Network Packet). A network packet is ex-
changed by a source and destination IP address srcIP and
dstIP. Network packets contain a link to transport protocols
such as Transmission Control Protocol (TCP) or User Data-
gram Protocol (UDP). Within their segment header, TCP
and UDP additionally specify a port number P = {x : x ∈
N, 1 ≤ x ≤ 65535}, which is a 16-bit unsigned integer, thus
ranging from 1 to 65535.

22 2. Network Dependency Analysis

For example a network packet p ∈ P as introduced in
Definition 2.4 can correspond to

p = (sIP, sPort, dIP, dPort, ψ, t),

for source IP addresses sIP, a source ports sPort ∈ P , des-
tination IP addresses dIP, destination ports dPort ∈ P , a
transport protocol ψ ∈ Ψ and a timestamp t ∈ T.

As is apparent from the network packet model introduced
in Definition 2.4, MAC addresses for source and destination
network device cannot be extracted based on exchanged
network packets. Often, only an IP address is observed, but
network packets still need to be linked to a network device in
order to be considered for network service dependency anal-
ysis. Definition 2.1 allows linking IP addresses to network
devices.

Network Flow

Based on network packets as described in Definition 2.4, we
conduct a network dependency analysis based on packet
headers (e.g., UDP and TCP) and timing data in network
traffic. Network traffic contains network packets that serve
different purposes. Some network packets are exchanged
for establishing a connection between two network services,
other network packets transfer information between two
network services. For analyzing network traffic in order to
detect present network service dependencies, we are primar-
ily interested in network packets transferring information
between network services. Hence, our approach operates on
network flows. To identify network flow boundaries, we look
into the definition of TCP and UDP flows. TCP flows start
with a 3-way handshake (SYN, SYN-ACK, ACK) between a
client and a server and terminate with a 4-way handshake

2.2. Network Model 23

(FIN, ACK, FIN, ACK) or RST packet exchange. If network
services communicate frequently, they may forgo the cost of
repetitive TCP handshakes by using KEEPALIVE messages
to maintain a connection in idle periods. In comparison,
the notion of UDP flows is vague, since UDP is a stateless
protocol. This is due to the protocol not having well-defined
boundaries for the start and end of a conversation between
server and client. In the context of this work, we consider
a stream of consecutive UDP packets between server and
client as a UDP flow, if the time difference between to con-
secutive packets is below a predefined threshold. In our
analysis we exclude all network packets that are necessary
for establishing a communication between server and client.

Definition 2.5 (Direct Dependency). So given that additional
data is exchanged between network service sj

i , sl
k ∈ S, which

are hosted on network device dj and dl , respectively, we
term such an end-to-end interaction between two network
services as direct dependency. Direct dependencies SDEP
are described by

SDEP ⊆ (S× S)

for network services sj
i , sl

k ∈ S hosted on network devices dj
and dl . ♦

Example 2.5 (Direct Dependency). A specific direct depen-
dency sDEP ∈ SDEP is denoted as

sDEP =
(

sj
i , sl

k

)
for network services sj

i , sl
k ∈ S hosted on network devices dj

and dl .
Table 2.1 schematically illustrates direct dependencies that

can be observed within Figure 2.1. For example Table 2.1

24 2. Network Dependency Analysis

shows a network device referred to as Client, which hosts
a network service that sends a UDP request. Requests are
sent from dynamically assigned ports clustered according to
Definition 2.3. This UDP request is sent to a network service
linked to port 53, which is hosted by another network device
called DNS server. This direct dependency is observed at
a certain time t. Continuously analyzing network traffic
results in a time series of observed direct dependencies.

Source Destination ψ t
Name Port Name Port
Client * DNS Server 53 UDP 2016-08-21T21:30:00+00:00

DNS Server 53 Client * UDP 2016-08-21T21:30:00+01:00
Client * Load balancing server 80 TCP 2016-08-21T21:30:00+05:00

Load balancing server * Web server 80 TCP 2016-08-21T21:30:00+06:00
Web server * Database 118 UDP 2016-08-21T21:30:00+07:00
Database 118 web server * UDP 2016-08-21T21:30:00+07:50

Web server * Load balancing server * TCP 2016-08-21T21:30:00+08:10
Load balancing server * Client * TCP 2016-08-21T21:30:00+09:00

Table 2.1: Direct dependencies within Figure 2.1.

Definition 2.6 (Direct Dependencies). A direct dependency
sDEP ∈ SDEP between network services sj

i and sl
k, such that

sj
i is hosted on network device dj and sl

k is hosted on dl , is
denoted as

SDEP = SDEPrq ⋃ SDEPrsp.

We distinguish requests and responses exchanged between
network services based on Definition 2.3. If a network ser-
vice uses an ephemeral port to send a network packet to
a network service on a static port range, we assume it is a
request. Thus, an exchanged request SDEPrq is denoted by

SDEPrq = {(sj
∗, sl

k) | sj
∗ sends a request to sl

k

in the period under consideration,}

2.2. Network Model 25

where k is in the statically assigned port range. Conversely,
this means that a network service using its static port range
to answer a network service on an ephemeral port is defined
as a response. An exchanged response SDEPrsp is written as

SDEPrsp = {(sl
k, sj
∗) | sl

k, sends a response to sj
∗

in the period under consideration.}

♦

Definition 2.7 (First Element of Direct Depenendencies). To
retrieve the first element of a direct dependency SDEP, we
define a relation FIRST.

FIRST : SDEP→ S

♦

Definition 2.8 (Second Element of Direct Depenendencies).
Similarly, to retrieve the second element of a direct depen-
dency SDEP, we define a relation SECOND.

SECOND : SDEP→ S

♦

Example 2.6 (Retrieve Elements from Direct Dependencies).
A direct dependency sDEP = (sj

i , sl
k) the first network ser-

vice sj
i is retrieved by applying FIRST(sDEP) = sj

i . Along

the same lines, for a direct dependency sDEP = (sj
i , sl

k)

the second network service sl
k is retrieved by applying

SECOND(sDEP) = sl
k. ♦

Retrieving the first and second element of a direct depen-
dency is required later for deriving indirect dependencies.

26 2. Network Dependency Analysis

In order to facilitate a subsequent analysis of communi-
cation patterns in order to automatically derive network
service dependencies, a representation of the sequence of
exchanged network packets is required. This representation
of a sequence of exchanged network packets is referred to as
communication histograms.

Definition 2.9 (Communication Histogram). Let us sup-
pose that we analyze network packets Pi ⊆ P, as intro-
duced in Definition 2.4, exchanged within a time window
[tmin, . . . , tmax], with start and end time point tmin, tmax ∈ T
within an IT network. Network services exchanging these
network packets Pi form a set Si ⊆ S. To build a commu-
nication histogram H, we define a bin size ∆t and count
the numbers of network packets exchanged between two
network services in respective time intervals. The num-
ber of bins in a communication histogram H is given by
bins = b (tmax−tmin)

∆t
c.

All communication histograms are defined by

H : S× S→ ({1, · · · , bins} →N0).

♦

In the prior definition, communication histogram bins
{1, · · · , bins} are mapped to N0. In other words, every
time frame bin contains the number of exchanged network
packets.

A communication histogram H for network services s ∈ S
and s′ ∈ S provides an array, containing the numbers of
network packets between s and s′ exchanged in every time
stamp t ∈ [tmin, tmax]. For every exchanged network packet,
assuming it was received during the considered time period
[tmin, . . . , tmax], the corresponding bin tb in the communica-
tion histogram H(s, s′) is incremented H(s, s′)[tb] + +. This

2.2. Network Model 27

is described in Algorithm 1. The corresponding bin tb in the

Algorithm 1 Building communication histograms

1: Input:
2: Observed Packets ⊆ P
3: start time tmin ∈ T
4: Output: The matrix of a set of communication his-

tograms H
5: bins = (tmax − tmin) div ∆t
6:

7: . compute number of bins for communication
histogram H

8: . all histogram vectors are initialized and filled with
zeros

9: . fill histogram bins for every observed network packet
10:

11: for all (sIP, sPort, dIP, dPort, ψ, t) ∈ Observed Packets
12: do . a continuous stream of network packets is

observed and analyzed
13:

14: tb = (t− tmin) mod bins
15: H(SERV(DEV(sIP), ψ, sPort),
16: SERV(DEV(dIP), ψ, dPort))[tb]++

17: return H

communication histogram is determined by tb = (t− tmin)
mod bins, assuming a timestamp t ∈ T.

Example 2.7 (Communication histograms). To illustrate com-
munication histograms, consider the network activities in
Figure 2.1. The timeline denotes the chronological sequence
of exchanged network packets with the corresponding com-
munication histogram bins. The communication histograms

28 2. Network Dependency Analysis

are illustrated in an exemplary manner in Figure 2.2.

1 2 3 4 5 6 7

1 1

0 0 0 0 0

Time

N
um

be
r

of
Pa

ck
et

s

(a) Client→DNS
Server

1 2 3 4 5 6 7
0 0

1

0 0 0

1

Time

N
um

be
r

of
Pa

ck
et

s
(b) Client→Load

balancer

1 2 3 4 5 6 7
0 0 0

1

0

1

0

Time

N
um

be
r

of
Pa

ck
et

s

(c) Load balancer→
web server

Figure 2.2: Example for communication histograms.

Given that we have now abstracted network traffic into
integer vectors referred to as communication histograms,
we are now able to look into network service dependency
discovery. The network model is the underlying ontology
describing our understanding of network devices and how
they interact. This allows a deeper analysis of network
activities based on network traffic through network service
dependency analysis, which is introduced in the following
section.

2.3 Network Service Dependency
Analysis

The previously introduced network model describes our
understanding of network devices, network services and
how they directly interact. As stated previously, network
devices host applications, which interact through network
services. Thus, network services have the primary purpose
of communicating for applications. A wide variety of dis-
tinct applications exist and often these applications do not

2.3. Network Service Dependency Analysis 29

operate independently. On the contrary, applications depend
on each other to provide and support network services and,
thereby, applications. Hence, applications interact with each
other through network services to fulfill a common mission.
Thereby, a common mission causes interacting network ser-
vices to be interdependent with respect to their respective
applications. As applications are opaque within network
traffic, and network packets can only be assigned to a net-
work service, in the follow we focus on introducing network
service dependencies.

2.3.1 Network Service Dependencies

Network services operate on distributed sets of clients and
servers and rely on supporting network services, such as
Kerberos, Domain Name System (DNS), and Active Direc-
tory. To fulfill a network’s mission, network services need
to interact. Since engineers use a bottom-up influenced
divide-and-conquer approach to implement a new task, they
are able to reuse network services and do not need to re-
implement complex customized ones. This leads to multiple
network services interacting for a common high-level task.
Let us assume that multiple distinct network services inter-
act to fulfill a common task. If one of these network services
becomes unavailable, other network services will be affected
over time, since they are dependent on one-another. Poten-
tially, the common task could not be fulfilled (in time). Based
on the previously defined network model, which introduces
direct dependencies between network services, we expand
this notion to network service dependencies. We refer to net-
work services that depend on each other to fulfill a common
task as network service dependencies.

Example 2.8 (A simple network activity (revisited)). A net-

30 2. Network Dependency Analysis

work activity is described in Figure 2.1 and shows multiple
network service dependencies. For example a client hosts an
application, which is linked to a network service launching
a DNS request to a DNS server. The DNS server answers
the client by sending a DNS response. This is a direct de-
pendency as introduced in Definition 2.6. Based on the
answer provided by the DNS server, the client now sends an
HTTP request to a load balancing server. The HTTP request
cannot be sent by the client to the load balancing server, if
the DNS response is not provided by the DNS server. So
from the perspective of the client, the task of contacting the
load balancing server is dependent on successfully resolving
the load balancing server’s IP address. Hence, we say the
load balancing server is indirectly dependent on the DNS
server. The network activity in Figure 2.1 contains more in-
direct dependencies. The direct dependency between client
and load balancing server leads to the load balancing server
forwarding the HTTP request to a web server. Therefore,
we state that the client is indirectly dependent on the web
server. Similarly, the web server retrieves some data through
SQL queries from a database. So, the information, which
the client requested from the web server can only be pro-
vided if the web server is able to retrieve information from a
database. Hence, the client is also indirectly dependent on
the database.

Unfortunately, indirect dependencies are often not docu-
mented and are difficult to discover by relying on human
expert knowledge. Therefore, the purpose of non-intrusive
network service dependency analysis is to automatically
identify indirectly dependent network services based on an-
alyzing network traffic. To automatically learn indirectly
dependent network services, we propose a methodology
called Mission Oriented Network Analysis (MONA) based

2.3. Network Service Dependency Analysis 31

on the normalized form of cross correlation, which is a
well-established methodology for detecting similar signals
in pattern matching applications.

For the purpose of detecting indirect dependencies ISDEP,
we analyze the communication histograms of directly de-
pendent network services in order to derive re-occurring
communication patterns. Detecting re-occurring communi-
cation patterns requires clustering direct dependencies into
indirect dependencies. Before aiming to identify indirectly
dependent network services, we provide a deeper insight
into indirect dependencies. Similarly to previous work, we
distinguish two different types of remote-remote dependen-
cies and local-remote dependencies [Che+08].

client

load balancing server

web server
1. 2.

indirect dependency
direct dependency
client
server

(a) Remote-remote indirect
dependency.

client

DNS server

load balancing server

1.

2.

(b) Local-remote indirect de-
pendency.

Figure 2.3: Example for indirect dependencies.

A local-remote (LR) dependency is an indirect dependency

32 2. Network Dependency Analysis

joining two direct dependencies, if they fulfill the following
criteria: a system must issue a request to a remote system in
order to complete an outstanding request issued to a local
service. Another indirect dependency type is referred to as
remote-remote (RR) dependency and describes the following
communication pattern: a system must first contact one host
before issuing a request to the desired host.

Definition 2.10 (Local-remote dependency). An LR depen-
dency joins two direct dependencies SDEP (see Defini-
tion 2.6), which both have network services hosted by the
same network device as a staring point. An LR dependency
implies that an application causes requests to be sent to dis-
tinct network services, which might or might not be hosted
by distinct network devices. LR dependencies ISDEPLR be-
tween two direct dependencies sDEPi, sDEPj ∈ SDEP, as
introduced in Definition 2.6, are described by

ISDEPLR = SDEP ./HOSTS−1·FIRST=HOSTS−1·FIRST SDEP.

♦

There might be different causes for LR dependencies. For
example, Figure 2.3b shows an LR dependency consisting
of a system issuing a request to a remote system in order
to complete an outstanding request issued to a local service.
An LR dependency could also be caused by a monitoring
application at regular time intervals requesting current mea-
surement values from remote substations.

Definition 2.11 (Remote-remote dependency). RR dependen-
cies ISDEPRR between two direct dependencies is described
by

ISDEPRR = SDEP ./HOSTS−1·SECOND=HOSTS−1·FIRST SDEP.

2.3. Network Service Dependency Analysis 33

♦

Example 2.9 (Remote-remote dependency). An example for
an RR dependency is shown in Figure 2.3b consisting of a
client requesting information from a web server, which is
prefaced with a load balancing server.

Definition 2.12 (Set of indirect dependencies). The set of all
indirect dependencies consists of all RR and LR dependen-
cies and is defined as

ISDEP = ISDEPLR
⋃

ISDEPRR.

♦

After introducing our model of LR and RR dependencies
in Definition 2.10 and Definition 2.11, we will focus on how
these indirect dependencies can be derived. Indirect depen-
dencies join two direct dependencies. Consequently, indirect
dependencies cannot directly be derived by looking at ex-
changed network packets. However, based on exchanged
network packets, direct dependencies, which are possible
candidates for a local-remote or remote-remote indirect de-
pendencies, have to be derived.

Definition 2.13 (Candidates for indirect dependencies). Can-
didates for indirect dependencies are derived based on direct
dependencies and given sDEPi = (sj

i , sl
k), all network ser-

vices hosted by

HOSTS−1(sl
k) = dl or HOSTS−1(sj

i) = dj

are candidates for a LR dependency as introduced in Defini-
tion 2.10 and RR dependency in Definition 2.11. ♦

34 2. Network Dependency Analysis

Let us assume that we found a candidate for an LR depen-
dency ((sj

i , sl
k), (s

j
m, sn

o)). For analyzing whether this candi-
date for an LR dependency really constitutes an LR depen-
dency, their respective histograms are compared. Both (sj

i , sl
k)

and (sj
m, sn

o) are described by communication histograms as
introduced in Definition 2.9. The communication histograms
contain the communication pattern of all involved directly
dependent network services. Normalized cross correlation
finds the best possible alignment between two communica-
tion histograms and assess their correlation. Information
processing by applications can lead to communication pat-
terns being shifted by tdelay. To overcome the lack of a
perfect alignment between two communication networks, we
extend the Pearson distance to normalized cross-correlation
(inspired by [BH01]).

2.3.2 Normalized Cross-Correlation

After introducing the concept of candidates for LR and RR
dependencies previously in Definition 2.13, focus of the fol-
lowing subsection is identifying LR and RR dependencies.
Communication histograms are signals providing a descrip-
tion of direct dependencies that are joined as candidates
for LR or RR dependencies. Given that communication his-
tograms are similar, the direct dependencies are likely to
form an indirect dependency. Thus, communication his-
tograms are compared in order to analyze whether two
direct dependencies constitute an indirect dependency.

Within signal processing, the Pearson product-moment
correlation [ODL07] (PPMC) coefficient has been successfully
used to measure how similar two signals are. The PPMC
coefficient is a measure for the linear correlation between
two variables X and Y. As it measures direction and strength

2.3. Network Service Dependency Analysis 35

of a linear relationship between two variables, the PPMC
coefficient is also referred to as linear correlation coefficient.

Definition 2.14 (Pearson product-moment correlation). The
PPMC coefficient ranges from [−1,+1] and the plus sign
denotes a positive linear correlation, whereas a minus refers
to a negative linear correlation. The linear correlation ρX,Y
between two variables X and Y by

ρX,Y =
E[(X− µX)(Y− µY)]

σXσY
, (2.1)

such that E is the expected value, µZ and σZ denote the
mean and standard deviation of Z. The PPMC coefficient is
a measure of the linear correlation between two variables X
and Y, giving −1 ≤ ρX,Y ≤ +1, such that

•]0,+1] is positive correlation: meaning that when X
increases, Y has a tendency to also increase.

• [−1, 0[is a negative correlation: meaning that when X
increases, Y has a tendency to decrease.

• 0 is no correlation: meaning that when X increases, Y
does not tend to increase or decrease.

♦

Two perfectly correlated variables X and Y will have data
points, which all lie on a straight line. The corresponding
PPMC coefficient for two perfectly correlated variables is
ρX,Y = ±1. The PPMC coefficient measures whether there is
a relationship between two variables X and Y. A mathemati-
cal property of the PPMC coefficient to keep in mind is that,
the PPMC coefficient does not differentiate between depen-
dent and independent variables, but rather states that there

36 2. Network Dependency Analysis

is a relationship between them. So, the PPMC coefficient is
a symmetric measure and will return the same result when
comparing ρX,Y and, vice versa, ρY,X. Similarly, it should
be noted that ρX,Y = 0 indicates there is no relationship
between X and Y. Given that two variables X and Y are
independent of each other, there consequently is no rela-
tionship between the two variables and ρX,Y = 0 would be
returned. However, this result does not allow one to deduce
that X and Y are independent of each other. The PPMC
coefficient can be used to derive a correlation distance called
Pearson distance between two variables.

Definition 2.15 (Pearson distance). The Pearson distance is
defined as the distance between two variables X and Y

d$(X, Y) = 1− ρX,Y, (2.2)

for two variables X and Y. ♦

The purpose of the Pearson distance, which is also re-
ferred to as Pearson correlation distance, is to measure the
similarity between two variables. The Pearson correlation
distance allows comparing the distance between two vari-
ables X and Y. The Pearson correlation coefficient ρX,Y
ranges between −1 ≤ ρX,Y ≤ +1, therefore, the Pearson
distance lies between 0 ≤ d$(X, Y) ≤ 2. However, due to
the fact that negatively correlated variables are not further
pursued, the value range for compared variables X and Y is
0 ≤ d$(X, Y) ≤ +1.

In the context of this work, we are interested in using the
Pearson distance to compare communication patterns. Com-
munication patterns are stored in communication histograms
as described in Definition 2.9. Communication histograms
are integer vectors and, thereby, can be compared by ap-
plying the Pearson distance introduced in Definition 2.15.

2.3. Network Service Dependency Analysis 37

A drawback to the Pearson distance is that it only detects
the similarity between vectors that are aligned. Given that
two vectors X and Y contain the same shifted pattern, the
Pearson distance d$(X, Y) will classify the vectors X and Y
as not being in a linear relationship. An obvious cause for
shifted patterns within communication histogram is network
latency, as information transfer between distinct network de-
vices takes time. In addition, any information processing by
an application can lead to communication patterns between
indirect dependencies being shifted.

Example 2.10 (Information processing within an LR de-
pendency). Let us consider a LR dependency ISDEPLR =

((sj
i , sl

k), (s
j
m, sn

o)). This LR dependency implies that the data

is exchanged between two network services (sj
i , sl

k) is pro-
cessed by an application on network device dj. Processing

this information leads to another network service sj
m ex-

changing information with network service sn
o . Due to the

processing of data on device dj, the request is sent to sn
o tdelay

time steps later. Network latency can also lead to the commu-
nication patterns describing direct dependency (sj

i , sl
k) and

(sj
i , sl

k) being shifted due to the transfer time of a network
packet.

Unfortunately, the Pearson distance as introduced in Defi-
nition 2.15 does not account for linearly dependent vectors
containing shifted patterns. This is a common problem in
template matching applications. Template matching requires
developing techniques for finding areas in an image that are
similar to a template image. This is a similar problem with
respect to comparing two communication histograms that
contain shifted patterns. In Template matching, normalized
cross correlation [BH01; Lew95] has been successfully used

38 2. Network Dependency Analysis

to solve this problem. Thus, to overcome the lack of a per-
fect alignment between two communication networks, we
extend the Pearson distance, introduced in Equation 2.2, to
normalized cross-correlation.

Normalized Cross-Correlation

Whether a shift between communication patterns is caused
by network delay or processing time, both root causes entail
that communication patterns within an indirect dependency
are not perfectly aligned. We, therefore, conduct a compara-
tive analysis of two communication histograms via normal-
ized cross correlation. The communication patterns of both
direct dependencies would be similar, although shifted by
tdelay time steps. In pattern recognition, normalized cross
correlation has been proposed to take a shift, such as tdelay,
into account.

Definition 2.16 (Normalized Cross Correlation). Let us
consider two communication histograms r and s ∈
[0, · · · , τmax − τmin] with an overall number of bins. We
extend Definition 2.2 into normalized cross correlation in
order to take a potential shift between r and s into account.
The Pearson distance is expanded into the normalized cross
correlation $r,s(τ) to measure the similarity between r and s
by:

$r,s(τ) =
1

bins ∑bins
t=0 (rt − µr)(st+τ − µs)

σrσs
, (2.3)

for communication histograms r and s mean value µr and
µs and standard deviation σr and σs, respectively. Applying
Equation 2.3 returns a vector of with bins similarity values.
To identify the point in time tdelay where both signals are

2.3. Network Service Dependency Analysis 39

best aligned is found by computing

tdelay = argmaxτ∈{0,...,(tmax−tmin)} ⊆ N $r,s(τ). (2.4)

The value range for a time delay tdelay ∈ {0, · · · , tmax − tmin}
is dependent on the starting time point tmin and end point
tmax of monitoring network traffic. ♦

Normalized cross correlation returns a measure of similar-
ity between two communication histograms. Thresholding
helps identifying whether two direct dependencies, which
are described by two communication histograms r and s,
constitute an indirect dependency. A threshold θ is used to
automatically identify indirect dependencies by

$r,s(tdelay) ≥ θ (2.5)

If two communication histograms r and s surpass this thresh-
old, we consider both communication histograms r and s to
be correlated and therefore indirectly dependent and shifted
by tdelay. Normalized cross-correlation is applied to all indi-
rect dependency candidates and returns a set ISDEP consist-
ing of all LR dependencies ISDEPLR and RR dependencies
ISDEPRR.

Example 2.11 (Indirect dependencies). Based on the example
of network activities given in Figure 2.1, multiple indirect de-
pendencies could be identified. These indirect dependencies
are shown in Figure 2.4. An example for an RR dependency
is the client, who communicates with the load balancing
server, who then communicates with the web server. Also,
the load balancing server exchanging network packets with
the web server, who then goes on to communicate with a
data base constitutes a RR dependency. The network activity
in Figure 2.1 also contains a LR dependency, which consists

40 2. Network Dependency Analysis

client

DNS server

load balancing server

web server Database

Figure 2.4: Example for indirect dependencies within the
network activity shown in Figure 2.1.

of the client resolving an IP address with the help of a DNS
server and then using the IP address to contact a load bal-
ancing server. Figure 2.4 illustrates an example for RR and
LR dependencies.

Based on the network activities shown in Figure 2.1, a
schematic illustration of LR and RR dependencies is shown
in Figure 2.3. We call this newly introduced network service
dependency discovery methodology Mission Oriented Net-
work Analysis (MONA) and evaluate its performance in the
next section.

2.4 Evaluation

The disaster recovery site of an energy distribution network,
provided by an Italian water and energy distribution com-
pany, was available for an experimental evaluation. To allow

2.4. Evaluation 41

network service dependency analysis in the monitored net-
work, network traffic is mirrored using SPAN and RSPAN3

on Cisco switches. SPAN and RSPAN allows a copy of net-
work traffic to be sent to a monitoring network device. As
the network service dependency method developed in the
context of this work is stream based, we attach our module
to the port to which network traffic is mirrored. This allows
us to collect and analyze real-life network traffic based on
a disaster recovery site of an energy distribution network.
Within a critical infrastructure, there are legal restrictions
for accessing a production environment that is safety critical.
Therefore, after a thorough analysis of the production envi-
ronment, in addition to the disaster recovery site, additional
network devices are emulated. Based on this network, we
are able to collect and analyze real-life network traffic.

There are two parts to our experimental evaluation: First,
in Subsection 2.4.1 we show the results of a case study
within an energy distribution network. Within this case
study, MONA was deployed within the data-communication
network of an energy distribution network. Real-life net-
work traffic consists of network services frequently to rarely
interacting and we are able to determine typical response
times. Some network services have a common purpose and
show similar communication patterns. As this network is a
real-life network, absolute knowledge of all network depen-
dencies is not available. During first experiments on data
sets from the disaster recovery site, we often found new
network dependencies that had been previously forgotten
by the network operators. Therefore, the second part of
our evaluation, which is described in Subsection 2.4.2, is

3Richard Froom, Balaji Sivasubramanian, and Erum Frahim. Implementing
Cisco IP Switched Networks (SWITCH) Foundation Learning Guide: Founda-
tion Learning for SWITCH 642-813. Cisco Press, 2010.

42 2. Network Dependency Analysis

based on synthetically created data sets. We generate syn-
thetic networks based on response times observed in the
operational, real-life network and conduct a comparative
evaluation with Orion [Che+08], Sherlock [Bah+07] and NS-
DMiner [Nat+12]. In addition to allowing response times
to be varied, synthetic networks allow experimenting with
network size, number of direct and indirect dependencies,
and the number of exchanged network packets.

2.4.1 Real-life Case Study

For our case study the disaster recovery site of an energy
distribution network was available and provided a test envi-
ronment for network traffic analysis. The test environment
provided a continuous stream of real-time network traffic,
and MONA was deployed within this test environment. All
direct dependencies observed by MONA within the test
environment are presented in Figure 2.5 by edges. Nodes
represent network services in this representation and we
replace IP addresses by host names to allow for easier read-
ability. Separated by a colon, ports are appended to the
host names. To illustrate the different subnetworks within
the monitored network, nodes are colored depending on
what subnetwork they are located in. The legend lists all
subnetworks present within the experimental environment.

Direct Network Service Dependencies

Figure 2.5 shows a network device named mferp2, which is
a communication server. This communication server mferp2
is connected to multiple substations, which are identified as
TTY-T[125-158]. The communication server mferp2 hosts a
network service (introduced in Definition 2.2). This network
service belongs to an application, which sends requests (see

2.4. Evaluation 43

Figure 2.5: Direct network service dependencies in an energy
distribution network.

44 2. Network Dependency Analysis

Definition 2.6) to all substations in order to be updated with
current measurement information.

In Figure 2.5 the node mferp2:* represents the network
service hosted by the network device mferp2, which sends
requests to port 111 of substations TTY-T[116-158]. Net-
work device mferp2 has two distinct IP addresses that are
located in two different subnetworks 192.168.1.0/24 and
192.18.200.0/24. Aside from sending requests to multiple
substations, mferp2 receives requests from SCADA server
muel2 on port 5002. SCADA server muel2 also sends re-
quests to mferp1 on port 5002 and communication gateway
fetg1 on port 5001.

Human Machine Interfaces (HMI) for medium voltage
substations msoz17, msoz19 and msoz22 are able to send
requests to Supervisory Control and Data Acquisition
(SCADA) servers muel1 and muel2 on port 2000. Another
HMI xsod14 is in charge of supervising high voltage sub-
stations and sends requests to scada server xuel1 on port
2000.

The experimental environment also consists of emulated
network devices, for monitoring and control purposes two
network devices rapone and raponeNetViz were added. As
the purpose of this evaluation is to focus on network ser-
vice dependencies found within real-life energy distribution
networks, for the purpose of further evaluating detected in-
direct service dependencies, these two network devices were
excluded from further evaluation. Although this monitored
network is a SCADA network, the mission of the analyzed
network is irrelevant and the same methodology can be ap-
plied to all TCP/IP and UDP/IP based data-communication
networks.

