
Institute of Information Systems
University of Lübeck

An Engine for Ontology-Based

Stream Processing

Theory and Implementation

Submitted by Christian Neuenstadt
from Hamburg, Germany.

Lübeck, February 2018

C. Neuenstadt

From the Institute of Information Systems
of the University of Lübeck

Director: Prof. Dr. Ralf Möller

An Engine for Ontology-Based

Stream Processing

Theory and Implementation

Dissertation
for Ful�llment of
Requirements

for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Christian Neuenstadt
from Hamburg, Germany.

Lübeck, February 2018

Chair: Prof. Dr. Andreas Schrader

First referee: Prof. Dr. Ralf Möller
Second referee: Prof. Dr. Martin Leucker

Date of oral examination 06.02.2018

Approved for printing. Lübeck,

Abstract

In recent years various technologies have been developed to access ontology-based
temporal and streami�ed data. This work is a contribution to these e�orts by
demonstrating the stream-temporal access on relational data with query transfor-
mations based on a new query language STARQL and the implementation and
evaluation of a prototypical framework for accessing di�erent data sources. As
especially designed for industrially sensor network scenarios, STARQL provides
access on historic data for reactive diagnostics and streamed data for continuous
monitoring to solve requirements of industrial engineers in predictive and real-time
scenarios. We explain how to transform STARQL queries w.r.t. mappings into SQL
queries on the theoretical and practical side, while evaluating temporal sequences
and joins of historical and live streamed data. Finally, we show experiments based
on our STARQL prototype and modern database engines such as the PostgreSQL
DBMS or distributed Big Data systems such as Spark SQL and Spark streaming
to prove the implementability and feasibility of our approach.

Keywords: stream reasoning, ontology-based data access, monitoring, unfolding,
safety, temporal reasoning

v

Zusammenfassung

In den vergangenen Jahren wurden bereits einige Methoden entwickelt, um einen
ontologobasierten Zugri� auf zeitliche und strombasierte Daten zu ermöglichen.
Diese Arbeit soll einen weiteren Beitrag leisten, um den strom- und zeitbasierten
Zugri� auf relationalen Daten mittels Anfragetransformationen und einer neuen op-
timierten Anfragesprache namens STARQL zu demonstrieren. Die speziell für den
industriellen Einsatz entwickelte Sprache STARQL ermöglicht sowohl den Zugri�
auf historische Daten für eine reaktive Diagnostik als auch auf geströmte Daten
für ein kontinuierliches Monitoring, um Ingenieure optimal im Hinblick auf Anal-
ysen und Vorhersagen in Echtzeit-Szenarien zu unterstützen. In diesem Kontext
erklären wir wie eine Transformation von STARQL-Anfragen mit Hilfe von deklar-
ativen Abbildungen in SQL-Anfragen umgesetzt werden kann, sodass sowohl In-
formation über zeitliche Sequenzen als auch die Verknüpfungen von historischen
und Echtzeit-Daten ermöglicht wird. Schlieÿlich analysieren wir in einer prototyp-
ischen Umsetzung das in dieser Arbeit implementierte STARQL Framework und
zeigen anhand von Beispielen und Anwendungen in modernen Datenbanksystemen
(wie z.B. das verteilte Big Data Framework Spark) die Implementierbarkeit und
Machbarkeit unseres Ansatzes im Vergleich zu ähnlichen Systemen.

vii

Contents

1. Introduction 1
1.1. Challenges for Stream Processing . 1
1.2. Research Problems and Scope of Work 2
1.3. Outline . 4

2. Preliminaries 5
2.1. Main Concepts of Stream Processing 5

2.1.1. Continuous Queries on Data Streams 6
2.1.2. Data Stream Model . 7
2.1.3. Event Stream Processing Model 8
2.1.4. Window Processing . 10
2.1.5. Stream Operator . 11
2.1.6. Lambda Architecture . 12

2.2. Data Stream Management Systems and Query Languages 13
2.2.1. TelegraphCQ . 13
2.2.2. NiagaraCQ . 14
2.2.3. OpenCQ . 15
2.2.4. Tribeca . 15
2.2.5. Aurora/Borealis . 15
2.2.6. STREAM . 17
2.2.7. Tapestry . 17
2.2.8. StreamCloud . 18
2.2.9. Exareme . 18
2.2.10. PipelineDB - SQL . 20
2.2.11. Spark . 21
2.2.12. Flink . 23
2.2.13. Summary and Overall Comparison 24

2.3. Description Logic and Semantic Representation 28
2.3.1. Description Logics . 29
2.3.2. Ontologies for Sensor Networks 36
2.3.3. The SPARQL Query Language 38

2.4. Ontology Based Data Access . 43
2.4.1. Classical OBDA . 45

ix

Contents

2.4.2. Query Transformation for Access on Static Data 46
2.4.3. ABDEO . 57
2.4.4. Temporalizing OBDA . 58
2.4.5. Streamifying OBDA . 60

2.5. Stream Based SPARQL - Extensions 61
2.5.1. Streaming SPARQL . 61
2.5.2. C-SPARQL . 62
2.5.3. CQELS . 62
2.5.4. SPARQLStream . 64
2.5.5. EP-SPARQL . 65
2.5.6. TEF-SPARQL . 65
2.5.7. RSP-QL . 66

2.6. Comparison of Semantic Streaming Languages 67
2.6.1. General Semantic Models for Streams 68
2.6.2. Benchmarks for Linked Data 71

2.7. Concluding Remarks . 77

3. A New High Level Stream Query Language: STARQL 79

3.1. OBDA Challenges in Sensor Measurement Scenarios 80
3.1.1. Optique - Use Case . 80
3.1.2. Natural Query Examples . 85
3.1.3. A New Query Language for Streams? 88
3.1.4. Resulting Problems and Hypotheses of this Work 89

3.2. Introduction to STARQL . 91
3.2.1. Introduction of STARQL by Example 91
3.2.2. STARQL Stream Operators 96

3.3. Formal Syntax and Semantics . 109
3.3.1. General STARQL Syntax . 109
3.3.2. STARQL HAVING Clause Syntax and Safety Criteria 112
3.3.3. STARQL Semantics . 119
3.3.4. Comparison of STARQL to SPARQL Syntax and Semantics . 123
3.3.5. Expressing Temporal States with STARQL HAVING Clauses 125

3.4. Concluding Remarks . 128

4. Transformation of STARQL into Queries for Relational Systems 129

4.1. Transformation of Window and Sequencing Operators 131
4.1.1. Window Transformation for Historical Queries 132
4.1.2. Window Transformation for Continuous / Real Time Queries 134

4.2. Rewriting and Unfolding of STARQL HAVING Clauses 135
4.2.1. An Example Transformation for STARQL Having Clauses . . 137

4.3. Additional Transformation of STARQL Operators 143

x

Contents

4.4. Concluding Remarks . 146

5. Querying Relational Streaming Engines with STARQL 147

5.1. Implementation of a STARQL Streaming Engine 147
5.1.1. Transformation Module . 149
5.1.2. Query Processing . 149
5.1.3. Serialization . 152

5.2. Test Dataset . 153
5.2.1. Data Schema and Example Data 153
5.2.2. Ontology . 155
5.2.3. Mappings . 156
5.2.4. Queries . 157

5.3. Implementation of the Ontology Based Streaming Back End Adapter 160
5.3.1. Experiments on PostgreSQL Back End 161
5.3.2. Experiments on Exareme . 166
5.3.3. Experiments on Spark . 168
5.3.4. Experiments on PipelineDB 170

5.4. Concluding Remarks . 172

6. Evaluation of Query Processing with STARQL 173

6.1. Functionality Evaluation - Comparison of RDF Stream Processing
Engines . 173
6.1.1. Comparing RDF-Stream Query Languages 174
6.1.2. Comparing RDF based Streaming Systems 175
6.1.3. Evaluating Functionalities in a Benchmark 176
6.1.4. Discussion of the Functionality Evaluation 178

6.2. Evaluation of Rewriting and Transformation 180
6.2.1. (Non) Rei�cation of Direct Mapping and Time 180
6.2.2. Evaluation of Transformation and Delays 183
6.2.3. Discussion of the Transformation Process 185

6.3. Evaluation of Query Execution . 186
6.3.1. Evaluation of Historical Queries 186
6.3.2. Scalability of Query Execution 188

6.4. Discussion of Evaluation Results . 189
6.4.1. Evaluation of Functionalities 189
6.4.2. Feasibility of the OBDA Approach 191
6.4.3. E�ciency and Scalability of the Implemented Approach . . . 192

7. Conclusion 193

7.1. Contributions . 194
7.2. Outlook and Future Work . 195

xi

Contents

Appendices 197

A. Transformation of Example Queries 199

B. Distributed Window execution with pl/pgSQL 205

C. SRBench - Queries expressed in STARQL 215

Bibliography 221

Listings 243

xii

1. Introduction

The tremendous hardware development in recent years has produced smaller, cheaper
and more e�cient sensor devices than ever before. As a result, sensor measurements
have become ubiquitous and allow us to improve our life in many scenarios, where
monitoring and complex analytics of sensor data can help to overcome daily prob-
lems.

This has lead to an emerging increase in applications for managing sensor inputs
of many di�erent kinds. Some of these examples are weather observations [84],
health monitoring (e.g. heart rate or blood pressure) [107], �nancial markets (online
analysis of stock prices) [249], network tra�c monitoring [79, 218] or sensors in
smartphones and mobiles (e.g. GPS, accelerometer and compass) [151]. Besides
real physical sensor units, current data streams are often produced by services on
the web, e.g., messages on various topics produced by humans or machines on
Facebook or Twitter with more than 500 million tweets a day [217].

An increasing amount of live data has revolutionized the way we are looking at
database systems. Where earlier databases were just stores that evaluated its data
inside, we are now using systems, which are evaluating incoming data in real time
just as it is arriving. This brought up the area of general stream processing [98, 105]
with respect to relational and non-relational data.

1.1. Challenges for Stream Processing

In general the increasing amount of data is often named by the simple buzzword
BigData [72]. Typical new challenges arriving together with BigData are are mea-
sured in three dimensions [152]: volume (accumulation of data over time), velocity
(rapidly increasing input) and variety (data in di�erent formats from di�erent lo-
cations). To access on the one hand large amounts of already stored or recorded
data and on the other fast changing input streams becomes an increasingly di�cult
task, especially if the data access has to be formulated in a single query. Although
this problem has already been addressed in some approaches [161], it stays a major
challenge for industry.

1

1. Introduction

For example, the Optique Project [102] focuses on a use case that is provided by
Siemens1 and encompasses terabytes of temporal data, as well as many gigabytes of
incoming turbine data from thousands of sensors per day. The combination of data
from di�erent sources leads to complex query formulation problems and requires
up to 70% of an IT experts time for assessing the quality of data. A restriction to
prede�ned queries in that scenario, which can only be extended by IT experts, was
identi�ed as the major bottleneck for providing the requested data and turns out
to be very expensive in terms of time and money.

A possible solution to this problem is the so called Ontology-Based Data Access
approach (short OBDA) [75, 202]. It allows the user to formulate queries on
an abstracted semantic layer in a simpler query language, by using underlying
transformation services that translate each query into appropriate representations
for the (possibly distributed) database engines. It is based on two steps: a rewriting
of the query w.r.t
an ontology and an unfolding into a target algebra. The use of an
ontology allows the users to formulate their requirements by an enriched conceptual
model, which has been speci�ed directly for the problem domains and to receive
answers in the same enriched form, while the queries are translated without any
notice of the user or intervention of IT-experts in the backend. The general OBDA
approach is well established in the �eld of static or non-temporal data, has been
investigated for some approaches on temporal data [22, 25], and implemented in
very few preliminary cases for streaming data [58, 59].

Streams and temporal data are strongly connected and thus, require similar ad-
ditional temporal (logic) operators in their query language. However, processing
of data di�ers. While temporal data can be evaluated by batch processing, the
evaluation of streams is a reactive and continuous activity. Both, the processing
and temporal operators in ontology based query languages are still part of ongoing
and challenging research.

1.2. Research Problems and Scope of Work

Several approaches and query languages have been developed in the recent years
that directly access streams containing ontology based data [30, 189]. On the other
hand, there has only been one application that lifts relational stream engines onto
an ontological level by query transformation techniques [58], as used in the OBDA
approach for static data. Nevertheless, most of these approaches treat assertions
in a single temporal window as equal with respect to time or just as another static
attribute. The coexistence of attributes with unclear temporal relations in a slided

1http://www.siemens.com

2

1.2. Research Problems and Scope of Work

time window can lead to unintended inconsistencies. For example, say, we have
collected several measurements from di�erent time points of a single sensor in one
temporal window, then an consistency check would fail, as we require the role,
which connects sensors and values, to be functional in measurement scenarios.

Although a lot of research has been accomplished on combining streaming and
historic data in classical scenarios [161], there is currently no connection between
ontology access on streaming data and temporal data in a single application or
query language.

Derived from the previous observations, we have identi�ed the following research
problems for ontology based stream access:

A query language on streams should be time-aware and also should
provide real time based operators with underlying temporal semantics.
It should allow for a formulation of temporal patterns and instruments
for data analytics in industrial scenarios.

In order to solve this problem, we present a new query language for accessing
streams with respect to ontologies: STARQL2. With STARQL we push the idea
of traditional window operators further by de�ning �nite sequences of temporal
states for each window. Additionally we de�ne appropriate tools that allow us
to use prede�ned patterns on possible sequences, based on linear temporal logics.
Moreover, we try to combine the most important operators, known from ontology
database access and data analytics, to enable aggregations and temporal reason-
ing. The sequencing strategy for windows that is required to avoid inconsistencies,
as argued above, makes rewriting and, more importantly, unfolding of STARQL
queries a challenging task.

