
An Engine for Ontology-Based Stream Processing
Theory and Implementation

Christian Neuenstadt

6. Februar 2018
Lübeck



Motivation STARQL Transformation Evaluation

Motivation - Use Case

C. Neuenstadt An Engine for Ontology-Based Stream Processing 2/ 30



Motivation STARQL Transformation Evaluation

Query Answering
SPARQL

C. Neuenstadt An Engine for Ontology-Based Stream Processing 3/ 30



Motivation STARQL Transformation Evaluation

Query Transformation
From SPARQL to SQL

C. Neuenstadt An Engine for Ontology-Based Stream Processing 4/ 30



Motivation STARQL Transformation Evaluation

Query Transformation
From SPARQL to SQL

C. Neuenstadt An Engine for Ontology-Based Stream Processing 5/ 30



Motivation STARQL Transformation Evaluation

Query Transformation
From SPARQL to SQL

C. Neuenstadt An Engine for Ontology-Based Stream Processing 6/ 30



Transformation of Temporal Queries
Ontology-Based Stream Processing



Motivation STARQL Transformation Evaluation

The Idea of STARQL
[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

• We have developed a new query language for ontology-based streams
1) Uses temporal operators on state sequences
2) Adopts current ontology standards
3) Evaluates multiple streams

• We have implemented a query transformation strategy
• We execute transformed STARQL queries in modern database environments

• DBMS for historic data
• DSMS for live streams

C. Neuenstadt An Engine for Ontology-Based Stream Processing 8/ 30



Motivation STARQL Transformation Evaluation

A static graph pattern

C. Neuenstadt An Engine for Ontology-Based Stream Processing 9/ 30



Motivation STARQL Transformation Evaluation

A temporal graph pattern

C. Neuenstadt An Engine for Ontology-Based Stream Processing 10/ 30



Motivation STARQL Transformation Evaluation

Graph pattern and streaming data

C. Neuenstadt An Engine for Ontology-Based Stream Processing 11/ 30



Motivation STARQL Transformation Evaluation

Graph pattern and streaming data

C. Neuenstadt An Engine for Ontology-Based Stream Processing 12/ 30



Motivation STARQL Transformation Evaluation

Graph pattern and streaming data

C. Neuenstadt An Engine for Ontology-Based Stream Processing 13/ 30



Motivation STARQL Transformation Evaluation

Graph pattern and streaming data

C. Neuenstadt An Engine for Ontology-Based Stream Processing 14/ 30



Motivation STARQL Transformation Evaluation

From temporal graphs to temporal states

C. Neuenstadt An Engine for Ontology-Based Stream Processing 15/ 30



Motivation STARQL Transformation Evaluation

From temporal graphs to temporal states

C. Neuenstadt An Engine for Ontology-Based Stream Processing 16/ 30



Motivation STARQL Transformation Evaluation

A window operator

SMsmt[NOW − 3s,NOW]→ 1s

C. Neuenstadt An Engine for Ontology-Based Stream Processing 17/ 30



Motivation STARQL Transformation Evaluation

A window operator

SMsmt[NOW − 3s,NOW]→ 1s

C. Neuenstadt An Engine for Ontology-Based Stream Processing 18/ 30



Motivation STARQL Transformation Evaluation

A window operator

SMsmt[NOW − 3s,NOW]→ 1s

C. Neuenstadt An Engine for Ontology-Based Stream Processing 19/ 30



Motivation STARQL Transformation Evaluation

STARQL Example 1 - Threshold

∃i, x(R1(x, i) ∧ x > 93)

Example

1 SELECT ?x
2 FROM S_Msmt [NOW-3s, NOW]-> 1s
3 WHERE { :tempSensor :mountedAt :GasTurbine }
4 HAVING EXISTS ?i IN (GRAPH ?i { :tempSensor :hasVal ?x }
5 AND ?x > 93)

C. Neuenstadt An Engine for Ontology-Based Stream Processing 20/ 30



Motivation STARQL Transformation Evaluation

STARQL Example 2 - Monotonic Increase

∀i, j, x, y(R1(sens, x, i) ∧ R2(sens, y, j) ∧ i < j
→ x ≤ y))

Example

1 CONSTRUCT GRAPH NOW {:tempSensor rdf:type MonInc }
2 FROM S_Msmt [NOW-3s, NOW]-> 1s
3 WHERE { :tempSensor :mountedAt :GasTurbine }
4 HAVING FORALL ?i, ?j, ?x, ?y IN (
5 IF GRAPH ?i { :tempSensor :hasVal ?x }
6 AND GRAPH ?j { :tempSensor :hasVal ?y }
7 AND ?i < ?j
8 THEN ?x <= ?y )

C. Neuenstadt An Engine for Ontology-Based Stream Processing 21/ 30



Motivation STARQL Transformation Evaluation

Transformation of temporal Graph Patterns with STARQL

Static mapping example

?sens :type :Sensor ← SELECT SensorName AS ?sens
FROM Sensors (1)

