PDT Logic

A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multi-agent Systems

Dissertation Presentation

Dipl.-Ing. Karsten Martiny

Chairman: Prof. Dr. Stefan Fischer Reviewers: Prof. Dr. Ralf Möller

Prof. Dr. Rüdiger Reischuk

October 4, 2016

PDT Logic

- A representation formalism to reason about probabilistic beliefs over time in multi-agent systems
- Agents' beliefs are quantified with imprecise probabilities (i.e., probability intervals)
- Time is modeled in discrete steps for a finite set of time points
- Agents' subjective beliefs change upon observing facts

Main Contribution

- Combine and extend results from different fields of formal logic
 - Temporal Logic [SPSS11]
 - Epistemic Logic [FHVM95]
 - Probabilistic Dynamic Epistemic logic [Koo03]
- Create a semantically rich representation formalism for beliefs [MM15a]
- Develop specialized decision procedures [MM16a]

```
[FHMV95]
[Koo03]
```

R. Fagin, J. Halpern, Y. Moses, M. Vardi: Reasoning About Knowledge MIT Press, 1995

B. Kooi: Probabilistic Dynamic Epistemic Logic Journal of Logic, Language and Information, Volume 12, pages 381-408, September 2003

[SPSS11]

P. Shakarian, A. Parker, G. Simari, V. S. Subrahmanian: Annotated Probabilistic Temporal Logic, ACM Transactions on Computational Logic, Volume 13, pages 1-33, April 2012

[MM15a] [MM16a] K. Martiny, R. Möller: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multi-agent Systems
7th International Conference on Agents and Artificial Intelligence (ICAART), Lisbon, Portugal, 2015

K. Martiny, R. Möller: PDT Logic: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multiagent Systems, Journal of Artificial Intelligence Research (JAIR), Volume 57, pages 39-112, September 2016

PDT Logic

Representation

- Describing possible worlds
 - A propositional language describes ontic facts
 - Observation Atoms Obs_G(F) specify that a group of agents G
 observes some ontic fact F
- Time
 - Temporal evolution ⇔ sequence of possible worlds (thread Th)
 - Probabilistic temporal relations expressed as temporal rules using frequency functions
- Probabilistic Beliefs
 - Each thread Th has a prior probability ("interpretation") $\mathcal{I}(Th)$
 - Probabilistic beliefs depend on observations of the respective agent
 different threads yield different belief evolutions

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

$$\mathcal{I}(Th_{1}) = 0.1 \quad \text{for } F \text{ for } \mathcal{I}_{1,1}(Th_{1}) = 0.25$$

$$\mathcal{I}(Th_{2}) = 0.2 \quad \text{for } F \text{ for } \mathcal{I}_{1,1}(Th_{2}) = 0.50$$

$$\mathcal{I}(Th_{3}) = 0.1 \quad \text{for } F \text{ for } G \text{ for } \mathcal{I}_{1,1}(Th_{3}) = 0.25$$

$$\mathcal{I}(Th_{4}) = 0.3 \quad \text{for } F \text{ for } G \text{ for } \mathcal{I}_{1,1}(Th_{4}) = 0.00$$

$$\mathcal{I}(Th_{5}) = 0.1 \quad \text{for } F \text{ for } G \text{ for } \mathcal{I}_{1,1}(Th_{5}) = 0.00$$

$$\mathcal{I}(Th_{6}) = 0.2 \quad \text{for } G \text{ for } \mathcal{I}_{1,1}(Th_{6}) = 0.00$$