A query language based on ontologies should enable a possible rewriting
and unfolding technique, which is executed w.r.t
ontologies and map-
pings, to guarantee �exible access on di�erent state of the art data
processing backend systems.

After having mentioned the de�nition of temporal sequences and operators in our
query language, one may ask whether it is still possible to rewrite and unfold
one STARQL query into a single backend query, formulated directly in the query
language provided by the backend systems. In fact, we demonstrate that such a
end-to-end transformation is possible in general for relational database systems and
in particular for di�erent state of the art streaming and non-streaming database
systems (demonstrated for Apache Spark).

2[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

3

1. Introduction

Finally, we also would like to guarantee that our transformed STARQL queries
for temporal analytics can be executed e�ciently on the backends for temporal
(historical) and streaming data.

A query language for streams and temporal analytics in industrial set-
tings should provide combined access on temporal and streamed data
in a distributed setting with large volumes of (historical) data.

Considering reasoning on temporal data for reactive diagnostics in industrial set-
tings, it can be shown that a window based approach leads to desirable solutions
as well. While for reactive diagnosis the recognition of patterns over a dataset is
relevant, we use windows as potential templates to evaluate small subsets of data
in one query. Thus, as the processing of recorded data is not bound to a real-time
execution, internally, all window instances could be evaluated in parallel.

Further, we show a distributed execution of this approach for STARQL queries
and di�erent backends, which can handle the evaluation of real time and historical
data.

1.3. Outline

The further thesis is structured as follows. In Chapter 2 we give an overview on
relevant state of the art technologies, also relevant for a better understanding of
our work. Those include: processing of streaming data, ontology based access on
relational data and a comparison of di�erent approaches for stream access with
respect to ontologies, together with available benchmarks in that area. Chapter 3
presents our new query language and framework STARQL with a detailed view
on its operators, as well as its syntax and semantics. We proceed in Chapter 4
with an description of the rewriting and unfolding process used to translate the
explained temporal operators. Chapter 5 presents a prototypical implementation of
a STARQL query transformation and processing engine based on work in previous
chapters. We explain how rewritings and unfoldings are arranged in the architecture
and how the transformation results are executed on di�erent backend systems. We
give a detailed evaluation with experiments in Chapter 6. Finally, in Chapter 7, we
show our overall conclusions and give an outlook on possible directions for future
research.

The presented work in this thesis has been partially published or presented on
international conferences [131, 135, 181, 182] and workshops [168, 175, 183]

4

2. Preliminaries

The following chapter gives a basic overview on current data stream management
systems on the one hand and ontology based streaming systems on the other. Fur-
thermore, we explain the classical approach for translating ontology based queries
into relational query languages (e.g. SQL) and give a small survey on current state
of the art technologies in the �eld of RDF stream access.

Therefore, after a short introduction on the general streaming approach in Sec-
tion 2.1, we proceed in Section 2.2 by giving an overview on DSMSs and a the-
oretical description of the classical OBDA approach with respect to mappings in
Section 2.3. Finally, we conclude with already existing approaches for ontology
based stream access (Section 2.5) and some possible benchmarks for an evaluation
of these systems in Section 2.5.

2.1. Main Concepts of Stream Processing

In this section we would like to give a brief introduction to the basic use of streams
in the literature. Processing streaming data focuses basically on evaluating con-
tinuous queries on data streams such as raw sensor data from sensor networks
measuring information such as temperature, pressure, network monitoring, heart
rates in a medical system or more high level streams connected to stock market
tickers. In an even more high level fashion these streams can be abstracted further
and developed into complex event streams that are processed by a so-called event
processing engine. For example, if a temperature sensor exceeds a speci�c value for
a certain amount of time, the current signal could be registered as an alert event,
which is then sent over an additional stream. For all of these mentioned applica-
tions above, loading the arriving data into a further data base management system
appears no longer useful as current DBMS are not designed for rapid high speed
and continuous load or even in�nite amounts of data coming over an input stream
[27], and therefore a new strategy involving so-called continuous queries has been
used in di�erent systems [222].

5

2. Preliminaries

We would like to provide a general overview on the area of processing streaming
data with its related and current work by giving a short background on the notions,
structures and query languages that these systems have established.

In our scenario for data streams, the main issue relating the data is that some
or all of the input is not stored in main memory at a time and can therefore
not be accessed completely. Compared to standard relational databases, there are
additional di�erences concerning data [27].

• All stream elements arrive online and thus, the system has no control on the
order or arrival times of the data for any input stream.

• The size of any data stream is unknown and could be even in�nite, therefore
a storage of the complete stream is impossible.

• As soon as a data stream element has been processed, it can not be retrieved
or reproduced again, unless it is explicitly stored in memory or on disk, which
is commonly not e�ective regarding its overall size of data.

A system designed for querying data streams does not mean that static data does
not exist. Actually the data stream management system is often combined with
a standard relational data base, which makes it possible to join window data and
additional static data.

2.1.1. Continuous Queries on Data Streams

The �rst idea for handling continuous data on append-only databases, already used
in 1992 [222], was about using continuous queries, which can be distinct from tra-
ditional database queries as one-time queries, which are evaluated only once over a
snapshot of the dataset, with a single answer set. Continuous queries, on the other
hand, are evaluated regularly over time with regular answers on changing windows
and a just arriving dataset [28]. Nevertheless, the arriving dataset from continuous
streams may be stored in relational data bases, but even if there is enough stor-
age available on the hard drive, performance issues may require that memory be
available for computing answer sets for blocking operators such as aggregates for
computing the average of data values from a longer time period. Another option
instead of saving the retrieved data to disk is providing the resulting answer as
a new continuous stream [28]. An example architecture for continuous queries is
shown in Figure 2.1. The schema shows di�erent components of a typical process-
ing engine. A query is registered to the system, which regularly evaluates changing
window snapshots of incoming data. Streaming engines often support also caches

6

2.1. Main Concepts of Stream Processing

for aggregation operators (e.g
for measuring average values) to aggregate data over
a longer time period or include data from other permanent stores.

Figure 2.1.: Schema of an architecture for Continuous Queries

2.1.2. Data Stream Model

The use of simple continuous queries was su�cient for non complex cases, where
relational query languages without speci�c streaming capabilities could still be used
like in the case of Tapestry in 1992 [222], when references to relations were replaced
by references to streams, while tapestry was even limited to append-only databases.
However, as the complexity of continuous queries began to grow by the use of
additional constructs such as aggregations, subqueries and joins between streams,
relations or both, more advanced query languages with speci�c temporal semantics
and operators were required [17][241]. Successor systems introduced continuous
streams as unbounded sequences of tuples [105]. Each of these tuples is attached
to some time information, which could be a simple index indicating an ordering in
time or an explicit timestamp. In the STREAM project [15], assuming a discrete
time domain T, a stream is de�ned as follows.

De�nition 1. Stream:. A stream S is a possibly in�nite bag (multiset) of elements
〈s, τ〉, where s is a tuple belonging to the schema of S, and τ ∈ Γ is the timestamp.

In the case of an explicit timestamp, several options are possible. While it also
induces an implicit order, it could describe tuples at their arrival to the system
(transaction time) or an observation time for the actual event (application time),
but in most cases a simple production time is chosen, de�ning the time at which
the data has been generated.

7

2. Preliminaries

Regarding that view, it is not necessarily the case that exactly one tuple arrives
per timestamp, each timestamp can be bound to a set of unbound tuples and vice
versa. With beginning of the 2000s several new systems appeared, supporting the
view on streams in De�nition 1, including the mentioned system STREAM [15],
TelegraphCQ [71] and Aurora [3].

A typical use case for these models is the sensor measurement scenario, where
observations from sensor networks (e.g. temperature, pressure, speed, coordinates)
are sent as timestamped tuples to the streaming engine. We illustrate a possible
stream model in Figure 2.2. One can see di�erent observations for each sensor
stream, while in each stream di�erent sets of unbound tuples are connected to
timestamps. The streams can di�er in the size of tuples per timestamp or in the
rate at which the timestamps arrive, depending on a higher or lower sampling
rate.

Figure 2.2.: Schema of an architecture for continuous queries

Although the described handling of timestamps and data tuples is a common model
for data streams, there are several ways for individual abstractions and handling of
streams regarding the data tuples. Instead of just sending unbound tuples like in the
mentioned system STREAM [15], they can be sent as abstract objects or datatypes.
The representation of data is thus independent from the stream model and sent in
some systems as messages in XML notation for each tuple as in NiagaraCQ [73],
other systems are more event based with abstract models such as in Esper [92].

2.1.3. Event Stream Processing Model

As mentioned before, an event stream model di�ers from the raw data stream level
by its level of abstraction. Where data stream management systems handle raw
data management, event processing system process abstractions of observations. A

8

2.1. Main Concepts of Stream Processing

more advanced way of processing events is complex event processing or CEP for
short. The CEP engine subscribes to sources, also called observers, and manages
the data�ow to sinks or consumers. In between it �lters and combines information
to explain what is happening on a high event level and notify its sinks [83]. CEP
systems are highly tailored to detect complex patterns of incoming data involving
sequencing and ordering that is a limitation of pure data stream management sys-
tems. Additionally, they rely on the ability to specify composite events through
patterns and matching incoming noti�cations using an internal event processing
network that includes event processing agents (see Figure 2.3) on the basis of their
content and on some ordering relationships between them.

Figure 2.3.: General schema of a CEP network

Other indicators used for encoding complex events can be overlapping events, nega-
tion, disjunction and several more [82]. Some of these abstract processors have been
formalized in [114]. Its authors describe nine di�erent basic processing units in a
formal way, including pass through of variables, emitting of constants, monadic or
dyadic functions, �lter and window functions. Furthermore, they explain how these
processors can be combined to represent regular expressions, �nite-state automata
or linear temporal logic, which are three major languages that are commonly used
to express monitoring speci�cations in runtime veri�cation contexts.

The term runtime veri�cation (or runtime checking) describes the monitoring of
invariants or other conditions in software systems to ensure the correctness of soft-
ware modules. Potential applications in these cases are system tests, debugging,
veri�cation and logging of errors. This technique is also applicable in �nal execution
environments and embedded systems as shown in [239]. The paper also discusses
cases of monitoring and runtime veri�cation for di�erent kinds of embedded sys-
tems, e.g., hardware/software, hybrid and on-chip monitoring.

Beyond that, also new types of events or patterns are de�ned by event processing

9

2. Preliminaries

systems for realizing more advanced data mining steps, although the system does
not necessarily depend on events only. And thus, di�erent kinds of data input can
be combined, naming events, data streams or just stored data in a relational data
base.

2.1.4. Window Processing

As we already mentioned above, in comparison to standard relational databases,
data stream management systems are unable to provide all data at any given point
in time. A common solution to that problem is a computation on the latest arriving
tuples only and therefore limit the scope of the data being processed. This is called
the window query model. We suppose that for a given query q the latest tuples of
data arrive at time τ , then the window relation W (τ) provides all tuples arriving
in the interval of (τ − δ, τ], while δ indicates the width of window W . An aggregate
function such as AV G can then be applied to W (τ). There exist several di�erent
types of window functions W (·). The following criteria for their classi�cation can
be found in [15].

Movement of the Window Endpoints One criterion is described by a �xed or
moving window end. Two �xed ends de�ne a �xed window, while two sliding end-
points de�ne a sliding window. One �xed endpoint and one moving endpoint de�ne
a landmark window.

Time-Based vs
Tuple-Based Time-based windows (also called physical) are de-
�ned for speci�c time intervals (e.g., 7 minutes), while tuple-based (or logical)
windows end with with a de�ned number of tuples (e.g., 7 data tuples).

Update Interval Windows can be updated whenever a new tuple arrives (called
eager update). For any other update interval we talk about a jumping window. For
update intervals larger or equal to the window size, we call the window a tumbling
window. Jumping windows are not necessarily updated in a tuple-based way, in
many cases a periodic time based update interval is used instead.

These window de�nitions have been implemented in many systems including STREAM,
NiagaraCQ or TelegraphCQ, although no clear and formal unifying semantics has
been given. A �rst approach on de�ning window operators was introduced in [241],
whose authors propose three di�erent window operators transforming streams into
relations and vice versa.

10

2.1. Main Concepts of Stream Processing

2.1.5. Stream Operator

The data streaming system STREAM [241] has introduced stream semantics within
its query language CQL1 to express stream operators that became a standard view
in the area for years. CQL [16] uses SQL constructs, which express a transforma-
tion from stream into a relational context, and enables evaluation on relations and
transforms their result back into an output streams (see Figure 2.4).
The three classes are not explicit operators, but can be seen as a �black box� ab-
straction with generic properties.

Figure 2.4.: General schema of CQL window and stream operator

Stream to Relation. A stream-to-relation operator takes a stream as input and
produces a relation as output, which is an abstraction of window operators using
a sliding window approach and can be expressed using window speci�cations, such
window width and slide.

Relation to Relation. A relation-to-relation operator takes one or more relations
as input and produces a relation as output. Most of the data manipulation is done
using these constructs, which handles for example aggregation operators such as
MAX or AV G, another part for data manipulation of this operator is �ltering.

Relation to Stream. A relation-to-stream operator takes a relation as input
and produces a stream as output. This operator manages the tuple output and is

1Continuous Query Language

11

2. Preliminaries

speci�ed by three di�erent classes of operators:

1. The Istream or �insert stream� operator is applied to all tuples s of relation
W (τ), whenever s is in W (τ) −W (τ − 1), i.e. all tuples that have been in-
serted from the input stream at time τ .

2. The Dstream or �delete stream� operator is applied to all tuples s of relation
W (τ), whenever s is inW (τ−1)−W (τ), i.e. all tuples that have been deleted
from the input stream at time τ .

3. The Rstream or �relation stream� operator is applied to all tuples s of relation
W (τ), whenever s is in W (τ), i.e. all current tuples in the relation at time τ .