2.4. Evaluation 45

Indirect Network Service Dependencies

Direct network service dependencies, as shown in Figure 2.5,
are the basis for detecting indirect network service depen-
dencies. Direct network service dependencies imply that
network packets are exchanged between network services.
Therefore, complete knowledge of all currently existing and
non-existing direct dependencies is given, assuming that
all network traffic within a monitored network is mirrored.
Complete knowledge of all existing and non-existing indi-
rect network service dependencies is more difficult to attain.
Real-life data-communication networks are dependent on
third party software and operators do not have complete
knowledge. Especially in critical infrastructures, often entire
subnetworks are built and maintained by third parties.

In the context of this experimental evaluation, the ground
truth of all existing indirect dependencies within this exper-
imental environment is derived with the help of network
operators. Monitored network devices are listed by network
operators and all other network devices - including network
services hosted on these network devices - are excluded from
further analysis. For monitored network devices, network op-
erators list all indirect dependencies known to them. Within
the time period 28% of the analyzed network traffic involved
non-monitored network devices and, thereby, this communi-
cation was excluded from further analysis. Non-monitored
network devices within the experimental environment are
unknown to the network operators involved within our re-
search project. This precaution was taken in order to ensure
a known ground truth for existing and non-existing indirect
dependencies is given.

The ground truth consisting of a list of all monitored net-
work devices and existing indirect dependencies between

46 2. Network Dependency Analysis

them, was derived before deploying MONA in the test en-
vironment. Knowledge of indirect dependencies detected
by MONA could bias network operators in the sense that
they include indirect dependencies detected by MONA into
their list of existing indirect dependencies within the test
environment. Thus, the ground truth was derived before
discussing MONA’s detected indirect dependencies with
network operators to avoid network operators being biased.
Figure 2.6 shows all indirect network service dependencies
that MONA in the experimental environment.

All identified indirect network service dependencies were
classified as true positives. However, absolute knowledge
of all existing and non existing network dependencies can
only be assumed. This is why we will additionally evaluate
MONA based on synthetic networks in Subsection 2.4.2.

Our evaluation illustrates how important Definition 2.1
is. Network device mferp2 is one physical device, but is
assigned two IP addresses from two different subnetworks.
Therefore, we linked the nodes representing both network
services involving mferp2 by adding an edge, although they
are hosted within two different subnetworks. Multiple LR
dependencies join communication server mferp2 to multiple
substations TTY-T[116-158]. Additionally, mferp2 commu-
nicates via muel2 with Human Machine Interface (HMIs)
msoz19 and msoz22. Another HMI msoz17 wants to access
information about the substations TTY-T[116-158]. For this,
first muel1 is contacted, who passes the request on to muel2.
As an energy distribution network is a critical infrastructure,
it needs to be ensured that all communication pathways
are always available. Hence, regularly, back up servers and
alternate communication pathways are tested, even if no
information needs to be transmitted. All indirect network
service dependencies detected by MONA (and shown in

2.4. Evaluation 47

Figure 2.6: Network service dependency detected by MONA
within an energy distribution network.

Figure 2.3) were verified by operators as true positives. To
allow a more in-depth investigation of MONA’s performance
and sensitivity, we expand our experimental evaluation to
synthetic networks in the following subsection.

48 2. Network Dependency Analysis

2.4.2 Comparative Evaluation

As every network relies on third party software, which might
have their own network dependencies unknown to network
operators, collecting a complete ground truth of a network
is very difficult. Also, one network is not enough to in-
vestigate performance and limitations of a network service
dependency detection methodology. A synthetic network
generator allows for varying network size, varying number
of direct and indirect dependencies, and communication
patterns can be varied as well.

To ensure the synthetic network generates realistic commu-
nication patterns, we extracted communication patterns of
known network service dependencies from the experimental
environment in Subsection 2.4.1. Communication patterns
vary depending on the number of network flows exchanged
per communication between indirectly dependent network
services. We used this information to develop a random
network generator based on the network simulator ns-34.
We added some random variations to the communication
delays to mimic noise, which is always present in real-world
applications. The developed random network generator can
create synthetic data sets with a known ground truth for
evaluating our network dependency analysis.

Network simulation is widely used to design and eval-
uate new protocols and applications. The chosen network
simulator in the context of this work is ns-3. and it has
been used in numerous domains from simulating peer-to-
peer, wireless and ad-hoc networks, business processes or
peer-to-peer network. Figure 2.7 illustrates the network sim-
ulation as an ns-3 module. The ns-3 module is comprised of

4Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang. ndnSIM: NDN
simulator for NS-3. Tech. rep. NDN-0005. NDN Project, July 2012.

2.4. Evaluation 49

Random Network Generator

TCP UDP

Network layer (IPv4, IPv6)

Link layer (PPP, 802.11, etc.)

Figure 2.7: Network layer model of the ns-3 based random
network generator.

a random network generator, which is built to run on top of
any available link-layer protocol model/on top of network-
layer/transport-layer protocols. For our experimental eval-
uation, link, network, and transport layers are provided by
ns-3. Based on the random network generator, we randomly
generate networks with varying communication patterns
and a predefined number of network nodes and indirect de-
pendencies. The focus of the experimental evaluation based
on synthetic networks is to conduct a detailed analysis of
MONA’s performance and sensitivity compared to other
state of the art network service dependency methods.

Comparable Network Dependency Analyzers

We chose two state of the art network service dependency
analyzers named Orion [Che+08], NSDMiner [Nat+12] and
Sherlock [Bah+07] for a comparative evaluation with MONA.

Orion

Orion [Che+08] introduces the terminology of local-remote
and remote-remote dependencies also relied on in the con-
text of this work and leverages the delay distribution between
network services to infer network dependencies. Orion in-
fers network dependencies between two network services

50 2. Network Dependency Analysis

when the delay between consecutive accesses follows a con-
stant pattern. As an example for such a constant pattern,
consider an application, which needs consecutive access to
two distinct network services. Then, the delay between to
dependent network services will follow a non-random distri-
bution. It has already been pointed out previously [Mar13]
that Orion contains several fixed constants that are selected
without prior data calibration, which might lead to short-
comings in the robustness of the proposed solution. Also,
Orion requires a minimum flow count to analyze the delay
distribution of network services. Within the context of this
work, Orion was reimplemented according to the algorithm
described in the context of [Che+08]. Therefore, we will
evaluate Orion’s and MONA’s robustness with respect to
thresholds in the following.

NSDMiner

NSDMiner [Nat+12] is another methodology for network
service dependency discovery. NSDMiner locates nested con-
nections, wherein one complete request-response pair starts
and completes between the request and response of another
connection. So the located nested connection has to match
an expected recursive connection pattern. Network flows
are monitored for their chronological order, and NSDMiner
detects a network service dependency when the probability
that the life span of connections to one network service is
included in the life span of a connection to another network
service is higher than a predefined threshold. NSDMiner
focuses on detecting local-remote dependencies.

2.4. Evaluation 51

Sherlock

Sherlock [Bah+07] infers network service dependency based
on co-occurrence within network traffic. Similar to NSD-
Miner, Sherlock builds on the notion of nested connections.
However, unlike NSDMiner, Sherlock learns LR and RR de-
pendencies. As a result, the strength of a network service
dependency is computed as the probability of a network
service being accessed within a time interval in which an-
other network service is accessed. It focuses on detecting
remote-remote dependencies and leverages packet capture
running at each end-host to infer dependencies. After infer-
ring network service dependencies, a directed dependency
graph is built, modeling network device states as up, trou-
bled, or down. Within the context of this work, Sherlock was
reimplemented according to the algorithm described in the
context of [Bah+07].

After introducing three state of the art network service
dependency methods that can be compared to MONA, an
effective testing method for comparing these four methods
is needed. As a score for testing the methodology, we rely
on the F-measure, the weighted harmonic mean of Recall
and Precision, hence we shortly discuss the F-measure score
in the following.

Testing Methods

To allow a comparative evaluation of all network service
dependency methods, we randomly generate network traffic
with the previously described ns-3 based module. For an
evaluation, it is important to have a known ground truth.
Ground truth means that each data-communication network
contains network traffic between directly and indirectly de-
pendent network services, and we have knowledge of all

52 2. Network Dependency Analysis

existing network service dependencies. We focus the ex-
perimental analysis on determining how correct the learned
network service dependency model is in comparison to other
network dependency analyzers. As we are able to control
the direct and indirect dependencies in the network, we are
able to analyze precision and recall of the learned model.

Precision and Recall

True Positive (TP) refers to a correctly learned indirect de-
pendency, False Positive (FP) refers to a learned indirect
dependency that is false and False Negative (FN) is an ex-
isting indirect dependency that was not found. Based on
these values we can compute Precision and Recall with the
following definitions.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
We are equally interested in maximizing precision and recall.

F-measure

To evaluate whether an evaluated network service depen-
dency method equally maximizes precision and recall, we
rely on the F-measure. The F-measure combines precision
and recall into a common measure

2 · Precision · Recall
Precision + Recall

which represents the weighted harmonic mean of recall and
precision. The F-measure allows differential weighting of
recall and precision, however as we place equal importance

2.4. Evaluation 53

on precision and recall, we balance precision and recall
equally.

Test Environment

All of the following experiments with synthetic data sets
were executed on the same architecture. The environment
used for the evaluation is the following:

• Virtual machine on Macbook Pro, 2,8 GHz Intel Core
i7, OSX 10.10.4 (14E46)

• OS:Ubuntu Release 12.04 (precise) 64-bit, Kernel Linux-
3.13.0-32-generic

• CPU: Intel Core i7-4558U @ 2.80GHz (1 processor)
• RAM: 8 GB, 1600 MHz DDR3

Performance Evaluation

Based on the previously described random network genera-
tor, we are able to conduct experiments to test performance
and sensitivity of the network service dependency discovery
methodologies.

To provide a proof that our proposed methodology is
sound, we first evaluate the performance with respect to all
approaches. Afterwards, a sensitivity analysis will evaluate
the robustness of MONA’s threshold compared to Orion’s in
order to address potentially limiting factors.

In order to analyze the quality of all network service de-
pendency discovery methods, we generate a data-communi-
cation network containing 100 network devices with 30 indi-
rect dependencies. We adjusted the threshold for all method-
ologies to reflect the best possible result.

The results of this evaluation are shown in Figure 2.8 and
illustrate how MONA outperforms Orion, Sherlock and NS-

54 2. Network Dependency Analysis

MONA Orion NSDMiner Sherlock

0.6

0.7

0.8

0.9

1
Pr

ec
is

io
n

an
d

re
ca

ll

Precision Recall

Figure 2.8: Comparison of Orion’s, NSDMiner’s and Sher-
lock’s precision and recall compared to MONA’s.

DMiner in terms of precision and recall rate. More precisely
we evaluated whether Orion, NSDMiner and Sherlock are
also able to detect correctly identified indirect dependen-
cies uncovered by MONA. To make the comparison more
comprehensible, we chose a synthetic network setup, which
is most similar to what we finding within the previously
mentioned real-life power distribution network. Within this
synthetic network setup shown in Figure 2.8, MONA’s pre-
cision and recall value is 1. To facilitate comparison, we
deploy Orion, NSDMiner and Sherlock on the same data
set, which reveals that Orion outperforms NSDMiner and
Sherlock.

2.4. Evaluation 55

Orion’s precision and recall values are equivalent, while
NSDMiner and Sherlock have a higher recall then precision
value.

NSDMiner’s performance is partially due to the methodol-
ogy only detecting local-remote dependencies. Therefore, it
misses remote-remote dependencies and we will exclude it
from all further evaluation as all other methodologies detect
LR and RR dependencies.

Sherlock detects every pair of frequently occurring net-
work services as depending on each other. Thus, it creates a
large number of false positives, and typically these false pos-
itives include frequently communicating network services.
Looking into the precision and recall values of Sherlock, it
seems clear that Sherlock aims to maximize its recall value.
Similar to Rippler’s experiment [Zan+14], the results of our
experiments verified this property.

Orion maximizes precision and recall equally, however,
MONA outperforms Orion’s, Sherlock’s and NSDMiner’s
results. As we are interested in equally maximizing precision
and recall, we rely on the F-measure in the following as a
test methodology.

Figure 2.9 shows the F-measures based evaluation for
MONA, Sherlock and Orion in increasingly large networks
with 10 direct dependencies 20 indirect dependencies. The
number of flows per communication between indirectly de-
pendent network services is varied between 5-10, 5-50 and
5-90.

As all four compared methodologies rely on analyzing
network traffic patterns, a correlation between resulting F-
measure curves becomes apparent. Generally, Orion sur-
passes Sherlock except for smaller networks with less than
275 network devices and 5-50 flows per communication be-
tween indirectly dependent network services. MONA almost

56 2. Network Dependency Analysis

200 250 300 350 400 450 500

0.8

0.9

1

Flows per communication between indirectly dependent network services:
MONA 5− 10 flows 5− 50 flows 5− 90 flows
Sherlock 5− 10 flows 5− 50 flows 5− 90 flows
Orion 5− 10 flows 5− 50 flows 5− 90 flows

F-
m

ea
su

re

Network size

Figure 2.9: F-measures for MONA, Sherlock and Orion with
network traffic containing 20 indirect dependen-
cies.

always surpasses Sherlock and Orion, except for networks
with 475 to 500 network devices and 5-10 flows per commu-
nication between indirectly dependent network services. In
this case Orion surpasses MONA with a margin of less than
0.15 within Figure 2.9 in x-coordinate 0.91 and y-coordinate
460.

Figure 2.10 shows the evaluation for MONA, Sherlock and
Orion based on the F-measure in increasingly large networks
with 70 direct dependencies and 70 indirect dependencies.
The number of flows per communication between indirectly
dependent network services is varied between 5-10, 5-50 and

2.4. Evaluation 57

200 250 300 350 400 450 500
0.4

0.6

0.8

1

Flows per communication between indirectly dependent network services:
MONA 5− 10 flows 5− 50 flows 5− 90 flows
Sherlock 5− 10 flows 5− 50 flows 5− 90 flows
Orion 5− 10 flows 5− 50 flows 5− 90 flows

F-
m

ea
su

re

Network size

Figure 2.10: F-measures for MONA, Sherlock and Orion
with network traffic containing 70 indirect de-
pendencies.

5-90.
MONA’s F-measure results clearly surpass Sherlock’s and

Orion’s in this experimental set up with more direct and
indirect dependencies. Generall, Orion surpasses Sherlock’s
F-measure results except for networks with less than 275 net-
work devices and 5-90 flows per communication between in-
directly dependent network services. For networks with 200
network devices (x-coordinate 200) Sherlock and MONA’s
y-coordinates diverge by less then 0.01 for 5-90 flows per
communication between indirectly dependent network ser-
vices.

58 2. Network Dependency Analysis

Computation Time Analysis

While MONA does not need to be real-time capable, as
network service dependencies generally do not change as
rapidly, it is still necessary to analyze how long computing
network service dependencies take. This allows us to un-
derstand what resources are necessary to process arbitrary
network traffic.

In MONA, computing direct network service dependen-
cies is conducted online, while computing indirect network
service dependencies can be conducted offline. Within the
operational environment, indirect network service depen-
dencies are computed online. Nevertheless, we need to make
sure that network dependency information can be gathered
based on practically relevant data for network traffic in real-
istic scenarios in sensible times.

For this purpose, we use synthetic network traffic data.
Within each of this experiments, the computation time ttime
represents the total amount of time for reading capture file,
potential indirect dependency generation and calculation of
indirect dependencies.

Proposition 2.1 (Computation time). MONA’s computation
time increases superlinearly with the number of distinct TCP
connections between network devices.

In the following, we will conduct multiple experiments, to
investigate whether the computation time is dependent on
the number of TCP connections.

To test Proposition 2.1, Figure 2.11 shows the results of
evaluating the performance of network dependency detec-
tion in a network containing 10 devices, 40 indirect depen-
dencies and an increasing number of TCP connection. The
number of TCP connections was increased from 10 to 410.
This experiment showed that more communication between

2.4. Evaluation 59

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

tcp connections

t s
ec

total time pot. indirect dependencies

Figure 2.11: MONA’s computation time for a single network
size with network traffic containing an increas-
ing number of TCP connections.

network devices, i.e., an increasing number of TCP connec-
tions, leads to an increase of computation time within the
module generating potential indirect dependencies. Overall,
the computation time ttime increases with the number of TCP
connections increasing.

To further investigate whether the number of TCP con-
nections increases MONA’s computation time, we simulated
networks of different size containing the same number of
TCP connections. Similar to the previous experiment illus-
trated in Figure 2.11, we then increase the number of TCP
connections for different sized networks and record MONA’s
computation time. In Figure 2.12 networks with 120, 220,

60 2. Network Dependency Analysis

320, 420, 520, 620 and 920 network devices were simulated
with 30 indirect dependencies.

50 100 150 200 250 300 350 400 450

0.2

0.4

0.6

0.8

1

1.2

tcp connections

t s
ec

netsize: 120 netsize: 220 netsize: 320 netsize: 420 netsize: 520 netsize: 620 netsize: 920

Figure 2.12: MONA’s computation time for multiple network
sizes with network traffic containing an increas-
ing number of TCP connections.

We rely on standard error, mean average deviation MADx̃,
and median deviation to further evaluate how far on av-
erage the computation times for different sized networks
containing the same number of TCP connection diverge. For
a univariate data set x0, x1, . . . , xn−1, the MADx̃ is defined
as the median of the absolute deviations from the data’s
median x̃:

MADx̃ =
∑n

i=1 |xi − x̃|
n

(2.6)

Similarly, the mean x̄ over the same univariate data set with
n elements is defined as

x̄ =
∑n−1

i=0 xi

n
(2.7)

For the same data set, the average mean standard error SEx

2.4. Evaluation 61

is computed

SEx =
∑n−1

i=0 |xi − x|
n

(2.8)

based on the mean standard error SE(xi) for an element xi
with a standard deviation σxi . To compare error measures
over all different sized network which are tested within the
experiment, we average the error measures over all network
sizes.

Error measure Result
Mean standard error 0.059410

Average of the median deviation 0.083820
Average of the middle deviation 0.121169

Table 2.2: Error measures results for the experiment shown
in Figure 2.12.

Error measure results based on Equation 2.6, 2.7 and 2.8
for the experiment shown in Figure 2.12 are shown in Ta-
ble 2.2. The error measure results suggest that regardless
of network size, the number of TCP communications is the
decisive factor for MONA’s computation time. We come to
this conclusion due to the following observation (see Fig-
ure 2.12): increasing the number of TCP connections within
a synthetic network of unvarying size leads to an increase of
computation time.

Sensitivity Evaluation

Orion and MONA both rely on a threshold in order to
quantify indirectly dependent network services.

62 2. Network Dependency Analysis

Proposition 2.2 (Threshold Sensitivity). MONA’s precision
and recall results are less sensitive to the chosen threshold than
Orion’s precision and recall results.

In order to be able to compare both thresholds, we
used our random network generator to create data-
communication networks containing 100 network devices,
60 directly communicating network services and 20 indirect
dependencies. Figure 2.13 show the results of this analysis.
Random networks are generated to mimic communication
patterns of the real-life energy distribution network, which
is a part of our case study, however we are able to increase
specific characteristics. For example, we can simulate net-
works with an increasing number of network devices or
add more indirect dependencies. This allows for testing
the capabilities and limitations of Orion and MONA. To
overcome a possible bias of the results due to the added
random variations, we generated every network multiple
times and averaged the results. As we are interested in
equally optimizing precision and recall, based on the results
of our sensitivity experiment shown in Figure 2.13, we come
to the conclusion that MONA’s threshold is more robust
than Orion’s threshold for medium-sized networks. We
come to this conclusion due to the experiment shown in
Figure 2.13 revealing Orion’s precision and recall values
being optimal for threshold x = 0.17. A lower and higher
threshold x strongly decreases Orion’s precision or recall
value. MONA’s precision and recall values within the exper-
iment shown in Figure 2.13 are less sensitive to threshold
variations then Orion’s.

To further compare MONA’s and Orion’s threshold, we
additionally simulate a larger network containing 450 net-
work devices with 100 communicating network services and
between 120 and 140 indirect dependencies. For a larger

2.4. Evaluation 63

0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

threshold
ra

te
M

O
N

A

RecallMONA PrecisionMONA

0 5 · 10−2 0.1 0.15 0.2
0.2

0.4

0.6

0.8

1

multiplier x

ra
te

O
ri

on
RecallOrion PrecisionOrion

Figure 2.13: Comparison between MONA and Orion in a
medium size network.

network it is even more apparent that MONA’s threshold is
more robust than Orions. The results for this experiment are
shown in Figure 2.14.

Similar to the experiment shown in Figure 2.13, this exper-
iment points out that MONA’s threshold is more robust than
Orion’s as we aim to achieve a high FP rate, while reducing
the overall FN rate. The results of this sensitivity experi-
ment based on synthetically created data sets are shown in

64 2. Network Dependency Analysis

0 5 · 10−2 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

multiplier x

ra
te

PrecisionMONA
RecallMONA

PrecisionOrion
RecallOrion

Figure 2.14: Comparison between MONA and Orion in a
large network.

Figure 2.14 and reflect our previous assessment shown in
Figure 2.13.

By analyzing Orion’s underlying methodology, it becomes
apparent why Orion’s threshold is less robust within syn-
thetic networks which recreate communication patterns of
an energy distribution network. In Orion’s own experimen-
tal evaluation, Orion has a high rate of TP and a low rate of
FN indirect dependencies in data-communication networks
with small delays or huge amount of network communica-
tion between indirect dependent network services. However,
not all data-communication networks fulfill such criteria.
Given that communicating network devices are physically
distributed as for example remote terminal units within an
energy distribution network, delays automatically increase
compared to physically neighboring network devices.

Proposition 2.3 (MONA’s Threshold Sensitivity (see θ in
Equation 2.5)). Within networks containing large numbers of

2.4. Evaluation 65

direct dependencies and no indirect dependencies, MONA becomes
more sensitive to the chosen threshold.

To assess the sensitivity of our introduced approach
MONA, we generated a network containing 500 network
devices and 500 direct dependencies. In other words, this
network contains a lot of communication between network
services, but it does not contain any indirect dependencies
that could be identified. The results of this analysis are
shown in Figure 2.15.

50 100 150 200 250

0.2

0.4

0.6

0.8

n number of identified indirect dependencies

p
pr

ob
of

id
en

ti
fie

d
in

di
re

ct
de

pe
nd

en
cy

Figure 2.15: Results for MONA for network traffic containing
no indirect dependencies.

In Figure 2.15 it becomes apparent that normalized cross
correlation identifies similar communication patterns. There-
by, although all communication patterns are not caused by
present indirect dependencies, MONA assigns indirect de-
pendency candidates higher probability values. By choosing
a higher threshold, such false positive indirect dependency

66 2. Network Dependency Analysis

candidates can be excluded from indirect dependencies iden-
tified by MONA. Based on this experiment we come to the
conclusion that Proposition 2.3 holds as networks with a
large number of direct dependencies make MONA more
sensitive to its threshold.

Generating synthetic networks with 500 network devices
and 500 direct dependencies illustrates the drawbacks to
any correlation-based methodology by showing that a lot of
communication leads to false indirect dependencies being
assigned a probability higher than zero. Thus, a domain-
appropriate threshold has to be chosen carefully, to avoid
false positive indirect dependencies being identified.

2.5 Discussion

Automatically identifying network service dependencies in
large, distributed networks provides tangible benefits to net-
work operators. Large networks consist of multiple network
devices which host applications that interact through net-
work services to fulfill a common goal. This interaction
between distinct network devices results in network service
dependencies. Knowledge of network service dependencies
is helpful for network management as this enables network
operators to minimize downtime and costs, while preparing
for and responding to system failures. Large, distributed
networks often contain a high number of network service
dependencies, hence we introduce an automated approach
to non-intrusive network service dependency mining.

Non-intrusive network service dependency mining ap-
proaches analyze network traffic in order to deduce existing
network service dependencies. Network traffic consists of
continuously exchanged network packets. To analyze net-

2.5. Discussion 67

work traffic for existing network dependencies, we formalize
exchanged network packets into direct dependencies. As net-
work traffic consists of network packets that are continuously
exchanged over time, a time series of direct dependencies is
available for further data mining.

Based on the time series of direct dependencies observed
within monitored networks, we abstract direct dependencies
into communication histograms. By abstracting observed
network traffic into communication histograms, we are able
to use normalized cross correlation for deriving network ser-
vice dependencies. The stream-based discovery of network
service dependencies based on normalized cross correla-
tion results in a general framework called Mission Oriented
Network Analysis (MONA).

To investigate MONA’s ability to correctly identify existing
network service dependencies, we conduct a real-life case
study based on an energy distribution network. In the con-
text of the case study, network operators provide a ground
truth by listing all known indirect network service depen-
dencies beforehand. Based on this ground truth, we come
to the conclusion that MONA detects all existing indirect
dependencies within the test environment. In addition, no
false indirect dependencies are derived by MONA. There-
fore, all indirect network service dependencies detected by
MONA are classified as true positives.

Within this case study we also observed that network
operators do not always know all existing network service
dependencies within their infrastructure. Multiple times
MONA was able to uncover network service dependencies
which were previously unknown to operators. Network
service dependencies within our case studies were unknown
to operators due to three reasons:

• third party software,

68 2. Network Dependency Analysis

• network support provided by third parties or

• human error.

Hence network operators could not be trusted to provide
reliable ground truth.

To allow a more in depth evaluation, we rely on syntheti-
cally generated networks and compare MONA to Sherlock,
NSDMiner and Orion. Sherlock is another approach to non-
intrusive network dependency discovery which learns an
inference graph of network service dependencies based on
co-occurrences within network traffic. NSDMiner addresses
the same problem of network service dependency discovery
for network stability and automatic manageability. NSD-
Miner is available as open source software.

Orion is another popular non-intrusive approach. Orion
relies on spike detection based on the delay distribution of
direct dependencies (also referred to as flow pairs) to infer
network dependencies.

After showing precision and recall for all four network
service dependencies, we exclude NSDMiner from further
evaluation as it only detects LR dependencies. In addition,
we point out that Sherlock’s results suggest that it focuses
primarily on optimizing its recall. As we are equally inter-
ested to optimize precision and recall, we rely on F-measures
as a test methodology. A thorough analysis with increas-
ingly large networks and varying numbers of network flows
for communicating indirectly dependent network services
and varying numbers of direct and indirect dependencies
shows that MONA’s F-measure results surpass Orion’s and
Sherlock’s. Our observation regarding Orion failing to detect
high-confidence dependencies is mirrored by the experimen-
tal evaluation of the active network dependency analyzer
Rippler [Zan+14]. Our results from extensive experiments

2.5. Discussion 69

show MONA significantly improving the state of the art.
In this chapter, we showed how network traffic provides

a solid foundation for a non-intrusive detection of existing
network service dependencies. We refer to the introduced
time series data mining technique as MONA and in the
following chapter we will discuss how to use MONA to
automatically derive workflows.

Chapter 3

Workflow Mining

In Chapter 2 Mission Oriented Network Analysis (MONA)
was introduced as a means of automatically detecting net-
work service dependencies based on network traffic. A net-
work service dependency joins two direct communications
and as a result joins four network services into a common
data structure called indirect dependency. To further expand
on this notion, we introduce network service dependencies
as a basis for mining workflows. First, in Section 3.1, we pro-
vide a general introduction to the topic of workflow mining.
Second, in Section 3.2, we introduce how we rely on net-
work service dependency analysis to mine workflow events
based on network traffic. We model detected network ser-
vice dependencies with a probability space. Based on this
probability space, we model workflows with Hidden Markov
models (HMMs see [RJ86] for more information on HMMs).
To test the ability of the introduced workflow mining ap-
proach to detect workflows in real-life applications, a case
study is conducted within the disaster recovery site of an
energy distribution network. Additionally, in Section 3.3, net-
work vulnerability assessment is introduced as an example
for using workflows.

71

72 3. Workflow Mining

3.1 Introduction

Workflow and business process models describe the underly-
ing dependencies of network devices and network services
within data-communication networks. Thus, they can be
used as a foundation for context-aware information systems
as this enables a security information and event manage-
ment system to take the overall workflow into account while
processing security information. The process of taking the
overall workflow into account is also referred to as opera-
tional impact assessment. Operational impact assessment
can be used to assess the impact of a software vulnerability
on a monitored data communication network. For more
information on operational impact assessment of software
vulnerabilities, see Section 3.3.

The task of managing distinct information, such as soft-
ware vulnerabilities and security events, is fulfilled by secu-
rity information and event management (SIEM) systems or
unified security management. Within the cyber security com-
munity, SIEM systems and unified security management are
in huge demand. Thus, the cyber security community has
developed an increasing interest in workflows. Workflows
represent orchestrated, repeated patterns of business activ-
ity1. Business activities allow for the systematic organization
of resources into processes. Processes rely on multiple re-
sources in order to provide a service or process information.
Within enterprise networks, multiple workflows exist in or-
der to fulfill different challenges for a company. Workflows
typically involve multiple network devices and applications
provided by multiple third party vendors.

1Franchise Tax Board, State of California. Business Process Management
Center of Excellence Glossary. 2009. url: https://www.ftb.ca.gov/
aboutFTB/Projects/ITSP/BPM_Glossary.pdf.

https://www.ftb.ca.gov/aboutFTB/Projects/ITSP/BPM_Glossary.pdf
https://www.ftb.ca.gov/aboutFTB/Projects/ITSP/BPM_Glossary.pdf

3.1. Introduction 73

Unfortunately, workflows are often not documented since
it is a very time consuming process to design handmade
workflow models and, additionally, requires a lot of knowl-
edge about a monitored infrastructure. Thereby, manual
workflow modeling is expensive. Additionally, handmade
workflows are often idealized descriptions of the process un-
der consideration and often describe more what should be
done, rather than the actual process. See [Van+03] for a de-
tailed description of recurring issues with manual workflow
modeling.

