

Indirect Causes, Dependencies and Causality in Dynamic Bayesian Networks

Mündliche Prüfung des laufenden Promotionsverfahrens (Dr. rer. nat.)

Alexander Motzek

Universität zu Lübeck Institut für Informationssysteme Ratzeburger Allee 160, 23562 Lübeck, Germany motzek@ifis.uni-luebeck.de

19. Oktober 2016

Einleitung

- Wahrscheinlichkeitsprozesse, über die Zeit ablaufend
- Graphische Wahrscheinlichkeitsmodelle
- ► (Dynamische) Bayes'sche Netze
- X Kausalität überschreitet Grenze der Ausdrucksstärke
- ✓ Erforschung neuer DPGM Klassen zur Erhöhung der Ausdrucksstärke
- ✓ Neuartige DPGMs praxisrelevant und praktisch verwendbar

Warum weinen Menschen und es werden Witze erzählt? Wie fühlen und wo befinden sie sich?

- Warum weinen Menschen und es werden Witze erzählt? Wie fühlen und wo befinden sie sich?
- Wahrscheinlichkeitsprozess

- Warum weinen Menschen und es werden Witze erzählt? Wie fühlen und wo befinden sie sich?
- Wahrscheinlichkeitsprozess
- ► **Z**ufallsvariablen mit **w**ertebereichen

Weinen +wein=weinend -wein=nicht weinend

Ort

beerdigung hochzeit

Witz

+witz=erzählt ¬witz=nicht erzählt

- Warum weinen Menschen und es werden Witze erzählt? Wie fühlen und wo befinden sie sich?
- Wahrscheinlichkeitsprozess
- Zufallsvariablen mit wertebereichen
- ► Ziel: Schlüsse & Rückschlüsse aus **Beobachtungen** ziehen

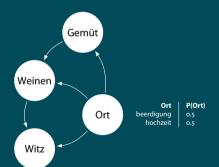
- Warum weinen Menschen und es werden Witze erzählt?
 Wie fühlen und wo befinden sie sich?
- Wahrscheinlichkeitsprozess
- Zufallsvariablen mit wertebereichen
- ► Ziel: Schlüsse & Rückschlüsse aus **Beobachtungen** ziehen
- ► Benötigt: P(Ort, Gemüt, Weinen, Witz)
- X Exponentielle Anzahl Parameter und Speicherbedarf
- ✓ Bayes'sche Netze

- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung

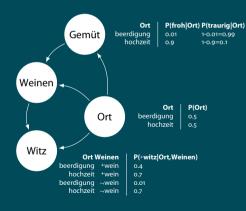
- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung

- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung

- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung



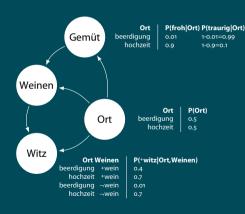
- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung
- Parametrierbar durch lokale
 Wahrscheinlichkeitsverteilungen



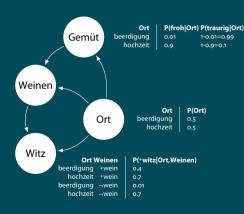
- Bayes'sche Netze sind PGMs
- Direkte Einflüsse in kausaler Richtung
- Parametrierbar durch lokale
 Wahrscheinlichkeitsverteilungen
- Lokal spezifizierbar:
 Gemüt | Ort
 Witz | Weinen, Ort

egal: Weinen,Witz ohne: Gemüt

- Verständlich & Intuitiv, da Ursache→Wirkung.
- ► Kompakte Repräsentation *P*(Ort, Gemüt, Weinen, Witz)

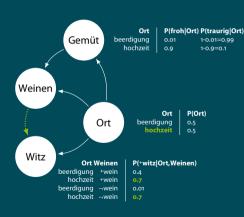


- Bayes'sches Netz
- Gerichteter Graph und CPDs
- Wohl-definiert, wenn ein gerichteter azyklischer Graph

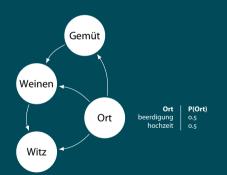


- Bayes'sches Netz
- Gerichteter Graph und CPDs
- Wohl-definiert, wenn ein gerichteter azyklischer Graph
- Aber: Kausalität nicht immer einfach zu modellieren