2.1.6. Lambda Architecture

In the range of BigData scenarios a new architecture was recently presented to
combine the described processing of streams with popular batch processing methods
for stored data, which is also known as Lambda Architecture [161]. It was designed
to optimize the balance between latency, throughput and fault tolerance and is
generally based on an append-only data model with an immutable data source that
allows for di�erent analytical tasks on the arriving data. Moreover, a Lambda
architecture is constructed of the following three components:

Batch Layer. This layer precomputes results by using a distributed system that is
capable of handling very large volumes of data. A de facto standard for these
purposes is Apache Hadoop [210]. Its aim is to process the stored dataset and
to generate batch processed views, which allow for faster query answering. A
possible recomputation and replacing of existing views serves as a major fault
tolerance advantage, if one computation gets lost during the process.

Speed Layer. Real time data streams are processed by the speed layer. It aims
on a minimization of latency by providing views only for the most recent
data and therefore, replaces the delayed view calculation of the batch layer
by real-time processing. Although these results might be not as accurate or
complete, they can be immediately provided when the data is received and
replaced as soon as the batch layer's view is available. Often used stream
technologies for these purposes are Apache Storm [226] or Spark [94].

Serving Layer. The outputs generated by batch and speed layers are joined and
stored in the overlying serving layer, which serves as a direct connection

12

2.2. Data Stream Management Systems and Query Languages

to incoming ad-hoc queries and returns views, constructed by the underly-
ing layers. Used technologies are Druid [243], Apache Cassandra [150] and
HBase [100] for merging speed-layer and batch-layer output.

While providing e�cient access on recorded time series and live stream data, the
system easily can become complex and hard to maintain. Each layer consists of
di�erent systems and code, but must be kept in sync in order to produce identical
results. Therefore, other �exible streaming solutions are currently discussed that
could provide the same processing and latency management in a single framework.

2.2. Data Stream Management Systems and Query

Languages

In the last section we discussed a general model for streams. In this section we
will go through a survey of data stream management systems using the paradigm
of continuous queries [81]. SQL as a declarative standard language for relational
databases inspired the industry to create several data stream languages and con-
tinuous query designs based on the declarative language as well. In the following
we introduce some examples for the given stream languages by using a simple
measurement input stream that shows values as a single attribute.

2.2.1. TelegraphCQ

TelegraphCQ [71] (CQ for continuous queries) is such a data stream management
system, based on the standard language for relational databases SQL. It has been
implemented as an extension of PostgreSQL2 in C++ with an SQL like query
language for streams, which its authors introduced as StreaQuel. As an extension,
it relies on all relational operators of SQL, including aggregates. Furthermore,
StreaQuel adds a speci�c new window operator called WindowIs to declare various
types of windows.

Listing 2.1: Basic StreaQuel query (ST = start time)

1 Select AVG(value)

2 From Measurements

3 for (t = ST; t < ST + 50; t +=5){

4 WindowIs(Measurements , t - 4, t);

5 }

2http://www.postgresql.org/

13

2. Preliminaries

The declarative language allows multiple WindowIs operators, one for each input
stream, which is expressed in a for loop. Listing 2.1 shows an example for a
single WindowIs operator. The loop starts at time ST and ends at ST. While the
operator allows for a di�erent window width in each stream, it does only allow one
slide parameter in the for loop. By adopting an explicit time variable, TelegraphCQ
enables users to de�ne their own policy for moving windows. As a consequence, the
number of items selected at each processing cycle is unknown in advance, since it
is not possible to determine how many elements the time window contains.

As the WindowIs operator can be arbitrarily de�ned by free time variables, Tele-
graphCQ naturally supports the evaluation of historical data, which have to be read
from disk and thus, can be signi�cantly slower than the input stream. To keep up
with the speed of the incoming live data a shedding technique is used. OSCAR3,
which has been implemented for TeleegraphCQ, saves di�erent sizes of the data by
multiple sample rates on the disk as summaries, which can be picked for replaying
the historical data depending on the speed of the arriving live data, the system
picks the right resolution level to use in query processing [70, 196].

2.2.2. NiagaraCQ

NiagaraCQ [73] is a system developed for high-level access on internet based data
retrieval, where the data is stored in rapidly changing XML data sets. Therefore,
it extends an XML based SQL-like language called XML-QL [90] by adding trans-
formation rules and constructors for creating a continuous queries or deleting it.
Rules are valid for de�ned time intervals and are either evaluated periodically or
when changes are retrieved from the sources. De�ned actions can be performed
each time a speci�c rule is evaluated positively. Instead of creating a new out-
put stream the result data is appended into a table and can either be retrieved
by users on demand, or users can be noti�ed if new results are available by email.
The kind of data sources distinguishes NiagaraCQ from other DSMS systems, as
they are widely distributed internet sources over a geographical area and as they
are also XML based internet sources, they do not provide any explicit timestamps
with the data. The NiagaraCQ engine itself runs in a centralized way, while for
scalability and e�ciency a caching algorithm is provided for reducing access time
on distributed sources.

3Overload-sensitive Stream Capture and Archive Reduction

14

2.2. Data Stream Management Systems and Query Languages

2.2.3. OpenCQ

OpenCQ [158] relies on the same data stream processing models as NiagaraCQ. Like
NiagaraCQ, it is a data stream management system that was designed to work on
internet database update monitoring as an web-event streaming system.
Its rules extend SQL queries that de�ne operations on data, which are based on a
trigger and a stop conditions that de�ne the start and end point of a rule. OpenCQ
has been implemented on top of the DIOM framework [157].

2.2.4. Tribeca

Tribeca [219] has been designed for network tra�c monitoring and analytics. It
uses rules for de�ning a sequence of operators that the input stream has to pass
through. Those operators are based on three standard algebra operators, namely
selection, projection, and aggregation. Additional operators are available for split-
ting or merging streams.

Tribeca also supports window operators for count and time based operations with
di�erent slide parameters. They specify the amount of input data that is being
processed when using aggregates. As Tribeca does not use explicit timestamps,
processing must be performed in direct arrival order. On the other hand, the
amount of input data for each time window is impossible to know in advance.
Therefore, a rule may be satis�ed by more than one object in each window, while
an element may be used for more than one processed window, as it is never explicitly
consumed.

2.2.5. Aurora/Borealis

Aurora [3] is a DSMS that, in comparison to TelegeraphCQ and NiagaraCQ, uses
an imperative language called SQuAl4. It can be described as a data-�ow system
that uses an interface based on boxes and arrows, where application administrators
describe the system �ow through a loop-free directed graph connected to processing
operators. The graphical user interface of Aurora supports hierarchical collection
of grouped boxes. A designer starts his design at the top-level of the hierarchy with
a few super boxes on the screen. Then he can zoom into speci�c network groups
and start the redesign by replacing it with boxes (i.e., operators).

4[S]tream [Qu]ery [Al]gebra

15

2. Preliminaries

Figure 2.5.: Aurora graphical user interface [68]

Auroras query language SQuAl de�nes windowed operators or single-tuple oper-
ators, they either connect a single evaluation function to an input window or to
a single data tuple, when operating on one item at a time. It contains built-in
support for seven primitive operations or �lter operators such as SELECT or JOIN,
union and group by.

Although SQuAl provides multiple input and multiple output �ows, there is no ex-
plicit split, but the administrator can connect the output to several inputs of other
boxes by graph connections. On the other hand. there is an operator for stream
merges available, which is called union operator. Additionally in the interface it is
possible to add quality of service information to each output, which makes system
behavior customizable for application requirements. So for example one applica-
tion domain may require reduced answer precision in order to provide really fast
response times. The design plan of the administrator is processed by a scheduler,
which works as an optimizer on allocated resources for the di�erent operators in
order to manage their load and QoS constraints.

16

2.2. Data Stream Management Systems and Query Languages

The project has been extended to di�erent domains by merging the Aurora project
with the Medusa project into the Borealis stream processor [2].

2.2.6. STREAM

We already mentioned CQL [17] in Section 2.1.5 for de�ning speci�c stream op-
erator classes. CQL is a declarative and expressive SQL based language that
was implemented for a prototype data stream management system at Stanford
called STREAM5 [15]. It introduces abstract semantics based on two data types,
namely streams and relations, and three stream operator classes: stream-to-relation,
relation-to-relation, relation-to-stream.
Those three abstract operator types describe generic properties of the streaming en-
gine as black boxes for operators of that group (see Section 2.1.5). CQL expresses
relation-to-relation operators in SQL. Its big advantage is that main parts of the
de�nitions are realized by a widely used language. Stream-to-relation operators
are derived from SQL-99 with additional window speci�cations, while three speci�c
operators (IStream, DStream, and RStream) de�ne relation-to-stream operations
(compare Section 2.1.5). The STREAM system is able to compute query execution
and schedule plans based on CQL rules, while taking performance criteria into ac-
count for optimization.
Additionally, load shedding techniques are used to overcome the problems of re-
source overload and limited memory by computing approximate answers for win-
dow joins when the memory is insu�cient to keep the operator state [216]. CQL
has been used to specify the Linear Road benchmark (see Section 2.6.2), which is
typically proposed for the evaluation of data stream systems.

2.2.7. Tapestry

Continuous queries were �rst introduced for the Tapestry system [222] in 1992,
that was designed for append-only databases without triggers, meaning that data
is added as it arrives, but never removed.
Its original idea was querying for changes of mail messages or news articles on a
standard database and sending noti�cations whenever new data matches the query,
which as such could be implemented on any standard database that supports SQL.
Users can write queries in a language called TQL6 that is similar to SQL and can
express usual queries on static data. Users can query the database with ad-hoc
queries until it �ts their requirements and then register it to the Tapestry system

5[ST]anford st[RE]am dat[AM]anager
6Tapestry Query Language

17

2. Preliminaries

to be executed in a loop (see Listing 2.2).

Listing 2.2: Basic Tapestry Algorithm for periodic query execution

1 FOREVER DO

2 Execute Query Q

3 Return results to user

4 Sleep for some period of time.

5 ENDLOOP

Conceptually, a TQL query is executed once every time instant as a one-time SQL
query over the snapshot of the database at that time instant, and the results of all
one-time queries are merged using set union.
The system is capable of executing queries periodically, while avoiding duplicates,
but guarantees deterministic behavior for newly arriving tuples and evaluation re-
sults by its semantics.

2.2.8. StreamCloud

The Stream Cloud [111] framework is designed for scalable and elastic stream pro-
cessing on top of the streaming engine Borealis [2] from section 2.2.5. It supports
scalable and elastic processing of streams for large volumes of data on shared noth-
ing nodes.

The StreamCloud compiler takes the query (based on the Borealis system) and
uses a parallelization technique that splits queries into subqueries to deploy them
on an independent set of nodes, while load balancers minimize the communication
overhead.

2.2.9. Exareme

Exareme7[227] is a system for elastic large-scale data-�ow processing in the cloud [140]
(formerly named ADP8). The system de�nes an elastic infrastructure in two parts,
e�cient dynamic allocation and deallocation of computational or storage resources
and an elasticity model, which the authors call eco-elasticity, for a trade-o� between
time and money.

7http://www.exareme.com
8Athena Distibuted Processing

18

2.2. Data Stream Management Systems and Query Languages

Queries can be de�ned by a combination of two declarative languages. ExaDFL
allows de�nitions to describe the data-�ow and parallelism (e.g., data distribution)
and ExaQL is an extension of SQLite for query formulation. Additionally supported
are user de�ned functions (UDFs) that allow user de�ned aggregations or virtual
table functions de�ned in Python.

The UDF functions support an implementation of a data stream management sys-
tem Ontop of the DBMS in the cloud [41]. To realize the data stream system a
combination of several python functions (or UDFs) is required.

First, a UDF called streamdata is used to declare an arbitrary source (e.g., table,
�le, tcp socket) as an input stream, then one of two window operator functions is
applied. The �rst function slidingwindow creates a virtual table with an additional
column windowId, which groups incoming tuples in groups of smaller windows,
indicated by a numbering for each window.

A second function (called timeslidingwindow) groups windows as a time-based
window operator and requires additional timestamps in an extra column for each
incoming tuple (see Listing 2.3 for an example). Both functions use slide and width
as window parameters.

Listing 2.3: Example for a window operator with UDFs in ExaQL

1 create stream sensor1 as

2 select wid , value from

3 (ordered timeslidingwindow timecolumn :0 timewindow :60 frequency :1

// Window parameters

4 select * from

5 (streamdata 'sensor1.csv ')); // Streaming source

The window operator creates virtual tables with an extra column for the windowId.
In the example in listing 2.3 a timewindow of width 60 seconds and slide of 1 minute
is created, while the input is read from streamed csv-�le.

Another important operator is an operator for joining streams, named wcache(i.e.
window cache). For joining two or more streams the operator implements a hybrid
hash and merge-join algorithm with the wid as key and a list of windowed tuples
as values. As each stream is potentially in�nite, the hash join is shifted in time by
a merge-join algorithm [211].

19

2. Preliminaries

2.2.10. PipelineDB - SQL

As TelegraphCQ was an extension of PostgreSQL back in 2003, so is PipelineDB [190]
a new streaming extension fork for PostgreSQL as well. In its current version it
includes a 100% of the PostgreSQL operators. While it retains their syntax, it adds
speci�c new streaming features like continuous views and (as their sources) new
incoming streams to the set of possible operators.

Streams are abstractions similar to table rows, which allow clients to provide input
data to continuous views. Furthermore, as the interface of streams in PipelineDB is
identical to the writing into tables in PostgreSQL, only functions such as INSERT
INTO and COPY are allowed, which transforms PostgreSQL into a push-based
streaming as a service system in comparison to several others, e.g., Exareme, which
provides port listening. Thus, for PipelineDB we have to write our own client, that
reads data (e.g. from port) and pushes it into the system.

Continuous views di�er from normal SQL views in the way that they are produc-
ing di�erent results each time they are queried depending on the incoming data
streams. As in a regular streaming system continuous views only store parts of the
incoming data, which is explicitly queried from it by a select statement. All other
tuples from incoming streams are discarded immediately.