$$Obs_{1}(F)$$

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

$$\mathcal{I}(Th_1) = 0.1$$
 F F F $\mathcal{I}_{1,1}(Th_1) = 0.25$
 $\mathcal{I}(Th_2) = 0.2$ **F G F G F** $\mathcal{I}_{1,1}(Th_2) = 0.50$
 $\mathcal{I}(Th_3) = 0.1$ **F F G G** $\mathcal{I}_{1,1}(Th_3) = 0.25$
 $\mathcal{I}(Th_4) = 0.3$ **G F F G G** $\mathcal{I}_{1,1}(Th_4) = 0.00$
 $\mathcal{I}(Th_5) = 0.1$ **G F F G G** $\mathcal{I}_{1,1}(Th_5) = 0.00$
 $\mathcal{I}(Th_6) = 0.2$ **G F G G F** $\mathcal{I}_{1,1}(Th_6) = 0.00$
 $\mathcal{I}(Th_6) = 0.2$ **G F G G F** $\mathcal{I}_{1,1}(Th_6) = 0.00$
 $\mathcal{I}(Th_6) = 0.2$ **G F G G F** $\mathcal{I}_{1,1}(Th_6) = 0.00$

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

Example: two agents 1, 2, six threads $Th_1,...,Th_6$:

$$\mathcal{I}(Th_1) = 0.1$$
 f f f f f $\mathcal{I}_{1,5}(Th_1) \approx 0.33$ $\mathcal{I}_{2,5}(Th_1) = 0.25$ $\mathcal{I}(Th_2) = 0.2$ **f G f** $\mathcal{I}_{1,5}(Th_2) \approx 0.67$ $\mathcal{I}_{2,5}(Th_2) = 0.00$ $\mathcal{I}(Th_3) = 0.1$ **f f G G** $\mathcal{I}_{1,5}(Th_3) = 0.00$ $\mathcal{I}_{2,5}(Th_3) = 0.00$ $\mathcal{I}(Th_4) = 0.3$ **G f G G** $\mathcal{I}_{1,5}(Th_4) = 0.00$ $\mathcal{I}_{2,5}(Th_4) = 0.00$ $\mathcal{I}(Th_5) = 0.1$ **G F G G F** $\mathcal{I}_{1,5}(Th_5) = 0.00$ $\mathcal{I}_{2,5}(Th_5) = 0.25$ $\mathcal{I}(Th_6) = 0.2$ **G F G G F** $\mathcal{I}_{1,5}(Th_6) = 0.00$ $\mathcal{I}_{2,5}(Th_6) = 0.50$ $Obs_1(F)$ $Obs_{1,2}(F)$

Belief Operators - Definitions

Agents can have beliefs of three different types, all quantified with a probability interval $[\ell, u]$, seen from thread Th':

• Belief in facts $B_{i,t'}^{\ell,u}(F_t)$:

$$\ell \leq \sum_{Th: Th(t) \models F} \mathcal{I}_{i,t'}^{Th'}(Th) \leq u$$

• Belief in temporal rules $B_{i,t'}^{\ell,u}(r_{\Delta t}^{fr}(F,G))$:

$$\ell \leq \sum_{Th} \mathcal{I}_{i,t'}^{Th'}(Th) \cdot \mathsf{fr}(Th, F, G, \Delta t) \leq u$$

• Nested beliefs $B_{i,t'}^{\ell,u}(B_{i,t}^{\ell_j,u_j}(\cdot))$:

$$\ell \leq \sum_{Th, \ \mathcal{I}_{j,t}^{Th} \models \mathcal{B}_{j,t}^{\ell_j, u_j}(\cdot)} \mathcal{I}_{i,t'}^{Th'}(Th) \leq u$$

$$\mathcal{I}(Th_1) = 0.1$$
 F F F $\mathcal{I}_{1,2}(Th_1) = 0.25$
 $\mathcal{I}(Th_2) = 0.2$ **F G F G F** $\mathcal{I}_{1,2}(Th_2) = 0.50$
 $\mathcal{I}(Th_3) = 0.1$ **F F G G** $\mathcal{I}_{1,2}(Th_3) = 0.25$
 $\mathcal{I}(Th_4) = 0.3$ **G F F G G** $\mathcal{I}_{1,2}(Th_4) = 0.00$
 $\mathcal{I}(Th_5) = 0.1$ **G F F G F** $\mathcal{I}_{1,2}(Th_5) = 0.00$
 $\mathcal{I}(Th_6) = 0.2$ **G F G G F** $\mathcal{I}_{1,2}(Th_6) = 0.00$