Verifying whether a workflow really describes the actual
process is an additional, time consuming process. For hand-
made workflows it is difficult to detect if a workflow model
is outdated due to concept drifts that have occurred. Thus,
workflow models need to be verified regularly and updated
when necessary. To counter all these issues, the problem
of automatically mining workflows has been introduced al-
ready in 1998 [AGL98].

Workflow mining aims to automatically derive structured
descriptions of executed tasks within an infrastructure. Com-
monly workflow mining relies on event logs, which directly
list what task was executed at a specific point in time. Often
also the user executing the task is listed. Event logs are for
example provided by Enterprise Resource Planning (ERP)
software. An example for an event log is given in Table 3.1.

Relying on event logs, workflow mining methods automat-
ically deduce workflows as sequences of activities executed
by users. Given that no logs of activities executed by users
are available, to the best of our knowledge no workflow
mining algorithms exist. We argue that other sources for
workflow mining exist. For example, network traffic contains
information about ongoing workflows within a network.

74 3. Workflow Mining

Case 18:
Description Event User Time

Start Alice 2016/02/05 15:00
Register order Alice 2016/02/05 15:00
Prepare shipment Alice 2016/02/05 15:00
Ship goods Alice 2016/02/05 15:01
Send bill Alice 2016/02/05 15:01
Receive payment Alice 2016/02/06 17:00

End Alice 2016/02/06 17:00

Table 3.1: Event log produced by ERP software.

Workflows within data-communication networks consist of
executed network activities that link multiple cyber assets.
For example, a workflow could describe the following net-
work activity: a user aims to retrieve information from a
web server. This workflow is illustrated in Figure 2.1 and
describes multiple resources (client, DNS server, load bal-
ancing server, web server and database), which interact to
provide information to a user. In order to continuously pro-
vide information to users, multiple cyber assets interact. This
results in a repeatable pattern of business activity, which is
observable as a recurrent network activity.

We argue that network service dependencies are basic
building blocks for deriving repeatable patterns of business
activity. Business activities are observable as interaction
between network services with a common underlying pur-
pose such as providing services or processing data. Hence,
network service dependency analysis provides the basic
building blocks for learning workflows. To automatically
derive workflows based on network traffic in the following
Section 3.2, we propose a methodology relying on network
service dependency mining techniques introduced before.

3.2. Workflow Model 75

3.2 Workflow Model

As described previously, we assume that organizations have
workflows translating into network activities which lead
to interactions between cyber assets. Interactions between
cyber assets can be observed within network traffic. Hence,
we argue that network traffic can serve as a foundation for
workflow mining.

We come to this conclusion due to the following observa-
tion: Network traffic consists of network packets, which are
exchanged between applications hosted by network devices
in order to share information to fulfill a common task. This
common task corresponds to a so-called workflow event.
Over time, we are able to record sequences of workflow
events. Workflow events consist of distributed applications
hosted on network devices interacting through network ser-
vices to fulfill a common task. Moreover, mining sequences
of workflow events provides the foundation for deriving
Hidden Markov Model based workflows. The derivation of
workflow events is based on MONA, which we introduced
in Chapter 2. In the following, we introduce how we model
workflow events based on automatically detected network
service dependencies.

3.2.1 Event Logging

The purpose of workflow mining in the context of this work
is to construct a structural representation of recurrent ac-
tivities with an infrastructure. Workflow mining (see Sec-
tion 5.4) relies on event logs in order to deduce a workflow
model. Generally, event logs within most workflow mining
approaches are supposed to list activity descriptions and
contain references to resources such as, for example, cyber

76 3. Workflow Mining

assets. As in the context of this work we aim to derive work-
flows by relying on network traffic as a source of information,
we rely on direct dependencies to derive so-called event logs.
Event logs serve as input for the workflow mining approach
introduced in the context of this work.

Definition 3.1 (Activity). The purpose of activities is to link
network services S, which are introduced in Definition 2.2,
to activity descriptions. Activity description are given as
a non-empty alphabet Σ and based on this information we
define an activity labeling function aname as

aname : PS \ {∅} 7→ Σ∗

such that sets of network services from S are mapped to
activity descriptions. An activity set AS is defined by:

AS := {name ∈ Σ∗ | ∃S′ ⊆ S : aname(S′) = name}

for activity descriptions name ∈ Σ∗ and a set of network
services S. To identify which activities network-services
are linked to, we define relation DESCRIBES. Relation
DESCRIBES is defined as:

DESCRIBES ⊆ S× A

We define DESCRIBES as

DESCRIBES = {(s, name) | ∃S′ ⊆ S

: ∃s ∈ S′ ∧ aname(s) = name}

Slightly misusing formal notation we write DESCRIBES(sj)
= ai for sj ∈ S and ai ∈ AS .

♦

3.2. Workflow Model 77

Example 3.1 (Activity). From this definition it follows that
we write AS = {a0, · · · , ai, · · · , an−1} for n activities. Ta-
ble 3.2 illustrates activities for the workflow described in
Figure 2.1. For example the Domain Name Server (DNS) in
Figure 2.1 translates domain names into IP addresses with a
network services mapped to port number 53 with the UDP
protocol. Surfing the world wide web relies on a network
service either linked to port 80 or port 8080 and the TCP pro-
tocol. In order to provide database information, a network
service is linked to port 118 and the UDP protocol.

We use wildcards to cluster ports within the ephemeral
port range and represent clusters by the character “*”. Clus-
tering ephemeral ports was previously introduced in Defi-
nition 2.3. Within the ephemeral port range, ports are dy-
namically assigned by an operating system. Thus, the same
request sent at different points in time is very likely to be
sent from different ports within the ephemeral port range.
Therefore, separately analyzing port numbers within the
ephemeral port range provides no additional information.
The ephemeral port range is generally used to request infor-
mation. Thereby, network services for requesting informa-
tion are linked to port “*” and they can rely on the UDP or
TCP protocol.

Activity ID Network Service Port Protocol Activity description
a0 s17, s2 53 UDP translate domain names

into IP addresses
a1 s1, s2, s3 80, 8080 TCP surf the world wide web
a2 s15 118 UDP provide database information
a3 s1, s2, s3, s17 * UDP, TCP request information

Table 3.2: Activities based on Figure 2.1.

Based on Definition 3.1 the activities shown in Table 3.2
are defined as follows:

78 3. Workflow Mining

• aname({s17, s2}) = "translate domain names into IP
addresses"

• aname({s1, s2, s3}) = "surf the world wide web"

• aname({s15})= "provide database information"

• aname({s1, s2, s3, s17}) = "request information"

By analyzing network traffic, we are able to identify net-
work services by port number and protocol, and with Defi-
nition 3.1 we are able to link network services to names for
workflow activities. Based on the workflow illustrated in
Figure 2.1, Example 3.1 describes how network services are
linked to activities.

Generally, two different types of ports are distinguished:
dynamic and static ports.

The range of ephemeral ports varies, although efforts of
standardizing ephemeral port ranges have been made by the
IANA. The range of ephemeral ports is a preset parameter.
There are two negative occurrences linked to automatically
preset the ephemeral port range: the ephemeral port range
could be chosen too large or too small. An ephemeral port
range chosen too large leads to statically assigned ports being
erroneously assumed to be dynamic ports. An ephemeral
port range chosen too small leads to dynamically assigned
ports being wrongly assumed to be static ports. Thereby,
should the ephemeral port range be assumed too small,
the number of activities increases. Given that the number
of erroneously assigned ports increases, network service
dependency discovery may lead to biased results. We use
activities to derive event logs in the following.

Definition 3.2 (Workflow event log entry). Based on activi-
ties (see Definition 3.1), network devices (see Definition 2.1),

3.2. Workflow Model 79

and communication histograms (see Definition 2.9), we de-
rive workflow events WFE as

WFE ⊆ D× A× D× A× H

for source and destination network device di, dj ∈ D, activi-
ties for source and destination network device aj, al ∈ A and
a communication histogram hm ∈ H. ♦

Source Destination Communication Histogram
Hostname Activity Hostname Activity

Client a3 DNS Server a0 h0
Client a3 Load balancing a1 h1

server
Load balancing a3 Web Server a3 h2

server
Web server a3 Database a2 h3

Table 3.3: Workflow event log for the workflow shown in
Figure 2.1.

Example 3.2 (Workflow event log). Based on network flows,
a simple workflow as shown in Figure 2.1 could lead to the
workflow event log shown in Table 3.3. Event logs contain
references to the source and destination point of a commu-
nication. Within Table 3.3, source and destination point
of communication are network devices and represented by
hostnames. Every network device is linked to an activity,
and the communication between the two network devices is
described by a communication histogram.

Workflow event logs are the basis for deriving workflow
events based on indirect dependencies based on MONA as
introduced in Chapter 2.

80 3. Workflow Mining

3.2.2 Probability Space

Previously, we introduced MONA as a novel methodology
for network service dependency discovery. In the context
of this work, we introduce network dependency analysis
as a basis for workflow mining. Detecting network service
dependencies in an enterprise network is limited to a set
of possible network service dependencies. The underlying
characteristics of an enterprise network lead to recurring
network service dependencies. Modeling network service
dependency discovery as a probability space [Kol50] implies
that the occurrence network service dependency is a random
experiment with a fixed set of possible outcomes.

Network service dependencies are separated into two dif-
ferent categories. As discussed above, similarly to previous
work, we distinguish remote-remote (RR) dependencies and
local-remote (LR) dependencies [Che+08]. Examples for
both dependency types are shown in Figure 2.3. Colloqui-
ally introduced, a LR dependency implies that a local host
requires information from a remote host before issuing an-
other request to second remote host. An example for a LR
dependency ISDEPLR is shown in Figure 2.3b.

An RR dependency refers to the following communication
pattern: A host contacts another remote host, who then goes
on to contact another remote host. Figure 2.3a shows an
RR dependency ISDEPRR. For more information on network
service dependencies, which are also referred to as indirect
dependencies, we refer to Section 2.2. In the following exam-
ple, we will introduce network service dependencies shown
in Figure 2.1 in order to lay the foundation for an ongoing
example.

Example 3.3 (Network service dependencies). Based on the
workflow shown in Figure 2.1, Figure 3.1 shows three in-

3.2. Workflow Model 81

client

DNS server

load balancing server

indirect dependency ι0

client

load balancing server

web server

indirect dependency ι1

load balancing server

webserver

database

indirect dependency ι2

direct dependency
client
server

Figure 3.1: Indirect dependencies within the workflow
shown in Figure 2.1.

direct dependencies. An LR dependency ι0 links a direct
dependency (introduced in Definition 2.6) between client
and DNS server to the direct dependency between client and
load balancing server. An RR dependency ι1 links a direct
dependency between client and load balancing server to the
direct dependency between load balancing server and web

82 3. Workflow Mining

server. Another RR dependency ι2 joins the direct depen-
dency between load balancing server and web server to the
direct dependency between web server and a database.

LR dependencies and RR dependencies ι0, ι1, ι2 ∈ ISDEP
are indirect dependencies consisting of direct dependencies
from SDEP. Each indirect dependency joins two distinct
direct dependencies, respectively.

We use MONA to detect how multiple network services,
and thereby network devices, interact for a common higher
purpose. This information is not obvious when looking into
workflow event logs. Thereby, we consider network service
dependencies as a foundation for deriving hidden states
within our HMM workflow model.

Network service dependency discovery relies on normal-
ized cross correlation, as described in Chapter 2, and pro-
vides an heuristic approach for deriving indirect network
service dependencies.

Network service dependency discovery is an experiment
as it can be repeated a number of times and will provide
an outcome for each repetition. Also, we assume that past
outcomes of the experiment provide no information about
future outcomes. In other words, we assume that, due to
an infrastructure and its workflows constantly evolving, net-
work service dependencies can change. Therefore, we chose
a probability space [Kol50] to represent network service
dependency discovery.

Definition 3.3 (Probability space of network service depen-
dencies). Network service dependency discovery results

3.2. Workflow Model 83

in indirect dependencies, which we understand as atomic
events ι. The set of all indirect dependencies is referred to
as Ω. In addition, network service dependency discovery
results in a set of observed indirect dependencies F and the
set of all possible indirect dependency events F . The results
of network service dependency discovery are described by a
probability space (Ω,F , P) with

(1.) a set of all possible indirect dependencies Ω,

(2.) a set of all possible indirect dependency set F , and

(3.) a probability function P : F → [0, 1].

F ⊆ P(Ω) such that F is a σ-algebra due to the following
criteria being fulfilled:

• All possible indirect dependencies Ω are a part of the
set of all possible indirect dependency sets Ω ∈ F ,

• an arbitrary independent event set F ∈ F , such that
Ω \ F ∈ F , and

• is closed under countable unions, such that F0, F1 ∈
F =⇒ F0 ∪ F1 ∈ F .

A probability function P : F → [0, 1] mapping F to [0, 1]
with P(Ω) = 1, such that for an event set F ′ ⊆ F

P(F ′) = ∑
F∈F ′

P(F).

To derive a probability function P, we take a closer look
into indirect network service dependencies. An indirect de-
pendency ι ∈ ISDEP joins two direct dependencies. Due to
every direct dependency describing the communication be-
tween two network services, the elementary building blocks

84 3. Workflow Mining

for every indirect dependency are network services. Thus,
an indirect dependency ι is a tuple of four network services
(s0, s1, s3, s4).

Given an event set F with n distinct indirect dependencies
ι, the number of occurrences CF(s) of a network service s ∈ S
is derived by

CF(s) = ∑
ι∈F

[s ∈ ι].

Based on the number of occurrences CF(s) of a network
service s ∈ S, the overall number of occurrences CF(ι) of
every network service within an indirect dependency ι can
be derived by

CF(ι) = ∑
s∈ι

CF(s).

Based on this information, the probability P(ι) of an indirect
dependency ι ∈ F is defined as follows:

P(ι) =
CF(ι)

∑ιi∈F CF(ιi)
.

Thus, overall, the probability for all indirect dependencies Ω
is

P(Ω) = ∑
ι∈Ω

P(ι) = 1.

♦

Network service dependencies capture how multiple dis-
tinct activities serve a common higher purpose. Network
service dependency discovery estimates indirect dependen-
cies based on communication patterns, which essentially are
noisy observations. The upper level of our HMM workflow
is a Markov process and the states are unobservable as activ-
ities serving a higher purpose cannot directly be observed

3.2. Workflow Model 85

by monitoring network traffic. Thus, we rely on network ser-
vice dependencies to derive hidden states within our HMM
workflow in the following subsection.

3.2.3 Hidden States Model

We use the previously introduced probability space (Ω, F ,
P), which is derived based on network service dependency
discovery, to derive an HMM describing an enterprise net-
work’s workflow. Network service dependency discovery is
used to analyze network traffic in order to observe sets of
indirect dependencies F ⊆ F . The event set F = {ι1, ι2 . . . ,ιn}
consists of n observed indirect dependencies. Observed in-
direct dependency sets F are the basis for modeling hidden
states within an HMM workflow.

Definition 3.4 (Hidden States). Let an event set F = {ι0, ι1
. . . ,ιn} consist of n observed indirect dependencies. Indirect
dependencies ISDEP join two distinct direct dependencies
SDEP. However, two indirect dependencies ι0, ι1 ∈ F can
contain the same direct dependency δ0. We refer to two
indirect dependencies ι0 and ι1 as overlapping in δ0. Based
on indirect dependencies within an observed event set F, a
set X with no overlapping direct dependencies is determined
by

NoOverlap(X) =6 ∃ ι0 ∈ X : ∃ι1 ∈ X \ {ι0}
: ∃δ0 : δ0 ∈ ι0 ∧ δ0 ∈ ι1.

The set of hidden states X is derived based on

X := chooseOne(argmax
X∈P(F)

NoOverlap(X)

|x|).

86 3. Workflow Mining

Should there be two or more possible hidden state sets with
the same maximum number of hidden states, then a random
one is chosen by chooseOne. Randomly choosing a hidden
state set could affect the accuracy of the overall sequence of
hidden states within the HMM workflow model. ♦

Example 3.4 (Hidden States). Figure 3.1 illustrates three
indirect dependencies ι0, ι1, ι2 ∈ ISDEP contained in the
workflow shown in Figure 2.1. Indirect dependencies rep-
resent an activity serving a higher purpose. Indirect de-
pendencies are derived by analyzing communication pat-
tern, which essentially constitute noisy observation. The set
X = {{ι0, ι2}, {ι1}} corresponds to all sets consisting of indi-
rect dependencies with no overlapping direct dependencies.
Thus, within our HMM workflow, the states are hidden as ac-
tivities serving a higher purpose cannot directly be observed
by monitoring network traffic. Thus, we rely on network
service dependency discovery to derive hidden states within
our HMM workflow. The indirect dependency ι1 overlaps
with ι0 on the direct dependency client → load balancing
server. In addition, ι1 overlaps with ι2 on the direct depen-
dency load balancing server→ web server. Thus, there are
two possible sets that have no overlapping direct dependen-
cies: The set containing a single indirect dependency ι1 and
its complement containing ι0, ι2. Based on Definition 3.4, the
set of hidden states is the set with the maximum number
of elements. Thus, given all sets with no overlapping direct
dependencies X = {{ι0, ι2}, {ι1}}, the set of hidden states
is X = {ι0, ι2}. The set of hidden states is illustrated in
Figure 3.2.

3.2. Workflow Model 87

client

DNS server

load balancing server

ι0

load balancing server

webserver

database

ι2

direct dependency
client
server

Figure 3.2: Hidden states within the workflow shown in Fig-
ure 2.1.

Definition 3.5 (Candidates for state transitions). Based on an
event set F = {ι1, ι2 . . . , ιn} consisting of n observed indirect
dependencies and set of hidden states X, the remaining
observed indirect dependencies C̃ that do not constitute
hidden states X is derived by

C̃ = F \ X.

The set of state transition candidates C captures indirect
dependencies that overlap with two hidden states. This is

88 3. Workflow Mining

the underlying foundation for deriving state transition prob-
abilities within an HMM workflow. The set of candidates for
state transitions C is

C =
{

ι0 ∈ C̃ | ∃(ι1, ι2 ∈ X)[δ0 ∈ ι0∧

δ0 ∈ ι1∧
δ1 ∈ ι0∧

δ1 ∈ ι2]
}

.

♦

Example 3.5 (Candidate for state transitions). Figure 3.1
illustrates three indirect dependencies ι0, ι1, ι2 ∈ ISDEP con-
tained in the workflow shown in Figure 2.1. Based on ob-
served indirect dependencies, the hidden state set of indi-
rect dependencies with no overlapping direct dependencies
X = {ι0, ι2} is derived.

The remaining observed indirect dependency C̃ = {ι0,
ι1,ι2} \ {ι0, ι2} = {ι1} is a candidate for a state transition
due to its overlapping direct dependencies. The indirect
dependency ι1 overlaps with ι0 on the direct dependency
client→ load balancing server. In addition, ι1 overlaps with
ι2 on the direct dependency load balancing server → web
server. The overlapping is understood as a state transition
between the two hidden states ι0 and ι2. Thereby, we come to
the conclusion that the set of candidates for state transitions
is C = {ι1}, which is shown in Figure 3.3.

In this subsection, we presented our model of hidden
states in Definition 3.4 and described the concept of candi-
dates for state transitions in Definition 3.5. This provides the

3.2. Workflow Model 89

underlying foundation for introducing our HMM workflow
in the following Subsection 3.2.4.

DNS

lbs

ws

db

direct dependency
client
server

lbs load balancing server
ws webserver
db database

DNS

lbs

lbs

ws

db

Figure 3.3: Candidate for state transitions within the work-
flow shown in Figure 2.1.

90 3. Workflow Mining

3.2.4 Hidden Markov Model Workflow

Based on activities that were introduced in Definition 3.1,
an unsupervised temporal clustering has to be achieved to
deduce sequences of activities, which are referred to as work-
flows, are represented as Hidden Markov Models (HMMs).
We chose to represent workflows as HMMs as this allows
a probabilistic analysis of transitions between activities and
discovering a probabilistic workflow model from activities.
Observations are identified based on network packets ex-
changed between network devices through network services
utilized by each activity. We use HMM workflows as a means
for representing network service dependencies as hidden
states and consider direct dependencies as observables gener-
ated by hidden states. Given a sequence of observations, and
an HMM, the probability of the observation sequence given
the model can be derived. Based on network service depen-
dency discovery, we are able to introduce a novel approach
for unsupervised workflow discovery, assuming temporal
consistency and cyclically repeated communication patterns.

Normalized cross correlation provides a heuristic ap-
proach for detecting network service dependencies and the
result is described by a probability space (Ω,F , P) described
in Subsection 3.2.3. Observed indirect dependencies F ∈ F
are the basis for modeling a set of hidden states X and a
set of candidates for state transitions C. A monitored net-
work may have a fully meshed topology, i.e., all network
devices could be interconnected. In addition, every network
device could use its entire static port range to host com-
municating network services. We rely on normalized cross
correlation and an algorithm inspired by the Baum-Welch
algorithm (see [Wel03] for more information) as offline learn-
ing methodologies to provide an efficient heuristic for deriv-

3.2. Workflow Model 91

ing an HMM workflow. In the following we will introduce
the underlying HMM workflow.

Definition 3.6 (HMM). We model a workflow as a first-order
hidden Markov model (HMM). An example for an HMM is
given in Figure 3.4.

Xt−1 Xt Xt+1

Y1 Y2 Y3

Figure 3.4: A Hidden Markov Model (HMM).

Our first-order HMM is based on the introduction to
HMMs provided by Jurafsky et al. [JM09]. A HMM workflow
λ = (X, Y, A, B, Π) is defined as follows:

• a set of hidden states X = {ι1, . . . , ιn} and ιi ∈ Ω with
dom(Xt) = Ω,

• a set of output symbols Y = {δ1, . . . , δm} ⊆ SDEP with
dom(Yt) = P(SDEP),

• a state transition matrix A : Ω×Ω→ [0, 1],

• an observation matrix B : Ω× SDEP→ [0, 1], and

• an initial state distribution vector Π over X.

There are two assumptions to fulfill for first-order HMMs.
The first one being the Markov assumption, which states
that the probability of a particular state only depends on the

92 3. Workflow Mining

previous state. In the following we write ιt to denote ι ∈ Xt.
The Markov assumption for an indirect dependency ι, which
constitutes a hidden state, observed over time {ι1, ι2, · · · , ιn}
is

P(ιt | ιt−1, ιt−2, . . . , ι1) = P(ιti | ιt−1
i).

The second assumption is the assumption of output inde-
pendence. Similarly, we write δt to denote δ ∈ Yt. Output
independence refers to an output observation δ only depend-
ing on the state that produced the observation ι. Given a
direct dependency δ, which constitutes an observation, ob-
served over time Y = {δ1, . . . , δm}, output independence is
defined by

P
(

δt | ιt, · · · , ιt−1, · · · , ι1, δt, δt−1, · · · , δ1
)
= P

(
δt | ιt

)
.

By analyzing network traffic over time, windowing is
achieved by a function LINK, which associates time win-
dows W with hidden states X, output symbols Y and a tuple
counting how the number of occurrences N0 for direct de-
pendencies SDEP. Windowing is achieved by the following
function:

Link : W → dom(X)× dom(Y)×P(SDEP×N0).

In the following, we will denote consecutive time windows
as wt and wt+1. ♦

Example 3.6 (MONA over multiple time windows). Table 3.4
gives an example for three time windows w1, w2, and w3,
considering the workflow described in Figure 2.3, hidden
states shown in Figure 3.2 and a state transition illustrated
in Figure 3.3. Slightly missusing notation, the direct depen-
dency occurrence counter set M is also used as a function

3.2. Workflow Model 93

Time window Hidden state set X, candidate for state transition set C
and direct dependency occurrence counter set M

w1 ({ι2
(

δ3(sc
∗, sDNS

53), δ1(sc
∗, slbs

80)
)
};

{};
{(δ1, 5), (δ3, 3)})

w2 ({ι1
(

δ1(sc
∗, slbs

80), δ2(slbs
∗ , sws

80)
)
};

{} ;
{(δ1, 5), (δ2, 4)})

w3 ({ι2
(

δ3(sc
∗, sDNS

53), δ1(sc
∗, slbs

80)
)

; ι3

(
δ2(slbs

∗ , sws
80), δ4(sws

∗ , sdb
118)

)
};{

ι1

(
δ1(sc

∗, slbs
80), δ2(slbs

∗ , sws
80)
)}

;

{(δ1, 10), (δ2, 7), (δ3, 8), (δ4, 6)})

Table 3.4: Example for multiple time windows.

M : δ → N in order to derive the number of occurences of
members of its set.

Time window w1 consists of a hidden state set X = {ι2},
an empty state transition set C = {} and a set of tuples
counting how often direct dependencies δ1 and δ3 occur.
For example, network services hosted on a client c sent 5
network packets to a load balancing server lbs within time
window w1. Similarly, 3 network packets were exchanged
between client c and DNS server DNS.

Time window w2 consists of a hidden state set X = {ι1},
an empty state transition set C = {} and a set of tuples
counting how often direct dependencies δ1 and δ2 occur.
For example, network services hosted on a client c sent 5
network packets to a load balancing server lbs within time
window w2. Similarly, 4 network packets were exchanged
between load balancing server lbs and web server ws.

94 3. Workflow Mining

Within a time window w3, two indirect dependency ι2
and ι3, which do not contain identical - “overlapping”- di-
rect dependencies are observed. Thus, ι2 and ι3 are joined
with a hidden state set X. Since ι1 contains direct depen-
dencies that are also contained within ι2 and ι3, we consider
ι1 overlapping with ι2 and ι3. Thereby, ι1 indicates a state
transition from ι2 to ι3. A client c communicates with a DNS
server and a load balancing server (see ι2). As ι1 indicates a
state transition, we are able to see that ι2 leads to the load
balancing server communicating with a data base (see ι3).

Definition 3.7 (State transition matrix). Given that multiple
time windows w ∈W are analyzed, the set of hidden states
in a time window w is derived by w(X), such that the set of
all hidden states

X′ =
⋃

w∈W
w(X).

Given that ιi, ιj ∈ X′ the frequency of occurrence for state
transitions from ιi to ιj is derived by

Caij = ∑
w∈W

[∃(ιi, ιj ∈ X′ ∧ δ0 ∈ ιi, δ1 ∈ ιj ∧ δ0 6= δ1) :

ιm(δ0, δ1) ∈ wn(C)].

The frequency of occurrence for state transitions Caij from
hidden state ιi to ιj is normalized over the overall frequency
of occurrence of all state transitions starting in hidden state
ιi, such that

aij =
Caij

∑q={1,...,|X′ |} Caiq

.

3.2. Workflow Model 95

Based on the previously described equation, we are able to
learn parameter aij, allowing us to build a state transition
matrix

A =

ι1 ι2 . . . ιn

ι1 a11 a12 . . . a1n
ι2 a21 a22 . . . a2n
...

...
...

. . .
...

ιn an1 an2 . . . ann

within an HMM λ = (X, Y, A, B, Π) over multiple tum-
bling windows {w1, . . . , wn} ∈ W, given that n time win-
dows were observed. Within communication networks, gen-
erally such a state transition matrix is generally sparse. ♦

Example 3.7 (State transition matrix). Considering the work-
flow described in Figure 2.3, hidden states shown in Fig-
ure 3.2 and a state transition illustrated in Figure 3.3, an
example for a state transition matrix A is given in the fol-
lowing. Given hidden states X and a candidate for state
transition set C, based on Equation 3.7 the following state
transition matrix A is derived. The hidden states X and can-
didate for state transition set C in the context of this example
is:

• Hidden states X = {ι1(δ11(sc
∗, sDNS

53); δ12(sc
∗, slbs

80)),
ι2(δ21(slbs

∗ , sws
80); δ22(sws

∗ , sdb
118))},

• Candidate for state transition set
C = {ι3δ12(sc

∗, slbs
80); δ21(slbs

∗ , sws
80)}.

96 3. Workflow Mining

A =

(ι1 ι2

ι1 0 1
ι2 1 0

)

This state transition matrix A has a12 = 1 and represents a
state transition from ι1 to ι2. As we consider state transitions
to be bidirectional, there is also a state transition from ι2 to
ι1 leading to a21 = 1.

Definition 3.8 (Observation matrix). Similarly, an emission
probability bi(δk) for direct dependency δk being emitted in
hidden state ιi is derived as

bi(δk) =
∑w∈W w(M(δk))

∑w∈W ∑δ∈M w(M(δ))
,

where the frequency of a direct dependency δk occurring
in a time window w ∈ W is computed by w(M(δk)). The
previous equation is the foundation for deriving an obser-
vation matrix B, which represents the probability of state
transitions within an HMM λ = (X, Y, A, B, Π), such that

B =

δ1 δ2 . . . δm

ι1 b1(δ1) b1(δ2) . . . b1(δm)
ι2 b2(δ1) b2(δ2) . . . b2(δm)
...

...
...

. . .
...

ιn bn(δ1) bn(δ2) . . . bn(δm)

.