For each stream several continuous views can be set as so-called targets or removed
as targets during runtime. Each time a tuple is pushed into a particular continu-
ous view, its timestamp column is added automatically to the continuous view and
called �arrival_timestamp�, which means the exact system arrival time (also called
transaction time).

The continuous view can be queried as any regular SQL view and therefore, no ex-
plicit window operator is provided. Window operations are simulated by referencing
the timestamp column in the Create View declaration (see Listing 2.4).

Listing 2.4: Continuous view in PipelineDB with simulated window

1 CREATE CONTINUOUS VIEW recent_temps WITH (max_age = '1 hour ') AS

2 SELECT temp:: integer FROM stream

The listing shows the creation of a continuous view with recent temperature values.
The view can be seen as a window operator, although there is no real operator
de�nition, because of the declared relation between the arrival timestamp and the

20

2.2. Data Stream Management Systems and Query Languages

current system time that can be used to de�ne the window width (a window slide
parameter is missing). Continuous joins can be directly declared in the continuous
view de�nition, but are restricted to joins between streams and static tables. Joins
between two streams (as in the Exareme system) are currently not supported in
version 0.9.3.

2.2.11. Spark

The Apache Spark project provides a framework for distributed cluster comput-
ing based on open source software, while originally developed at the University of
Berkeley, it became an Apache top-level project in 2014. Spark provides an appli-
cation programming interface centered on so-called RDD data structures for Java,
Python, Scala and R.

RDDs

The underlying data structure for all Spark operations are so called RDDs [244]
(Resilient Distributed Data sets), which are a collections of elements partitioned
across the nodes of a cluster. While created from external sources (e.g., JDBC,
�les, network ports) RDDs support two types of operations: transformations, which
create a new dataset from existing ones, and actions, which start a computation on
RDDs and return values to the main program.

For example, map is a transformation that returns a new RDD representing the
results of a function on each dataset element. An action in Spark on the other
hand could be a reduce operation that uses an aggregation function over the RDD
elements and returns a resulting value to the driver program.

As all transformations result in a new RDD, they are seen as immutable or read-only
in general. Additionally, transformations are lazy, which means that they are only
computed, if an action requires a result to be returned to the driver program. Until
then, they are just remembered as functions that should be applied to some base
set. This design enables Spark to run more e�ciently if data is only returned for the
�nal action and not for each transformation step. Spark also ensures fault-tolerance,
as keeping track of all steps in the transformation chain allows a reconstruction in
the case of data loss.

However, one may also use a persist method on RDDs to store the elements in
memory or on disk for reproduction and much faster access in the case of future
queries or previous system failures.

21

2. Preliminaries

Figure 2.6.: Architecture of Spark components

Spark Architecture

The global Spark architecture consists of several partially depending components
based on RDDs explained above and the Spark Core as an underlying system in
Figure 2.6.

Spark Core. Spark Core is the founding library of the Apache project. It provides
functionalities for task distribution, scheduling and I/O functionalities through an
API for accessing the described RDD data structure. A driver program invokes exe-
cutable transformations and actions on the RDD and passes the respective function
to the Spark core, which �nally executes all functions on the cluster in parallel.

Spark SQL. Spark SQL can be seen as an additional library on top of Spark Core
for SQL that introduces new data concepts and structures. It supports reading and
writing from JDBC or Apache Hive with HiveQL in SparkSessions. Therefore, the
library provides several new transformations and actions, e.g, for creating views and
sending a tuple result to the output. Besides some other features of Hive, the usage
of indexes is not yet implemented due to the in-memory computation of Spark
SQL.

Spark Streaming. Spark Streaming makes direct use of the fast scheduling, im-
plemented in Spark Core, to enable its streaming analysis. It sorts the input data
into small batches and performs RDD transformations of Spark on them. This ar-
chitecture enables the application of the same functionalities for streaming analysis

22

2.2. Data Stream Management Systems and Query Languages

as for batch analysis, while also allowing an easy implementation of lambda archi-
tectures [174]. On the other hand, this approach directly limits its latency equal to
the processing duration of the small batch.

Spark MLlib. Spark MLlib is a distributed machine learning library for in-memory
use on Spark, which makes it nearly nine times as fast compared to the disk-based
implementation of Apache Mahout [163].

GraphX. GraphX is the fourth library for Apache Spark and supports distributed
graph processing.

2.2.12. Flink

Flink [93] is a streaming system of the Apache Hadoop stack. It is based on the
research project Stratosphere [7], which was originally started in 2010 as a collab-
oration of the Technical University Berlin, Humboldt-Universität zu Berlin, and
Hasso-Plattner-Institut Potsdam. The Stratosphere fork became an Apache top-
level project in December 2014. It is currently driven by the start-up company
dataArtisans 9.

Flink Architecture and APIs

Apache Flink was directly developed as a distributed streaming engine and as such,
follows a streaming �rst paradigm. It o�ers programming APIs in Java or Scala,
which automatically compile and optimize the code into data�ow programs that
are executed as batch and stream processing programs. It also o�ers APIs for
distributed storage systems such as HDFS/YARN and for consuming data from
message queues (e.g., Kafka).

The Flink framework provides di�erent libraries similar to those in Spark, e.g.,
for its DataStream API (stream processing) a CEP or for its DataSet API (batch
processing) the FlinkMLlib and Graph processing library respectively. A SQL API
is o�ered in both cases.

Further, the API uses transformations similar to those in Scala (e.g., �lter, map
and �atmap), but also joins, grouping, de�nition of windows and aggregations. The
execution itself is then done in so-called lazy processing (as also used in Spark),

9http://data-artisans.com/

23

2. Preliminaries

meaning that the data loading and transformation operations are �rst added to the
processing plan that is not executed, until the plan is explicitly triggered by an
execute command.

Comparison to Apache Spark

Flink has been compared to data processing engines such as Storm [226] and Spark
in recent benchmarks [74][213].

The results show a faster processing by Apache Flink in the case of data mining
operations and the evaluation of relational data. The authors of [74] argue that the
reason can be seen in the e�cient processing of basic relational operators such as
GROUP BY and JOIN. While Apache Spark on the other hand has advantages in its
native processing of mini batches and therefore, the map and reduce operators in
Spark are faster processed resulting in a signi�cant higher throughput.

Moreover, Flink evaluates each streamed tuple as soon as it becomes available,
which leads to a better overall latency in the streaming case, where Spark uses a
stepwise behavior according to the processing of mini batches.

Despite of its performance disadvantages, the Spark framework also has some ben-
e�ts towards Flink. Spark is embedded by Hadoop distributions such as MapR,
Hortonworks or Cloudera and has a larger community of users and contributors
that ensure its future development.

2.2.13. Summary and Overall Comparison

We gave a survey of 13 data stream management systems and eleven query lan-
guages. We have chosen the most popular streaming systems, which are based on
relational query languages. Nevertheless, the list of systems could be extended with
many more examples from the recent years (e.g., Odysseus [14]).

In Table 2.1 a comparison of the mentioned systems is shown. Most systems are
based on relational data stream tuples. Only NiagaraCQ is used for monitoring
web sources and transfers more abstract XML objects.

While all individual implementations are di�erent, nearly half of the systems follow
a periodic evaluation model (clock based). The table also shows that more than
�fty percent of the systems allows for scalability, which is important for a high
throughput. On the other hand also load shedding is supported for fast reading of
historical data on disk.

24

2.2. Data Stream Management Systems and Query Languages

T
ab
le
2.
1.
:
C
om

pa
ri
so
n
of

D
SM

S
sy
st
em

s

N
a
m
e

D
a
ta

T
y
p
e

D
e
p
lo
y
m
e
n
t
M
o
d
e
l

C
lo
ck

Im
p
le
m
e
n
ta
ti
o
n
S
p
e
c
i�
c
a
ti
o
n
s

L
o
a
d
S
h
e
d
d
in
g

T
el
eg
ra
ph
C
Q

T
up
le
s

C
lu
st
er
ed

Y
es

E
xt
en
si
on

of
P
os
tg
re
SQ

L
Y
es

N
ia
ga
ra
C
Q

X
M
L

C
en
tr
al
iz
ed

Y
es

X
M
L
so
ur
ce

m
on
it
or
in
g

Y
es

O
p
en
C
Q

T
up
le
s

C
en
tr
al
iz
ed

Y
es

N
ia
ga
ra
C
Q
+
tr
ig
ge
r
co
nd
it
io
ns

fo
r
ru
le
s

N
o

T
ri
b
ec
a

T
up
le
s

C
en
tr
al
iz
ed

N
o

N
et
w
or
k
tr
a�

c
an
al
ys
is

N
o

A
ur
or
a/
B
or
ea
lis

T
up
le
s

C
lu
st
er
ed

N
o

D
at
a�
ow

by
gr
ap
hs

an
d
b
ox
es

Y
es

ST
R
E
A
M

T
up
le
s

C
en
tr
al
iz
ed

N
o

St
re
am

->
R
el
at
io
n
->
St
re
am

op
er
at
or
s

Y
es

T
ap
es
tr
y

T
up
le
s

C
en
tr
al
iz
ed

Y
es

C
Q
on

ap
p
en
d
on
ly

D
B

N
o

St
re
am

C
lo
ud

T
up
le
s

C
lu
st
er
ed

N
o

Sc
al
ab
le
ex
te
ns
io
n
of

B
or
ea
lis

N
o

E
xa
re
m
e

T
up
le
s

C
lu
st
er
ed

N
o

E
la
st
ic
SQ

L
it
e
ex
te
ns
io
n
w
it
h
U
D
Fs

N
o

P
ip
el
in
eD

B
T
up
le
s

C
en
tr
al
iz
ed

N
o

E
xt
en
si
on

of
P
os
tg
re
SQ

L
N
o

Sp
ar
k

D
at
aF
ra
m
es

C
lu
st
er
ed

Y
es

M
in
i-
ba
tc
h
pr
oc
es
si
ng

on
cl
us
te
r

N
o

F
lin
k

T
up
le
s

C
lu
st
er
ed

Y
es

P
ar
al
le
l
di
st
ri
bu
te
d
da
ta
�o
w

N
o

25

2. Preliminaries

More di�erences can be seen for the used query languages in Table 2.2. A collection
of seven declarative SQL like and two additional graphical or imperative languages
are shown, which are used in the described data stream management systems.

The languages di�er in the kind of supported window constructors. While only �ve
of them support a window operator, most of them have one �xed window size. Only
StreaQuel is able to move one window end only for a landmark window or use both
�xed, for a �xed window. PipelineDB only supports slided windows, which means
that one end is always �xed at the latest time point, while the other end reaches
into the past. This does not allow for jumping or tumbling window, as no speci�c
slide value is supported by the streaming engine.

Another criterion is the availability of joins from two perspectives. Either a join of
two in�nite data streams or a join of a single stream with a static table are possible.
Some systems do not support the join of streams with static tables, while it is only
one system (i.e., PipelineDB) that does not allow streams to be joined with other
streams, which is a major disadvantage of the system. On the other hand, most
systems support basic SQL operators such as UNION and GROUP BY.

26

2.2. Data Stream Management Systems and Query Languages

T
ab
le
2.
2.
:
C
om

pa
ri
so
n
of

D
SM

S
qu
er
y
la
ng
ua
ge
s

N
a
m
e

T
y
p
e

S
e
le
c
ti
o
n
/
P
ro
je
c
ti
o
n

W
in
d
o
w
s

st
re
a
m

jo
in

st
a
ti
c
jo
in

u
n
io
n

e
x
c
e
p
t

in
te
rs
e
c
t

A
g
g
re
g
a
ti
o
n

St
re
aQ

ue
l

D
ec
la
ra
ti
ve

Y
es

F
ix
ed
,
L
an
dm

ar
k,

Sl
id
e,
T
um

bl
in
g

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
ia
ga
ra
C
Q

D
ec
la
ra
ti
ve

Y
es

N
o

Y
es

N
o

N
o

N
o

N
o

N
o

O
p
en
C
Q

D
ec
la
ra
ti
ve

Y
es

N
o

Y
es

N
o

Y
es

Y
es

Y
es

N
o

T
ri
b
ec
a

Im
p
er
at
iv
e

Y
es

Sl
id
e,
T
um

bl
in
g

N
o

N
o

Y
es

N
o

N
o

Y
es

A
ur
or
a/
B
or
ea
lis

G
ra
ph
s
an
d
B
ox
es

Y
es

Sl
id
e,
T
um

bl
in
g

Y
es

Y
es

Y
es

N
o

N
o

Y
es

A
qu
er
y

D
ec
la
ra
ti
ve

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
Q
L

D
ec
la
ra
ti
ve

Y
es

Sl
id
e,
T
um

bl
in
g

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

E
xa
re
m
e

D
ec
la
ra
ti
ve

Y
es

Sl
id
e,
T
um

bl
in
g

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

P
ip
el
in
eD

B
D
ec
la
ra
ti
ve

Y
es

Sl
id
e

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Sp
ar
k

Im
p
er
at
iv
e/
D
ec
la
ra
ti
ve

Y
es

Sl
id
e,
T
um

bl
in
g

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
lin
k

Im
p
er
at
iv
e/
D
ec
la
ra
ti
ve

Y
es

Sl
id
e,
T
um

bl
in
g,
G
lo
ba
l,
Se
ss
io
n

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

27

2. Preliminaries

We conclude that many di�erent streaming systems and engines with various query
languages and optimizations do exist that could be used as a strong base also for
streaming triple-based semantic representations. In the following section we give n
overview on semantic representations and discuss how relational data bases can be
used for querying semantic data.