$$B_{1,2}^{.1,.3}(G_5)$$

$$\mathcal{I}(Th_1) = 0.1 \quad \textbf{F} \quad \textbf{F} \quad \textbf{F} \quad \mathcal{I}_{1,2}(Th_1) = 0.25$$

$$\mathcal{I}(Th_2) = 0.2 \quad \textbf{F} \quad \textbf{G} \quad \textbf{F} \quad \mathcal{I}_{1,2}(Th_2) = 0.50$$

$$\mathcal{I}(Th_3) = 0.1 \quad \textbf{F} \quad \textbf{F} \quad \textbf{G} \quad \textbf{G} \quad \mathcal{I}_{1,2}(Th_3) = 0.25$$

$$\mathcal{I}(Th_4) = 0.3 \quad \textbf{G} \quad \textbf{F} \quad \textbf{F} \quad \textbf{G} \quad \textbf{G} \quad \mathcal{I}_{1,2}(Th_4) = 0.00$$

$$\mathcal{I}(Th_5) = 0.1 \quad \textbf{G} \quad \textbf{F} \quad \textbf{F} \quad \textbf{G} \quad \textbf{F} \quad \mathcal{I}_{1,2}(Th_5) = 0.00$$

$$\mathcal{I}(Th_6) = 0.2 \quad \textbf{G} \quad \textbf{F} \quad \textbf{G} \quad \textbf{G} \quad \textbf{F} \quad \mathcal{I}_{1,2}(Th_6) = 0.00$$

$$B_{\underline{\mathbf{1}},2}^{.1,.3}(G_5)$$
 agent

$$\mathcal{I}(Th_{1}) = 0.1 \quad \text{fr} \quad$$

Satisfiability Checking

- Given: a set of belief formulae B
- Goal: check satisfiability of B (w.r.t. a specified problem)
- A possible problem specification: [MM15a]
 - ullet Exhaustive set of threads ${\mathcal T}$
 - ullet Prior probabilities ${\cal I}$
- + Easy to perform (PTIME)
- Specification is very large (⇒ restricted applicability)

[MM15a] K. Martiny, R. Möller: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multi-agent Systems 7th International Conference on Agents and Artificial Intelligence (ICAART), Lisbon, Portugal, 2015

Satisfiability Checking

- Alternative problem specification: encode all information in ${\mathfrak B}$ [MM16a]
- ullet Determine possible threads ${\mathcal T}$ automatically
- Transform \mathcal{T} and \mathfrak{B} to a 0-1 Mixed Integer Linear Program (LP)
- LP has a solution $\Leftrightarrow \mathfrak{B}$ is satisfiable
- + Specification is small
- Poor worst-case complexity (EXPSPACE)

[MM16a] K. Martiny, R. Möller: PDT Logic: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multiagent Systems, Journal of Artificial Intelligence Research (JAIR), Volume 57, pages 39-112, September 2016

Satisfiability Checking

Optimization

- Existence of a model determines satisfiability
- Explore the search space step by step
- Test corresponding LPs for each step
- Major challenge: The semantics prevents pruning
- Use dependency-directed search heuristics for exploration
- Limit the search space to intended models

PDT Logic 10 / 12

What could not be addressed here...

Thesis contents not covered in the talk:

- Formal analysis of the logic's properties [MM15a],[MM16a]
- Temporal relations ("frequency functions") [MM15a],[MM16a]
- Detailed discussion of application scenarios
 - Cyber security [MMM15]
 - Stock markets [MM15b]
- Extension of the temporal model to infinite streams [MM14]

Abductive reasoning [MM15b]