♦

3.2. Workflow Model 97

Example 3.8 (Observation matrix). Considering the work-
flow described in Figure 2.3, hidden states shown in Fig-
ure 3.2 and a state transition illustrated in Figure 3.3, an
example for an observation matrix B is given in the follow-
ing. The hidden states X and candidate for state transition
set C in the context of this example is:

• Hidden states X = {ι1(δ11(sc
∗, sDNS

53); δ12(sc
∗, slbs

80)),
ι2(δ21(slbs

∗ , sws
80); δ22(sws

∗ , sdb
118))}, and

• Frequency of occurrences
{(δ11, 6), (δ12, 4), (δ21, 2), (δ22, 2)}.

This leads to the following (2× 4) observation matrix B:

B =

(δ11 δ12 δ21 δ22

ι1 0.6 0.4 0 0
ι2 0 0 0.5 0.5

)

Definition 3.9 (Initial state distribution vector). In addition,
an initial state distribution vector Π consists of counting the
occurrences of a hidden state ιi over n time windows and
normalized by the overall number of hidden states in all
time windows. This is computed by

π(ιi) =
∑w∈W [ιi ∈ w(X)]

∑ι∈X′ ∑w∈W ι ∈ w
(3.1)

for multiple time windows w ∈W and a set all hidden states
X′ observed over all monitored time windows. Thereby, the
more time windows a hidden state is to be observed in, the
higher the hidden state’s initial probability. ♦

98 3. Workflow Mining

Example 3.9 (Initial state distribution vector). Considering
the workflow described in Figure 2.3, hidden states shown
in Figure 3.2 and a state transition illustrated in Figure 3.3,
an example for an initial state distribution vector Π is given
in the following. The hidden states X observed within three
time windows are:

• w1({ι2
(

δ3(sc
∗, sDNS

53), δ1(sc
∗, slbs

80)
)
};

• w2({ι1
(

δ1(sc
∗, slbs

80), δ2(slbs
∗ , sws

80)
)
};

• w3({ι2
(

δ3(sc
∗, sDNS

53), δ1(sc
∗, slbs

80)
)

;

ι3

(
δ2(slbs

∗ , sws
80), δ4(sws

∗ , sdb
118)

)
};

This leads to the following initial state distribution vector
Π:

Π =
(ι1 ι2 ι3

0.25 0.5 0.25
)

Definition 3.7, Definition 3.8 and Definition 3.9 enable an
HMM to be learned by observing network traffic within an
monitored network traffic based on network service depen-
dency analysis.

Definition 3.10 (HMM Workflow-based Impact Assessment).
HMM workflow-based impact assessment aims to link
events, such as for example identified software vulnerabil-
ities, IDS, IPS or FW events, to affected workflows. Given
an HMM workflow λ = (X, Y, A, B, Π), events are modeled
as external events, which are associated with network ser-
vices Sa f f ected. Based on these network services Sa f f ected, a

3.2. Workflow Model 99

set Xi=0
a f f ected of hidden states X, which are affected at time

horizon i = 0 is derived by

Xi
a f f ected = CC

((
Sa f f ected, map(asSet, X)

))
where CC denotes connected components of the hypergraph
(Sa f f ected, Nodeset). ♦

Viterbi Algorithm

Given

• a HMM workflow model λ = (X, Y, A, B, Π), and

• observed direct dependencies Y, which are emitted by
hidden states X

HMMs can be used to infer how output strings Y were
generated. There are many possible state sequences given
an HMM λ and an observed sequence y = y1y2 . . . yT ∈ Y,
there are many possible state sequences x = x1x2 . . . xT ∈ X
that produce y. State sequences are also referred to as paths.

Many applications are interested in deriving the path with
the highest probability of occurring ζ∗. For HMMs that
describe ongoing workflows within a data-communication
networks, the most probable path corresponds to the se-
quence of events with the highest likelihood of taking place.

ζ∗ = argmax
ζ

P(y|ζ) (3.2)

The path with the highest likelihood of taking place is also
referred to as Viterbi path as the Viterbi algorithm is a dy-
namic programming method for deriving this path. The
Viterbi algorithm (see [For73] for more details) is computed
by:

Initialization: V(1, k) = P(y1|k) · ζk (3.3)

100 3. Workflow Mining

Recursion allows deriving the most probable state sequence
P(x1 . . . xT |y1 . . . yT) which produces the first t observations
that have k as a final state. Recursion is derived by:

Recursion: V(t, k) = max
x∈X

(P(yt|k) · ax,k ·Vt−1,x) (3.4)

Every chosen V(t, k) must be stored in order to retrieve the
overall path ζ∗. The joint path and emission probability is

P(y|ζ∗) = V(T, y) (3.5)

For an HMM with |S| states, the overall the Viterbi algorithm
has the complexity O(|S|2T).

DNS

lbs

DNS

lbs

lbs

ws

db
ι0 ι1

lbs

ws

ws

db

δ0 δ1
δ2 δ3

0.05 0.05
0.05

0.05

start

0.30.6 0.50.4

p(ι1)p(ι0)

Figure 3.5: HMM workflow model example.

Example 3.10 (Viterbi Algorithm). To illustrate how the
Viterbi Algorithm is applied on an HMM workflow model,
Figure 3.5 introduces a HMM workflow model example. The

3.2. Workflow Model 101

HMM workflow model illustrates state transition probability
as well as the observation matrix. In addition, the initial
starting probability is denoted by p(ι0) and p(ι1), which are
shown within Figure 3.5. The Viterbi algorithm assumes a
sequence of observables is known, so we suppose that the
sequence δ0, δ0 is observed.

start

0.18

0.02

Observation δ0

Observation δ0

0.0027

p(
ι 0
) ∗

p(
δ 0
|ι 0
)
=

0.6
∗ 0

.3
=

0.1
8

p(ι1) ∗
p(δ

0 |ι1)
=

0.4 ∗ 0.05
=

0.02

p(ι0) ∗ p(ι0 →
ι1) ∗ p(δ0 |ι1)

=
0.18 ∗ 0.8 ∗ 0.05

=
0.0072

p(ι1) ∗ p(ι1 → ι1) ∗ p(δ0|ι1) = 0.02 ∗ 0.2 ∗ 0.6 = 0.0024

Figure 3.6: Viterbi algorithm on an HMM workflow model
example.

The initialization step of the Viterbi algorithm takes the
initial starting probability p(ι0) or p(ι1) of a hidden state
ι0 or ι1 and combines this information with the probability
p(δ0|ι0) or p(δ1|ι1) of the observed symbol δ0 being emitted
within the hidden state. The result from the initialization
step is now taken as the probability p(ι0) and p(ι1) of being
in the hidden state. The hidden state most likely to emit the
observed symbol δ0 becomes a part of the Viterbi path. The
Viterbi path is drawn in red within this example.

102 3. Workflow Mining

The recursion step of the Viterbi algorithm takes the prob-
ability of being in a hidden state, the probability of emitting
an observed symbol given that one is within the hidden
state and then, additionally, takes the probability of a state
transition into account. Figure 3.6 shows the initialzation
step of the Viterbi algorithm as well as the first recursion
step with respect to the hidden state ι1.

start

0.18

0.02

Observation δ0

0.0216

0.0027

p(
ι 1)
∗ p
(ι 1
→

ι 0)
∗ p
(δ

0|ι
0)
=

0.0
2 ∗

0.3
∗ 0

.6
=

0.0
03

6

p(ι0) ∗ p(ι0 → ι0) ∗ p(δ0|ι0) = 0.18 ∗ 0.2 ∗ 0.6 = 0.0216

Figure 3.7: Viterbi algorithm on an HMM workflow model
example.

Figure 3.7 illustrates the first recursion step with respect
to the hiden state ι0. The overall Viterbi path is drawn in red
and consists of the most likely sequence of states.

3.2. Workflow Model 103

3.2.5 Extensions to Factorial Hidden Markov
Model Workflow

The HMM-based workflow and identified Viterbi paths can
be used to derive a Factorial Hidden Markov Model (FHMM)
workflow. FHMM are a special case of an HMM, which were
introduced in [GJ97]. FHMM extend HMM by modeling sev-
erally loosely coupled stochastic random processes. Given
m HMM chains with n states for each variable an HMM
with m× n variables is needed. Thus, applying the forward
or backward algorithm for exact inference quickly becomes
intractable. An example for a two layer FHMM is shown in
Figure 3.8.

X(1)
t−1 X(1)

t X(1)
t+2

y1 y2 y3

X(2)
t−1 X(2)

t X(2)
t+1

Y1 Y2 Y3

Figure 3.8: A Factorial Hidden Markov Model (FHMM) with
two layers.

Every layer within an FHMM is an independent HMM,
but the observation vector depends upon the state of all
layers such that observed direct dependencies depend on
workflows, represented by Viterbi paths, and hidden states.

104 3. Workflow Mining

To represent the dependency of the observation vector on
hidden states and workflows equally, we derive a multi-state
variable as a combination of all states such that

Xt = X(1)
t , X(2)

t , . . . , X(n)
t

for a multi-state Xt at a time t and 1, 2, . . . , n layers. This
multi-state definition is based on the FHMM introduced
in [Che+09]. Within Figure 3.8 the multi-state variable is
Xt = X(1)

t , Xt(2). Additionally, every multi-state variable is
independent from other state variables such that

P(X(n)
t |X

(n)
t−1)

the previous equation holds. A FHMM allows representing
the dependency of observed direct dependencies on existing
workflows, which are detected by the Viterbi algorithm, and
hidden states, which are derived based on network service
dependency detection.

3.2.6 Real-life Case Study

The disaster recovery site of an energy distribution network,
provided by an Italian water and energy distribution com-
pany, was available for non-invasive experimentation. We
integrated our framework into this test network to test the
ability of our newly introduced workflow mining approach
to rediscover workflows based on network traffic. The imple-
mentation of our introduced methodology is stream-based
and provides a continuous analysis of network traffic in or-
der to detect ongoing workflows. Within the operational
environment, network traffic is mirrored by routers and
switches in the test environment. Based on network traffic
within this test environment, we are able to deploy MONA
in order to detect network service dependencies.

3.2. Workflow Model 105

Figure 3.9 shows all network service dependencies de-
tected by MONA by representing network service depen-
dencies as edges and network services as nodes. Based on

Figure 3.9: Network service dependencies detected by
MONA within an energy distribution network.

SCADA protocols, remote terminal units { TTY-T114, TTY-
T117, TTY-T122, TTY-T124, TTY-T126, TTY-T130, TTY-T135,
TTY-136, TTY-T137, TTY-T138, TTY-T140, TTY146, TTY-T147,

106 3. Workflow Mining

TTY-T155, TTY-T157 } in substations of medium voltage ac-
quire data from electrical devices (e.g., programmable logic
controllers, sensors, etc.) and send them via front end servers
mferp1, mferp2 to the supervisory SCADA servers muel1
and muel2 of the power grids main office.

Within the emulation environment two front end servers
xferp1, xferp2 and two supervisory SCADA servers xuel1
and xuel2 are emulated for monitoring high voltage substa-
tions, however no substation for high voltage exists. There-
fore, SCADA software hosted on xuel1 and xuel2 interacts
via xferp1 in search of possible remote terminal units. In
addition, a human machine interface xsod14 is emulated
to represent a network operator in charge of high voltage
substations.

Within this real-life case study all network devices within
the data-communication network of the electrical distribu-
tion company are included, regardless of whether they are
monitored by network operators or not. No ground truth of
all existing indirect dependencies was acquired beforehand,
as MONA’s ability to identify existing indirect network ser-
vice dependencies within this test environment has already
been evaluated in Section 2.4.1. A ground truth for work-
flows within this monitored network would require knowl-
edge of all existing applications and their interactions. As the
company owning this data-communication relies on third
parties to provide services, as most networks do, network
operators are not aware of all workflows within their mon-
itored network. Thus, we discussed indirect dependencies
identified by MONA afterwards with network operators and
all identified workflows were classified as existing indirect
network service dependencies by network operators.

In order to identifying workflows based on analyzing
network traffic, capturing network service dependency dis-

3.2. Workflow Model 107

covery as a probability spaces is the first step and, therefore,
discussed in the following.

Probability Space

The purpose of Figure 3.10 is to illustrate the additional infor-
mation contained in the probability space adds to network
service dependencies. We chose to focus on representing
the number of occurrences of network services within all
observed indirect dependencies to point out characteristics
of a probability space derived based on the network service
dependencies shown in Figure 3.9.

Representing network services as nodes and the num-
ber of occurrences by the node size is obviously a more
self-explanatory representation compared to representing
network service dependencies as nodes. Network service
dependencies link multiple network services and can only
be understood with that knowledge. Of course, representing
network service dependencies as nodes, while preserving
this information is a very challenging task. Especially given
that the number of network service dependencies exceeds
the number of existing network services.

Figure 3.10 shows the number of occurrences network
services within indirect dependencies contained within the
network represented in Figure 3.9. The size of nodes within
Figure 3.10 represent the number of occurrences of all net-
work services. The more frequently a network service occurs,
the larger it is. The representation was inspired by BPMN
2.02 as we model subnetworks as swimlanes to point out
dependencies spanning multiple subnetworks.

To represent the size difference between nodes, we plot

2Bruce Silver and Bruce Richard. BPMN method and style. Vol. 2. Cody-
Cassidy Press Aptos, 2009.

108 3. Workflow Mining

the nodes representing the minimum, average and maxi-
mum number of occurrences of a network service. Given
F = {ι1, . . . , ιn} with n distinct indirect dependencies, the
minimum number of occurrences min(f0) of a network ser-
vice within f0 ∈ F is computed by

min(f0) = min
ιk∈ f0

C(ιk), (3.6)

the maximum number of occurrences min(F) of a network
service within F is computed by

max(f0) = max
ιk∈ f0

C(ιk) (3.7)

and the average number of occurrences avg(F) is derived by

avg(f0) =
∑ιk∈ f0

C(ιk)
n

. (3.8)

Based on Equation 3.6, Equation 3.7 and Equation 3.8,
the minimum, maximum and average number of network
services occurrences are derived.

To point out the different activities that network services
are linked to, we color coded nodes within Figure 3.10. In
Figure 3.10 also an explanatory legend listing an activity’s
color coding and description is added. Additionally, nodes
are labeled according to the hostname of the network device
hosting the network service.

The representation of network services within the test
environment shown in Figure 3.10 points out how important
the SCADA communication server mferp2 is for the activity
(see Definition 3.1) with the description “Management” on
all remote terminal units {TTY-T114, . . . TTY-T157}.

3.2. Workflow Model 109

��
��
��
�
�
��

��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
�

��
��
��
��
��
��
��
�

�����

�����

�����

�����

�����

������

������

�����

������

�����
�����

�����

�����

�����

�����

�����

�����

�����

������

������

�����

�����

������

�������� ��������

��������

��������

��������

��������

��������

��������

��������

������������������������

��������

�������� ��������

�����

��������

������

�����

������

������

������

�����

pdfcrowd.comPRO version Are you a developer? Try out the HTML to PDF API

Legend

 80 Web-Browsing
 113 Identification Protocol (IDENT)
 514 Management
 21 FTP control (command)
 1022 SCADA protocol services
 1023 SCADA protocol services
 * Request
 111 Management

Flow statistics

Minimum: 52 Nodes have 1 ingoing/outgoing flows.
Maximum: 1 Nodes have 35 ingoing/outgoing flows.
Average number of flows: 2.99

Minimum Flows Average Flows Maximum Flows

Figure 3.10: Activities derived from network traffic in an
energy distribution network.

110 3. Workflow Mining

Network services hosted on the gateway servers for
medium voltage substations muel1 and muel2 or the gate-
way servers for high voltage substations xuel1 and xuel2 are
also of above-average importance. Network services hosted
on human machine interfaces (HMI) msoz17, msoz19 and
msoz22 interact with network services hosted by gateway
server muel1 and muel2.

In order to monitor high voltage substations, HMI xsod14
interacts with network services hosted by gateway server
xuel1 and xuel2. According to network operators monitoring
power distribution networks, these network services hosted
by gateway server xferp1, mferp2 and front end servers
muel1, xuel1, muel2 and xuel2 are indeed of above average
importance for keeping a power distribution network safe.

It is also interesting to see that the SCADA communica-
tion server mferp2 has two IP addresses in two different
subnetworks. This can be seen as mferp2 is represented by
two different nodes within two different subnetworks. The
network device model introduced in Definition 2.1 allows
a network device to have two distinct IP addresses. Based
on this definition, we can attribute, as described in Defini-
tion 2.2, network services in different subnetworks to the
same network device.

Compared to the network service dependencies shown in
Figure 3.9, Figure 3.10 shows that a probability space derived
based on detected network service dependencies contains a
lot of additional information.

Discussing Figure 3.10 with security analysts confirmed
that large network service nodes are also of higher impor-
tance for a power distribution network. The HMM state
model is derived based on this probability space representa-
tion in Subsection 3.2.3.

3.2. Workflow Model 111

Workflows

To allow human operators to analyze workflows, workflows
are often represented by BPMN 2.03 or Yet Another Work-
flow Language (YAWL)4. Thus, based on the probability
space, we define the problem of mining such a workflow
structure as the problem of finding the most likely sequence
of hidden states. This is a problem often associated with
HMMs. We are interested in the most likely sequence of
workflows in a given communication data network. Given a
predefined HMM, the most likely complete sequence of hid-
den states can be calculated using the dynamic programming
Viterbi algorithm [For73]. Finding a sequences of hidden
states with a probability that represents how likely a specific
hidden state sequence is to be completed, allows us to deter-
mine whether a specific workflow is in place or not. Such a
sequence of hidden states can be represented by BPMN 2.05

and shown to network operators for qualitative validation of
the workflows.

The hidden state set X, consisting of indirect dependencies,
within the previously described workflows are:

• ι1(δ11(msoz19 : ∗, muel2 : ∗), δ12(muel2 : ∗, muel :
2000))

• ι2((δ21(muel2 : 2000, m f erp2 : 5002), δ22(m f erp2 :
5002, m f erp2 : ∗))

• ι3(δ31(msoz22 : ∗, muel2 : 2000), δ32(msoz22 : ∗, muel2 :
∗))

3Bruce Silver and Bruce Richard. BPMN method and style. Vol. 2. Cody-
Cassidy Press Aptos, 2009.

4Wil M.P. Van Der Aalst and Ter A. H. M. Hofstede. YAWL: Yet Another
Workflow Language. Tech. rep. 2003.

5Bruce Silver and Bruce Richard. BPMN method and style. Vol. 2. Cody-
Cassidy Press Aptos, 2009.

112 3. Workflow Mining

• ι4(δ41(msoz17 : ∗, muel1 : 2000), δ42(muel1 : 2000, muel2 :
∗)

• ι5(δ51(m f erp2 : ∗, TTY − T116 : 111), δ52(m f erp2 :
∗, TTY− T130 : 111)

• ι6(δ61(m f erp2 : ∗, TTY − T136 : 111), δ62(m f erp2 :
∗, TTY− T157 : 111)

• ι7(δ71(m f erp2 : ∗, TTY − T150 : 111), δ72(m f erp2 :
∗, TTY− T145 : 111)

• ι8(δ81(m f erp2 : ∗, TTY − T158 : 111), δ82(m f erp2 :
∗, TTY− T140 : 111)

• ι9(δ91(m f erp2 : ∗, TTY − T147 : 111), δ92(m f erp2 :
∗, TTY− T152 : 111)

• ι10(δ101(m f erp2 : ∗, TTY − T126 : 111), δ102(m f erp2 :
∗, TTY− T125 : 111)

• ι11(δ111(m f erp2 : ∗, TTY − T139 : 111), δ112(m f erp2 :
∗, TTY− T135 : 111)

• ι12(δ121(xsod14 : ∗, xuel1 : ∗), δ122(xuel1 : ∗, xuel2 : ∗))
• ι13(δ131(xuel2 : ∗, x f erp2 : 5002), δ132(xuel2 : ∗, x f erp1 :

5002))

Workflows are sequences of indirect dependencies and two
distinct workflows were identified within the operational
environment. The first workflow is shown in Figure 3.11
and spans human machine interfaces msoz17, msoz19 and
msoz22, which are communicating with medium voltage
substation TTY-T116, TTY-T130, TTY-T136, TTY-T157, TTY-
T150, TTY-T145, TTY-T158, TTY-T140, TTY-T147, TTY-T152,
TTY-T126, TTY-T125, TTY-T139, TTY-T135 through front
end server mferp2 and communication gateways muel2 and
muel1.

3.3. Network Vulnerability Assessment 113

ι1

ι3

ι4

ι2

ι5

ι6

ι7

ι8

ι9

ι10

ι11

Figure 3.11: Workflow for communicating with medium volt-
age substations as identified within the real-life
case study.

The second workflow spans human machine interface xsod14
which relies on communication gateways xuel1 and xuel2
to communicate with high voltage substations. Due to
no high voltage substations being integrated into the test
environment, no communication beyond xuel1 or xuel2 can
be seen.

Both identified workflows have been verified by network
operators as the main workflows within the test environ-
ment.

3.3 Network Vulnerability Assessment

In data-communication networks, network reliability is of
great concern to both network operators and customers.
Therefore, network operators want to determine what tasks

114 3. Workflow Mining

could be affected by software vulnerabilities being exploited
that are present within their data-communication network.
To determine what tasks could be affected by a software
vulnerability being exploited, it is fundamentally important
to know the ongoing workflows in a network. A particular
task may depend on multiple network services, spanning
many network devices.

Current network vulnerability approaches [Mur13] focus
on identifying critical nodes in a network without focusing
on the impact of software vulnerabilities. Even though,
software vulnerabilities can be remotely exploitable and
sometimes even exploits are readily available online, network
vulnerability assessment currently does not take currently
present known vulnerabilities into account.

Developing a deeper understanding of network activities
allows network vulnerability assessment to analyze what
network services would be potentially be affected by a soft-
ware vulnerability that was detected in a monitored network.
Knowing what network activities would be affected by a
software vulnerability being exploited, supports network op-
erators in developing a deeper understanding on how their
network is affected by software vulnerabilities.

Vulnerability Assessment

Network vulnerability assessment consists of two parts: de-
tecting present software vulnerabilities in a monitored net-
work and analyzing a network’s sensitivity to particular soft-
ware vulnerabilities. In a monitored network, vulnerability
scanners detect present software vulnerabilities. According
to the ISO 27005 standard, a vulnerability is a “weakness
of an asset or group of assets that can be exploited by one

3.3. Network Vulnerability Assessment 115

or more threats”6. Whereas an asset is defined by ISO13355
ISO/IEC TR13355-17 as being “anything that can have value
to the organization, its business operations and their conti-
nuity, including information resources that support the orga-
nization’s mission”. Since 1999 the non-profit organization
MITRE defines common Vulnerabilities and Exposures (CVE)
identifiers for software vulnerabilities8. The purpose of vul-
nerability scanning is to identify all software vulnerabilities,
which can be linked to a monitored data-communication
network.

Vulnerability scanning

Vulnerability scanning9 a data-communication network is
the process of assessing whether software vulnerabilities
can be linked to monitored network devices. Software vul-
nerabilities can be linked to operating systems, software or
firmware10. Network vulnerability analysis helps network
operators to verify whether a software vulnerability linked
to an application within the monitored network might en-
danger ongoing workflows. In the following we rely on
the network model introduced in Chapter 2. Vulnerabil-

6ISO ISO and IEC Std. “ISO 27005: 2011.” In: Information technology–
Security techniques–Information security risk management. ISO. 2011.

7ISO ISO and IEC Std. ISO/IEC 13335-1: Management of information and com-
munications technology security—Part 1: Concepts and models for information
and communications technology security management. 2004.

8MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.org/.
2000.

9The Government of the Hong Kong Special Adminis-
trative Region. An Overview of Vulnerability Scanners.
http://www.infosec.gov.hk/english/technical/files/vulnerability.pdf.
2008.

10Bhadreshsinh G. Gohil, Rishi K. Pathak, and Axaykumar A. Patel. “Fed-
erated Network Security Administration Framework.” In: 2013.

116 3. Workflow Mining

ity scanning provides us with a mapping function SVULN,
which links CVE identifiers cveIdj to network services in a
monitored data-communication network.

Definition 3.11 (Link vulnerabilities to network services).
Such that we are able to associate a network service S

SVULN : S→ CVEID

with a CVEID ⊆ Σ∗. Given that network device d is
affected by a vulnerability CVEID, then SVULN(d) =
SVULN(HOSTS(d)) lists all hosted network services are
linked to a vulnerability. ♦

Hence, we assume that an affected operating system will
lead to an application hosted by that network device being
compromised. A software vulnerability with confidentiality
impact signifies the threat of information disclosure, in com-
parison a vulnerability with an integrity impact signifies the
threat of data modification and a vulnerability with avail-
ability impact could lead to performance degradation. As
network activities often span multiple network services for
a higher mission, not only network services directly linked
to a vulnerability could be affected by an attacker exploiting
this vulnerability. All network services relying on requests
or responses from a network service linked to a vulnerability
with a confidentiality, integrity or availability impact could
also be affected.

Consider a vulnerability with a confidentiality impact.
Given that a network service is linked to this vulnerability,
all information provided by other network services could
be leaking, too. Hence, these network services would also
be affected by data theft due to a cyber attacker exploiting
this vulnerability. A network service, which is linked to a
vulnerability with an integrity threat, implies that requests

3.3. Network Vulnerability Assessment 117

sent from this network service could potentially be modified.
Similarly, a network service relying on information from
another network service, which is linked to a vulnerabil-
ity with an availability impact, would also be affected by
performance degradation of this vulnerability.

Definition 3.12 (Workflow-based Vulnerability Assessment).
Based on a workflow HMM λ = (X, Y, A, B, Π) the set of
affected network services AS, which are directly affected by
detected software vulnerabilities is defined as

AS = CC ((SVULN(si), map(asSet, X))) , (3.9)

where CC denotes the connected components of the hyper-
graph given as parameter (asSet maps a tuple into a set of
components). ♦

Definition 3.12 allows the context aware analysis of soft-
ware vulnerabilities by taking affected workflows into ac-
count. This is possible by linking vulnerabilities detected by
vulnerability scanners to network services as introduced in
Definition 3.11.

Motivating Example

The disaster recovery site of an energy distribution network,
provided by ACEA SPA11, which is an Italian water and
energy distribution company, was available for non-invasive
experimentation. Based on this network, we are able to
collect and analyze real-life network traffic and also scan
the network for present software vulnerabilities. Figure 3.9
shows all network service dependencies detected by MONA.
These network service dependencies were considered com-
plete and correctly identified by network operators.
11ACEA SpA. http://www.acea.it/Home2.aspx?lang=en. 2017.

118 3. Workflow Mining

Figure 3.12: Workflow based vulnerability assessment for
vulnerabilities CVE-2007-5423 and CVE-2010-
2075, which were detected on mferp2.

Figure 3.12 shows the result of network dependency based
vulnerability assessment for software vulnerabilities CVE-
2007-5423 and CVE-2010-2075 that were detected via network
scanning on network device mferp2. Both software vulnera-
bilities can be exploited with exploits readily available online.
CVE-2007-5423 is a vulnerability that allows remote attackers
to execute arbitrary code in TikiWiki 1.9.8 and CVE-2010-
2075 is an unauthorized-access vulnerability due to a back-
door in UnrealIRCd 3.2.8.1. TTY-T[116-163] are remote ter-
minal units of substations, which are dependent on requests
from the front end server mferp2. Given the HMM workflow
described in Subsection 3.2.6, workflow-based vulnerability
assessment concludes that TTY-T[116-163] are affected by
CVE-2007-5423 and CVE-2010-2075, which were detected

3.4. Discussion 119

on mferp2. Hence, we understand that both vulnerabilities
affect the workflow communicating with medium voltage
substations, which was illustrated in Figure 3.11. This pro-
vides network operators in charge of patching software vul-
nerabilities with contextual information and allows them to
better prioritize the chronological sequence of patching.

3.4 Discussion

In the context of this chapter, we introduced an approach
for continuous workflow mining based on Mission Oriented
Network Analysis (MONA) (see Chapter 2). MONA is a pas-
sive network service dependency discovery method, which
analyzes network traffic in order to correlate communication
patterns of interacting network services. Based on correlated
communication patterns, MONA is able to derive network
service dependencies within a monitored infrastructure. Au-
tomatic network service dependency discovery is the foun-
dation for deriving an HMM based workflow model. To
the best of our knowledge this is the first workflow mining
approach, which is able to deduce an HMM based workflow
model by analyzing network traffic.

To evaluate the ability of this workflow mining approach
to discover ongoing workflows within an enterprise network,
we tested this methodology within the data-communi-cation
network of an energy distribution company. In the context
of our experimental evaluation, we came to the conclusion
that network operators have a high level understanding of
workflows in their monitored network. However, they lack a
detailed understanding on what applications and network
services are involved. This was generally due to the energy
distribution network, which we were able to use as a test

120 3. Workflow Mining

environment, relying heavily on third party software. Third
party software is often also updated and maintained by the
third party, thus network operators are often not aware of
updates and modifications. Thereby, we concluded that
deriving manual workflow models is costly and requires
specialist know how and good communication within a
company.

Luckily, network traffic based workflow mining can sup-
port network operators in understanding workflows in their
monitored network on application layer level. We discov-
ered thus discrepancies by automatically deriving workflows
and discussing them with network operators. Automatically
derived workflows were found more detailled and accurate
than manually derived information. Although, it should be
noted that applications cannot be observed directly within
network traffic, but are deduced indirectly based on network
services that applications chose to communicate through.

Based on HMM workflows, we have introduced a novel
workflow-based vulnerability analysis approach. Workflows
are derived based on network service dependency analy-
sis, which allows automatically capturing ongoing network
activities with a workflow model. Based on automatically
mined workflows, we are able to link exploitable software
vulnerabilities to ongoing network activities. The proposed
framework is fully automated and is able to integrate vulner-
ability specification from the bug-reporting community and
helps network operators develop a deeper understanding on
how networks are affected by software vulnerabilities.