2.3. Description Logic and Semantic Representation

In the last section we reviewed several data stream management systems mostly
based on declarative query languages for accessing tuple streams. The input streams
for those systems are often raw data streams, which can lead to di�culties, when
facing scenarios with multiple streams and complex queries. Answering high level
and complex queries on low level data is a desired goal that pushes research in the
�eld of databases. As an example, imagine a medical system managing sensor input
streams for representing a diagnosis. Instead of tempering with raw blood pressure
data, the system could be directly queried for a diagnosis on high or low blood
pressure or even reason about a medical treatment concerning the diagnosis. Thus,
in this case, the medical knowledge would be directly used to represent medical
diagnosis based on sensor information.

Knowledge representation and reasoning (KR) is part of research in the area of
arti�cial intelligence (AI). The idea of KR is to represent information about the
world in a way that it is readable by computer systems that can help to solve more
complex tasks such as medical diagnosis or evaluation of system behavior. Com-
mon knowledge systems are split into a knowledge base, which includes facts about
a speci�c world and an additional inference engine for applying rules to the stored
knowledge and answering complex queries on the data.

We describe knowledge of a system by ontologies, originally used in philosophy for
describing which things do exist and how they can be grouped and related. Fur-
thermore, in computer science ontologies are a formal description of the vocabulary
that is used to talk about a domain, although they are independent from the actual
stored data.
Several languages for describing ontologies exist. They generally use three compo-
nents:

• Concepts describe abstract domain objects. Person could be a concept rep-
resenting humans or in more complex cases the concept of children could be
de�ned by all persons under the age of 18.

28

2.3. Description Logic and Semantic Representation

• Individuals stand for domain objects that exist in the described world and
are identi�ed by a name, which could be �Bob� for the class of a male person
or �Anne� for a female person.

• Roles describe relations between individuals (e.g., between persons: hasChild
or isMarriedTo).

Several large ontologies for di�erent purposes exist. Some famous examples are
the friend-of-a-friend ontology FOAF [106], which, describes social networks, and
SNOMED-CT [69] for medical systems, or the GENE ontology [52] for biological
purposes.

Ontology languages di�er in their expressivity. In some cases number restrictions
are necessary to form concepts, e.g., for saying that child is a person with an
age under 18 that has exactly one mother and one father, but in other ontologies
those restrictions might not be required. We can say that ontology languages that
support, for example, number restrictions are more expressive compared to other
languages that do not support these concepts. But higher expressivity on the other
hand, can result in higher computational complexity, which is not desired in cases,
in which a low response time of a query system is mandatory. Ontology languages
and their expressivity are formally described by di�erent description logics. We will
now give an introduction into that particular �eld.

2.3.1. Description Logics

Description Logics (or DLs) are a family of languages for knowledge representation
and reasoning. As DLs are a huge research topic with many di�erent languages,
we focus on the most important parts that are needed for accessing data bases
e�ciently (in our case backend streaming systems). For detailed information and
historical backgrounds, we refer to [26].

Our main focus lies on a family of related description logics, the basic description
logic DL-Lite and especially its family member DL-LiteR [62, 63], which is used as
a standard for the web ontology language OWL 2 QL (see Section 2.3.1). Many
more dialects of the logic family exist, but for a more detailed discussion we refer
to [20, 61].

An ontology that is written in a DL language is constructed by di�erent sets of
axioms. One set includes all statements that describe concepts (concept descrip-
tions) and is also called terminological part or TBox of the ontology, a second set

29

2. Preliminaries

includes all statements about individuals also called assertional part or ABox. A
third set (only used in more complex logics) is used explicitly to describe relations
between roles, such as role hierarchies and complex role conceptions and is simply
called role part (or RBox).

The description of the ontology is commonly used by a reasoning system for complex
reasoning and inferencing tasks. One computational problem solved by reasoning
systems is, for example, concept classi�cation, where the idea is to �nd all concepts
C names that subsume a concept D.

Our focus in this thesis is on a framework for e�cient access to streaming data
sources and speci�cally to relational streaming sources. The state of the art tech-
nique for accessing relational data sources based on ontologies can be found in the
DL-Lite framework for Ontology Based Data Access [20] (see Section 2.4).

The framework is set up by a family of DL languages called DL-Lite [62]. We now
introduce the basic syntax and semantics of concept descriptions in the language
DL-Lite.

A Description Logic Family for Data Base Access: DL-Lite

For DL-Lite the trade-o� between expressivity and computational complexity of
reasoning is optimized regarding the needs for ontology-based data access [61]. In
particular, query answering can be solved directly by query transformation to rela-
tional database technologies [66], which is a great bene�t of the language.

We de�ne the syntax of the DL-Litecore language with concepts, roles and individu-
als. Subsequently, we de�ne the semantics of DL-Litecore Finally, we have a further
look at three of its family members: DL-LiteR, DL-LiteA and DL-LiteF .

Syntax of DL-Litecore. Let NC , NR and NI be countable, in�nite and pairwise
disjoint sets of concept names, role names and individual names respectively. Then,
we call the triple Σ = (NC , NR, NI) a signature.

The set Rols(Σ) is de�ned as NR ∪{r−|r ∈ NR}, where r− is called the inverse role
of r.

30

2.3. Description Logic and Semantic Representation

The set of general DL-Litecore concepts over Σ is the smallest set, constructed with
the following grammar:

C ::= >|⊥|A|¬A|∃R|¬∃R|C1 u C2 (2.1)

where A ∈ NC and R ∈ Rols(Σ).

A DL ontology O = 〈T ,A〉 represents a domain that consists of intensional knowl-
edge (a TBox T) and extensional knowledge (an ABox A).

A TBox is a set of general concept inclusions (GCIs) of the form:

B v C (2.2)

where B ∈ NC or B ∈ ∃R and C is described by an ontology language grammar.
The GCI expresses that all instances of concept B are also instances of concept
C. For the special case of DL-Litecore ontologies, C is de�ned by its grammar for
DL-Litecore TBoxes given above.

An ABox A is built by a set of membership assertions on atomic concepts or roles
of the form:

A(a)|P (a, b) (2.3)

de�ning that a is an instance of concept A and the pair (a,b) is an instance of role
P.

Semantics of DL-Litecore The semantics of the language is given in terms of in-
terpretations. An interpretation I = (∆I , ·I) consists of an interpretation function
·I and the interpretation domain ∆I . It maps every concept B to a subset of the
domain ∆I , every individual a to an element aI ∈ ∆I and every role name p to a
subset of ∆I ×∆I .

In particular the semantic for DL-Litecore is given by [66]:

31

2. Preliminaries

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(∃R)I = {o | ∃o′.(o, o′) |∈ P I}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI

(C1 u C2)
I = CI1 ∩ CI2

We say that I is a model of a GCI or assertion α, written I |= α, if:

• α = C1 v C2 and CI1 ⊆ CI2 holds for the general concepts C1 and C2, or

• α = R1 v R2 and RI1 ⊆ RI2 holds for R ∈ Roles(Σ), or

• α = C(a) and aI ∈ CI , or

• α = r(a, b)and(aI , bI) ∈ rI for r ∈ Roles(Σ).

Further, we say that I satis�es an ontology O = 〈T ,A〉 or I is a model of O i� I
satis�es all global concept inclusion axioms in T and all assertions in A.

We will now show three variants of our base language DL-Litecore, followed by
examples for each case.

DL-LiteR, also known as DL-LiteHcore, is an extension for the ontology language
RDFS [232] and is used as a web standard in OWL 2 QL [229], which is a description
logic for accessing large amounts of data with respect to ontologies, where the data
can be directly evaluated using query transformation strategies on an SQL engine.
It extends the inclusion assertions for roles with axioms of the form:

R1 v R2 (2.4)

where R1, R2 ∈ Rols(Σ) .

In addition this extension of DL-Litecore allows us two further speci�cations:

1. Disjointness, e.g. between concepts using A1 v ¬A2

2. Mandatory non participation, e.g. using A v ¬∃P

32

2.3. Description Logic and Semantic Representation

The authors of [62] showed that query answering in DL-LiteR is still of the same
complexity as DL-Litecore.

DL-LiteF , also known as DL-LiteFcore, extends DL-Litecore with additional TBox
axioms as a speci�cation of functionality roles, which are noted in the form:

(funct R) (2.5)

Following with its semantics noted as follows:

(funct R)Iissatisfiedif{(o, o1) | (o, o2) ∈ RI =⇒ o1 = o2} (2.6)

DL-LiteA is also a well-known extension in the family of DL-Lite. It was �rst in-
troduced in [192] and implemented in the query engine QuOnto[5]. The explicit �A�
stands for attribute and stems from the distinction of DL-LiteA between abstract
objects and data.

In DL-LiteA we can distinguish between objects and data values, between concepts
and data types, and between roles and attributes, which is also adopted in the OWL
language. Nevertheless, with respect to [66] we see no change in the complexity of
reasoning since datatypes can be seen as special concepts that are a disjoint from
the set of real concepts.

Instead, it is shown in [62] that DL-LiteA includes DL-LiteF as well as DL-LiteR.
However, the query answering complexity results are lost, when combining role in-
clusions of DL-LiteR and functionality of DL-LiteF in an unrestricted way. There-
fore, for keeping the desired complexity for query answering and satis�ability, func-
tional roles are restricted to be non negated on the right hand side of a concept
inclusion in DL-LiteA.

We close this section by giving a concrete example from the sensor measurement
scenario in DL-Lite.

Let a TBox T be given in DL-Litecore as follows:

Assembly v ∃hasSensor
Sensor v ∃locatedAt

∃hasSensor− v Sensor

Assembly v ¬Sensor

33

2. Preliminaries

Derived from the TBox, we can say that assemblies have sensors, sensors have a
location, assemblies are no sensors and sensors are no assemblies.
By using DL-LiteR, we can express the following additional axiom:

hasSensor− v hasLocation

stating that if an assembly has a sensor, it is directly located at the assembly.

Another assertion can be added in DL-LiteF :

(funct hasLocation)

Saying that any object can only have one location.

After giving an example for a TBox, we �nish the example by adding a small ABox
A with respect to T .

Assembly(Turbine1),

Sensor(Sensor1),

hasSensor(Turbine1, Sensor1)

Considering the TBox, for our example we can directly derive that Sensor Sensor1
is located at Turbine1.

More Expressive DLs

We have discussed description logics from the family of DL-Lite, which have well
designed properties for data base access, while sacri�cing some necessary expressive
power. But di�erent users have di�erent requirements on expressivity, for exam-
ple in some cases expressivity is more important than computational e�ciency and
scalability. For these cases more expressive description logics have been developed.
In the following we show some of its most important representatives, starting with
the family of attributive languages.

The base set for many expressive description languages is seen in the attributive
language or short AL. The syntax of its extension ALC already goes beyond the
syntax of DL-Lite and is shown in the following:

C ::= >|⊥|A|¬C|C1 u C2|C1 t C2|∃R.C|∀R.C (2.7)

34

2.3. Description Logic and Semantic Representation

As we have seen for DL-Lite, each description language has its own naming scheme
and acronym with respect to its expressivity. The added C stands for �complement�
and extends the atomic negation inAL by complex concept negations. Additionally,
ALC includes concept unions (usually symbolized by an U) and full existential
quanti�cation (usually symbolized by an E).

However, compared to the former discussed logics of DL-Lite, we have more com-
plex role restrictions (e.g., universal value restrictions), which results in a higher
complexity. It was shown in [224] that the satis�ability problem of ALC is in
PSPACE.

We can further extend the expressivity of ALC in the following steps, starting with
ALCHIR+. In ALCHIR+ we add more expressivity to roles, i.e., role hierarchies,
inverse roles and transitivity. This language is commonly shortened by the acronym
SHI [122]. From there we can extend our logic with cardinality restrictions to
SHIN or SHIQ [123]. Extending the expressivity with nominals (i.e., individual
names) and oneOf -constructors in the TBox results in a logic that is named by
SHOIN or SHOIQ [124]. Finally, role expressivity can be further extended with
role re�exivity or irre�exivity and role disjointness, included in the DL SROIQ.
The complexity of these logics has been analyzed in [224]. Its authors show that the
satis�ability problem of SHIQ is in EXPTIME, while the complexity for SROIQ
is in 2NEXPTIME [129].

Web Ontology Language

The Web Ontology Language or short OWL [228] is a web standard for describing
ontologies from the W3C Web Ontology Working Group. As an extension of the
Resource Description Framework (short RDF) [166] data formulated in OWL is
encoded in RDF/XML documents [40], where its constructors are parsed into a
RDF triple schema. The idea is to store the OWL ontology in semantic web �les
for being exchanged as RDF documents over the web.

In the last section we have seen that computing conclusions of an ontology can
become a challenging task that depends on the description logic and expressivity
that is used. An update for the standard OWL was given by the W3C consortium
with OWL 2 to address this problem for standard use cases [149]. The consortium
introduced three new sublanguages also called pro�les: OWL 2 EL, OWL 2 RL
and OWL 2 QL. While OWL EL is used in context with huge biomedical ontologies
and OWL RL for reasoning on web data, OWL 2 QL is the preferred choice for
database application with ontology based data access.

35

2. Preliminaries

OWL 2 QL aims for applications using very large volumes of instance data with
a speci�c need for query answering, while based on a description logic we have
already introduced: DL-LiteR (or respectively DL-LiteHcore). Nevertheless, OWL
2 QL shows an important di�erence compared to DL Lite regarding the unique
name assumption, which is generally adopted by DL-Lite, but not in OWL 2 QL.
Instead, the OWL 2 QL language provides speci�c constructors (i.e., sameAs and
di�erentFrom) stating that two object names are denoting the same or di�erent
individual [63].