Time based mapping example

GRAPH i { ?sens hasVal ?y } ← SELECT sId as ?sens, val as ?y
FROM Slice(Measurement,i,r,sl,st). (2)

i: index of the specific temporal state
r: range of the window operator
sl: slide parameter of the window operator
st: sequencing strategy of the sequence generator

C. Neuenstadt An Engine for Ontology-Based Stream Processing 22/ 30



Schematic Transformation of STARQL queries



Motivation STARQL Transformation Evaluation

Comparison of implemented backend examples

PostgreSQL PipelineDB Exareme Spark
Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes No Yes Yes
API JDBC JDBC REST API REST API / built in

“Semantic access to streaming and static data at Siemens”
Journal of Web Semantics 2017
“Towards Analytics Aware Ontology Based Access to Static and Streaming
Data” ISWC 2016
“OBDA for Temporal Querying and Streams” HiDeSt@KI 2015
“A Stream-Temporal Query Language for Ontology Based Data Access”
DL 2014 / KI 2014

C. Neuenstadt An Engine for Ontology-Based Stream Processing 24/ 30



Motivation STARQL Transformation Evaluation

Comparison of implemented backend examples

PostgreSQL PipelineDB Exareme Spark
Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes No Yes Yes
API JDBC JDBC REST API REST API / built in

“Semantic access to streaming and static data at Siemens”
Journal of Web Semantics 2017
“Towards Analytics Aware Ontology Based Access to Static and Streaming
Data” ISWC 2016
“OBDA for Temporal Querying and Streams” HiDeSt@KI 2015
“A Stream-Temporal Query Language for Ontology Based Data Access”
DL 2014 / KI 2014

C. Neuenstadt An Engine for Ontology-Based Stream Processing 25/ 30



Motivation STARQL Transformation Evaluation

Comparison of implemented backend examples

PostgreSQL PipelineDB Exareme Spark
Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes No Yes Yes
API JDBC JDBC REST API REST API / built in

“Semantic access to streaming and static data at Siemens”
Journal of Web Semantics 2017
“Towards Analytics Aware Ontology Based Access to Static and Streaming
Data” ISWC 2016
“OBDA for Temporal Querying and Streams” HiDeSt@KI 2015
“A Stream-Temporal Query Language for Ontology Based Data Access”
DL 2014 / KI 2014

C. Neuenstadt An Engine for Ontology-Based Stream Processing 26/ 30



Motivation STARQL Transformation Evaluation

Comparison of implemented backend examples

PostgreSQL PipelineDB Exareme Spark
Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes No Yes Yes
API JDBC JDBC REST API REST API / built in

“Semantic access to streaming and static data at Siemens”
Journal of Web Semantics 2017
“Towards Analytics Aware Ontology Based Access to Static and Streaming
Data” ISWC 2016
“OBDA for Temporal Querying and Streams” HiDeSt@KI 2015
“A Stream-Temporal Query Language for Ontology Based Data Access”
DL 2014 / KI 2014

C. Neuenstadt An Engine for Ontology-Based Stream Processing 27/ 30



Motivation STARQL Transformation Evaluation

Experimental Evaluation
Prototypical Implementation

Experiment 1: PostgreSQL / Spark (Historic Data)
• Threshold and MonInc query executed on different data volumns
• Time scales for larger dataset with INTRAstate comparison
• But INTERstate comparisons are expensive!!

Experiment 2: Multi Core Evaluation
• Prototypical implementation per window execution based on pl/pgSQL
• Reduces data set per execution dramatically for interstate queries
• Scales by number of cores
• Overhead for each window execution is not applicable to Spark

C. Neuenstadt An Engine for Ontology-Based Stream Processing 28/ 30



Motivation STARQL Transformation Evaluation

Related Work

SRBenchmark Evaluation

Language SPARQLStream C-SPARQL CQELS STARQL
Supported queries 17 17 11 11

Missing functionalities of STARQL are: ASK queries(1) and Property Paths(6)

Overall comparison
Query Language:

• All other three languages handle incoming triples as one graph per window.
• Only C-SPARQL accesses timestamps or temporal ordering directly

Transformation:
• Only SPARQLstream and STARQL can be transformed to relational algebra
• C-SPARQL / CQELS use their own execution environment

C. Neuenstadt An Engine for Ontology-Based Stream Processing 29/ 30



Motivation STARQL Transformation Evaluation

Summary/Outlook

• We have shown how we can query intra/inter state-based temporal sequences
with temporal analytics in a new query language with syntax and semantics.

• We defined a new extended query transformation strategy that allows for an
execution on relational DB and streaming systems.

• We executed the transformed queries on large volumns of batch and streamed
data successfully and showed their scalability regarding distributed window
execution.

• Future extensions:
1) Extend temporal operators and aggregation functions
2) Optimize window execution on backend systems
3) Extend ontology language

C. Neuenstadt An Engine for Ontology-Based Stream Processing 30/ 30


	Motivation
	STARQL
	Transformation
	Evaluation