After investigating network-based vulnerability assess-
ment, in the following we will investigate security infor-
mation and event management with the aim of reducing
the overall number of events and using workflows to add a
contextual understanding of events.

Chapter 4

Event Prioritization and
Correlation

Systems providing real-time analysis with the aim of re-
ducing the overall number of reported low level events are
referred to as Security Information and Event Management
(SIEM) systems. In addition, some SIEM systems focus on
adding contextual information to low level events in or-
der to support network operators with interpreting events.
Workflow mining, as introduced in Chapter 3, allows us
to understand how network services interact within a joint
network activity for a common mission. Thereby, we are
able to link events to ongoing workflows and prioritize them
according to this information. Thus, in the following we will
investigate security information and event management with
the aim of reducing the overall number of events and using
workflows to add a contextual understanding of events.

The structure of this chapter is outlined in the following.
First a general introduction to the topic of event prioritization
and correlation is given in Section 4.1. Section 4.2 describes
how events provided by heterogeneous IDS sensors, IPS
sensors and FWs are normalized, verified and merged. In
the content of this work we have conducted a network de-

121

122 4. Event Prioritization and Correlation

pendency analysis (see Chapter 2) based on network traffic
to identify network activity patterns. Section 4.3 illustrates
how, based on identified network activity patterns, cyber
incidents can be linked to ongoing network activities within
a monitored network. Events are reported by IDS sensors,
IPS sensors or FWs with monitored data-communication
networks. Section 4.4 outlines a systematic evaluation of the
introduced event correlation.

4.1 Introduction

As the United States intelligence community has identified
malicious actors exploiting cyberspace as a top national secu-
rity threat [Cla14], protecting enterprise networks from cyber
attackers has become increasingly important. A first step
to cyber defense is perimeter protection. Perimeter protec-
tion in data-communication networks is primarily achieved
through Firewalls (FWs), which aim to keep cyber attack-
ers out. To achieve in-depth cyber defense, it has to be
assumed that perimeters can be penetrated. To illustrate this
point, IBM’s 2015 cyber security intelligence index1 reveals
that approximately half of all cyber attacks originate from
within a company’s own network. Hence, a second step to
cyber defense is to be aware of malicious events within a
monitored network. For this purpose, Intrusion Detection
Systems (IDSs) have been developed to monitor an enter-
prise network for malicious events. If actions can be taken
based on malicious activities identified by security sensors,
this security system is referred to as Intrusion Prevention
System (IPS). An example for such an action is dropping a
packet that was determined to be malicious and blocking

1IBM Corporation. 2015 Cyber Security Intelligence Index. July 2015.

4.1. Introduction 123

all further traffic from this IP address. Legitimate network
traffic should be forwarded to its intended destination with
no apparent disruption or delay of service.

With the growing deployment of IPS sensors, IDS sensors
and FWs in increasingly large and complex communication
networks, managing information provided by these systems
becomes critically important. An IDS or IPS can either be
a software or hardware-based system and is classified as
host-based or network-based IDS. Network-based IDS or
IPS sensors are generally placed in positions where high
volumes of network traffic occur, as they can only report
on malicious activity that they are able to observe. Similar
to the workflow mining methodology introduced in the
previous chapter, network-based security sensors analyze
network traffic. With, however, a different goal: network-
based security sensors, just as all security sensors, aim to
identify malicious behavior within a monitored network.

Host-based IDS sensors are installed on hosts and locally
monitor activities. Host and network-based IDS or IPS sen-
sors rely on signatures or algorithms to monitor hosts or
networks for malicious activities and resulting reports of
potentially malicious activities are referred to as events. If an
event is caused by an IDS that has observed evidence of ma-
licious abuse, the event is referred to as alert. To summarize:
In the context of this work, on the one hand, any network
activity, whether it is benign or malicious, is referred to as an
event, on the other hand, alerts refer to evidence of malicious
activities reported by security sensors.

IDS, IPS and FW monitor networks in order to detect
malicious activities. These systems are generally based on
a low-level attacker model and therefore report low level
events. Thus, knowledge of both areas, networking tech-
nology and infiltration techniques, is required to correctly

124 4. Event Prioritization and Correlation

interpret large amounts of highly paced low-level events.
Low-level event correlation has been investigated in electric
power systems [WKK07], chemical processes [Zhu+14] and
patient-care monitoring systems [KOB12].

In the context of this work we focus on the interpretation
and correlation of events. We understand events as an exter-
nal manifestation of exceptional conditions occurring during
the everyday operation of software or hardware within a
monitored system. Events are reported cyber incidents, and
events can only be prioritized if the implications of a net-
work service or network device failing are understood. For
example, a cyber incident that is linked to a critical network
service needs to be prioritized over an incident that is linked
to a network service of little importance. Therefore, we pro-
pose low-level event correlation in order to reduce the overall
number of reported events and context-aware event analysis
based on automatically learned workflows. The methodol-
ogy proposed in the following was implemented as software
component referred to Low-Level Correlator (LLC) in the
following sections.

Often, multiple heterogeneous security sensors are de-
ployed to monitor enterprise networks. To allow the integra-
tion of distributed heterogeneous IPS sensors, IDS sensors
or FWs, cyber incidents can be reported as Syslog2 messages.
Syslog messages contain information provided by IPS sen-
sors, IDS sensors or FWs. Depending on the sensor and the
respective configuration, provided information can differ. If
a sensor reports abnormal behavior, the alert could point
towards an on-going cyber attack. If a FW or IPS sensor
detects the cyber incident, these security sensors are also
able to report on actions taken against an observed cyber

2R. Gerhards. The Syslog Protocol. Mar. 2009. url: http://www.ietf.org/
rfc/rfc5424.txt.

http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc5424.txt

4.2. Method Description 125

incident. Unfortunately, network administrators cannot man-
age the number of Syslog messages occurring per second
in a real data-communication network. Hence, an emerging
track of security research [PFV02; NCR02; CLF03; HS14] has
focused on Syslog message correlation to identify potentially
relevant cyber incidents and analyzing cyber incidents.

In the following in Section 4.2, we look into real-time event
analysis with the purpose of reducing the overall number of
reported events. Reducing the overall number of reported
events provides the foundation for operational-impact based
event correlation.

4.2 Method Description

Cyber security sensors, such as IDS sensors, IPS sensors, or
FWs, report on cyber incidents within a monitored network.
These cyber incident reports are referred to as events. Hetero-
geneous cyber security sensors rely on different data formats
to pass on reports on cyber incidents. The goal of LLC is to
provide for event normalization, verification, and merging.
In addition, LLC introduces operational impact based event
correlation based on automatically mined workflows.

Event normalization transforms events with heteroge-
neous data formats into a common data format and is in-
troduced in Subsection 4.2.1. Sometimes events mention
potential vulnerabilities being exploited with the monitored
network. Of course, vulnerabilities within a monitored net-
work can only be exploited if they exist within the network
without any countermeasures addressing them, e.g., added
patches or FWs blocking malicious actors from accessing the
vulnerability. Thus, vulnerability scanners have the aim of
identifying vulnerabilities within a monitored network. The

126 4. Event Prioritization and Correlation

purpose of event verification is to link events to vulnerabili-
ties within a monitored network and determine whether a
vulnerability has been detected by vulnerability scanners to
be present on the targeted network device or not. Event veri-
fication is described in Subsection 4.2.2. Often a single cyber
incident can be lead to multiple events being reported. Event
merging aims to fuse events that were caused by the same
cyber incident. This is presented last in Subsection 4.2.3.

4.2.1 Event Normalization

In the overall architecture, the above-mentioned security
sensor report events describing security incidents. These
events are shared via Syslog3 and fed into a Syslog engine
to allow further processing. Before correlating events, event
normalization is necessary, due to the heterogeneous na-
ture of data formats used by cyber security sensors. This
allows for coherent processing of all events in subsequent
processing steps.

Following the recommendation of [Cup01; CM02], we fo-
cus on retaining the essential attributes of an event: sensorID,
eventID, source IP address, destination IP address, source
port, destination port, create time and event type. An ex-
ample for an event with these essential attributes is given in
Table 4.1.

sensorID eventID source IP destination source destination create time event type
address IP address port port

10 270 85.1.1.8 132.8.1.5 49154 2404 2015-01-24 1
UDP UDP 11:02:31

Table 4.1: Selected fields of an event.

3Balabit. Syslog-ng. https://www.balabit.com/network-security/syslog-
ng. 2015.

4.2. Method Description 127

In an environment with multiple heterogeneous cyber secu-
rity systems such as IDS sensors, IPS sensors, and FWs, cyber
incidents are reported in inherently heterogeneous data for-
mats. Some cyber security systems report cyber incidents
with a data format containing only basic information, such as
source, target, name and time of the reported cyber incident.
Other cyber security systems provide more details, such
as ports or the network services, process information, and
more. The Intrusion Detection Message Exchange Format
(IDMEF) defines a data model that is able to accommodate
those different needs. In the context of this work, we rely
on IDMEF to model events and introduce our data model in
the following definition.

Definition 4.1 (Event). A reported cyber incident is defined
as an element of EVENT which is introduced as:

EVENT =Analyzer×
T × T × T × Source× Target×
Classification×Assessment

with Analyzer = analyzerId×Node, Time stamp T, Source =
Node × process × user × service, Target = Node × process ×
user× service, Node = location×name× address, Classification =
text×Reference with Reference = name×url and Assessment =
impact× confidence× action.

Names starting with lowercase letters denote variables and
names starting with uppercase letters denote aggregation
classes for other classes and variables. A description of
the classes and variables in our data model is listed in the
following.

• Analyzer: Identifying information about the sensor
sending the event.

128 4. Event Prioritization and Correlation

– Node: Information about the network device.

∗ Address: IP address

∗ Name: Hostname

∗ Location: Equipment location hosting the net-
work device

• CreateTime T: Timestamp denoting when the event
was created.

• DetectTime T: Timestamp of the cyber incidents caus-
ing the event to be created. If there are multiple inci-
dents, the timestamp of the first incident is used.

• AnalyzerTime T: Timestamp denoting when the ana-
lyzer sent the event.

• Source: Possible origin of the event. Information about
the apparent cause of the event is given by the strings
Node, Process, User and Service.

• Target: Possible target of the event. Information about
the apparent cause of the event is given by the strings
Node, Process, User and Service.

• Classification: Description of the potential cyber inci-
dent allowing the operator to determine what is going
on.

– text: Description of the cyber incident

– Reference: Descriptive information about a cyber
incident.

∗ name: Name of the alert or vulnerability iden-
tifier

∗ url: A url for additional information.

• Assessment: An event’s impact, confidence within this
report and action taken against the event.

4.2. Method Description 129

– Impact: Severity of the event

– Confidence: Score describing the level of confi-
dence an analyzer has in its own evaluation of a
reported event

– Action: Action(s) taken by an analyzer against an
event.

♦

Alert normalization is realized by a specific Syslog config-
uration and means transforming heterogeneous events, such
as described in Table 4.1, into the data format described in
Definition 4.1. Descriptive attributes and structure of normal-
ized events are inspired by attributes and structures defined
by the Intrusion Detection Message Exchange Format (ID-
MEF). For details on IDMEF see [DCF07]. After normalizing
events, LLC proceeds with event verification. In the follow-
ing we describe details on event verification using examples
with normalized event.

4.2.2 Alert Verification and Enrichment

Not all events reported by security sensors are alerts. Some
events report on potential malicious activities detected by
security sensor. We refer to these events as alerts. Alert
verification and enrichment is subdivided into three parts:

• Alert vulnerability verification,

• Alert severity verification, and

• Alert vulnerability enrichment.

Alert vulnerability verification is described first, with the
central idea of correlating incoming alerts with pre-acquired

130 4. Event Prioritization and Correlation

knowledge of existing vulnerabilities in a monitored net-
work. This knowledge is acquired by relying on vulnerabil-
ity scanners. Vulnerability scanners provide a listing of all
monitored network devices and present vulnerabilities. To
detect vulnerabilities in a monitored network, a network is
periodically scanned with security or vulnerability scanners.
An example for an open source security scanner NMAP4 or
vulnerability scanner OpenVAS5.

The LLC process relies on information provided by secu-
rity or vulnerability scanners to link normalized alerts to the
monitored network. If an alert does not provide vulnerabil-
ity information, LLC adds the vulnerabilities known for the
device the alert refers to and generates an LLC alert. This
is referred to as alert vulnerability enrichment. Normalized
alerts can have many fields, and in the following special
cases are described in order to demonstrate central ideas
using examples.

Alert Vulnerability Verification

Alert vulnerability verification aims to identify whether an
event is trying to exploit a vulnerability known to be present
on the network. Thereby, alerts that report a cyber attacker
trying to exploit a vulnerability not present within the moni-
tored network are less relevant to a network operator than
alerts reporting a cyber attacker trying to exploit a vulnera-
bility present within the network. We refer to this process
as alert vulnerability verification. LLC can be configured
by network operators to eliminate alerts with not verified
vulnerabilities.

4Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure, 2009.

5Greenbone Networks GmbH. The Open Vulnerability Assessment System
(OpenVAS). 2016. url: http://www.openvas.org/.

http://www.openvas.org/

4.2. Method Description 131

Analyzer ID Alert ID Time Source IP Destination CVE ID
address IP address

CEDET01IDS 1 2016-01-24 11:02:31.20 85.1.1.8 132.8.1.5 CVE-2016-0034

Table 4.2: An alert issued by an IDS probe with the analyzer
ID CEDET01IDS reports a local exploit.

Let us assume that an event (see Definition 4.1) is reported
by an IDS with the analyzer ID CEDET01IDS. The reported
event contains a reference to a local exploit taking advantage
of a vulnerability. For the example in Table 4.2 we assume
that an IDS (CEDET01IDS) has generated an alert referring
to the CVE of a vulnerability. An exploit can only be success-
ful if the respective vulnerability or bug is indeed present
on the targeted network device. Thus, alert vulnerability
verification needs to check whether the vulnerability has
been detected on the targeted device by extracting respective
information from the network inventory. All vulnerabilities
detected in the monitored network are listed in the network
inventory.

Definition 4.2 (Network inventory). A network inventory
lists all vulnerabilities that were detected by vulnerability
scanners as present within a monitored network. Network
scanners scan all network devices and link vulnerability
identifiers νid

0 , νid
1 , . . . , νid

n ∈ Σ∗ν to the IP addresses IP of
the network device they were detected on. We model a
vulnerability N as a link between a vulnerability identifier
νid and an IP address IP as

N : IP→ P(Σ∗ν). (4.1)

This links an IP address IP belonging to a network device,
as introduced in Definition 2.1, to vulnerability identifier νid.
♦

132 4. Event Prioritization and Correlation

Example 4.1 (Network inventory). For the example in Ta-
ble 4.3 we assume that a vulnerability scanner linked IP
address 132.8.1.5 to vulnerability identifier CVE-2016-0034.

IP Vulnerability identifier
132.8.1.5 CVE-2016-0034

Table 4.3: Vulnerability information extracted from the net-
work inventory.

The process of alert vulnerability verification relies on the
network inventory as a knowledge base to link FW/IDS/IPS
alerts to the detected vulnerabilities in monitored network.
The network inventory is a list of vulnerabilities detected
by vulnerability scanners within a monitored network. Vul-
nerability scanners rely on heuristics methods to detect the
presence of vulnerabilities, hence there are false positive and
false negative vulnerabilities. Our understanding of false
positive and false negative vulnerabilities is described in
the following paragraph. The following understanding only
refers to known vulnerabilities.

False Positive Vulnerability

Vulnerability scanners have the purpose of detecting vulner-
abilities that are present within a monitored system. Similar
to IDS designers, algorithms of vulnerability scanners are
forced to make assumptions on whether a vulnerability is
present or not. So if a vulnerability scanner classifies a vul-
nerability as present, however the monitored host is not
vulnerable to this vulnerability being exploited, then this is
referred to as a false positive vulnerability. A false positive

4.2. Method Description 133

vulnerability can for example be caused by a vulnerability
already being patched. Another possibility that can lead to
a false positive vulnerability is that a vulnerability scanner’s
assumption of a vulnerability being present is imprecise or
wrong.

False Negative Vulnerability

Vulnerability scanners rely on heuristic algorithms and
therefore do not inevitably detect all vulnerabilities in a
monitored system. Especially unknown vulnerabilities, often
cannot be detected based on the underlying algorithms of
state-of-the art vulnerability scanners. Alerts can be caused
by an attacker trying to exploit a vulnerability, however
the issued alert does not contain a link to the vulnerabil-
ity. Thus, we state that such an alert is linked to a false
negative vulnerability. The process of enriching alerts with
corresponding vulnerability information, essentially aims to
reduce potentially false negative vulnerabilities.

Cyber security sensors report on vulnerabilities potentially
being exploited with the monitored network. Similar to vul-
nerabilities scanners, cyber security systems rely on heuristic
methods and, thereby, also produce false positive and false
negative alerts. Our understanding of false positive and false
negative alerts is explained in the following paragraphs.

False Positive Alert

Should an IDS alert report evidence of malicious abuse, how-
ever the reported incident is actually benign, then the alert
reporting the incident is commonly referred to as false pos-
itive. From the perspective of an IDS, this is not an error.
The underlying algorithm is just making an assumption that

134 4. Event Prioritization and Correlation

does not only reflect malicious behavior but also reflects
benign network activities. Models of malicious behavior
are referred to as attack models. IDS designers are forced
to make assumptions in their attack models on how to de-
tect malicious network activities, hence false positive alerts
commonly occur with all state-of-the art IDS.

False Negative Alert

Given that a cyber attack occurred, but an IDS was not able
to detect this attack, then this is referred to as a false negative
alert. IDS designers make assumptions on how to detect
malicious network activities. An undetected cyber attack
implies that no evidence of malicious activities could be ob-
served according to the attack model of the IDS. Thus it can
be concluded that the assumptions made by the IDS designer
within the attacker model were insufficient for picking up
evidence for this cyber attack. Especially more skilled cyber
attacks often lead to false negative alerts due to a skilled
attacker’s malicious actions not being reported by cyber
security sensors. Generally, reducing the number of false
negative alerts often increases the number of false positive
alerts. This is due to the following observation: Adding more
assumptions to an attacker model often reduces the number
of false negative alerts, however more benign network activi-
ties will also be classified as evidence for malicious network
activities. This is especially true, if an attacker model tries to
capture a more skilled cyber attacker. If an attacker model is
supposed to represent a skilled attacker, any activity with
even a remote possibility of indicating an attack will trigger
an alert.

For the purpose of alert vulnerability verification, the
network inventory shown in Table 4.3 is searched for vul-

4.2. Method Description 135

nerabilities present on the targeted network device of the
reported cyber incident. Considering for example an alert, as
shown in Table 4.2 an alert vulnerability verification requires
checking the network inventory for vulnerabilities present
on 132.8.1.5.

Definition 4.3 (Alert vulnerability verification). To derive
the set of all vulnerabilities that are listed in the network
inventory for an IP address IP, we define

VERIFYVULN : IP→ P(Nid) (4.2)

for a set of vulnerability identifiers Nid. To continue the ex-
ample, we assume that data shown in Table 4.3 are available
and VERIFYVULN(132.8.1.5) indicates that CVE-2016-00034
is indeed associated with 132.8.1.5. ♦

Example 4.2 (Alert vulnerability verification). The network
inventory allows the alert vulnerability verification process
to link a reported local exploit to vulnerabilities detected on
source and destination host, as shown in Table 4.3. Table 4.4
describes how an LLC alert is issued based on this alert
verification process.

Analyzer ID Alert ID Time Source IP Destination CVE ID Tag
Address IP Address

CEDET01IDS 1 2016-01-24 85.1.1.8 132.8.1.5 CVE-2016-00034 VULNVERIFIED
11:02:31.20

Table 4.4: An LLC alert with a verified vulnerability with an
added tag VULNVERIFIED.

The purpose of alert vulnerability verification is to verify
whether a vulnerability, which is reported within an alert,
is a known vulnerability that is present within the targeted

136 4. Event Prioritization and Correlation

network. However, as previously mentioned, vulnerabilities
can be unknown and false positive vulnerabilities can be
reported by security or vulnerability scanners. Thus, we
introduce alert severity verification in the following in order
to prevent alerts with a high severity being eliminated.

Alert Severity Verification

Alert severity verification has has the goal of ensuring that
alerts with a high severity are not eliminated.

Definition 4.4 (Alert severity verification). To support alert
severity verification, severity values N are predefined. The
predefined severity values depict severity levels that describe
a negative impact. Given an event from EVENT could not
be linked to any vulnerability, then an event’s severity value
VERIFYSEVERITY(e) is correlated to predefined severity val-
ues. If the severity value VERIFYSEVERITY(e) is larger than
a predefined threshold then true is return, otherwise false
is returned. This comparison is described by the following
definition:

VERIFYSEVERITY : EVENT →N0 (4.3)

If the severity event verification VERIFYSEVERITY(e) return
true, the even is considered to be an alert and, therefore, is
passed as an LLC alert. ♦

Given that cyber security sensors pick up a potentially
malicious network activity, an alert is issued. Given a sensor
is certain of abnormal activity with a negative impact occur-
ring, a data field addressing the severity of the alert is added.
Not all alerts stem from a vulnerability being exploited and,
therefore, some alerts cannot be linked to vulnerabilities.

4.2. Method Description 137

Example 4.3 (Alert severity verification). To continue the
example, we assume that severity level values critical = 2,
high = 1 and medium = 0 were predefined as severity levels,
and an event e ∈ EVENT is reported by an IDS sensor with
the analyzer ID CEDET01IDS as shown in Table 4.5 occurred.

Analyzer ID Event ID Severity Source IP Destination Time
Address IP Address

CEDET01IDS 2 0 85.1.1.8 132.8.1.5 2016-01-24 11:02:31.20

Table 4.5: Example for an event reported by IDS sensor
CEDET01IDS with medium severity.

The predefined severity threshold is 0 and, therefore, all
events with a severity value equal to or larger than 0 are
reported as severity verified events. Hence, the event’s sever-
ity VERIFYSEVERITY(e) might not be vulnerability verified,
however it is severity verified. Depending on LLC’s configu-
ration, this alert is either eliminated or this alert is passed
on for further consideration with a tag NOTVERIFIED as
shown in Table 4.6.

Alert ID Analyzer ID Severity Source IP Destination Time Tag
Address IP Address

2 CEDET01IDS 0 85.1.1.8 132.8.1.5 2016-01-24 NOTVERIFIED
11:02:31.20

Table 4.6: Example for an non verified severity alert.

Alert Vulnerability Enrichment

Often IPS, IDS or FW sensors do not contain references to vul-
nerabilities within reported events, although reported events

138 4. Event Prioritization and Correlation

could be caused by a vulnerability present within the moni-
tored network being exploited. Hence, LLC enriches alerts
with vulnerability information from the network inventory.
The process of enriching alerts containing no vulnerability
information relies on adding vulnerability identifiers to the
issued LLC alerts. This is achieved by checking the network
inventory for vulnerabilities on the network device linked to
an alert’s targeted IP address.

For the example in Table 4.7 we assume that an IDS
(CEDET01IDS) has generated an alert referring to no CVE
vulnerability. By applying Definition 4.3, the targeted

Analyzer ID Alert ID Time Source IP Destination CVE ID
Address IP Address

CEDET01IDS 1 2016-01-24 11:02:31.20 85.1.1.8 132.8.1.5

Table 4.7: An alert issued by an IDS probe with the analyzer
ID CEDET01IDS reports a local exploit.

IP address 132.8.1.5 is checked for present vulnerabilities
VERIFYVULN(132.8.1.5) within the network inventory as
shown in Table 4.3. The results indicate that CVE-2016-00034
is indeed associated with 132.8.1.5. Thus, as shown in Ta-
ble 4.8, an LLC alert with the CVE identifier CVE-2016-00034
and the tag NOTVERIFIED is created.

Analyzer ID Alert ID Time Source IP Destination CVE ID Tag
Address IP Address

CEDET01IDS 1 2016-01-24 85.1.1.8 132.8.1.5 CVE-2016-00034 NOTVERIFIED
11:02:31.20

Table 4.8: An enriched LLC alert with an added vulnerability
identifier with an added tag NOTVERIFIED.

After normalizing incoming Syslog messages, vulnerabil-

4.2. Method Description 139

ities contained within incoming Syslog messages are ver-
ified. In addition, alerts are enriched with vulnerability
information. This information supports network operators
in analyzing security events and identifying potential attacks
within an enterprise network. To overcome limitations that
stem from perusing a vulnerability centric approach, the
low level correlation process offers additional analysis, such
as alert vulnerability verification, alert severity verification,
and alert vulnerability enrichment. The purpose of this ad-
ditional analysis is to add contextual information to alerts
and support network operators in understanding potentially
malicious incidents within their monitored networks. The
additional analysis is optional and can be activated and
deactivated as necessary.

4.2.3 Event Fusion

FWs, IDS sensors or IPS sensors report alerts, which are in-
dications for abnormal activities in a monitored network. As
argued above, some alerts are clearly linked to an exploited
vulnerability or are assigned a high severity by the cyber
security sensor reporting the abnormal activity. However,
the vast majority of events are simply reports of observable
benign security policy violation occurring within a moni-
tored network. Also, in 2015 Check Point reported that zero
day attacks are rising6. Check Point discovered that organi-
zations are targeted by 106 unknown malware attacks per
hour. Thus, reporting a rate 48 times higher than the rate
reported in 2013. As these vulnerabilities are unknown, they
cannot be detected by vulnerability scanners or be known to

6Check Point. Check Point Security Re-
port. https://www.checkpoint.com/resources/
2015securityreport/CheckPoint-2015-SecurityReport.pdf. 2015.

140 4. Event Prioritization and Correlation

IDS sensors, IPS sensors or FWs.
Insider attacks might not be reported as malicious activ-

ities in an information system, but as an observable occur-
rences within the monitored network. Targeted attacks on
an information system are often prefaced by reconnaissance
attacks. An example for such reconnaissance attacks are port
scans. Port scans do not automatically imply an ongoing
cyber attack, as monitoring tools also conduct port scans to
search for open ports or vulnerabilities in a network. How-
ever, targeted attacks require mapping the targeted network
by investigating information systems for example through
port scans in order to find out how they can be attacked.
Depending on the configuration of the monitoring cyber se-
curity sensors, port scans are often reported as events rather
then alerts.

We argue that misconfiguration, insider attacks, or recon-
naissance attacks, e.g., port scans, can lead to multiple events
being issued. Separately, every alert cannot necessarily di-
rectly be attributed to malicious behavior. Hence, network
operators are likely to overlook these events. By automat-
ically merging events with the same source and/or same
destination address, events possibly caused by the same cy-
ber incident are fused and passed on as LLC alert to the
network operator. We attempt to perform event fusion to
report multiple events that occurred within the same time
period as indicators for an ongoing cyber incident.

The low level correlation process keeps a tumbling time-
based window of events. In the context of this work, the
size of the tumbling time-based window is predefined as a
1 second window. On the one hand, this allows for a con-
stant computation time of the low level correlation process,
regardless of how long the component is running, on the
other hand, events can only be fused, if they are in the same

4.2. Method Description 141

window. Hence, it introduces false negatives into the low
level correlation process as events sorted into different time
windows cannot be merged into a common LLC alert. Time
windows, in the context of this work, are tumbling windows
with a 1 second tumble.

Duplicate Event Fusion

The goal of duplicate event fusion is to collect events report-
ing the same ongoing cyber incidents into a single LLC alert.
For accomplishing this, alerts referring to nodes (see Defi-
nition 4.1) with the same source and destination IP address
and port are merged into a common LLC alert. It should be
noted that a single cyber security sensor is able to produce
duplicate events when a cyber incident matches multiple
rules. This phenomenon is also referred to as event splitting.
Given that there are multiple duplicate events describing the
same cyber incident, displaying all available cyber security
sensors as condensed as possible reduces the overall num-
ber of reported events without loosing potential sources of
information.

Definition 4.5 (Merging Events with same Source and Des-
tination Address). Consider two events ei and ej ∈ Event.
Given that they have the same source IP address and port,
we merge both events ei and ej into one LLC alert. This
process is described in the following term:

∏
Source.Node,
Target.Node

ei ./ ei(Source.Node)=ej(Source.Node)

ei(Target.Node)=ej(Target.Node)

ej

♦

Example 4.4 (Merging Events with same Source and Destina-
tion Address). Table 4.9 describes how an IDS sensor with an

142 4. Event Prioritization and Correlation

analyzer ID CEDET01IDS splits incident reports caused by
the same cyber attack into multiple alerts. The low level cor-
relation process performs duplicate low-level event fusion by
merging events into an LLC alert. The LLC alert combines all
time stamp into a common data field. The description of both
alerts within Table 4.9 and Table 4.10 is taken from events
caused by exploiting a vulnerability with the identifier CVE-
2006-3439. However within both tables, the alert descrip-
tions are shortened and originally were MSRPC-TCP_CPS-
Microsoft-Windows-Server-Service-Buffer-Overrun and CPS-
Windows-MSRPC-SRVSVC-Unicode-Buffer-Overflow. Thus,
similarly to all previous examples, the following example is
taken from a real-life occurrence. Taking the same example

Analyzer ID Event ID Source IP Destination Time Description Classification ID
Address IP Address

CEDET01IDS 1 85.1.1.8 132.8.1.5 2016-01-24 Windows-Server-
11:02:31.10 Service-Buffer-Overrun

CEDET01IDS 2 85.1.1.8 132.8.1.5 2016-01-24 Windows-
11:02:31.20 Unicode-Buffer-Overrun

CEDET01IDS {1,2} 85.1.1.8 132.8.1.5 {2016-01-24 DUBLIMERGE
11:02:31.10,

CEDET01IDS {1,2} 85.1.1.8 2016-01-24
11:02:31.20}

Table 4.9: Example for merging duplicate events issued by
the same sensor with analyzer ID CEDET01IDS.

of an exploit of a known vulnerability being executed, it is
possible that the cyber attack is detected by distinct IDS sen-
sors, IPS sensors or FWs. Given source and destination with
events are identical, the low level correlation processes per-
forms event fusion. Table 4.10 describes how two IDS sensors
with an Analyzer ID CEDET01IDS and CEDET02IDS both
report events caused by the vulnerability being exploited.
The low level correlation process performs duplicate event
fusion by merging them into a single LLC alert. The LLC
alert lists the time stamps of the two alerts in a single data

4.2. Method Description 143

field.