2.3.2. Ontologies for Sensor Networks

Sensor networks are an area where semantic technologies can overcome the hur-
dles and complexity of heterogeneous standards. These semantic descriptions can
be viewed as OWL ontologies (as we explained above). Many recently proposed
semantic models for describing sensor architectures are based on the W3C OWL
recommendation [13] or the OWL 2 standard pro�les [149]. For the case of sensor
networks, the OGC10 provides a Sensor Web Enablement suite of standards as a
syntactical model [53]. While speci�cally designed for sensors, it includes a general
model and XML encodings for observation and measurements (O&M) [195], a data
model for exchanging sensor related data and a sensor modeling language (Sen-
sorML) [54] for describing sensor processing systems as well as several interfaces
and data models for sensor based web services.

Many earlier sensor models simply use meta and static data to represent sensors,
while the modeling of time-based observations was not present, these models rely
on the SensorML language, but not on the O&M model. Those kinds of ontologies
include for example: the OntoSensor ontology [207], the Suggested Upper Merged
Ontology (SUMO) [139], the SWAMO ontology [242] and the CSIRO sensor ontol-
ogy [78, 176]. For more detailed information on these or other related ontologies
we refer to [77].

Based on the results above, where sensor observations have rarely been modeled in
earlier ontologies, the W3C Semantic Sensor Network Incubator group [237] pro-
posed an OWL 2 ontology for modeling sensor meta data. It describes the act of
sensing and sensor observations all together, while still compatible to the OGC stan-
dard models for sensors (SensorML) and observations (O&M). On the other hand,
non sensor speci�c models were not included into the ontology, such as measuring
units, spatial information or hierarchies of types and physical elements. The idea
was to give engineers the possibility to include the model directly into their system,

10Open Geospatial Consortium

36

2.3. Description Logic and Semantic Representation

where such data already exists or could be included from external ontology for an
explicit use case. Therefore, the ontology only o�ers place holders for such concepts.

The SSN (Semantic Sensor Network) ontology [76] is organized by ten di�erent
modules (see Figure 2.7). Its heart is the Stimulus-Sensor-Observation(SSO) pat-

Figure 2.7.: Structure of the SSN ontology [76]

tern module [126], which is focused on the relations between sensors, stimulus and
observations and o�ers constructors for each element. Stimuli (ssn:stimulus) are de-
tectable changes recognized by a sensor (ssn:sensor) for measuring a property used
as a proxy for sensors (denoted as SensorInput in Figure 2.7), which could be for ex-
ample the electrical resistance or current for changing temperature or speed. Sensors
transform the stimuli into a more abstract new representation (ssn:sensorOutput).
The central point of the SSO pattern are observations (ssn:observations). They can
be seen as the link between sensor, stimulus and observed property, while setting
the observations into a context of time and spatial information.

Additional modules are the Data module for storing the sensor observations or the
Deployment and System modules, which describe the topological structure between
sensors and devices.

Examples for the SSN ontology are use cases in the SPITFIRE FP7 project [187]
and work at 52◦ North [1], an initiative for geospatial data representation. For more

37

2. Preliminaries

detailed information on the SSN we refer to [76].

2.3.3. The SPARQL Query Language

In the section above we described representations of data in the case of sensor
networks with respect to ontologies. We presented the Web Ontology Language
standard of the W3C community for describing ontology based data and gave an
example for sensor observations formulated in OWL. The missing piece for data
retrieval is an expressive query language, tailored for data represented in the de-
scribed format.
We will now introduce SPARQL [234] [185], the standard query language of the
W3C for querying RDF data [141]. We de�ne brie�y the abstract syntax of the
RDF data sets queried by SPARQL and proceed with covering the main operators
of the SPARQL query language. We conclude with an SPARQL example from the
sensor measurement scenario.

RDF Data Format

The Resource Description Framework (RDF) is a W3C recommendation for data
representation in the web. Its abstract syntax is based on two important data
structures: RDF graphs and RDF data sets. For the following formalization, we
closely follow the notation introduced in [141].

We start by de�ning three disjoint sets, namely the set of IRIs I, blanknodes B,
and literals L, which build the ground for RDF data descriptions and, according
to [141], can be understood as follows.

• The set I includes IRIs (Internationalized Resource Identi�er), which are
extensions of Uniform Resource identi�ers by allowing also characters of the
unicode character set.

They can be seen as a string for identi�ying resources over a network and
are constructed by a pre�x namespace (given by an URL) and an Uniform
Resource Name (URN). An example IRI is http://www.sensor.net#Sensor1.
The namespace URLs are often shortend by a de�ned equivalent pre�x, which
could be written as sn, forming sn:Sensor1 as a shortcut for the IRI.

• The set B of Blank nodes is disjoint from IRIs and Literals, they do not have
any speci�c RDF identi�er, but can be seen as placeholders for anonymous
resources with local scope. Blank nodes are often used to create anonymous

38

2.3. Description Logic and Semantic Representation

groups of RDF data and can be distinguished from IRIs by using the character
�_� as a namespace (e.g. in _:SensorNet).

• The set L of literals is used for values such as strings, numbers, or dates. A
literal typically consists of two parts: a lexical form, being a unicode string
and an IRI identifying the data type, such as �1���xsd:integer. Datatypes are
often omitted, as concrete syntaxes support simple literals, which consist only
of the lexical form.

The RDF format is designed to describe data by triples, which consist of a subject,
a predicate and an object, where the object o of a speci�c property p is a description
for subject s. As mentioned before, the value of o could be either a new resource
or a literal, e.g. when specifying a sensor, a string naming its speci�c type. We can
formalize RDF triples as the following.

De�nition 2. RDF Triple. Let I be a set of IRIs, B be a set of blanknodes and
let L be a set of literals, such that I ∩ B ∩ L = ∅. Then an RDF triple is de�ned as
an element (s, p, o) ∈ I ∪ B× I× I ∪ B ∪ L.

A set of RDF triples builds a RDF graph. Graphs consist of nodes and edges, while
subjects and objects form nodes in the graph, predicates make up edges respectively.
Each described resource (except literals) can be a subject or object node and as
such also be described by more than one triple in the graph.

De�nition 3. RDF Graph. An RDF Graph G is de�ned as a set of n ≥ 1 RDF
triples ti: G = {t1, t2, . . . , tn}.

Furthermore, we can group RDF triples in graph collections and associate each
graph with an IRI, which is also called graph name. Multiple graphs are closely
aligned with SPARQL. An RDF dataset may consist of multiple named graphs
and one unnamed graph, also called the defaultgraph. Following that idea, we
informally de�ne RDF datasets.

De�nition 4. RDF dataset. An RDF dataset is a set of RDF graphs, including
an unnamed default graph and a number of optional named graphs.

The W3C standard for querying RDF data sets is the SPARQL query language as
described in [185].

39

2. Preliminaries

SPARQL Description

We give a short introduction into the formal syntax of SPARQL and follow the
notations given in [185] and [10].

A basic SPARQL query is syntactically formed by a query form (e.g. SELECT,
CONSTRUCT), a WHERE clause and optional solution modi�ers (e.g. DISTINCT,
ORDER BY).

We de�ne a basic graph pattern as follows.

De�nition 5. Basic Graph Pattern Let V be an in�nite set of variables, I be a
set of IRIs, and let L be a set of literals, such that V ∩ I ∩ L = ∅. and an element
of (V ∪ I) × (V ∪ I) × (V ∪ I ∪ L) is called triple pattern, then a �nite set of triple
patterns is de�ned as basic graph pattern.

Basic graph patterns are the basic constructs for graph pattern expressions, which
build the WHERE clause. They can be combined recursively as follows:

1. If P1, P2 are graph patterns, then (P1 UNION P2), (P1 AND P2), and (P1

OPT P2) are graph patterns

2. If P is a graph pattern and R is a �lter condition, then (P FILTER R) is a
graph pattern.

A SPARQL �lter condition can restrict speci�c variables in the where clause. It
connects constants or elements from I, V or L by inequality symbols (<, ≤, ≥, >),
(=), logical operators (¬,∨,∧) and speci�c unary predicates such as BOUND or IS
BLANK (a complete list can be found in [185]).

For simplicity, we restrict the de�nition of �lter conditions to the connective equality
symbol (=) and the unary predicate BOUND(). Filter conditions are de�ned for other
mentioned operators accordingly.

De�nition 6. Filter Condition Let ?X, ?Y ∈ V and c ∈ I ∩ L, then �lter condi-
tions are de�ned as follows:

1. ?X = c, ?X =?Y and bound(?X) are atomic �lter conditions.

2. If C2 and C2 are �lter conditions then (¬C1), (C1 ∨ C2), and (C1 ∧ C2) are
complex �lter conditions.

40

2.3. Description Logic and Semantic Representation

SPARQL Example

The graph pattern expression of the WHERE clause is matched against the RDF
dataset binding the variables in the pattern for query evaluation.

We show a SPARQL query example using a graph pattern and a �lter condition in
its WHERE clause in Listing 2.5

Listing 2.5: A query formulated in SPARQL with �lter constraints

1 PREFIX sn : <http :// www.sensor.net/>

2

3 SELECT ?sens

4 WHERE {

5 { ?sens sn:hasLocation ?loc .

6 ?loc sn:installedSensors ?num.

7 FILTER (?num > 5)}

8 UNION { ?sens sn:hasLocation "Turbine1" }

9 }

The query selects all sensors, which are located at Turbine1 or are found at some
location, where a minimum number of six sensors is installed. Its WHERE clause
consists of two graph patterns connected by an UNION operator. While the �rst
pattern uses two triple patterns and a �lter condition for restricting the number
of locations, the second one adds all sensors to the output, which are located at
Turbine1.

Query Forms. The SPARQL syntax provides several di�erent query forms. In
Listing 2.5 we used a SELECT query for retrieving simple variable binding lists. The
four possible forms are listed below.

• SELECT queries provide all possible variable bindings in a list, they are the
most typical used query form.

• ASK queries are boolean queries, they return true, if an answer set to the
query exists and false otherwise.

• CONSTRUCT queries return a new RDF Graph concerning the de�ned
graph pattern in the query head or CONSTRUCT clause respectively

• A DESCRIBE query form returns information about the variable bindings
from the query head in a single result RDF graph. The exact returned dataset
is not de�ned in the SPARQL query, but directly selected by the SPARQL
query processor.

41

2. Preliminaries

The output of the SPARQL query can also be restricted by a so called optional
solution modi�er. We give a list of informal descriptions for the most important
modi�ers below.

• The DISTINCT modi�er prevents duplicate entries from the result binding
list.

• The ORDER BY clause is used for sorting answer sets with respect to
speci�c variables in an ascending or descending order (using the keyword ASC

or DESC respectively).

• The LIMIT modi�er can be used to limit the returned output to a �xed
number of bindings. It is typically used in combination with the ORDER BY

modi�er (e.g. for selecting the �ve highest/lowest values in a result set).

For more details on SPARQL operators and extended examples regarding solution
modi�ers, we refer the reader to [185].

SPARQL 1.1. Since 2013 an extended version of SPARQL, called SPARQL 1.1 [115],
is recommended by the W3C [235] and includes several new operators and features.
To give an idea of the extended features, we list a short informal description below.
Detailed information about the new speci�cations can be found in [115].

• The extended SPARQL query speci�cation introduces new language oper-
ators.

� Inspired by other query languages such as SQL, aggregation operators
were added to the feature list of SPARQL 1.1. The aggregation oper-
ators are computations over groups of solutions by applying di�erent
aggregation functions to variables, such as COUNT, SUM, MIN, MAX, AVG or
others.
Aggregations are often used together with a GROUP BY, mentioning a list
of variables for grouped computations, or a HAVING clause, for arith-
metic expressions on aggregation results (e.g. �HAVING AVG(?num) >
5� restricts the result set of ?num to an average higher than �ve).

� Negation is added to the feature list using FILTER NOT EXISTS or con-
necting two graph patterns by an MINUS operator.

� Subqueries can be used as a replacement of a basic graph pattern.

42

2.4. Ontology Based Data Access

� The new property paths are used to de�ne possible routes through a
graph between two nodes. For example, in a scenario that declares social
network graphs of who knows who, we could directly ask for persons who
know another person over two or more edges, by de�ning a subgraph
schema of the RDF dataset in the query.

• New UPDATE statements allow for updating the RDF dataset.

• One can de�ne query results in speci�c formats such as XML, JSON or
CSV.

• Another important new feature is federation, which combines di�erent RDF
data sets from di�erent sources that can be identi�ed by an IRI for to be
queried in a single query.

In this section we showed how ontology based data can be accessed through the
web, while using the SPARQL query language. The next section uses the ontology
based data view to access relational data by the use of a query transformation
technique called ontology based data access or short OBDA.

2.4. Ontology Based Data Access

Ontology based data access (for short OBDA) describes a paradigm for accessing
relational backend data sets through a query language based on concepts and models
de�ned in an ontology. A common goal behind this approach is easy access to large
volume and heterogeneous data sets by lifting the data to an abstract level with an
ontology based query language.

OBDA can be seen from two perspectives. The classical approach of OBDA (also
named virtualized approach) is a setting where the huge dataset is kept in external
data stores. An ontology based query is transformed into the query language used
by the backend data base. Therefore, we say that the accessed ABox assertions
only exist virtually. A possible advantage of this approach is that one can rely on
already available optimizations and index strategies for relational sources.

As a result of the transformation process, the compiled query is possibly more
complex and potentially bigger in size, and thus several optimization strategies for
rewriting these queries considering e�cient query answering have been developed
(e.g., in [202]).

Following the rewriting approach, it is also possible to integrate di�erent heteroge-
neous sources under a single interface, while rewriting queries automatically to each

43

2. Preliminaries

backend without noticing it from the front end perspective. Even if it is necessary to
join di�erent tables from di�erent sources for answering a transformed query, these
joins could be provided by an additional service layer. Furthermore, the model of a
TBox and ABox allows a clear distinction between intensional knowledge and the
assertional facts that are stored in the database.

A second approach of OBDA exists that does not use query transformation tech-
niques, but transforms relational backend data into triple based representations
and stores it in an additional triplestore. This approach is also called material-
ization approach. Although the ontology based queries can be evaluated in a real
triple store environment, additional space for storing the data in triples is necessary.