PDT Logic 11 / 12

Publications

[MM14]	Karsten Martiny and Ralf Möller: PDT Logic for Stream Reasoning in Multi-agent Systems 6th International Symposium on Symbolic Computation in Software Science (SCSS), Tunis, Tunisia, 2014
MM15a]	Karsten Martiny and Ralf Möller: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multi-agent Systems 7th International Conference on Agents and Artificial Intelligence (ICAART), Lisbon, Portugal, 2015
имм15]	Karsten Martiny, Alexander Motzek, and Ralf Möller: Formalizing Agents' Beliefs for Cyber-Security Defense Strategy Planning 8th International Conference on Computational Intelligence in Security for Information Systems, Burgos, Spain, 2015
MM15b]	Karsten Martiny and Ralf Möller: Abduction in PDT Logic 28th Australasian Conference on Artificial Intelligence (AI), Canberra, Australia, 2015
MM16a]	Karsten Martiny and Ralf Möller: PDT Logic: A Probabilistic Doxastic Temporal Logic for Reasoning about Beliefs in Multi-agent Systems Journal of Artificial Intelligence Research (JAIR), Volume 57, pages 39-112, September 2016
MM16b]	Karsten Martiny and Ralf Möller: Reasoning about Imprecise Beliefs in Multi-Agent Systems accepted for publication in KI Zeitschrift - Special Issue on Challenges for Reasoning under Uncertainty, Inconsistency, Vagueness, and Preferences

PDT Logic 12 / 12

Frequency Functions

- Point frequency function pfr
 - Expresses how frequently some event F is followed by another event G in exactly Δt time units
 - $pfr(Th, F, G, \Delta t) = \frac{|\{t: Th(t) \models F \land Th(t + \Delta t) \models G\}|}{|\{t: (t \le t_{max} \Delta t) \land Th(t) \models F\}|}$
- Existential frequency function efr
 - Expresses how frequently some event F is followed by another event G within Δt time units
 - $efr(Th, F, G, \Delta t) = \frac{efn(Th, F, G, \Delta t, 0, t_{max})}{|\{t: (t \le t_{max} \Delta t) \land Th(t) \models F\}| + efn(Th, F, G, \Delta t, t_{max} \Delta t, t_{max})}$ with $efn(Th, F, G, \Delta t, t_1, t_2) = |\{t: (t_1 < t \le t_2) \land Th(t) \models F\}|$ $\land \exists t' \in [t, \min(t_2, t + \Delta t)] (Th(t') \models G)\}|$
- Example:

PDT Logic 13 / 12

Semantic Challenge for Decision Procedures

- Example: Determine satisfiability for
 - $\mathfrak{B} = \{B_{1,0}^{1,1}(r_1^{pfr}(G,F))\}$ ("G is always directly followed by F")
 - $\mathfrak{B}' = \{B_{1,0}^{0.6, 0.9}(r_1^{pfr}(G, F))\}$ ("the probability that G is directly followed by F is between 0.6 and 0.9")
- step-wise satisfiability checking:

$$\mathcal{T} = \left\{ Th_5 \bigcirc F \bigcirc F \bigcirc G \bigcirc F \right\} \xrightarrow{sat(\mathfrak{B}')} \overset{\mathsf{sat}(\mathfrak{B})}{\mathsf{x}} (\text{with } \mathcal{I}(Th_5) = 1)$$

$$= \left\{ Th_4 \bigcirc F \bigcirc F \bigcirc G \bigcirc G \right\} \qquad (\text{e.g., with}$$

$$\mathcal{T}' = \left\{ \begin{array}{c} Th_4 \bigcirc \mathbf{F} \bigcirc \mathbf{F} \bigcirc \mathbf{G} \bigcirc \mathbf{G} \\ Th_5 \bigcirc \mathbf{F} \bigcirc \mathbf{F} \bigcirc \mathbf{G} \bigcirc \mathbf{F} \end{array} \right\} \quad \begin{array}{c} \text{(e.g., with} \\ \mathbf{Sat}(\mathfrak{B}') \checkmark \mathcal{I}(Th_4) = 0.5, \text{ and} \\ \mathcal{I}(Th_5) = 0.5) \end{array}$$

PDT Logic 14 / 12