Analyzer ID Event ID Source IP Destination Time Description Classification ID
Address IP Address

CEDET01IDS 1 85.1.1.8 132.8.1.5 2016-01-24 Windows-Server-
11:02:31.10 Service-

Buffer-Overrun
CEDET02IDS 2 85.1.1.8 132.8.1.5 2016-01-24 Windows-

11:02:31.20 Unicode-
Buffer-Overrun

{CEDET01IDS, {1,2} 85.1.1.8 132.8.1.5 {2016-01-24 DUBLIMERGE
11:02:31.10,

CEDET02IDS} 85.1.1.8 2016-01-24
11:02:31.20}

Table 4.10: Example for merging duplicate events issued by
the same sensor with Analyzer IDs CEDET01IDS,
CEDET02IDS.

Event fusion is not only applied to merge duplicate events.
In the following section we will introduce how event fusion
is additionally used to merge events with the same source
or destination address.

Merging Events with same Source or Destination Address

Definition 4.6 (Merging Events with same Source Address).
Consider two events ei and ej ∈ Event. Given that they have
the same source IP address and port, we merge both events
ei and ej into on LLC alert. This process in described in the
following term:

∏
Source.Node

ei ./ei(Source.Node)=ej(Source.Node) ej (4.4)

♦

144 4. Event Prioritization and Correlation

An example for merging events with the same source
address is given in Table 4.11. A port scan with source
address 85.1.1.8 scans destination addresses 132.8.1.4 and
132.8.1.5. This leads to two events being detected by IDS
sensor with the analyzer ID CEDET01IDS, which are merged
into a single IDS alert.

Analyzer ID Event ID Source Destination Time Description Tag
CEDET01IDS 4 85.1.1.8 132.8.1.4 2016-01-24 Port scan

11:02:31.10
CEDET01IDS 5 85.1.1.8 132.8.1.5 2016-01-24 Port scan

11:02:31.20
CEDET01IDS {4,5} 85.1.1.8 {132.8.1.4, {2016-01-24 SRCMERGE

11:02:31.10,
132.8.1.5} 2016-01-24

11:02:31.20}

Table 4.11: Example for merging events with the same source
IP-address. It is irrelevant, whether both events
are issued by the same IDS sensor, IPS sensor or
FW.

Definition 4.7 (Merging Events with same Destination Ad-
dress). Consider two events ei and ej ∈ Event = (Analyzer,
CreateTime, DetectTime, AnalyzerTime, Source, Target, Clas-
sification, Assessment). Given that they have the same desti-
nation IP address and port, we merge both events ei and ej
into on LLC alert. This process in the following equation.

∏
Target.Node

ei ./ei(Target.Node)=ej(Target.Node) ej (4.5)

♦

Example 4.5 (Merging Events with same Destination Ad-
dress). An example for merging event with the same destina-
tion address is given in Table 4.12. As a part of a distributed

4.3. Operational Impact based Event Correlation 145

denial of service attack, two distinct IP addresses 85.1.1.8 and
85.1.1.9 send HTTP requests to destination address 132.8.1.4.
Thus, two events are detected by an IDS sensor with the
analyzer ID CEDET01IDS, which are merged into a single
IDS alert.

Analyzer ID Event ID Source Destination Time Description Tag
CEDET01IDS 6 85.1.1.8 132.8.1.4 2016-01-24 GET /search?p=

11:02:31.10 double HTTP/1.1
CEDET01IDS 7 85.1.1.9 132.8.1.4 2016-01-24 GET /search?p=

11:02:31.20 trouble HTTP/1.1
CEDET01IDS {6,7} {85.1.1.8, 132.8.1.4 {2016-01-24 {GET /search?p= DSTMERGE

11:02:31.10, double HTTP/1.1,
85.1.1.9} 2016-01-24 GET /search?p=

11:02:31.20} trouble HTTP/1.1}

Table 4.12: Example for merging events with the same desti-
nation IP-address. It is irrelevant, whether both
alerts are issued by the same IDS sensor, IPS sen-
sor or FW.

Event normalization, alert verification and enrichment,
and event fusion are preprocessing steps for the operational
impact based event correlation introduced in the following
section.

4.3 Operational Impact based Event
Correlation

In the context of this section, we introduce workflows as
a basis for operational impact based event correlation. As
investigated above, workflows are automatically derived
based on network activities, which are detected by conduct-
ing a stream-based network service dependency analysis on
network traffic. Workflows span multiple network services

146 4. Event Prioritization and Correlation

that depend on each other to fulfill a common goal. These
network activities constitute hidden states within the auto-
matically derived Hidden Markov Model (HMM) workflow
introduced in Chapter 3. In order to automatically derive
network activities, we need to identify direct and indirect
dependencies between network services as described in Sec-
tion 2.3.

4.3.1 Network Activities

Indirect dependencies are elementary building blocks for
deriving HMM workflows within communication networks.
An existing indirect dependency implies that, according to
our communication approach, two direct dependencies have
a similar communication pattern. Hence, we conclude that
all network services within the involved direct dependencies
are dependent on each other. Given that two indirect de-
pendencies are joined into a common workflow, a failure or
delay of one indirect dependency could have an operational
impact on the other one. We consider a single indirect depen-
dency as the smallest possible workflow. By linking events
to events to affected workflows, we allow a context-aware
event analysis.

Definition 4.8 (Affected etwork activities). Based on a work-
flow HMM λ = (X, Y, A, B, Π) the set of affected network
activities NA, which are directly affected by an event is
defined as

NA = CC ((S, map(asSet, X))) ,

where CC denotes the connected components (CC) of the
hypergraph given as parameter (asSet maps a tuple into a
set of components). Figure 4.1 illustrates a possible set of

4.3. Operational Impact based Event Correlation 147

sj
i

sl
k

sl
m

so
n

sp
r sl

p sq
s

Figure 4.1: An example of a set of network activities NA.

network activities NA. To find the devices TD associated to
a network activity, we use dev : P(S)→ P(D). ♦

4.3.2 Event Prioritizing

Considering events EVENT, every event can be linked to a
set of network services according to

ES : EVENT → P(S),

with a mapping function ES, an event EVENT and a network
service set S. Based on the identified set of network services,
a set of involved devices can be derived with the function
dev.

Events that affect the same devices are correlated into a
single IDMEF event. Whether two events ex, ey ∈ EVENT
are correlated is derived by,

∀ex, ey ∈ EVENT : ES(ex) ∩ ES(ey) 6= ∅

=⇒ {ex, ey} ∈ IDMEFEV

Correlated network services CORREV potentially opera-
tionally impacted by reported events are defined as the

148 4. Event Prioritization and Correlation

CCs of the graph (S, IDMEFEV). In order to support an
operator in understanding how a correlated event affects the
monitored network, we map events to a set of devices.

affectedDevices : EVENT → P(D)

affectedDevices(e) =
⋃

t∈NA,
ẽxy∈CORREV

{dev(t) | ES(ẽxy) ∩ t 6= ∅}

An operator is then able to see all events and all devices,
which may potentially be affect by these events. All net-
work devices are assigned criticality values according to the
following equation.

CRIT : D → {low, medium, high}

Based on the criticality map for devices, we are able to
prioritize correlated events by defining the following order
relation on CORREV:

≤= {(ex, ey) ∈ CORREV× CORREV |

reduce(max, map(CRIT, affectedDevices(ex)), low)

≤ reduce(max, map(CRIT, affectedDevices(ey)), low)}

A correlated event is ranked as the highest criticality category
of all affected network devices. So, a correlated event is
assigned a criticality value and it can be ranked into one of
the three criticality categories {low, medium, high}. This
allows a network operator to prioritize events that might
potentially affect more critical network devices.

4.4 Evaluation

The PANOPTESEC testbed is an authentic replication of an
Italian water and energy distribution company’s corporate

4.4. Evaluation 149

enterprise systems and SCADA system. To test our hypothe-
sis that the previously introduced LLC is sufficient for de-
tecting cyber incidents among all reported Syslog messages,
we need Syslog messages with a known ground truth. To
derive ground truth data, we set up attack scenarios within
the PANOPTESEC testbed. Kali Linux and metasploit is
used to emulate a cyber attack on the test bed.

4.4.1 Event Verification and Correlation
Evaluation

To test the vulnerability-centric parts of LLC as well as the
source, destination and multiple event merging parts, we
focus on the average event reduction in normal operational
mode of the simulation environment.

Performance Metrics

The preformance metrics introduced in the following para-
graphs are used to evaluate LLC’s performance within cy-
ber attacks conducted within the PANOPTESEC testbed.
To evaluate the performance of LLC, metrics with respect
to outgoing LLC alerts alertLLC, incoming Syslog messages
msgSyslog, Syslog messages that are incorporated by LLC
alerts msgLLC

Syslog, and Syslog messages that can be attributed

to a cyber incident msgattack
Syslog are defined. The respective

number of occurrences is written as |alertLLC|, |msgSyslog|,
|msgLLC

Syslog|, and |msgatk
Syslog|.

Based on these parameters we define the Syslog message
reduction rate as:(

msgSyslog −msgLLC
Syslog

)
msgSyslog

× 100. (4.6)

150 4. Event Prioritization and Correlation

To prove that the Syslog message reduction only elimi-
nate useless Syslog messages, we investicate LLC’s ability to
identify true positive incidents msgatk

Syslog ⊆ msgSyslog within
all incoming Syslog messages msgSyslog. The true positive
incident identification rate is described as:1−

(
msgatk

Syslog −msgLLC
Syslog

)
msgatk

Syslog

× 100. (4.7)

An additional benefit of LLC is its ability to aggregate
Syslog messages. To measure how well LLC aggregates
true positive incidents msgatk

Syslog into LLC alerts alertLLC, we
define the following metric to describe the Syslog message
aggregation rate:(

msgatk
Syslog − alertLLC

)
msgatk

Syslog
× 100. (4.8)

Given that an attack atk was observed, all incoming Syslog
messages that can be attributed to an attack atk, but, however,
have not been linked to vulnerability by the sensor reporting
the Syslog message are denoted as msgatkNoCVE

Syslog . LLC alerts

that report msgatkNoCVE
Syslog are denoted as msgatkNoCVE

LLC . The set

of LLC alerts msgatkNoCVE
LLC ⊆ msgLLC

Syslog. Hence, we consider
a particular vulnerability has been enriched by LLC, when
the incoming Syslog message leading to the LLC alert was
not linked to the vulnerability. The vulnerability enrichment
rate is described by the following metric:1−

(
msgatkNoCVE

Syslog −msgatkNoCVE
LLC

)
msgatkNoCVE

Syslog

× 100. (4.9)

4.4. Evaluation 151

Attack simulation with little noise present within the test
environment

The attack scenario was executed within the emulation en-
vironment. For a deeper analysis in addition to the online
tests, all incoming Syslog messages during each experiment
were recorded. A description of the cyber attack was given
and provides a known ground truth which allows a de-
tailed evaluation of the produced LLC Alerts. In the fol-
lowing experiments we describe the number of incoming
Syslog alerts and the resulting LLC alerts. The attack sce-
nario assumes as a first step that an attacker with the IP
address 172.16.10.20 exploits a vulnerability CVE-2006-3439
to gain control of 172.16.10.10 (dorete). In a second step,
after gaining control of dorete, he is able to use the other IP
address of dorete 192.18.200.230 to exploit CVE-2004-2687 on
192.18.200.230 (ARCHIVESRV). In a third step, the SCADA
server 192.18.200.230 is used to exploit CVE-2004-2687 on
192.18.200.146 (xferp2).

Afterwards, the attacker uses xferp2 as a starting point to
gain control of 192.18.200.181 (mferp1) by exploiting CVE-
2004-2687. All exploited vulnerabilities have been detected
by vulnerability scanners within the emulation environment
and are listed within the Network Inventory used by LLC.

The attack scenario was executed twice, once with little
additional “noise” present and once in the presence of ad-
ditional noise. Noise refers to cyber activities, which lead
to additional Syslog messages. Attackers often create noise
in order to mask their cyber attacks. The attack scenario
with little additional noise is described in Table 4.13 and the
attack scenario with added noise is described in Table 4.14.

152 4. Event Prioritization and Correlation

Reported incidents Syslog messages LLC alert
SOURCE→ DESTINATION corresponding to the

potential attack step
Step 1: 13 1 VULNVERIFIED

172.16.10.20→ 172.16.10.10 (1 with vulnerability) 1 NOTVERIFIED
attacker→ dorete 2 DUBLIMERGE (9)

Step 2: 1
192.18.200.230→ 192.18.200.200 (1 with vulnerability) 1 VULNVERIFIED

dorete→ ARCHIVESRV
Step 3: 1

192.18.200.200→ 192.18.200.146 (1 with vulnerability) 1 VULNVERIFIED
ARCHIVESRV→ xferp2

Step 4: 1
192.18.200.146→ 192.18.200.181 (1 with vulnerability) 1 VULNVERIFIED

xferp2→ mferp1
Others:

192.18.200.2→ 192.18.200.1 5 2 DUBLIMERGE (4)
xuel2→ xuel1

TOTAL 4749 9

Table 4.13: Reported incidents, Syslog messages and LLC
alerts for the attack scenario with little noise
present.

Overall within an attack scenario with little noise present, as
described in Table 4.13, 4797 Syslog messages were received
and 9 LLC alerts were produced. This results in an overall
Syslog message reduction rate of 99.8%. The attack sce-
nario described in Table 4.13 starts at 15:38:25 and lasts until
15:45:49. The previously described attack scenario results in
16 Syslog messages and LLC passes on 14 Syslog messages
with 7 LLC alerts. In addition, 4 Syslog messages, which
cannot directly be attributed as belonging to the previously
described attack scenario, are passed on by LLC with 2 LLC
alerts. In the following we will carefully analyze all reported
cyber incidents and the corresponding LLC alerts.

Within the first step of the executed attack scenario, 13

4.4. Evaluation 153

Syslog messages are issued overall. Three of these Syslog
messages are linked to vulnerabilities by the sensor report-
ing the cyber incident; the other Syslog messages are not
linked to vulnerabilities. LLC reports 11 of the 13 overall
issued Syslog messages. One reported vulnerability can be
verified as present on dorete and results in an LLC alert
with the tag verified vulnerability (VULNVERIFIED). An-
other reported vulnerability cannot be verified and results
in an LLC alert with the tag NOTVERIFIED. Within every
one-second-time window of LLC, every reported incident
between the same source and destination pair is reported
once as a verified (VULNVERIFIED) or non-verified (NON-
VERIFIED) LLC alert. Additional Syslog messages, report-
ing the same incident are aggregated into LLC alerts with
the tag DUBLIMERGE. In the attack scenario with no ad-
ditional noise, this leads to two LLC alerts with the tag
DUBLIMERGE, which aggregates 7 Syslog messages in total.
Executing the second step results in one Syslog message,
which is linked to vulnerability CVE-2004-2687 and results
in one LLC alert with tag VULNVERIFIED.

The third attack step is linked to vulnerability CVE-2004-
2687 and also is reported by LLC as verified vulnerability.
An additionally executed attack uses xferp2 as a starting
point and targets mferp1. This leads to one Syslog message
containing a link to CVE-2004-2687 and this is reported as
an LLC alert with the tag VULNVERIFIED. The executed
attack leads to a reported incident between xuel2 and xuel1.
A closer analysis of these Syslog messages reveal tags such
as “Analyzer_Log-Flood-Protection”, “Analyzer_Compress-
SIDs”, “Firewall”. These cyber incidents are all reported by
sensor CEDETClusterIPS node 1. These reported incidents
result in 2 aggregated LLC alerts with the tag DUBLIMERGE.

154 4. Event Prioritization and Correlation

Attack simulation with additional noise present within the
test environment

The previously described attack scenario was executed a
second time with additional noise. As shown in Table 4.14,
overall 28477 Syslog messages were received during the
execution of the attack scenario with additional noise. Re-
ducing overall 28477 Syslog messages that were received to
129 LLC alerts results in a false positive reduction rate of
99.5% according to Equation 4.6. The second attack scenario
execution starts at 15:55:57 and lasts until 16:28:41. The pre-
viously described attack scenario is reported within 1,884
Syslog messages and LLC alerts report 1396 of these Syslog
messages by issuing 94 LLC alerts.

Additionally, 12 LLC alerts are issued for 24 Syslog mes-
sages. In the following, we will analyze these results system-
atically by starting with attack scenario step 1. The first step
of the attack scenario is reported within 1615 Syslog mes-
sages, whereas 816 of the overall 1615 Syslog messages are
linked to vulnerabilities. LLC reports 1,126 of these Syslog
messages within 73 LLC alerts.

The second step of the attack scenario is reported within 9
Syslog messages, where on reported incident is linked to a
vulnerability. Due to these Syslog messages being linked to
a vulnerability, LLC identifies all these Syslog messages as
relevant and passes on 5 LLC alerts.

The third step is reported by 8 Syslog messages with
one Syslog message being linked to a vulnerability. LLC
identifies 7 of these Syslog messages as relevant and reports
them within 3 LLC alerts.

The additional attack using xferp2 as a starting point
for targeting mferp1 leads to 252 Syslog messages. LLC

4.4. Evaluation 155

Reported incidents Syslog messages LLC alert
SOURCE→ DESTINATION corresponding to the

potential attack step
Step 1: 1615 1 VULNVERIFIED

172.16.10.20→ 172.16.10.10 816 with vulnerability 13 NOTVERIFIED
attacker→ dorete 33 DUBLIMERGE (1086)

Step 2: 9
192.18.200.230→ 192.18.200.200 1 with vulnerability 1 VULNVERIFIED

dorete→ ARCHIVESRV 2 NOTVERIFIED
2 DUBLIMERGE (6)

Step 3: 8
192.18.200.200→ 192.18.200.146 1 with vulnerability 1 VULNVERIFIED

ARCHIVESRV→ xferp2 2 NOTVERIFIED
2 DUBLIMERGE (6)

Step 4: 252
192.18.200.146→ 192.18.200.181 19 with vulnerability 1 VULNVERIFIED

xferp2→ mferp1 18 NOTVERIFIED
12 DUBLIMERGE (233)

Others:
192.18.200.2→ 192.18.200.1 15 6 DUBLIMERGE (14)

xuel2→ xuel1
192.18.200.200→ 192.18.200.230 2 2 NOTVERIFIED

ARCHIVESRV→ dorete 1 with vulnerability
192.168.1.4→ 172.21.170.5, 28 4

172.21.170.6 28 4 SRCMERGE (8)
mferp2→ TTY-T5, TTY-T6

TOTAL 28477 129

Table 4.14: Reported incidents, Syslog messages and LLC
alerts for the attack scenario with noise present.

considers 244 Syslog messages as relevant and reports them
within 13 LLC alerts.

Starting at 2016-07-25 15:59:38 until 16:28:38, Syslog mes-
sage report a cyber incident with source mferp2, which is
a front-end scada server and destination 172.21.170.5. One
second after this cyber incident, a cyber incident with source
mferp2 and destination 172.21.170.6 is reported. To our
knowledge, these cyber incidents are not related to the ex-
ecuted attack scenario. As already explained within the
previous attack scenario with little additional noise, we also

156 4. Event Prioritization and Correlation

observed cyber incidents between xuel2 and xuel1. The
15 reported cyber incidents between xuel2 and xuel1 have
the same message content as in previous attack scenario
execution and result in 5 LLC Alerts containing 14 merged
Syslog messages. Two cyber incidents report 192.18.200.200
(ARCHIVESRV) targeting 192.18.200.230 (dorete). One of the
Syslog messages contains a link to a vulnerability, which LLC
cannot verify as present within the emulation environment.
Due to these Syslog messages being linked to a vulnerability,
LLC identifies this Syslog message as relevant and passes on
1 LLC alert with the tag NOTVERIFIED.

4.4.2 Benchmarking Syslog Message
Processing Time

As a number of low-level Syslog messages are being sent
from sensors at a high pace, fairly sophisticated knowledge
of both networking technology and infiltration techniques is
required to understand them. However, human operators are
far too slow for dealing directly with the numbers of alerts of
a real-life system7. IDS alert correlation systems try to solve
this problem by post-processing the event stream from one
or many IDS sensors. The goal of post-processing is to ag-
gregate low-level events and enrich them with vulnerability
information as explained above. Assuming a time-based sys-
tem, the processing time in seconds depends on the number
of simultaneously processed alerts. If the alert processing
time exceeds one second, the LLC would not be able to hold
that pace, should it continuously occur over multiple time
windows.

7FireEye. The SIEM Who Cried Wolf: Focusing Your Cybersecurity Efforts on the
Alerts that Matter. https://www2.fireeye.com/rs/fireye/images/fireeye-
alerts-that-matter.pdf. 2014.

4.4. Evaluation 157

Benchmarks based on synthetic events

To test the limitations of LLC as a single component, ad-
ditional tests with a stand-alone version of LLC were con-
ducted. To carry out additional tests, Syslog messages from
the emulation environment were replayed continuously at
varying message per second rates. Based on this, for the LLC
as a standalone component, processing up to 10,000 alerts
per second on average is possible. It cannot be guaranteed
that a continuous event rate of 100,000 events per second can
be processed by LLC. We come to this conclusion due to the
scalability experiment illustrated in Figure 4.2.

0 0.2 0.4 0.6 0.8 1

·106

0

5

10

15

20

25

number of alerts
(simultaneousely processed)

pr
oc

es
si

ng
ti

m
e

in
se

co
nd

s

2 vCPUs
4 vCPUs

Figure 4.2: Alert processing times.

Figure 4.2 shows the processing time in seconds with re-
spect to the number of alerts (Syslog messages) that are

158 4. Event Prioritization and Correlation

simultaneously processed. To demonstrate the paralleliz-
ability of LLC, the LLC was deployed in a virtual machine
with 2 virtual CPUs and 4 CPUs. The results show a linear
increase of computation time for an increasing number of
alerts (Syslog messages). A continuous Syslog message rate
can be held by LLC, if the alert processing time is below one
second.

Within the emulation environment, the LLC was tested
with a continuous average Syslog message rate of 1500-2000
Syslog messages per second. LLC is able to hold that Syslog
rate easily. Hence, this rate is illustrated as a green line in
Figure 4.2. The hypothetical upper limit of the production
environment is 200,000 Syslog messages per second. This
line was added as a blue line to Figure 4.2. We conclude that
LLC is parallelizable and, thereby, adding more cores will
reduce LLC’s alert processing time.

4.4.3 Real-life Case Study

The LLC was also test within two different operational en-
vironments. The first operational environment is based on
the disaster recovery site of an energy distribution network,
provided an Italian water and energy distribution company.
The disaster recovery site is used to emulate the production
environment of an energy distribution company. During the
time of integration, 2,000 Syslog messages were observed
within the emulation environment and LLC was able to eas-
ily handle this message rate. LLC has been integrated for
multiple months and remains able to sustain the continuous
Syslog message stream. Figure 4.3 shows a time frame of 65
seconds and displays the range of incoming Syslog messages
and outgoing LLC alerts within the emulation environment.

In addition to the operational environment test within the

4.4. Evaluation 159

Figure 4.2: Incoming Syslog messages and outgoing LLC alerts in normal, operational mode within
the simulation environment.

The currently integrated LLC only focuses on the vulnerability centric evaluation, hence no
merged alerts are produced. Additionally, the number of incoming Syslog messages was
reduced from 1500-2000 alerts per second to 5-10 alerts per second. LLC now produces no
alerts in normal operational mode.

Figure 4.2 presents the number of incoming Syslog messages and the number of resulting
LLC alerts over the time. It can be seen that the outgoing alerts are significantly reduced. In
average we achieve an alert reduction rate of 53%. Hence, we satisfy the set goal of 25%
regarding the objectives as defined in the Description of Work document for PANOPTESEC.

FP7-610416-PANOPTESEC

www.panoptesec.eu

D4.3.2: Data Collection and Correlation Integration Prototype Report 54/ 192

Figure 4.3: A time range showing incoming Syslog messages
and outgoing LLC alerts within the emulation
environment.

emulation environment based on the disaster recovery site
of an Italian energy distribution company, LLC was also
deployed within the production environment of the Italian
energy distribution company. As this a real-life production
environment, we are not allowed to reveal detailed informa-
tion about the energy distribution network. The production
environment contains around 1015 medium voltage substa-
tions.

The production environment test was conducted on 19th
July 2016 and started at 10:22:40 and ended on 17:41:51. LLC
was able successfully deployed and overall 6,769,533 Syslog
messages were received. Due to the criticality of the produc-
tion environment, IPS sensors and FWs are used to block

160 4. Event Prioritization and Correlation

unexpected attempts of communication. This procedure is
referred to as white listing. Therefore, as is to be expected no
LLC alerts were produced. This real-life case study showed
us that LLC is able to perform within an operational environ-
ment and is able to reduce the overall number of reported
events.

4.5 Discussion

A FireEye report8 based on customer information estimated
that most security centers receive up to 500,000 security
events per day. Thus, security analysts monitoring data-
communication networks experience event fatigue and be-
come desensitized to security events. Event correlation aims
to aid security analysts by reducing the overall number of
security events.

In this chapter we propose an event prioritization and
correlation approach that is able to use automatically dis-
covered workflows to prioritize incoming events based on
this information after conducting simple event correlation.
This allows a network operator to see what ongoing network
activities in the network are potentially affected by occur-
ring events. In critical situations, decision makers need as
much information situationally relevant as possible to make
an informed choice on how to protected a network. The
focus of the approach introduced in the context of this work
is to monitor how events affect ongoing workflows in the
monitored network. The reasoning behind this approach is
that events affecting business-critical workflows have more

8FireEye. The SIEM Who Cried Wolf: Focusing Your Cybersecurity Efforts on the
Alerts that Matter. https://www2.fireeye.com/rs/fireye/images/fireeye-
alerts-that-matter.pdf. 2014.

4.5. Discussion 161

impact in the eyes of a network operator than others.
Due to little information being available about threat

agents, we argue that it is very difficult to conduct a
similar evaluation with attacker-model based approaches.
Knowledge-based approaches [CM02; Mor+02; NCR02] rely
on human input and the results directly depend on the
quality of the human input.

Due to the growing complexity of computer networks, the
quality of the human input is questionable. In contrast to
knowledge-based approaches we focus on minimizing the re-
quired human input, and, thus, argue that a novel approach
to context-aware event correlation and prioritization was
introduced.

Chapter 5

Related Work

Many approaches for protecting data-communication net-
works against cyber threats exist. For example mission im-
pact modeling aims to supporting cyber security decision-
making processes by analyzing the impacts of cyber attacks.
Most mission impact modeling approaches [Jak11; Jak13;
Mus+11; BCY12; KC13] use impact dependency graphs to
assess whether a cyber attack had an impact on ongoing
missions. The concept of missions is sometimes also referred
to as mission-centricity in cyber security. Ongoing missions
are dependent on cyber assets, which interact for a higher
purpose. Network dependency analysis investigates how to
improve understanding how cyber assets, such as network
devices and network services interact for a higher purpose.
Similarly, the research domain of mission impact modeling
aims to identify and model the higher purpose of a network
which is referred to as mission. Mission impact modeling
relies on a detailed understanding on how ongoing missions
depend on cyber assets, which is also referred to as work-
flow. Most of the time workflow models within mission
impact modeling are acquired by relying on human input.
Unfortunately, in data-communication networks, workflows
are generally not documented [Van+03].

163

164 5. Related Work

Mission impact modeling can also be used to assess
the impact of cyber events occurring in a monitored data-
communication network. However, as previously mentioned,
a FireEye report1 estimated based on information gathered
from customers that most security centers receive up to
500,000 cyber events daily. This leads to network operators
experiencing event fatigue and becoming desensitized to
security events. To counter this issue, event correlation aims
to reduce the overall number of security events. Therefore,
in the context of this work we proposed to couple mission
impact modeling with event correlation.

The purpose of this chapter is to provide an overview over
the current state of the art in all of these related knowledge
domains. So, in Section 5.1 related work in the domain of
mission impact modeling is listed. In section 5.2 an overview
over different approaches to event correlation is provided.
Section 5.3 describes network dependency discovery meth-
ods, Section 5.4 introduces workflow mining approaches.

5.1 Mission Impact Modeling

Mission impact modeling addresses the fact that within
data-communication networks, workflows rely on communi-
cation and information systems to fulfill a higher task. This
higher task is referred to as a mission. There are different
approaches to mission impact modeling. For example, some
approaches, which are listed in Section 5.1.1, focus on mod-
eling intent, motivation and capabilities of cyber attackers
in order to understand a cyber attacker’s intended and ac-

1FireEye. The SIEM Who Cried Wolf: Focusing Your Cybersecurity Efforts on the
Alerts that Matter. https://www2.fireeye.com/rs/fireye/images/fireeye-
alerts-that-matter.pdf. 2014.