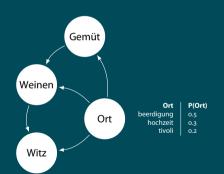
Bayes'sche Netze: Abhängigkeiten, Kanten, Einflüsse



- ► Kante = **mögliche** Kausalität
- Keine Kante = kein direkter Einfluss
- Graph garantiert Unabhängigkeit
- Weitere Unabhängigkeiten in CPDs
- *: Kontextabhängiger Einfluss⁵⁶ Witz ← Weinen | hochzeit

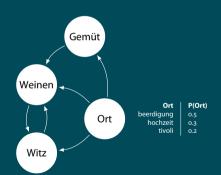


► Weitere Orte, selbes Modell

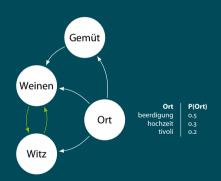


- Weitere Orte, selbes Modell
- Schmitz Tivoli

- Weitere Orte, selbes Modell
- Schmitz Tivoli
- Es fehlt: Weinen vor Lachen



- Weitere Orte, selbes Modell
- Schmitz Tivoli
- Es fehlt: Weinen vor Lachen



- Weitere Orte, selbes Modell
- Schmitz Tivoli
- ► Es fehlt: Weinen vor Lachen
- X Erzeugt Kreis
- ! Witz ←/ Weinen | *tivoli*
- ! Weinen ← Witz | beerdigung

Forschungsbeitrag: Kreise, Zyklen und Bayes'sche Netze

- ► Bayes'sches Netz mit kontextabhängigen Einflüssen auch betrachtet von 7891011
- ✓ IJCAI 2015¹²: Zyklische PGMs wohl-definiert
- ✓ Kein neuer Kalkulus (im Ggs. zu⁵⁶⁷)
- ✓ Keine Neuerzeugung durch externe Programme (im Ggs. 8)
- ✓ Bleibt lokal und intuitiv
- Bewiesen durch Verallgemeinerung auf dynamische Bayes'sche Netze

Jeff A. Bilmes. "Dynamic Bayesian Multinets". In: UAI 2000: 16th Conference on Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 20-- July 3, 2000, pp. 38--35.
Brian Mills 4 at 3 "Annexionate Inference for Liefficial Continuous Bayesian Multinets". In: UAI 2000: 16th Conference on Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 20-- July 3, 2000, pp. 38--35.
Brian Mills 4 at 3 "Annexionate Inference for Liefficial Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Multinets". In: UAI 2000: 16th Continuous Bayesian Multinets "In: UAI 2000: 16th Continuous Bayesian Ba

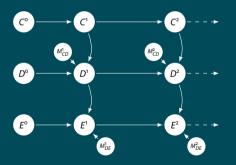
Brian Milch et al. "Approximate Inference for Infinite Contingent Bayesian Networks". In: ASTATS 2020 10th International Workshop on Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "I Benomeral Farenework for Contest, Sensible Temporacy II Probability Model Construction to Plan Projections In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "I Benomeral Farenework for Contest, Sensible Temporacy III Probability Model Construction to Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24 "Department of Plan Projections" In: 14th Artificial Intelligence and Statistics, Bridgetown, Barbados, January 6-8, 24

Dynamische Bayes'sche Netze

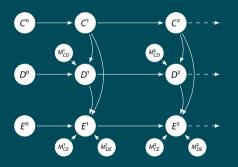
- Erweiterung von BNs für Zeitverläufe von Prozessen
- Verkettung von Zeitscheiben mit den selben Variablen.
- z.B. Wettervorhersagen, autonome Bestimmung von Positionen
- Aktuelle Lage, Vorhersagen in die Zukunft, genaue Rückschlüsse auf die Vergangenheit.
- X Massive Probleme in Repräsentierung von Kausalitäten
- Schwerwiegende Probleme in der Anfragebeantwortung
- ✓ Neuartige Klasse von DPGMs erforscht

