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Motivation - Use Case
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Query Answering
SPARQL
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Query Transformation
From SPARQL to SQL
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Transformation of Temporal Queries
Ontology-Based Stream Processing
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The Idea of STARQL
[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

• We have developed a new query language for ontology-based streams
1) Uses temporal operators on state sequences
2) Adopts current ontology standards
3) Evaluates multiple streams

• We have implemented a query transformation strategy
• We execute transformed STARQL queries in modern database environments

• DBMS for historic data
• DSMS for live streams
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A static graph pattern
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A temporal graph pattern
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Graph pattern and streaming data
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From temporal graphs to temporal states

C. Neuenstadt An Engine for Ontology-Based Stream Processing 15/ 30



Motivation STARQL Transformation Evaluation

From temporal graphs to temporal states
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A window operator

SMsmt[NOW − 3s,NOW]→ 1s
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STARQL Example 1 - Threshold

∃i, x(R1(x, i) ∧ x > 93)

Example

1 SELECT ?x
2 FROM S_Msmt [NOW-3s, NOW]-> 1s
3 WHERE { :tempSensor :mountedAt :GasTurbine }
4 HAVING EXISTS ?i IN (GRAPH ?i { :tempSensor :hasVal ?x }
5 AND ?x > 93)
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STARQL Example 2 - Monotonic Increase

∀i, j, x, y(R1(sens, x, i) ∧ R2(sens, y, j) ∧ i < j
→ x ≤ y))

Example

1 CONSTRUCT GRAPH NOW {:tempSensor rdf:type MonInc }
2 FROM S_Msmt [NOW-3s, NOW]-> 1s
3 WHERE { :tempSensor :mountedAt :GasTurbine }
4 HAVING FORALL ?i, ?j, ?x, ?y IN (
5 IF GRAPH ?i { :tempSensor :hasVal ?x }
6 AND GRAPH ?j { :tempSensor :hasVal ?y }
7 AND ?i < ?j
8 THEN ?x <= ?y )
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Transformation of temporal Graph Patterns with STARQL

Static mapping example

?sens :type :Sensor ← SELECT SensorName AS ?sens
FROM Sensors (1)

Time based mapping example

GRAPH i { ?sens hasVal ?y } ← SELECT sId as ?sens, val as ?y
FROM Slice(Measurement,i,r,sl,st). (2)

i: index of the specific temporal state
r: range of the window operator
sl: slide parameter of the window operator
st: sequencing strategy of the sequence generator
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Schematic Transformation of STARQL queries
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Comparison of implemented backend examples

PostgreSQL PipelineDB Exareme Spark
Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes No Yes Yes
API JDBC JDBC REST API REST API / built in

“Semantic access to streaming and static data at Siemens”
Journal of Web Semantics 2017
“Towards Analytics Aware Ontology Based Access to Static and Streaming
Data” ISWC 2016
“OBDA for Temporal Querying and Streams” HiDeSt@KI 2015
“A Stream-Temporal Query Language for Ontology Based Data Access”
DL 2014 / KI 2014
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Experimental Evaluation
Prototypical Implementation

Experiment 1: PostgreSQL / Spark (Historic Data)
• Threshold and MonInc query executed on different data volumns
• Time scales for larger dataset with INTRAstate comparison
• But INTERstate comparisons are expensive!!

Experiment 2: Multi Core Evaluation
• Prototypical implementation per window execution based on pl/pgSQL
• Reduces data set per execution dramatically for interstate queries
• Scales by number of cores
• Overhead for each window execution is not applicable to Spark
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Related Work

SRBenchmark Evaluation

Language SPARQLStream C-SPARQL CQELS STARQL
Supported queries 17 17 11 11

Missing functionalities of STARQL are: ASK queries(1) and Property Paths(6)

Overall comparison
Query Language:

• All other three languages handle incoming triples as one graph per window.
• Only C-SPARQL accesses timestamps or temporal ordering directly

Transformation:
• Only SPARQLstream and STARQL can be transformed to relational algebra
• C-SPARQL / CQELS use their own execution environment
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Summary/Outlook

• We have shown how we can query intra/inter state-based temporal sequences
with temporal analytics in a new query language with syntax and semantics.

• We defined a new extended query transformation strategy that allows for an
execution on relational DB and streaming systems.

• We executed the transformed queries on large volumns of batch and streamed
data successfully and showed their scalability regarding distributed window
execution.

• Future extensions:
1) Extend temporal operators and aggregation functions
2) Optimize window execution on backend systems
3) Extend ontology language
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