5.1. Mission Impact Modeling 165

tual mission impact. Other approaches to mission impact
modeling, which are described in Section 5.1.2, focus on
assessing the impact that observed cyber events have on a
monitored infrastructure. Section 5.1.3 introduces mission
impact modeling approaches, which concentrate on how to
model an infrastructure.

5.1.1 Cyber Attack and Defense Modeling

An example for a mission impact model methodology
[MC16] uses stochastic Petri nets to capture the interaction
between cyber attacker and defenders within a electrical
power grid. In this model, attackers are distinguished ac-
cording to their intentions as surveillant and destructive at-
tackers and three types of failure within an electrical power
grid are modeled:

• control nodes not being able to accomplish their in-
tended mission,

• a high density of compromised control nodes, and

• an attacker being able to extract critical information.

Similar to attack-trees [Sch99], mission impact modeling,
with the focus of modeling cyber attack and defense, mea-
sures the effect that a cyber attack has on a monitored infras-
tructure. However, mission impact modeling is explicitly dif-
ferent from attack-trees [Sch99] as attack-trees typically are
not able to handle new attacks (e.g., zero-day attacks). Given
that no signature is available for an attack, there will be
no attack-tree available for this attack. In addition, mission
impact modeling focuses on determining the impact of an
attack on ongoing workflows within a data-communication
network. Thus, it comes as no surprise that attack graph-
based approaches have been extended to allow a mission-

166 5. Related Work

centric approach [Jaj+11] to cyber defense. Cauldron [Jaj+11]
relies on an attack graph to understand the vulnerabilities
that an attacker is able to exploit and uses a mission im-
pact model to assess the impact that an attack step has on a
monitored system.

For mission impact analysis, these approaches [Jaj+11;
MC16] assume that the mission workflows are given. A
mission workflow describes which task requires which cy-
ber asset to complete a mission, and a value is assigned to
each task in order to quantify how important it is for the
overall mission. The workflow-mining method introduced
in the context of this work advances the state of the by auto-
matically deriving workflows by analyzing network traffic
and, thus, it is not necessary to acquire workflow models by
hand. As previously stated, acquiring workflows by hand is
a time consuming and expensive process. In addition it is
very difficult to assess the accuracy of an acquired mission
workflow model.

5.1.2 Mission-based Event Correlation and
Prioritization

Mission impact analysis has also been investigated as a tool
for prioritizing events. For example, A Configurable Cy-
ber Event Prioritization Tool (ACCEPT) [Kim+14] prioritizes
an event based on the effect that an event has on the tar-
geted host. Event correlation within ACCEPT is limited to a
rule-based complex event processing engine2, which allows
network operators to add their own event correlation rules
based on their domain knowledge. Similar to the approaches
listed in Section 5.1.1, ACCEPT relies on information such as
asset criticality and network connectivity information being

2Inc. Red Hat. Drools. http://www.drools.org/. 2016.

5.1. Mission Impact Modeling 167

provided and imperfect knowledge is not considered. Yet,
the event prioritization process depends on the availability
and accuracy of this information.

Porras et al. [PFV02] introduce Event Monitoring Enabling
Responses to Anomalous Live Disturbances (EMERALD)
and a Mission-based Correlation System (M-Correlator).
EMERALD M-Correlator is a mission impact based approach
to event correlation and prioritization of distributed het-
erogeneous cyber security sensors and ranks a continuous
stream of event based on a given network connectivity model
and given operational objectives. The network connectivity
model is derived based on Nmap3, and operational objec-
tives are derived based on a mission specification, which is
provided by network operators. This mission specification
lists network devices and network services, which are the
most critical, and also lists event types which are consid-
ered most critical by network operators. Similarly, event
correlation is provided based on a predefined clustering pol-
icy. Thus, event correlation and prioritization is based on
information provided by network operators, and similarly
to ACCEPT, the event correlation and prioritization process
depends on the availability of this information.

In the context of this work, we introduced LLC as a novel
event correlation and prioritization method that combines
event correlation with operational impact based event priori-
tization. Operational impact assessment requires knowledge
of underlying workflows within a monitored network. In
contrast to previously mentioned approaches, we focus on
limiting the information provided by network operators as
much as possible by relying on data mining techniques to
derive our mission model. To our knowledge, the event cor-

3Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure, 2009.

168 5. Related Work

relation and prioritization method introduced in the context
of this work is the first approach to operational-impact based
event correlation and prioritization with an automatically
derived workflow model.

5.1.3 Mission modeling

In the context of this work, we investigate the potential oper-
ational impact of reported security incidents on a business or
mission. Mission impact modelling research focuses on doc-
umenting the interdependency relationship between cyber
assets and mission workflows so that this information can be
used operationally. We refer to these mission impact model-
ing approaches as focusing on mission modeling. Thus, in
the following section we will investigate the state of the art of
mission modeling research. Multiple distinct approaches to
mission modeling approaches have been proposed [BCY12;
GDK09; Jak11; Jak13; Mus+11].

Barreto et al. introduce an impact assessment methodol-
ogy [BCY12] incorporating vulnerability descriptions4 and
information acquired through a BPMN model via human
input. We understand a mission as network activities with
a common purpose, as illustrated in Figure 2.1. So our un-
derstanding of what constitutes a mission corresponds to
Barreto’s [BCY12]. Similarly to the approach introduced in
the context of this work, Barreto et al. investigates the opera-
tional impact of reported security incidents on a monitored
network. However, in contrast to the approach introduced
in the context of this work, Barreto et al. rely on a mission
model acquired through human input.

Camus (Cyber Assets to Missions and Users) [GDK09]

4MITRE. Common Vulnerabilities and Exposures. https://cve.mitre.org/.
2000.

5.1. Mission Impact Modeling 169

introduces a mission model mapping cyber assets and users
to cyber capabilities that support missions. The relation-
ship between cyber assets, users and cyber capabilities is
referred to as core ontology for integrating available data
into a common model. This core ontology is integrated into
a Snort5 web interface in order to highlight what cyber assets
are targeted by reported cyber security events. Similarly to
Barreto et al., Camus requires human input to derive the
mission model opposed to the workflow model introduced
in the context of this work, which acquired by mining net-
work traffic. Mining mission information based on possible
raw data sources such as File Transfer Protocol (FTP)6 logs
and an Lightweight Directory Access Protocol (LDAP)7 is
mentioned, however not introduced or evaluated. To point
out possibilities for acquiring parts of an infrastructure’s
mission model from other data sources, three other methods
of acquiring this information are described [GDK09]:

• direct translation from raw data sources,

• inferred translation through heuristics or statistical
methods, which are undisclosed to the public, and

• from other mission models.

Albanese et al. [Alb+13] present a mission model for min-
imizing a mission’s exposure to vulnerabilities. This ap-
proach minimizes a mission’s exposure to vulnerabilities by
taking available information about vulnerabilities and depen-
dencies into account. To fulfill this task, an interdependency

5Martin Roesch. “Snort - Lightweight Intrusion Detection for Networks.”
In: Stanfort Telecommunications. 1999, pp. 229–238.

6J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard).
Updated by RFCs 2228, 2640, 2773, 3659, 5797. Internet Engineering
Task Force, Oct. 1985.

7Brian Arkills. LDAP Directories Explained: An Introduction and Analysis.
ISBN: 9780201787924. Addison-Wesley Professional, 2003.

170 5. Related Work

model is described which links cyber assets to mission tasks.
The interdependency model is also acquired via human in-
put. A mission M = {τ1, τ2, . . . , τi, . . . , τm} is described as a
set of tasks τi. Every mission is assigned a criticality value
c : P(M)→ R and is allocated to a physical host hi, which
is represented by a vector of resources (e.g., CPU, memory)
and vulnerability score. A mission is considered as fulfilled,
if all tasks are correctly executed. A mission’s exposure to
vulnerability is deduced through a cost minimization algo-
rithm. Similarly to previous approaches, this mission model
is based on information acquired via human input.

Another mission-centric approach based on human input
is introduced by Jakobson [Jak11; Jak13], who presents an
interdependency model representing an infrastructure’s op-
erational capacity. Within this model, cyber attacks are rep-
resented as extended versions of conceptual graphs [Sow99]
such that a hardware platform hosts a cyber asset. Cyber
assets have vulnerabilities, which are exploited by cyber at-
tacks. Every cyber attack has an impact factor describing
to what degree the attack is capable of compromising the
attacked cyber asset. Given that a cyber attack on a cyber
asset is executed, it affects the operational capacity of the cy-
ber asset. Thus, the cyber attack model in the context of this
work assumes that, given that a cyber attack is able to exploit
a vulnerability, the cyber attack will definitely do that. The
operational capacity of a cyber asset and the impact factor
of the cyber attack are linked. An impact dependency graph
then describes how cyber assets are linked to mission tasks.
Unfortunately, the impact dependency graph is acquired via
human input.

Musman et al. [Mus+11] introduce a framework called
Computing the Impact of Cyber Attacks on Complex Mis-
sions (CMIA). CMIA evaluates mission impact by under-

5.2. General Event Correlation and Prioritization
Approaches 171

standing which cyber assets are important to accomplish
mission goals. All these models do not focus on how to ac-
quire the information used to derive interdependency mod-
els or verifying the accuracy of the acquired information. By
relying on time series data mining to require our workflow
model, we are able to automatically acquire the informa-
tion used for operational impact assessment. Additionally,
a thorough evaluation verified the ability of the introduced
workflow mining methodology to acquire accurate workflow
models.

5.2 General Event Correlation and
Prioritization Approaches

Aside from mission impact modeling approaches, which
were listed in Section 5.1.2, of course there are other ap-
proaches to event correlation and prioritization. Multiple ap-
proaches correlate intrusion events and extract attack scenar-
ios to predict the next attacker action [VS01; FAK15; GG15;
CM02; Pen+08]. In the following, we will investigate ap-
proaches to event correlation and prioritization.

Several researchers focus on how to reduce the amount of
events as well as decreasing the false positive rate [Mor+02;
Pie04; Smi+08]. Other researchers cluster similar events
[CM02; Pen+08] in order to discover high-level attack sce-
narios or represent and reason with operator preferences
regarding the events they analyze [Tab+11]. Knowledge-
based approaches [CM02; Mor+02; NCR02] rely on human
input and the results directly depend on the quality of the
human input.

With the complexity of computer networks growing fast,
it becomes increasingly difficult for network operator’s to

172 5. Related Work

ensure they have a full understanding of their monitored
network. Therefore, the quality of the human input is ques-
tionable. In contradiction to knowledge-based approaches
we focus on minimizing the required human input.

Other researchers focus on solving the problem of aggre-
gating events into multi-step attacks as a data mining prob-
lem [FAK15; GG15]. Unfortunately, most of the presented
approaches implicitly rely on a threat agent model [VS01;
FAK15; GG15; CM02; Pen+08]. Valdes et al. [VS01] use
statistics-based methodologies to develop event correlation
metrics which establish a lower level of correlation before
discovering attack step correlations. Statistics-based event
correlation methods depend on underlying attribute distri-
butions (such as Gaussian distribution) of deviations from
what is expected. Farhadi et al. [FAK15] studied how to
correlate event patterns using Hidden Markov Models and
focused on machine learning based attack plan recognition
to correlate and predict events. The issue with all event
correlation methods that rely on a threat agent model is
the following: Attackers have different intentions and skill
levels and, thereby, predicting their next possible action and
validating the proposed adversary model is a complex task.
Evaluating the quality of a threat model is difficult as little
information is available about different threat agents. All pre-
viously introduced methodologies do not address the issue
of evaluating the accuracy of their threat model. By compar-
ison, the workflow model introduced in the context of this
work, which provides the foundation for event correlation
and prioritization, is evaluated with respect the workflows
model’s accuracy.

5.3. Network Dependency Discovery 173

5.3 Network Dependency Discovery

Network dependency discovery approaches can be divided
into two different categories: active and passive network
dependency discovery. On the one hand active network de-
pendency discovery intrusively manipulates network traffic
to find out network dependencies, on the other hand passive
network dependency discovery does not actively perturb sys-
tem components to identify network dependencies. Passive
approaches utilize heuristic algorithms to analyze commu-
nication patterns in network traffic in order to deduce net-
work dependencies. However, passive approaches [Nat+12;
Bah+07; Che+08; Bah+06] have a high false positive rate.
Active approaches manipulate timing or content of network
traffic to identify dependencies and, thereby, generally have
a lower rate of false positives compared to passive network
dependency methods.

The following sections are organized as depicted in the
following: Section 5.3.1 presents active network dependency
discovery approaches and Section 5.3.2 describes passive
network dependency discovery approaches.

5.3.1 Active Network Dependency Discovery

Active Dependency Discovery (ADD) [BKK01] is an active
approach, which models network dependencies as a directed,
acyclic graph. Nodes in this dependency graph represent
system components, which are colloquially introduced as
representing operating systems, network services, applica-
tions, hardware and networks. ADD performs load injection
to perturb different components within a system to observe
whether workload on one component has an effect on an-
other component. ADD was later expanded [BKH01] to

174 5. Related Work

address correlated faults in multiple system components.
To deploy this methodology, implementation details of the
applications need to be known.

Rippler [Zan+14] is an active network dependency dis-
covery method that injects temporal perturbations to de-
termine whether or not this communication pattern prop-
agates to other network services. Temporal perturbations
are injected by manipulating communication patterns within
data-communication networks.

Unfortunately, a high level of access to a cyber asset is re-
quired by active approaches [BKK01; BKH01; Zan+14]. This
precondition cannot be met within all data-communication
networks. Intrusive network dependency discovery ap-
proaches are referred to as active network service depen-
dency approaches. Similarly, non-intrusive network de-
pendency approaches are called passive network service
dependency approaches. Unfortunately, in some data-
communication infrastructures, such as critical infrastruc-
tures, manipulating network traffic is not possible for se-
curity reasons. Hence, we were not able to use active net-
work dependency discovery approaches in the context of
this work.

5.3.2 Passive Network Dependency Discovery

Passive approaches focus on non-intrusive network service
dependency discovery and treat each host as a black box and
passively analyze communication patterns between hosts.
In the context of this work, we introduces passive network
dependency discovery methods Sherlock, Orion, and NSD-
Miner in a comparative evaluation with MONA. To ensure
completeness, we will list other passive network dependency
discovery methods in the following paragraphs.

5.3. Network Dependency Discovery 175

Two distinct approaches for learning a network depen-
dency structure called “Leslie Graphs”, which are described
as a powerful abstraction describing the complex dependen-
cies between network, host and application components are
“Constellation” and “Analysis of Network Dependencies”
(AND) [Bah+06]. Leslie Graphs are supposed to be a simple
abstraction for representing complex network dependencies
in order to support network administrators which plan to
upgrade or reorganize existing applications. Knowledge of
complex dependencies helps in the process of identifying
network services and hosts, which may potentially be af-
fected and prevent unexpected consequences. Leslie Graphs
capture interdependencies at different levels of granularity
ranging from the network layer to the transport layer. Con-
stellation is a distributed system, which reactively constructs
a Leslie Graph for any node on-demand. AND maintains an
approximate Leslie Graph at a centralized inference engine.

Kind et al. [KGE06] introduce a NetFlow8-based passive
approach that aims to identify network dependency as well
as link cyber assets to business process to enable business-
driven IT management. NetFlow is a networking protocol
designed by Cisco Systems for logging and recording the
flow of traffic received and sent within a network. To derive
network dependencies flow pairs, a flow correlation function
is built. While the introduced methodology is deployed in
an enterprise environment, unfortunately, false positive or
false negative rates are not evaluated or discussed.

Dechouniotis et al. [Dec+07] developed another NetFlow-
based passive network dependency detection approach.
Within the introduced approach, a fuzzy inference engine
classifies detected network dependency as high confidence

8B Claise. “RFC 3954: Cisco systems NetFlow services export version 9.”
In: Internet Engineering Task Force. 2004.

176 5. Related Work

and low confidence dependencies.
All previously mentioned approaches are based on analyz-

ing communication patterns and are non-intrusive network
dependency discovery methods. As Netflow information
was not available within our operational environment, we
were unable to deploy the passive approaches introduced
by Kind et al. [KGE06] and Dechouniotis et al. [Dec+07].
Orion [Che+08], NSDMiner [Nat+12], and Sherlock [Bah+07]
are used in the systematic evaluation of MONA in Sec-
tion 2.4.2.

5.4 Workflow Mining

Network dependency analysis and workflow mining are
adjacent knowledge domains as illustrated in Figure 1.1. Dis-
covering workflows relies on heuristics to mine structural
descriptions of ongoing network activities with a monitored
infrastructure. This problem is similar to network depen-
dency analysis, which becomes even more apparent when
looking into passive network dependency approaches for
business-driven IT management [KGE06].

Workflow mining is not new [Her00; Her04; VWM04;
Van04; VV04; Van+11]. Herbst [Her00; Her04] introduces a
learning algorithm that is able to induce concurrent work-
flow models. The generated workflow model is described
in the ADONIS9,[Jun+00] modeling language. The purpose
of this workflow mining algorithm is to improve workflow
management systems by reducing the acquisition time for
workflow models and providing a higher quality of work-
flow models with less errors and support for the detection
of changing requirements.

9BOC GmbH. “ADONIS Version 3.81 - User Manual.” In: 2005.

5.4. Workflow Mining 177

Cook et al. [CW98] present three distinct approaches to
process discovery for sequential workflow sequences: one
discovery approach is based on neural network, one finite
state machine based approach, and a third one is a Marko-
vian approach using a mixture of algorithmic and statistical
methods. Cook et al. consider the algorithmic and Marko-
vian approach the most promising.

Apart from workflow modeling languages such as ADO-
NIS, workflow models can be formally described by Petri
nets or HMMs. Thus, in Section 5.4.1 Petri net-based work-
flow models and in Section 5.4.2 HMM-based workflow
models are described. Currently, workflow mining is de-
pendent on event logs, and research in this domain can be
divided into three topics: discovery, conformance and en-
hancement of workflows [Van11]. Thus, we distinguish these
three topics within subsequent sections.

5.4.1 Petri net-based Workflow Models

The benefits of modeling a workflow based on Petri nets are
that Petri nets can easily be translated into workflow formats,
which are easily readable for humans. Another benefit of
Petri nets is their similarity to workflow models established
in business science. As we focus on workflow discovery
in the context of this work, we list Petri net-based work-
flow discovery techniques in the following. Many workflow
mining methods [VWM04; Van04; VV04; Van+11; Mar+02a;
Mar+02b; AS12; ASM13; Fen+13; Zen+13] rely on Petri nets
to represent workflows.

A very popular workflow mining technique is the α algo-
rithm [Van04; VWM04], which searches for ordering rela-
tions in event logs and models workflows based on Petri nets.
For the α algorithm, it is proven that for certain subclasses it

178 5. Related Work

is possible to find the right workflow model.
Beyond the α algorithm, workflow discovery has evolved

into different knowledge domains such as healthcare. Maru-
ster et al. [Mar+02a; Mar+02b] focus on higher level work-
flows, such as patient information flow in a medical use case
to learn Petri net like models. The focus lies on learning and
modeling concurrent behavior. Based on a synthetic data set
with 500 event traces, which consist of events like surgery or
blood test, an evaluation was conducted. Rebuge et al. [RF12]
introduce another Petri net-based workflow model, which
is derived through event data analysis of events recorder in
healthcare.

Another application domain of workflow discovery pro-
vides a basis for security audits [AS12; ASM13; Fen+13].
Workflow discovery provides a structure, which allows an
analysis to take place and look into compliance with secu-
rity and privacy policies, as check for security breaches and
vulnerabilities. For security audits, workflow discovery can
answer multiple questions, for example workflow mining
can provide

• further information on dynamic system behavior such
as recovery time rate of degeneration,

• assesses about whether the actual workflow model
corresponds with the intended concepts or

• checks whether observed system behavior meets re-
quirements of the respective compliance standard.

Zeng et al. [Zen+13] introduce cross-organizational pro-
cess mining based on distributed running log collected from
different servers located in different organizations to learn a
complex workflow that spans multiple organizations. Inter-
est in learning workflows that span multiple organizations

5.4. Workflow Mining 179

stems from the following observation: The final product
or service of most organizations is an outcome of activities
based on a wider inter-organization value chain. Coordi-
nation workflow patterns spanning multiple organizations
are represented by Petri nets. Zeng et al. assume that logs
contain no noise, although real-world application scenarios
obviously will contain noise.

Previously introduced Petri net-based workflow models
rely on event logs for example produced by enterprise
resource planning software. Unfortunately, enterprise re-
source planning software is not available within all data-
communication networks. Thus, we introduce a methodol-
ogy for deriving workflow models based on network traffic,
which is produced within all data-communication networks.

5.4.2 HMM-based Workflow Models

As listed in Section 5.4.1, a lot of workflow mining methods
rely on Petri nets due to their similarities to workflow models
established in business science. HMMs have been success-
fully applied to other problem domains, such as gesture
recognition [WB99] or even complex activity recognition
problems [VRC05]. HMMs are used for a wide range of
applications and efficient techniques exist for modeling a
HMM and estimating the likelihood that observed data was
produced by this HMM.

Naseri et al. [NL13] introduce a HMM-based workflow
trust model, which helps to determine a workflow’s rate
of reliability. The Viterby algorithm [For73] is used to ver-
ify, whether the most likely sequence of underlying hid-
den states might have generated a sequence of observed
events. Thereby, the validity of the underlying HMM-based
workflow model and the validity of assessed probabilities is

180 5. Related Work

verified.
Silva et al. [SZS05] describe a workflow by an and/or

graph, which is a directed acyclic graph. A workflow model
is represented as a specialized HMM and Silva et al. in-
troduce a polynomial time algorithm for process discovery.
Silva et al. point out that workflow models can obviously be
represented by readily available probabilistic structures such
as dynamic Bayesian networks or stochastic Petri nets. Es-
pecially, factorial HMMs [GJ97] seem like an obvious choice
for representing chains of business processes, which are
executed in parallel.

Blum et al. [Blu+08] build an HMM of surgical work-
flows in order to provide a human-understandable workflow
model. The issue of event logs being not complete, which
result in partially labeled surgical phases, is also addressed.
The main motivation of this work is to intuitively visualize
surgical workflow by representing the HMM workflow as a
graph.

Sequence clustering [Fer+07] deduces a sequence of tasks
and groups similar sequences into a common cluster. These
sequences of tasks are modeled as a first-order Markov chain
and, due to their probabilistic nature, this makes the tech-
nique more robust to noise. Trace clustering is another
technique, which extracts features from traces and clusters
them based on these extracted features [SGV08].

Unlike Petri nets, HMMs are able to model properties such
as the transition probability between workflow events. How-
ever, Petri nets can be efficiently mapped to HMMs [RVV08;
PM16].

Not all workflow mining techniques rely on Petri nets. For
example, inductive workflow acquisition [HK98] derives a
HMM by analyzing event logs and instance graphs [VV04]
by aggregating multiple graphs to model a workflow.

5.4. Workflow Mining 181

All introduced workflow mining methods rely on event
logs for example produced by enterprise resource planning
software, which is not available within all data-communi-
cation networks. Thus, we introduce a methodology for
deriving workflow models based on network traffic, which
is produced within all data-communication networks. The
methodology introduced for network traffic based work-
flow mining is able to counter a possible concept drift by
periodically relearning the workflow model.

Chapter 6

Concluding Discussion
Data-communication networks contain a multitude of data
sources for data mining such as network traffic or events,
which are reported by security sensors such as intrusion
detection system, intrusion prevention systems or firewalls.
This information is be used to provide context-aware event
analysis using time series data mining techniques. In order
to conclude the research presented in the context of this
work, we discuss our contributions with respect to related
methodologies and, afterwards, we conclude with an outlook
on promising future research direction.

Network Service Dependency Analysis and Workflow
Mining

Mission Oriented Network Analysis (MONA) is a network
dependency analysis methodology, which solves the prob-
lem of discovering workflows within a monitored netwok.
Building on the concept of network service dependency dis-
covery that allows for deriving workflows based on network
traffic, we introduce workflow mining based on MONA. To
the best of our knowledge this is the first workflow min-
ing methodology which derives workflows by analyzing
network traffic.

183

184 6. Concluding Discussion

Network service dependency discovery and workflow min-
ing have been tested in a real-life case study within the data-
communication network of an energy distribution network.
Also, a systematic evaluation compares MONA to Orion,
Sherlock and NSDMiner. The systematic evaluation revealed
MONA’s ability to identify existing indirect dependencies
outperforms Orion, Sherlock and NSDMiner. The focus of
workflow mining is to allow a context-aware event analysis
by helping network operators understand how events affect
ongoing tasks in the monitored network. The reasoning
behind this approach is that events affecting business-critical
tasks have more impact in the eyes of a network operator
than others. Also, network operators can monitor ongo-
ing workflows and adjust security policies accordingly. In
addition, workflow mining provides the foundation for a
context-aware approach to event prioritization and correla-
tion.

Event Prioritization and Correlation

There are different approaches to event analysis. As op-
posed to the event correlation and prioritization method
introduced in the context of this work, most event correla-
tion approaches aim to extract attack scenarios and predict
the next attacker action [VS01; CM02; Pen+08; FAK15; GG15].
The presented approaches implicitly rely on a threat agent
model to extract attack scenarios. However, threat agents
range from individual hackers, to organized hacker groups,
organized crime, industrial espionage, disgruntled employ-
ees, terrorist groups to nation state attacks. Due to the lack of
information on these different threat agents, predicting their
next possible action and validating the proposed adversary
model is very difficult.

185

Rather than focusing on how events affect ongoing tasks
in the monitored network, the above mentioned approaches
focus on aggregating similar events or extracting attack sce-
narios to predict the next attacker action. Evaluating the
quality of a threat model is difficult as little information
is available about different threat agents and their behav-
ioral characteristics. Due to little information being available
about threat agents, we argue that it is very difficult to
conduct a similar evaluation with attacker model based ap-
proaches. In contradiction to knowledge-based approaches
we focus on minimizing the required human input. The
introduced context-aware event analysis approach is able to
(i) automatically discover activities in the network and (ii)
correlate incoming events based on targeted workflows.

Future Work

The introduced time series data mining technique MONA
can be transferred to other knowledge domains such as in-
trusion detection. Observed communication patterns are
represented by communication histograms. In order to en-
able intrusion detection, communication histograms which
describe the normal behavior of a data-communication net-
work need to be stored. If diverging communication patterns
are observed within a monitored data-communication net-
work, a potential intrusion has been detected.

In the context of this work we also introduced a novel
workflow mining technique, which relies on network traffic
in order to learn workflows. Visualizing workflows learned
from network traffic observed within a monitored network
could support network operators in decision making. How-
ever, future work is required for investigating visualizing
techniques for workflows and evaluating their usability.

186 6. Concluding Discussion

Another interesting aspect for future investigation is the
longest common subsequence mining problem. Longest
common subsequence mining is a string matching problem,
where the longest common subsequence between two strings
needs to be identified. For more details on longest common
subsequence see [PD94]. Future work is required to inves-
tigate, whether the methodology introduced for network
service dependency discovery in Chapter 2, is an approxima-
tion to the longest common subsequence mining problem.

List of Figures

1.1 Network Dependency Analysis and Workflow
Mining are adjacent knowledge domains. . . . 9

2.1 Example for network activities. 14
2.2 Example for communication histograms. . . . 28
2.3 Example for indirect dependencies. 31
2.4 Example for indirect dependencies within the

network activity shown in Figure 2.1. 40
2.5 Direct network service dependencies in an

energy distribution network. 43
2.6 Network service dependency detected by

MONA within an energy distribution network. 47
2.7 Network layer model of the ns-3 based ran-

dom network generator. 49
2.8 Comparison of Orion’s, NSDMiner’s and

Sherlock’s precision and recall compared to
MONA’s. 54

2.9 F-measures for MONA, Sherlock and Orion
with network traffic containing 20 indirect de-
pendencies. 56

187

188 List of Figures

2.10 F-measures for MONA, Sherlock and Orion
with network traffic containing 70 indirect de-
pendencies. 57

2.11 MONA’s computation time for a single net-
work size with network traffic containing an
increasing number of TCP connections. 59

2.12 MONA’s computation time for multiple net-
work sizes with network traffic containing an
increasing number of TCP connections. 60

2.13 Comparison between MONA and Orion in a
medium size network. 63

2.14 Comparison between MONA and Orion in a
large network. 64

2.15 Results for MONA for network traffic contain-
ing no indirect dependencies. 65

3.1 Indirect dependencies within the workflow
shown in Figure 2.1. 81

3.2 Hidden states within the workflow shown in
Figure 2.1. 87

3.3 Candidate for state transitions within the
workflow shown in Figure 2.1. 89

3.4 A Hidden Markov Model (HMM). 91
3.5 HMM workflow model example. 100
3.6 Viterbi algorithm on an HMM workflow

model example. 101
3.7 Viterbi algorithm on an HMM workflow

model example. 102
3.8 A Factorial Hidden Markov Model (FHMM)

with two layers. 103
3.9 Network service dependencies detected by

MONA within an energy distribution network. 105

List of Figures 189

3.10 Activities derived from network traffic in an
energy distribution network. 109

3.11 Workflow for communicating with medium
voltage substations as identified within the
real-life case study. 113

3.12 Workflow based vulnerability assessment for
vulnerabilities CVE-2007-5423 and CVE-2010-
2075, which were detected on mferp2. 118

4.1 An example of a set of network activities NA. 147
4.2 Alert processing times. 157
4.3 A time range showing incoming Syslog mes-

sages and outgoing LLC alerts within the em-
ulation environment. 159

Bibliography
[AS12] Rafael Accorsi and Thomas Stocker. “On the

Exploitation of Process Mining for Security Au-
dits: the Conformance Checking Case.” In: 27th
Annual ACM Symposium on Applied Computing.
ACM, 2012, pp. 1709–1716.