Dynamische Bayes'sche Netze: Beispiel

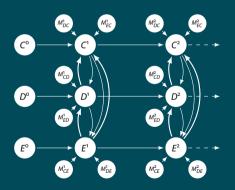
- Regeltreue (Compliance) von Mitarbeitern
- Mitarbeiter mögen "Dreck am Stecken" haben, sind beschmutzt
- Beschmutzte Mitarbeiter manipulieren Dokumente
- Mitarbeiter versenden Dokumente
- **Schmutz färbt ab** → Kettenreaktion
- · Ziel: Regeltreue abschätzen und forensisch aufarbeiten
- ► Mitarbeiter: Claire, Don and Earl



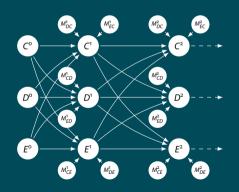
- ► Nur Claire beeinflusst Don, beeinflusst Earl
- d. h. C beeinflusst E indirekt
- ✓ Typisches DBN
- ✓ Problem korrekt repräsentiert



- Fügen wir **mehr Einflüsse** hinzu
- · Claire kann Earl auch direkt beeinflussen
- ✓ Typisches DBN
- ✓ Problem korrekt repräsentiert



- Angenommen, **jeder** kann **jeden** benachrichtigen
- Zyklen nicht erlaubt in DBNs
- X Kein DBN
- ✓ Problem intuitiv korrekt repräsentiert



- ► **Naiv**: Zyklen "über die Zeit" auflösen
- "Diagonale" Abhängigkeiten
- ✓ Sehr oft verwendetes DBN
- ? Problem korrekt repräsentiert

Diagonale DBNs sind inkorrekt

Diagonal modelliert eine **Inkubationszeit**: t: Nachricht erhalten t + 1: beeinflusst sein



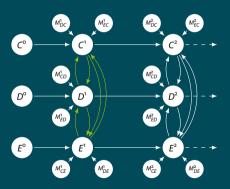
Fazit: Wir verstehen die Welt nicht mehr, wenn wir indirekte Einflüsse u. U. beobachten

Diagonale DBNs sind inkorrekt

Diagonal modelliert eine **Inkubationszeit**: t: Nachricht erhalten t + 1: beeinflusst sein

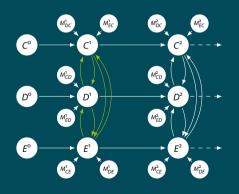
Fazit: Wir verstehen die Welt nicht mehr, wenn wir indirekte Einflüsse u. U. beobachten

Zyklen werden benötigt



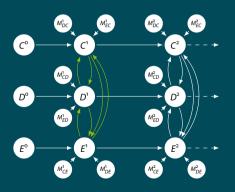
- ► Diagonal keine Option. **Zyklen intuitiv benötigt**.
- ► Nachrichtenvariablen M_{XY}^t sind besonders. sog. *Aktivatoren*
- ► Führt zu kontextabhängigen Einflüssen

Forschungsbeitrag: Activator Dynamic Bayesian Networks



- ► DBN mit Aktivatoren + kontextabhängigen Einflüssen
- = Activator Dynamic Bayesian Network
- ✓ IJCAI 2015¹⁵: **Zyklen erlaubt** & **Klassischer Kalkulus**
- ✓ Typische Algorithmen bleiben erhalten¹6
- ✓ Inferenz nicht schwerer

Forschungsbeitrag: Activator Dynamic Bayesian Networks



- ► DBN mit Aktivatoren + kontextabhängigen Einflüssen
- = Activator Dynamic Bayesian Network
- ✓ IJCAI 2015¹⁵: **Zyklen erlaubt** & **Klassischer Kalkulus**
- ✓ Typische Algorithmen bleiben erhalten¹6
- ✓ Inferenz nicht schwerer
- X Neue, andere Einschränkungen. Man darf nicht alles beobachten.

Vergleich der Einschränkungen

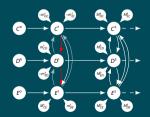
Zyklische ADBNs

- Keine zyklischen M_{XY}^t Beobachtungen
- Aktivatoren formen DAG

Diagonale DBNs

- Keine verketteten M_{XY}^t Beobachtungen
- Aktivatoren formen bipartiten Graphen

#DAG >> #Bipartite (über-exponentiell!)