Although this approach might lack the optimizations of the relational backend, it
might possibly be directly optimized on the triple store (e.g., with index structures
or other techniques) for the speci�c use case. Anyway, this approach seems to be
impractical considering that data has to be updated periodically for example and
thus, the materialized data has to be reset each time the source is updated.

Additional problems can be seen with respect to really large data sets, where the
materialization step takes a lot of time. For these reasons, the virtual approach with
query transformation techniques is the most preferred for big data use cases.

OBDA has become an interesting topic for closing the gap between description
logics and database research, based on lightweight ontologies such as DL-Lite (see
Section 2.3.1). But also strategies for accessing huge data sets with more expressive
ontologies have been proposed [167]. Recent work [23, 25, 58] shows that not only
static, but also temporal and even streaming data can be accessed and processed
by an appropriate ontology based query language and interface. In this case, we
see that related industrial projects and use cases currently arise, two examples are
the Statoil and Siemens use cases in the FP7 OPTIQUE11 Project12.

The following section gives an overview on basic OBDA technologies regarding
recent temporal and streami�ed applications that use a query transformation ap-
proach, more details and references are described in [179].

11http://www.optique-project.eu
12http://www.optique-project.eu

44

2.4. Ontology Based Data Access

2.4.1. Classical OBDA

We start by discussing theoretical issues of the classical OBDA approach. For a
detailed description, we refer to [61]. The idea of the approach is a reduction of the
complex inference problem with respect to ontologies to a query answering problem
on relational data sources. As in this scenario the TBox is relatively small in size
compared to the large ABox, we are able to restrict the computational complexity
to data complexity, which only takes assertional facts of the ABox into account.
Furthermore, answering queries with respect to a DL-Lite (see Section 2.3.1) ontol-
ogy can be reduced to the problem of query evaluation for First-Order Logic (i.e.,
SQL) over relational databases [61], which is known to be in the complexity class
of AC0 [4] and can be described as the class of problems which can be solved in
polynomial or constant time, while adding a polynomial number of processors.

Query Answering

We consider in the following query answering w.r.t. unions of conjunctive queries
(UCQs), i.e
, a subclass of FOL queries.

Answering FOL queries w.r.t
ontologies, while the assertional facts of the ABox are
stored in a database, requires rewriting of the TBox into another FOL query.

A FOL query q = ψ(~x) is a FOL formula ψ(~x) with free and (pairwise) distinct
variables in vector ~x. The arity of ~x is the arity of Q. If the vector ~x is empty, Q is
called a boolean query.

A conjunctive query (CQ) over a DL-Lite ontology O is a FOL query q(~x) in which
ψ(~x) is of the form

∃~y.conj(~x, ~y).

Where conj(·) is a conjunction of atomic formulas over variables from ~x or ~y. Men-
tioning this, unions of conjunctive queries (UCQs) are simply unions of conjunctive
queries [34].

First Order Logic Rewritability In the case of rewriting an FOL query, we consider
query answering over databases and therefore, we have to look for answer sets that
do not depend on the interpretation of unknown data.

45

2. Preliminaries

Therefore, we de�ne the certain answers to a UCQ w.r.t
ontologies according to [145]
by considering its signature (see Section 2.3.1).

De�nition 7. Certain Answers. Let O be an ontology O = (Sig, T ,A) and ψ(~x)
be a UCQ with respect to O, then the set of certain answers cert(ψ(~x),O) is de�ned
by n-ary tuples of constants ~a ∈ IN from Sig = (CN , RN , IN), where a substitution
ψ[~x→~a] is entailed by O, such that:

cert(ψ(~x),O) = {~a | O |= ψ[~x→~a]}

After having de�ned certain answers on the ontology side, we would like to de�ne
an equal canonical model for queries on the classical relational database side with
respect to the transformation of ontology based queries.

We denote by DB(A) the representation of A that can be stored in a relational
database (DB).

Additionally, we de�ne that aDB(A) ∈ ADB(A) i� A(a) ∈ A and (aDB(A), bDB(A)) ∈
RDB(A) i� R(a, b) ∈ A.

Using the described canonical modelDB(A), we de�ne FOL-rewritability according
to [61].

De�nition 8. FOL rewritability. Answering UCQs in a DL L is FOL-rewritable,
if for every TBox T over L and every UCQ q, there is an FOL query QT such that
for all ABoxes A it is the case that:

cert(q,O) = Q
DB(A)
T

The rewriting of FOL queries guarantees a complexity for query answering in AC0

data complexity. It can be shown that if a DL L is not in data complexity and has
a higher complexity, it is also not rewritable in �rst order logic [61].

2.4.2. Query Transformation for Access on Static Data

After having de�ned FOL rewritability, we will now explain how a standard trans-
formation algorithm can convert static ontology-based FOL queries into queries in
relational algebra.

The classical (i.e. virtual) OBDA approach without querying time or time sequences
has been investigated for many years and is commonly applied by transforming the
query language SPARQL (Section 2.3.3.

46

2.4. Ontology Based Data Access

For the ontology based transformation of SPARQL a number of tools and systems
that at least partially implement the OBDA paradigm have been developed so far,
including D2RQ [45], Mastro [192], morph-RDB [194], Ontop [60], OntoQF [173],
Virtuoso [91] and Ultrawrap [209].

Such systems proved to be successful in a number of areas, including culture her-
itage [67], governmental organizations [75] and industrial applications [132, 136].

Figure 2.8.: Schematic OBDA process for static data

An explicit FOL rewriting algorithm is, e.g., realized in [61] by the so called perfect
rewriting. It rewrites a FOL query in such a way that the axioms of the TBox are
directly included into the query by using a backward-chaining method, which can
possibly increase the query exponentially by its size, considering the used TBox
axioms.

An alternative to the perfect rewriting approach is the abstract computation model
of combined rewriting: The given query is rewritten w.r.t. the TBox and then
posed to a pre-processed ABox resulting from the original ABox by (partially)
materializing TBox axioms and adding them to the ABox. (See [159, 160] for
the original de�nition used in the context of the description logic EL and [144]
for an application w.r.t. DL-Lite). This approach is used for speci�c engineering

47

2. Preliminaries

scenarios, e.g., in the transformer kyrie (see [169]), which provides an expressivity
of ELHIO.

Common OBDA tools such as the ones mentioned above use three steps for the
query evaluation process (see Figure 2.8): (i) in the rewriting stage ontology axioms
are used to expand the ontological query in order to access the complete possible
answer set with respect to a TBox T ; (ii) in the unfolding stage the mappings
are used to translate the enriched ontological query into (possibly many unions of)
queries over the data; and (iii) in the execution stage the unfolded data queries are
executed over the data.

Query Enrichment

To compute the certain answer set to a UCQ q(x) over an ontology O = T ,A,
where the ABox A is considered as a relational database DB(A), we apply a query
rewriting algorithm that is able to include all necessary axioms of T into ψ(~x).

Several rewriting algorithms and optimizations exist in the literature. While some
of them use the perfect rewriting approach (e.g
PerfectRef [61]), others employ op-
timizations for datalog programs such as Presto [206] or Prexto [205]. For a survey
and comparison of di�erent algorithms we refer the reader to [108] or [170].

For this work we decided to use a query enrichment and unfolding tool that is com-
monly used, regularly updated and optimized, namely Ontop 13 [60]. It implements
the perfect reformulation algorithm from [61], which is described in details below.

Perfect Reformulation Algorithm. The PerfectRef Algorithm is designed to en-
rich UCQs for answering them on relational databases w.r.t. an DL-Lite ontology.
Before giving the concrete algorithm we make some preliminary de�nitions accord-
ing to [61].

We call an argument of a query atom bound, if it is either a variable occurring twice
in the query body or a constant. We call all other arguments unbound and denote
them in the following by the symbol `_'.

The general algorithm (shown as Algorithm 1 below) transforms a UCQ q(x) into
enriched UCQs based on a TBox T . It is divided into two steps, which are executed
in a loop over the set of atoms in q until these atoms no longer change. The �rst step
is then executed by two inner loops on the atoms g in q and the positive inclusion
axioms (PI for short) α, given in T . It identi�es those α, which are applicable to

13http://ontop.inf.unibz.it/

48

2.4. Ontology Based Data Access

one of the atoms g of the given UCQ and adds the result de�ned by a function
gr(g, α) into the input set of the CQs until no further PIs are applicable.

Algorithm 1: PerfectRef algorithm computing the perfect reformulation of a
CQ w.r.t. T [61]

input : UCQ q(x), DL-LiteA TBox T
output: UCQ pr

pr:=q;
repeat

pr':=pr;
foreach CQ q' ∈ pr' do

foreach Atom g in q' do /* Step 1 */

foreach PI α in T do
if α is applicable to g then

pr:= pr
⋃

q'[g/gr(g,α)];
end

end

end
foreach pair of atoms g1, g2 in q' do /* Step 2 */

if g1 and g2 unify then
pr:=pr

⋃
anon(reduce(q',g1,g2));

end

end

end

until pr'=pr ;
return pr

Two important aspects of the algorithm are shown by the authors of [61]. First, they
proved that it is only necessary to consider positive inclusions, as negative inclusions
(with a negation on its right-hand side) do not have e�ects on rewritings and only
have to be considered for satis�ability problems w.r.t. the ontology. Moreover,
the algorithm always terminates, while the generated number of distinct atoms is
polynomial with respect to the size of the output query.

The cases, where a positive inclusion axiom α can be applied to an atom g, are
shown in Table 2.3 together with its application result in column gr(g, α). More
formally, they can be de�ned by the following rules:

1. A PI α is applicable to an atom A(x), if α has A in its right-hand side.
2. A PI α is applicable to an atom P (x, y), if one of the following conditions

holds:

49

2. Preliminaries

Table 2.3.: Results of application function gr(g, α) for applying a PI α to an UCQ
atom g [61]

Atom g Positive inclusion α gr(g, α)

A(x) A′ v A A′(x)
A(x) ∃P v A P (x,_)
A(x) ∃P− v A P (_, y)
P (x,_) A v ∃P A(x)
P (x,_) ∃P ′ v ∃P P ′(x,_)
P (x,_) ∃P ′− v ∃P P ′(_, y)
P (_, y) A v ∃P− A(x)
P (_, y) ∃P ′ v ∃P− P ′(x,_)
P (_, y) ∃P ′− v ∃P− P ′(_, y)
P (x, y) P ′ v P or P ′− v P− P ′(x, y)
P (x, y) P ′ v P− or P ′− v P P ′(x, y)

a) y = _ and the right-hand side of α is ∃P ;or
b) x = _ and the right-hand side of α is ∃P−;or
c) α is a role inclusion assertion and its right-hand side is either P or P−.

After an extension by the additional inclusion axioms, as de�ned under step one of
the algorithm, the second step reduces the resulting union of conjunctive queries by
using two functions in a loop on every distinct pair g1 and g2 in q′. The function
reduce(q′, g1, g2) uni�es the two atoms, if possible and returns a new resulting
query q�. Afterwards the function anon(q′′) realizes a variable anonymization by
substituting the unbound variables of q′′ with a `_' symbol (representing non-shared
variables as explained above). One further bene�t of using the reduce function is
that variables, which are bound in q′, can become unbound in q′′ and therefore,
become applicable to a positive inclusion axiom in the following iteration of the
algorithm.

Example 1 (A CQ q and DL-LITEA TBox T in sensor measurement scenario).

Assembly v ¬Sensor ∃mountedAt− v Assembly
Assembly v ∃hasSensor ∃hasSensor− v Sensor
Sensor v ∃mountedAt (funct mountedAt)

CQ: q(x)← hasSensor(x,y), mountedAt(y,_)

50

2.4. Ontology Based Data Access

We illustrate the PerfectRef Algorithm by a practical example adopted from the
sensor measurement scenario. Let be given the TBox T from Example 1. Here, we
make use of the atomic concepts Sensor and Assembly, and of the roles hasSensor
and mountedAt. The TBox further states that no assembly is a sensor (and vice
versa), while assemblies have sensors, which are mounted to something that is an
assembly and further that each sensor is mounted at most to one assembly.

Moreover, we consider the conjunctive query CQ over T from Example 1, asking for
assemblies that have sensors, which are mounted somewhere. At the �rst execution
of step 1 from the PerfectRef Algorithm the PI Sensor v ∃mountedAt can be
applied to the Atom mountedAt(y,_), which inserts to pr the new query:

q(x)← hasSensor(x, y), Sensor(y).

At the second iteration of step 1, the positive inclusion axiom ∃hasSensor− v
Sensor is applied to Sensor(y) and inserts to pr:

q(x)← hasSensor(x, y), hasSensor(_,y).

As the two atoms can be uni�ed by the reduce function, the following atom can be
added to pr by the algorithm in step 2

q(x)← hasSensor(x,_).

The variable y is unbound in the new query (appears only once) and can therefore
be replaced by the symbol `_'. At the next iteration we execute once again step 1
and apply Assembly v ∃hasSensor to hasSensor(x,_), resulting in:

q(x)← Assembly(x).

A �nal execution of step 1 applies ∃mountedAt− v Assembly to Assembly(x),
which adds to pr the query:

q(x)← mountedAt(_,x).

The algorithm PerfectRef(q, T) then �nally returns a union of the initial query
atoms and the set of the �ve queries listed above. �

51

2. Preliminaries

Query Unfolding

After having discussed the enrichment of a query w.r.t. axioms of a TBox, we will
now look deeper into the necessary unfolding steps for directly accessing the data.

Instead of generating materialized triples by evaluating a union of conjunctive
queries q on an ABox A(M, DB) constructed by mappings M and a database
DB, we �unfold� q according toM, i.e., compute a new query q', which is an SQL
query that can be executed over the source relations, such that the set of tuples
evaluated by q' over the data source coincides with the set of tuples computed from
q and evaluated over DB(A(M, DB)) (see Section 2.4.1). A rule set for generating
mappings that connect ontology-based fragments to relational database queries is
given below.