[ASM13] Rafael Accorsi, Thomas Stocker, and Günter
Müller. “On the Exploitation of Process Min-
ing for Security Audits: the Process Discovery
Case.” In: 28th Annual ACM Symposium on Ap-
plied Computing. ACM, 2013, pp. 1462–1468.

[AGL98] Rakesh Agrawal, Dimitrios Gunopulos, and
Frank Leymann. “Mining Process Models from
Workflow Logs.” In: International Conference on
Extending Database Technology. Springer-Verlag
Berlin Heidelberg, 1998, pp. 467–483.

[Alb+13] Massimiliano Albanese, Sushil Jajodia, Ravi
Jhawar, and Vincenzo Piuri. “Reliable Mis-
sion Deployment in vulnerable Distributed
Systems.” In: 43 Annual IEEE/IFIP Conference
on Dependable Systems and Networks Workshop
(DSN-W 2013). IEEE/IFIP, 2013, pp. 1–8.

191

192 Bibliography

[BKH01] Saurabh Bagchi, Gautam Kar, and Joe Heller-
stein. “Dependency Analysis in distributed Sys-
tems using Fault Injection: Application to Prob-
lem Determination in an e-commerce Environ-
ment.” In: 12th International Workshop on Dis-
tributed Systems: Operations & Management. ISBN:
978272611190. Oct. 2001.

[Bah+07] Paramvir Bahl, Ranveer Chandra, Albert Green-
berg, Srikanth Kandula, David A. Maltz, and
Ming Zhang. “Towards highly reliable Enter-
prise Network Services via Inference of multi-
level Dependencies.” In: ACM SIGCOMM Com-
puter Communication Review. ISBN: 978-1-59593-
713-1. ACM, Nov. 2007, pp. 13–24.

[Bah+06] Paramvir Bahl, Paul Barham, Richard Black,
Ranveer Chandra, Moises Goldszmidt, Rebecca
Isaacs, Srikanth Kandula, Lun Li, John Mac-
Cormick, David A Maltz, et al. “Discovering
Dependencies for Network Management.” In:
ACM SIGCOMM 5th Workshop on Hot Topics in
Networks (Hotnets-V). ACM, Nov. 2006, pp. 97–
102.

[BCY12] Alexandre de Barros Barreto, Paulo Cesar G.
Costa, and Edgar T. Yano. “A Semantic Ap-
proach to Evaluate the Impact of Cyber Ac-
tions on the Physical Domain.” In: 7th Inter-
national Conference on Semantic Technologies for
Intelligence, Defense, and Security (STIDS 2012).
CEUR-WS.org, Oct. 2012.

[Blu+08] Tobias Blum, Nicolas Padoy, Hubertus Feußner,
and Nassir Navab. “Workflow Mining for Vi-
sualization and Analysis of Surgeries.” In: In-

Bibliography 193

ternational Journal of Computer Assisted Radiology
and Surgery. Springer-Verlag Berlin Heidelberg,
2008, pp. 379–386.

[BH01] Kai Briechle and Uwe D. Hanebeck. “Template
Matching using fast Normalized Cross Correla-
tion.” In: Aerospace/Defense Sensing, Simulation,
and Controls. International Society for Optics
and Photonics, 2001, pp. 95–102.

[BKK01] Aaron Brown, Gautam Kar, and Alexander
Keller. “An active Approach to characteriz-
ing dynamic Dependencies for Problem De-
termination in a distributed Environment.” In:
IEEE/IFIP International Symposium on Integrated
Network Management (IEEE IM 2001). ISBN:0-
7803-6719-7. IEEE/IFIP, May 2001, pp. 377–390.

[Che+09] Changhong Chen, Jimin Liang, Heng Zhao, Hai-
hong Hu, and Jie Tian. “Factorial HMM and par-
allel HMM for gait recognition.” In: IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 39.1 (2009), pp. 114–
123.

[Che+08] Xu Chen, Ming Zhang, Zhuoqing Morley Mao,
and Paramvir Bahl. “Automating Network
Application Dependency Discovery: Experi-
ences, Limitations, and New Solutions.” In: 8th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2008). USENIX, Dec.
2008, pp. 117–130.

[CLF03] Steven Cheung, Ulf Lindqvist, and Martin W.
Fong. “Modeling multistep Cyber Attacks for
Scenario Recognition.” In: DARPA Information

194 Bibliography

Survivability Conference and Exposition. Vol. 1.
IEEE, 2003, pp. 284–292.

[CW98] Jonathan E Cook and Alexander L Wolf. “Dis-
covering models of software processes from
event-based data.” In: vol. 7. 3. ACM, 1998,
pp. 215–249.

[Cup01] Frédéric Cuppens. “Managing Alerts in a multi-
Intrusion Detection Environment.” In: Annual
Computer Security Applications Conference (AC-
SAC 2001). Vol. 1. IEEE, 2001, p. 22.

[CM02] Frédéric Cuppens and Alexandre Miege. “Alert
Correlation in a cooperative Intrusion Detection
Framework.” In: IEEE Symposium on Security and
Privacy. ISBN: 0-7695-1543-6. IEEE, May 2002,
pp. 202–215.

[DCF07] Hervé Debar, David A. Curry, and Benjamin
S. Feinstein. “The intrusion detection message
exchange format (IDMEF).” In: IETF. 2007.

[Dec+07] Dimitrios Dechouniotis, Xenofontas Dim-
itropoulos, Andreas Kind, and Spyros Denazis.
“Dependency Detection using a fuzzy Engine.”
In: International Workshop on Distributed Systems:
Operations and Management. Springer-Verlag
Berlin Heidelberg, 2007, pp. 110–121.

[EB15] James Edwards and Richard Bramante. Network-
ing self-teaching Guide: OSI, TCP/IP, LANs, MANs,
WANs, Implementation, Management, and Main-
tenance. ISBN: 978-0-470-40238-2. John Wiley &
Sons, 2015.

Bibliography 195

[FAK15] Hamid Farhadi, Maryam AmirHaeri, and Mo-
hammad Khansari. “Alert Correlation and Pre-
diction using Data Mining and HMM.” In: The
ISC International Journal of Information Security.
Vol. 3. 2. ISBN: 2008-3076. 2015.

[Fen+13] Stefan Fenz, Thomas Neubauer, Rafael Accorsi,
and Thomas Koslowski. “FORISK: Formaliz-
ing Information Security Risk and Compliance
Management.” In: 43rd Annual IEEE/IFIP Con-
ference on Dependable Systems and Networks Work-
shop (DSN-W 2013). IEEE/IFIP, 2013, pp. 1–4.

[Fer+07] Diogo Ferreira, Marielba Zacarias, Miguel
Malheiros, and Pedro Ferreira. “Approach-
ing Process Mining with Sequence Clustering:
Experiments and Findings.” In: Business Process
Management. Springer-Verlag Berlin Heidelberg,
2007, pp. 360–374.

[For73] G. David Forney Jr. “The Viterbi Algorithm.”
In: Proceedings of the IEEE. Vol. 61. 3. IEEE, 1973,
pp. 268–278.

[GJ97] Zoubin Ghahramani and Michael I. Jordan.
“Factorial Hidden Markov Models.” In: vol. 29.
2-3. Springer-Verlag Berlin Heidelberg, 1997,
pp. 245–273.

[GG15] Mohammad GhasemiGol and Abbas Ghaemi-
Bafghi. “E-Correlator: an Entropy-based Alert
Correlation System.” In: Security and Communi-
cation Networks. Vol. 8. 5. Wiley Online Library,
July 2015, pp. 822–836.

196 Bibliography

[GDK09] John R. Goodall, Anita D’Amico, and Jason
K. Kopylec. “CAMUS: Automatically mapping
Cyber Assets to Missions and Users.” In: Mili-
tary Communications Conference (MILCOM 2009).
IEEE, Oct. 2009, pp. 1–7.

[Her00] Joachim Herbst. “A Machine Learning Ap-
proach to Workflow Management.” In: 11th Eu-
ropean Conference on Machine Learning (ECML
2000). Springer-Verlag Berlin Heidelberg, June
2000, pp. 183–194.

[Her04] Joachim Herbst. Ein induktiver Ansatz zur Akqui-
sition und Adaption von Workflow-Modellen. Tenea
Verlag Ltd., 2004.

[HK98] Joachim Herbst and Dimitris Karagiannis. “Inte-
grating Machine Learning and Workflow Man-
agement to support Acquisition and Adaptation
of Workflow Models.” In: 9th International Work-
shop on Database and Expert Systems Applications.
IEEE, 1998, pp. 745–752.

[HS14] Neminath Hubballi and Vinoth Suryanarayanan.
“False Alarm Minimization Techniques in
Signature-based Intrusion Detection Systems: A
Survey.” In: Computer Communications. Vol. 49.
Elsevier, 2014, pp. 1–17.

[IS04] ISO ISO and IEC Std. ISO/IEC 13335-1: Man-
agement of information and communications tech-
nology security—Part 1: Concepts and models for
information and communications technology secu-
rity management. 2004.

Bibliography 197

[IS11] ISO ISO and IEC Std. “ISO 27005: 2011.”
In: Information technology–Security techniques–
Information security risk management. ISO. 2011.

[Jaj+11] Sushil Jajodia, Steven Noel, Pramod Kalapa,
Massimiliano Albanese, and John Williams.
“Cauldron Mission-Centric Cyber Situational
Awareness with Defense in Depth.” In: Mili-
tary Communications Conference (MILCOM 2011).
IEEE, 2011, pp. 1339–1344.

[Jak11] Gabriel Jakobson. “Mission Cyber Security Sit-
uation Assessment using Impact Dependency
Graphs.” In: 14th International Conference on In-
formation Fusion (FUSION 2011). IEEE, July 2011,
pp. 1–8.

[Jak13] Gabriel Jakobson. “Mission-centricity in Cyber
Security: Architecting Cyber Attack resilient
Missions.” In: 5th International Conference on Cy-
ber Conflict (CyCon 2013). ISBN: 978-9949-9211-
5-7. IEEE, June 2013, pp. 1–18.

[Jun+00] Stefan Junginger, Harald Kühn, Robert Strobl,
and Dimitris Karagiannis. “Ein Geschäftspro-
zessmanagementwerkzeug der nächsten Gener-
ation—ADONIS: Konzeption und Anwendun-
gen.” In: vol. 42. 5. Springer-Verlag Berlin Hei-
delberg, 2000, pp. 392–401.

[JM09] Daniel Jurafsky and James H. Martin. Speech and
Language Processing (2nd Edition). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2009.

[Kim+14] Anya Kim, Myong H Kang, Jim Z Luo, and Alex
Velasquez. A framework for event prioritization in

198 Bibliography

cyber network defense. Tech. rep. DTIC Document,
2014.

[KGE06] Andreas Kind, Dieter Gantenbein, and Hiroaki
Etoh. “Relationship Discovery with Netflow
to enable Business-driven IT Management.”
In: First IEEE/IFIP International Workshop on
Business-driven IT Management. IEEE/IFIP, Apr.
2006, pp. 63–70.

[Kol50] Andrei Nikolaevich Kolmogorov. “Foundations
of the Theory of Probability.” In: Chelsea Pub-
lishing Co., 1950.

[KOB12] Avinash Konkani, Barbara Oakley, and Thomas
J. Bauld. “Reducing Hospital noise: a Review
of medical Device Alarm Management.” In:
Biomedical Instrumentation & Technology. Vol. 46.
6. AAMI, 2012, pp. 478–487.

[KC13] I. Kotenko and A. Chechulin. “A Cyber Attack
Modeling and Impact Assessment Framework.”
In: 5th International Conference on Cyber Conflict
(CyCon 1013). ISBN: 978-9949-9211-5-7. IEEE,
June 2013, pp. 1–24.

[KLL16] Alexander Kott, Mona Lange, and Jackson Lud-
wig. “Assessing Mission Impact of Cyber At-
tacks: Towards a Model-Driven Paradigm.” In:
IEEE Security and Privacy. IEEE, 2016.

[Lan16] Mona Lange. “Model-Driven Paradigms for In-
tegrated Approaches to Cyber Defense.” In:
NATO IST-ET-094. , Team Leader , Information
Systems Technology Panel, 2015-2016.

Bibliography 199

[LK14] Mona Lange and Marina Krotofil. “Mission Im-
pact Modelling for Industrial Control Systems.”
In: 1st SCADA Security Conference Latin America.
Rio de Janeiro, Brazil, 2014.

[LK15] Mona Lange and Marina Krotofil. “Mission Im-
pact Assessment in Power Grids.” In: NATO IST-
128 Workshop on Cyber Attack Detection, Forensics
and Attribution for Assessment of Mission Impact.
Istanbul, Turkey: Information Systems Technol-
ogy Panel, June 2015.

[LKM16a] Mona Lange, Felix Kuhr, and Ralf Möller. “Us-
ing a Deep Understanding of Network Activ-
ities for Network Vulnerability Assessment.”
In: 22nd European Conference on Artificial Intel-
ligence (ECAI 2016). ISBN: 978-1-61499-671-2.
The Hague, Netherlands: IOS Press, Aug. 2016,
pp. 1583–1585.

[LKM16b] Mona Lange, Felix Kuhr, and Ralf Möller. “Us-
ing a Deep Understanding of Network Activi-
ties for Workflow Mining.” In: 39th Annual Ger-
man Conference on Artificial Intelligence (KI 2016).
ISBN: 978-3-319-46072-7. Klagenfurth, Austria:
Springer-Verlag Berlin Heidelberg, Sept. 2016,
pp. 177–184.

[LKM16c] Mona Lange, Felix Kuhr, and Ralf Möller. “Us-
ing a Deeper Understanding of Network Ac-
tivities for Security Event Management.” In:
International Journal of Network Security & Its
Applications (IJNSA). June 2016.

[LM16] Mona Lange and Ralf Möller. “Time Series
Data Mining for Network Service Dependency
Analysis.” In: 9th International Conference on

200 Bibliography

Computational Intelligence in Security for Informa-
tion Systems (CISIS 2016). San Sebastian, Spain:
Springer-Verlag Berlin Heidelberg, Oct. 2016.

[Lan+15] Mona Lange, Ralf Möller, Gregor Lang, and
Felix Kuhr. “Event Prioritization and Correla-
tion based on Pattern Mining Techniques.” In:
14th International Conference on Machine Learning
and Applications and Workshops (ICMLA 2015).
Miami, Florida: IEEE, Dec. 2015.

[Lew95] J.P. Lewis. “Fast Normalized Cross-Correlation.”
In: Vision interface. Vol. 10. 1. 1995, pp. 120–123.

[Mar13] Scott Marshall. “CANDID: Classifying Assets
in Networks by Determining Importance and
Dependencies.” MA thesis. University of Cali-
fornia at Berkeley, 2013.

[Mar+02a] Laura Maruster, Wil M.P. Van Der Aalst, Ton
Weijters, Antal van den Bosch, and Walter Daele-
mans. “Automated discovery of Workflow Mod-
els from Hospital Data.” In: vol. 18. IOS Press,
2002, pp. 183–190.

[Mar+02b] Laura Maruster, AJMM Ton Weijters, Wil M.P.
Van Der Aalst, and Antal van den Bosch. “Pro-
cess mining: Discovering direct Successors in
Process logs.” In: International Conference on Dis-
covery Science. Springer-Verlag Berlin Heidel-
berg, 2002, pp. 364–373.

[MR12] Bill Miller and Dale Rowe. “A Survey of SCADA
and Critical Infrastructure Incidents.” In: Pro-
ceedings of the 1st Annual conference on Research in
information technology. ISBN: 978-1-4503-1643-9.
ACM, 2012, pp. 51–56.

Bibliography 201

[MC16] Robert Mitchell and Ray Chen. “Modeling and
analysis of attacks and counter defense mecha-
nisms for cyber physical systems.” In: vol. 65. 1.
IEEE, 2016, pp. 350–358.

[Mor+02] Benjamin Morin, Ludovic Mé, Hervé Debar, and
Mireille Ducassé. “M2D2: A formal Data Model
for IDS Alert Correlation.” In: Recent Advances in
Intrusion Detection. Springer-Verlag Berlin Hei-
delberg, 2002, pp. 115–137.

[Mur13] Alan T. Murray. “An Overview of Network Vul-
nerability Modeling Approaches.” In: GeoJour-
nal. Vol. 78. 2. Springer-Verlag Berlin Heidel-
berg, 2013, pp. 209–221.

[Mus+11] S. Musman, M. Tanner, A. Temin, E. Elsaesser,
and L. Loren. “Computing the Impact of Cyber
Attacks on complex Missions.” In: IEEE Systems
Conference (SysCon 2011). ISBN: 978-1-4244-9493-
4. IEEE, Apr. 2011, pp. 46–51.

[NL13] Mahsa Naseri and Simone A Ludwig. “Eval-
uating Workflow Trust using Hidden Markov
Modeling and Provenance Data.” In: Data Prove-
nance and Data Management in eScience. Springer-
Verlag Berlin Heidelberg, 2013, pp. 35–58.

[Nat+12] Arun Natarajan, Peng Ning, Yao Liu, Sushil
Jajodia, and Steve E Hutchinson. “NSDMiner:
Automated Discovery of Network Service De-
pendencies.” In: IEEE International Conference
on Computer Communications (IEEE INFOCOM
2012). ISBN: 978-1-4673-0775-8. IEEE, Mar. 2012,
pp. 2507–2515.

202 Bibliography

[NCR02] Peng Ning, Yun Cui, and Douglas S. Reeves.
“Constructing Attack Scenarios through Corre-
lation of Intrusion Alerts.” In: Proceedings of the
9th ACM conference on Computer and communica-
tions security. ACM, 2002, pp. 245–254.

[ODL07] Anthony J. Onwuegbuzie, Larry Daniel, and
Nancy L. Leech. “Pearson Product-Moment Cor-
relation Coefficient.” In: Encyclopedia of Mea-
surement and Statistics. SAGE Publications, Inc.,
2007, pp. 751–756.

[PD94] Mike Paterson and Vlado Dančík. “Longest
Common Subsequences.” In: International Sym-
posium on Mathematical Foundations of Computer
Science. Springer-Verlag Berlin Heidelberg, 1994,
pp. 127–142.

[Pen+08] Xi Peng, Yugang Zhang, Shisong Xiao, Zheng
Wu, JianQun Cui, Limiao Chen, and Debao
Xiao. “An Alert Correlation Method based on
improved Cluster Algorithm.” In: Pacific-Asia
Workshop on Computational Intelligence and Indus-
trial Application (PACIIA’08). Vol. 1. IEEE, 2008,
pp. 342–347.

[Pie04] Tadeusz Pietraszek. “Using adaptive Alert Clas-
sification to reduce false positives in Intrusion
Detection.” In: Recent Advances in Intrusion De-
tection. Springer-Verlag Berlin Heidelberg, 2004,
pp. 102–124.

[PFV02] Phillip A. Porras, Martin W. Fong, and Alfonso
Valdes. “A Mission-Impact-based Approach to
INFOSEC Alarm Correlation.” In: International
Workshop on Recent Advances in Intrusion Detec-

Bibliography 203

tion. Springer-Verlag Berlin Heidelberg, 2002,
pp. 95–114.

[PM16] V. Priyadharshini and A. Malathi. “Analysis of
Process Mining Model for Software Reliability
Dataset using HMM.” In: Indian Journal of Sci-
ence and Technology. Vol. 9. 4. Indian Society for
Education and Environment, Jan. 2016.

[RJ86] Lawrence R. Rabiner and Biing-Hwang Juang.
“An Introduction to Hidden Markov Models.”
In: ASSP Magazine, IEEE. Vol. 3. 1. IEEE, 1986,
pp. 4–16.

[RF12] Álvaro Rebuge and Diogo R Ferreira. “Business
Process Analysis in Healthcare Environments:
A Methodology based on Process Mining.” In:
vol. 37. 2. Elsevier, 2012, pp. 99–116.

[RVV08] Anne Rozinat, Manuela Veloso, and Wil M.P.
Van Der Aalst. “Using Hidden Markov Models
to evaluate the Quality of discovered Process
Models.” In: Extended Version. BPM Center Re-
port BPM-08-10, BPMcenter.org. 2008.

[Sch99] Bruce Schneier. “Attack trees: Modeling secu-
rity threats.” In: Dr. Dobb’s journal. People’s
Computer Company, Dec. 1999.

[SZS05] Ricardo Silva, Jiji Zhang, and James G. Shana-
han. “Probabilistic Workflow Mining.” In: 11th
ACM International Conference on Knowledge Dis-
covery in Data Mining (SIGKDD 2005). ACM,
2005, pp. 275–284.

204 Bibliography

[Smi+08] Reuben Smith, Nathalie Japkowicz, Maxwell
Dondo, and Peter Mason. “Using unsupervised
Learning for Network Alert Correlation.” In:
Advances in Artificial Intelligence. Springer-Verlag
Berlin Heidelberg, 2008, pp. 308–319.

[SGV08] Minseok Song, Christian W. Günther, and Wil
M.P. Van Der Aalst. “Trace Clustering in Pro-
cess Mining.” In: Business Process Management
Workshops. Springer-Verlag Berlin Heidelberg,
2008, pp. 109–120.

[Sow99] John F. Sowa. Knowledge Representation: Logi-
cal, Philosophical, and Computational Foundations.
Course Technology, Aug. 1999.

[Tab+11] Karim Tabia, Salem Benferhat, Philippe Leray,
and Ludovic Mé. “Alert Correlation in Intrusion
Detection: Combining AI-based Approaches for
Exploiting Security Operators’ Knowledge and
Preferences.” In: Security and Artificial Intelli-
gence (SecArt). ACM, July 2011.

[VS01] Alfonso Valdes and Keith Skinner. “Probabilis-
tic Alert Correlation.” In: Recent Advances in
Intrusion Detection. Springer-Verlag Berlin Hei-
delberg, 2001, pp. 54–68.

[Van04] Wil M.P. Van Der Aalst. “Business Process Man-
agement demystified: A Tutorial on Models,
Systems and Standards for Workflow Manage-
ment.” In: Lectures on Concurrency and Petri nets.
Springer-Verlag Berlin Heidelberg, 2004, pp. 1–
65.

Bibliography 205

[Van11] Wil M.P. Van Der Aalst. Process Mining: Discov-
ery, Conformance and Enhancement of Business Pro-
cesses. ISBN: 978-3-642-19345-3. Springer-Verlag
Berlin Heidelberg, 2011.

[Van+03] Wil M.P. Van Der Aalst, Boudewijn F. van Don-
gen, Joachim Herbst, Laura Maruster, Guido
Schimm, and Anton J.M.M. Weijters. “Workflow
Mining: a Survey of Issues and Approaches.”
In: Data and Knowledge Engineering. Vol. 47. 2.
Elsevier, 2003, pp. 237–267.

[VWM04] Wil M.P. Van Der Aalst, Ton Weijters, and Laura
Maruster. “Workflow Mining: Discovering Pro-
cess Models from Event Logs.” In: IEEE Transac-
tion on Knowledge and Data Engineering. Vol. 16.
9. IEEE, 2004, pp. 1128–1142.

[Van+11] Wil M.P. Van Der Aalst, Arya Adriansyah,
Ana Karla Alves de Medeiros, Franco Arcieri,
Thomas Baier, Tobias Blickle, Jagadeesh Chan-
dra Bose, Peter van den Brand, Ronald Brandt-
jen, Joos Buijs, et al. “Process Mining Mani-
festo.” In: Business Process Management Work-
shops. Springer-Verlag Berlin Heidelberg, 2011,
pp. 169–194.

[VV04] Boudewijn F Van Dongen and Wil M.P. Van Der
Aalst. “Multi-Phase Process Mining: Building
Instance Graphs.” In: Conceptual Modeling–ER
2004. Springer-Verlag Berlin Heidelberg, 2004,
pp. 362–376.

[VRC05] Namrata Vaswani, Amit K. Roy-Chowdhury,
and Rama Chellappa. ““Shape Activity”: A
continuous-state HMM for moving/deforming
Shapes with Application to abnormal Activity

206 Bibliography

Detection.” In: IEEE Transactions on Image Pro-
cessing. Vol. 14. 10. IEEE, 2005, pp. 1603–1616.

[Wel03] Lloyd R Welch. “Hidden Markov models and
the Baum-Welch algorithm.” In: IEEE Informa-
tion Theory Society Newsletter 53.4 (2003), pp. 10–
13.

[WB99] Andrew D. Wilson and Aaron F. Bobick. “Para-
metric Hidden Markov Models for Gesture
Recognition.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 21. 9. IEEE,
Sept. 1999, pp. 884–900.

[WKK07] Y. Wu, M. Kezunovic, and T. Kostic. “An ad-
vanced Alarm Processor using Two-level Pro-
cessing Structure.” In: IEEE Power Tech. IEEE,
July 2007, pp. 125–130.

[Zan+14] Ali Zand, Giovanni Vigna, Richard Kemmerer,
and Christopher Kruegel. “Rippler: Delay In-
jection for Service Dependency Detection.” In:
IEEE International Conference on Computer Com-
munication (INFOCOM 2014). IEEE, May 2014,
pp. 2157–2165.

[Zen+13] Qingtian Zeng, Sherry X Sun, Hua Duan, Cong
Liu, and Huaiqing Wang. “Cross-organizational
collaborative Workflow Mining from a multi-
source Log.” In: Decision Support Systems 54.3
(2013), pp. 1280–1301.

[Zhu+14] Jianfeng Zhu, Yidan Shu, Jinsong Zhao, and Fan
Yang. “A dynamic Alarm Management Strategy
for chemical Process Transitions.” In: Journal of
Loss Prevention in the Process Industries. Vol. 30.
Elsevier, 2014, pp. 207–218.

Muster -Lebenslauf

Name Lange
Vorname Mona
Geburtsdatum 23.06.1987
Geburtsort, -land Hamburg, Deutschland

09.1993 - 07.1995 Altstadtschule(Grundschule) in Bayreuth

09.1995 - 07.1997 Grundschule Bayreuth-Lerchenbühl

09.1997 - 07.2006 Richard Wagner Gymnasium in Bayreuth

10.2006 - 08.2013 Studium an der Friedrich-Alexander-Universität (FAU)
Erlangen-Nürnberg; Abschluss: Diplom

10.2010 - 05.2012 Hilfswissenschaftlicherin am Lehrstuhl für Mustererkennung an
der FAU

07.2011- 09.2011 IBM Extreme Blue
IBM Germany Research & Development GmbH
Thema: “Development and Presentation of an at home Microsoft
Kinect based (medically supervised) physiotherapy
system.”

10.2010 - 05.2012 Hilfswissenschaftlicherin am Lehrstuhl für
IT-Sicherheitsinfrastrukturen an der FAU

11.2013 - heute wissenschaftliche Mitarbeiterin in dem EU-IP Forschungsprojekt
Panoptesec am Institut für Software Technology Systems der
technischen Universitaet Hamburg-Harburg (TUHH)

Mona Lange

Personal Information
Name Mona Lange

Birthday June 23, 1987
Place of birth Hamburg, Germany

Education
2014 Award, ASQF Advancement Award Winner.

2013 Diploma in Computer Science, Friedrich-Alexander
University Erlangen-Nuremberg (FAU).

2013 Diploma Thesis, FAU, Image Encryption in Social
Networks.

2006 Baccalaureate, Richard Wagner Gymnasium,
Bayreuth.

Professional Experience
10/2014–10/2016 Research Assistant at the Institute of Information Sys-

tems, Universität zu Lübeck, European Research
Project PANOPTESEC.

10/2013–09/2014 Research Assistant at the Institute for Software Sys-
tems, Hamburg University of Technology, European
Research Project PANOPTESEC.

10/2012–08/2013 Student Assistant at the Institute for IT Security In-
frastructures, FAU.

07/2011–09/2011 Software Developer at IBM, Extreme Blue, Smarter
Healthcare (Student Project).

10/2010–05/2012 Student Assistant at the Institute for Pattern Recogni-
tion, FAU.

	Introduction
	Research Objectives
	Scientific Contributions
	Dissemination Activities
	Outline of the Dissertation

	Network Dependency Analysis
	Introduction
	Network Model
	Network Service Dependency Analysis
	Network Service Dependencies
	Normalized Cross-Correlation

	Evaluation
	Real-life Case Study
	Comparative Evaluation

	Discussion

	Workflow Mining
	Introduction
	Workflow Model
	Event Logging
	Probability Space
	Hidden States Model
	Hidden Markov Model Workflow
	Extensions to Factorial Hidden Markov Model Workflow
	Real-life Case Study

	Network Vulnerability Assessment
	Discussion

	Event Prioritization and Correlation
	Introduction
	Method Description
	Event Normalization
	Alert Verification and Enrichment
	Event Fusion

	Operational Impact based Event Correlation
	Network Activities
	Event Prioritizing

	Evaluation
	Event Verification and Correlation Evaluation
	Benchmarking Syslog Message Processing Time
	Real-life Case Study

	Discussion

	Related Work
	Mission Impact Modeling
	Cyber Attack and Defense Modeling
	Mission-based Event Correlation and Prioritization
	Mission modeling

	General Event Correlation and Prioritization Approaches
	Network Dependency Discovery
	Active Network Dependency Discovery
	Passive Network Dependency Discovery

	Workflow Mining
	Petri net-based Workflow Models
	HMM-based Workflow Models

	Concluding Discussion
	Bibliography
	Curriculum Vitae