Forschungsbeitrag: Bewertung der Einschränkungen

- ➤ Zyklische ADBNs schränken Beobachtungen ein ⇒ Diagonale DBNs massiv mehr!
- Al 2015¹⁷: Neuartige Unabhängigkeiten in ADBNs: Innocuousness hebt Einschränkungen teilw. auf → Beobachtungen müssen regulär sein
- ➤ Zyklisch nicht-regulär
 → Diagonal auch entartet
- ▶ ADBNs ohne Mehraufwand erlernbar
 Diagonale DBNs nicht erlernbar!¹⁸
- X Wermutstropfen: Reguläre Beobachtungen benötigt!

Forschungsbeitrag: Auflösung von Einschränkungen

Elimination sämtlicher Einschränkungen:

- ► Neue Modellierungsart¹⁹ (eADBNs) erlaubt nur reguläre Instantiierungen
- → alle Beobachtungen erlaubt
- ► Im Ggs. zu²⁰²¹ intrinsisch, klassischer Kalkulus, klassische Algorithmen, exakte Inferenz
- Neue (D)PGM-Klasse: Verteilung über überlappende n-dimensionale Verteilungen
- Weinen-Lachen ist genau solch ein eABN

Anwendungsbeispiele

Schmutzige Mitarbeiter (ADBNs)

► Cyber-Bedrohungen live und rückwirkend nachverfolgen, analysieren und reagieren 22

Lachen-Weinen Beispiel (eABNs)

Winograd Challenges²³. Interpretation von Sätzen basiert auf Kontext

Bayes'sche Netze und Verständlichkeit

Firmen vor Angriffen schützen, Bedrohungen einschätzen und Verteidigung planen²⁴²⁵²⁶²⁷

**Alexander Mottark in All Influence van Goods veriffer (Productions in most position in Production (Levesque, Ernest Davis, and Leon Morganisten. "The Winograd Schema Challenge". In:RR 2022: 19th International Conference on Principles of Knowledge Representation and Resistantian and Resistanti

Weitere Forschungsbeiträge

- Lernbarkeit und Implikationen von ADBN-Lernverfahren²⁸
- Theoretische Erlernbarkeit azyklischer ADBNs²⁸
- Praktikabilität und Durchführbarkeit²⁹
- Praxisrelevanz in Sicherheitsanwendungen³⁰

Fazit

► Bayes'sche Netze können + müssen auf zyklischen Graphen basieren

ADBNs bieten

- ✓ lokale, intuitive und kausale Modellierung
- √ indirekte Einflüsse
- ✓ klassischer Kalkulus, klassische Algorithmen, klassische Komplexität
- ✓ Erlernbar
- ✓ Repräsentation neuartiger Unabhängigkeiten
- ✓ **Neue (D)PGM-Klasse**: Verteilungen von überlappenden Verteilungen

Veröffentlichungen

- Indirect Causes in Dynamic Bayesian Networks Revisited
 In: JCAl 2015: 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, pp. 703-709
- Exploiting Innocuousness in Bayesian Networks
 In: Al 2015: 28th Australasian Joint Conference on Artificial Intelligence, Canberra, ACT, Australia, pp. 411-423
- Indirect Causes in Dynamic Bayesian Networks Revisited Submitted to JAIR. Journal of Artificial Intelligence Research, revision in progress
- Learning to Anticipate Indirect Causes in Dynamic Bayesian Networks
 Submitted to Journal of Bayesian Analysis, under review
- Probabilistic Mission Impact Assessment based on Widespread Local Events In: NATO IST-128 Workshop: Assessing Mission Impact of Cyberattacks, NATO IST-128, Istanbul, Turkey, pp. 16-22
- Context- and Bias-Free Probabilistic Mission Impact Assessment Submitted to Computers & Security, revision in progress
- Selection of Mitigation Actions Based on Financial and Operational Impact Assessments In: ARES 2016: 11th International Conference on Availability, Reliability and Security, Salzburg, Austria
- Semantic Normalization and Merging of Business Dependency Models In: CBI 2016: 18th IEEE Conference on Business Informatics. Paris. France
- Probabilistic Mission Defense and Assurance
 In: NATO IST-148 Symposium on Cyber Defence Situation Awareness, Bulgaria, Sofia

Vielen Dank.

... fragen?