Mapping of Graph Patterns to a Database In the case of classical mappings,
we de�ne a mapping µ for a concept C as C(x) ← µC(x) where µC(x) is an SQL
query, which further is de�ned as an unfolding of the query q = C(x) in SQL. A
simple example for mapping the concept of Sensor to a table SENSOR(SID, Sname,

Cname, TID) is given as

SQLsensor(x) = SELECT SID as x FROM SENSOR s.

Accordingly, we can de�ne a mapping for a property mountedAt

SQLmountedAt(x, y) = SELECT SID as x, Cname as y FROM SENSOR s.

We de�ne a mapping µ of a triple pattern tp to a table t1 by giving the algebra for
µtp = πfsfpfo(t1), where πfsfpfo is the projection function for the triple pattern tp
constructed by πfs for the subject, πfp for the predicate and πfo for the represen-
tation of the object. Therefore, our previous sensor example can also be written by
the algebraic expressions: µsensor(x) = πfs(sensor.sid)fp()fo()(SENSOR).

Until now we have described the unfolding of simple triple patterns, but in STARQL
or SPARQL graph patterns can become more complex. They can be constructed
by unions and conjunctions of triple pattern or even optional and �lter patterns.
We give a short overview on the mapping constructions below.

52

2.4. Ontology Based Data Access

Let be given a graph pattern gp = gp1ANDgp2, the mapping is constructed as
given below:

µgp = µgp1 ./ µgp2 .

For a graph pattern gp = gp1UNION gp2, the mapping is constructed as follows:

µgp = µgp1 ∪ µgp2 .

For a graph pattern gp = gp1OPTgp2, the mapping is constructed as given below:

µgp = µgp1 ./ µgp2 .

For a graph pattern gp = gp1FILTER expr, the resulting mapping can be con-
structed as follows:

µgp = σexpr(µgp1).

Example 2. For concluding with an example let be given the following UCQ:

q(x) → {Sensor(x), mountedAt(x, : turbine1)}

UNION {Sensor(x), mountedAt(x, : turbine2)}.

By applying the rules listed above, we are able to evaluate the mapping for each
graph pattern. The result of the unfolding is �nally given as:

µq(x) → πfs(sid)(SENSOR)

./ πfs(sid)fo(:turbine1)(SENSOR)

∪ πf(sid)(SENSOR)

./ πfs(sid)fo(:turbine2)(SENSOR)

�

We have given a formal representation for the mapping of µq(x). Practically, map-
ping rules can be noted in di�erent formats, which are described in the following
section.

53

2. Preliminaries

Mappings

When querying databases, where a rewriting of the query is required, the ABox is
not directly given. It is implicitly de�ned by mappings. But not only in the virtual
approach mappings are needed, also if we would like to materialize ABox assertions
from a relational database mapping can be exploited.

mapping rules can be encoded in a mapping language, which can be classi�ed into
four categories [120]: Direct mappings, read-only general purpose mappings, read-
write general purpose mappings and special purpose mappings.

In the case of a direct mapping, data is mapped directly from a table into ABox
assertions without any further interaction, which means that the data domain of
the ontology is directly represented in the model of the relational data.

Practically, each table name is mapped into a speci�c class with the same name,
while each row of that table is mapped to an individual member of the table class.
Further, each column name is mapped to a property that connects the individual,
either to another individual in the case of a foreign key or to a literal otherwise.
This process of direct mapping generation can be done by an so called automatic
bootstrapping algorithm such as in BootOx (e.g. see [127]).

General purpose mapping languages are much less restricted. They are de�ned by
rules with an ontological query on the left hand side and a query in the language of
the data base source (e.g., SQL) on the right hand side (see [191]). Mapping rules
can be quite expressive, which results in complex mapping formulations and is a
reason why many mapping languages are read-only such as D2RQ [45] or R2RML
as a W3C recommendation [230].

Read and write general purpose languages are usually less expressive, while suf-
fering from the view update problem. Thus, updates to the database from a view
perspective are only possible by restrictions to the mapping language. An example
for a read-write general purpose mapping language is R3M [119].

The W3C RDB2RDF working group [231] recommends the mapping language
R2RML as one standard for realizing mappings from a relational database to RDF
graphs.

54

2.4. Ontology Based Data Access

R2RML. R2RML is a speci�cation for a read-only mapping language and de-
signed as being independent from any given application. Its mappings, which are
de�ned in RDF itself, create an RDF view to a database source. The R2RML
mapping language consists of several constructors and we give an overview of the
most important types below.

• The Triples Map is the main construct in a mapping de�nition. It describes
the triple speci�cation mapped to a logical table consisting of several sub
parts listed below.

• The Logical Table is de�ned as a table or view, which is the data source
for the triple generation. It could be directly noted as a table/view name or
indirectly as a SQL query.

• The Term Maps specify the triple values mapped from the logical tables
in subject, predicate, object or graph maps as listed below. It could be of a
constant value, of a column-value retrieved from a column of the logical table
or a template value for specifying custom URIs, blank nodes or literals.

� The Subject Map maps the subject speci�cations for each triple as a
URI or blank node. Can contain a graph map that connects each triple
with the subject to a speci�c graph.

� The Predicate Map speci�es predicate terms, which are usually con-
stant values. It is paired with objects by the PredicateObjectMap.

� TheObject Map speci�es URIs, blank nodes or literals as objects and is
paired with predicates by the PredicateObjectMap. It also can contain
additional data types or language tags.

� TheGraph Map stores triples in speci�c graphs. Further, it is included
in the subject- or predicate object map and must contain an URI for
specifying the graph name.

A short example for a R2RML mapping from the sensor measurement scenario is
given in Figure 2.9.

Here, two tables, containing data about sensors and assemblies, are mapped to
their triple representation. The mapping is a straightforward direct mapping, ex-
cept for the naming scheme of each subject URI, which uses a template, and the two
columns AssemblyName and SensorName, which are both mapped to the predi-
cate hasName. One additional R2RML construct used here is the RefObjectMap
that was not discussed before. The RefObjectMap is a construct used in the case
of foreign keys, like in the given example, where the location column of the sensor
table is a key to the assembly id of the assembly table. In fact, we de�ne a parent

55

2. Preliminaries

SENSOR

SId SensorName Location

S1 TempSens A1

S2 PresSens A1

S3 SpeedSens A2

ASSEMBLY

AId AssemblyName

A1 AssemblyOne

A2 AssemblyTwo

1 @prefix rr : <http ://www.w3.org/ns/r2rml#>

2 @prefix sn : <http ://www.sensor.net/>

3

4 sn:AssemblyMap

5 a rr:TriplesMap;

6 rr:logicalTable [rr:tableName "Assembly"];

7 rr:subjectMap [

8 rr:template "http :// www.sensor.net/assembly /{AId}";

9 rr:class sn:Assembly;

10];

11 rr:predicateObjectMap [

12 rr:predicate sn:hasName

13 rr:objectMap [rr:column "AssemblyName"];

14];

15 rr:predicateObjectMap [

16 rr:predicate sn:hasId

17 rr:objectMap [rr:column "AId"];

18];

19

20 sn:SensorMap

21 a rr:TriplesMap;

22 rr:logicalTable [rr:tableName "Sensor"];

23 rr:subjectMap [

24 rr:template "http :// www.sensor.net/sensor /{SId }";

25 rr:class sn:Sensor;

26];

27 rr:predicateObjectMap [

28 rr:predicate sn:hasName

29 rr:objectMap [rr:column "SensorName"];

30];

31 rr:predicateObjectMap [

32 rr:predicate sn:hasId

33 rr:objectMap [rr:column "SId"];

34];

35 rr:predicateObjectMap [

36 rr:predicate sn:hasLocation

37 rr:objectMap [

38 a rr:RefObjectMap;

39 rr:parentTriplesMap sn:AssemblyMap;

40 rr:joinCondition [

41 rr:child "Location ";

42 rr:parent "AId";

43];];];

Figure 2.9.: Example tables and R2RML mapping in a sensor based scenario

56

2.4. Ontology Based Data Access

column (the adressed table column) and a child column (the foreign key). Both are
joined in a joinCondition of the R2RML mapping, which can be represented by a
related SQL query join.

Mapping Related Implementations of Classical OBDA There have been early
approaches and implementations on the paradigm of OBDA before R2RML became
a standard by the W3C community. A survey on di�erent mapping implementations
of the W3C RDB2RDF incubator group gives an overview on early systems in
2009 [208]. In 2009 various applications and speci�c mapping languages existed. We
provide some examples. Virtuoso [91] takes a direct mapping approach that maps
tables to RDFS classes, but also takes foreign and primary keys into consideration.
The mappings are composed of quad map patterns, which de�ne the RDF views
from relational table columns.

D2R and its mapping language D2RQ [45] provides multiple options for accessing
RDB data, including a materialization or RDFdump approach, Jena/Sesame API
and SPARQL endpoint with user de�ned mappings.

R2O [200] is a declarative and XML-based mapping language implemented by the
ODEMapster engine [201] for virtual or batch use.

The Dartgrit toolkit provides a list of mapping and querying tools for RDB2RDF
approaches. Mappings are de�ned by the user in a visual table tool, while the
creation of SPARQL queries is assisted by a visual tool as well. These queries are
then translated to SQL queries with respect to the de�ned mappings.
With the presentation of R2RML as a standard by the W3C, most applications
adopt this mapping language.

Recent systems on the market that implement R2RML mappings, are the Ontop
system [60, 203] with implemented optimization strategies on the query rewriting
and unfolding side as shown in [202, 204], the morphRDB system [109, 194], as well
as the kyrie transformator [169].

2.4.3. ABDEO

As observed, FOL rewritability of DL-Lite induces only restricted representation
capabilities at the ontology level. For example, number restrictions are not allowed,
though those structures are sometimes necessary to express interesting constraints.
Another example are transitive roles, as they directly prevent FOL-rewritability.

57

2. Preliminaries

Transitive roles are useful to model part-of relations for describing turbine topolo-
gies, as an example of the sensor measurement scenario.

Expressing transitive structures requires a query language that supports recursion,
which is not available in SQL. Nevertheless, such a rewriteability for more expressive
description logics (e.g., SHI) (see Section 2.3.1) is desired. As the rewritability does
not hold in these cases, other approaches have been investigated that materialize
only small parts of the complete dataset. They are subsumed under the acronym
ABDEO14.

In [238] the authors present an idea for ABox modularization, which investigates
the TBox for splitting a huge ABox in smaller manageable parts. The resulting
(small) ABoxes are used for reasoning services such as instance retrieval in many
practical cases, where it is not required to use the complete large ABox.
The approach is extended in [167] for processing grounded conjunctive queries [167,
238].

2.4.4. Temporalizing OBDA

We already discussed settings of processing static data. Now, we would like to
extend this view in order to add a fourth dimension to represent temporal RDF
data, by mapping extensions that consider time for the RDB2RDF approach.

Temporal data processing has been under research for many years, for example by
using temporal logic in the areas of computer vision [177, 178, 198] and arti�cial
intelligence [24, 46, 117, 118, 146, 147].

A very simple use of time domains would be a direct extension to the OBDA
approach of mapping static data described above (e.g. in. tOWL [165]). Here,
we introduce an additional time column to the desired table. By sticking to the
sensor measurement scenario, let a tableMeasurement have the following columns:
Timestamp, SensorID, V alue, which is a common case in measurement scenarios,
as sensors measure di�erent values at di�erent points in time.

A direct mapping (see Section 2.4.2) that maps tables to classes, rows to individuals
and columns to properties, would produce individuals of a measurement class
connected to properties that add the sensorId and timestamp as new objects or
literals.

The downside of this direct mapping is the additionally required measurement ob-
ject for formulating the time dimension. Instead of adding a fourth dimension and

14[A]ccessing [B]ig[D]ata with [E]xpressive [O]ntologies

58

2.4. Ontology Based Data Access

storing quads, we require three additional triples. The representation of timestamps
is a known problem in research and discussed under the term temporal rei�cation
(e.g. see [8, 96]).

Non-rei�ed time is modeled by a so-called �ow of time, an ordered structure of
timepoints (T,≤). With the �ow of time we can consider one interpretation I per
timepoint t ∈ T , while all constants stay rigid and are interpreted in the same way
for each interpretation (see also the handbook of modal logic [121]).

While FOL temporal logic makes use of time as a predicate, modal temporal logic
is a state based approach, where we can access states of the �ow of time on a more
abstract level. Thus, it is possible to make relative statements seen from the current
state, e.g., for accessing the next state or some state in the past in the ordered time
sequence without using absolute time values.

Therefore, we can adjust interpretations w.r.t. temporal logic regarding a �ow of
time (T,≤). Having a family of interpretations (It)t∈T , we can say that It |= At
for every t ∈ T .

Approaches for extending description logics with a time dimension can be found
in [21]. More practical approaches for extending RDF triples and SPARQL with
time dimensions are found in [43, 112, 113, 172, 186, 221].

Strabon15 [43], which was originally designed as a geospatial extension, extends the
W3C standard SPARQL (see Section 2.3.3) by a fourth dimension (in this case:
time). While this additional dimension element consists of an absolute timepoint
in the dataset that links every temporal triple to a subgraph, which contains the
temporal ABox, Strabon also provides operators to query time intervals besides
single timepoints. Similar examples for extending SPARQL with time annotations
are τ−SPARQL [221] or TA-SPARQL [199].

Recent work considering temporal OBDA can be found in [25, 49, 50] and describes
the new temporal query language TCQ for temporal conjunctive queries. The
approach from Baader et al
has developed in recent years from using a classical DL-
Lite TBox to an expressivity of SHOIQ. While a �nite sequence of ABoxes is used
to simulate the �ow of time supported by linear temporal logic operators added
to the query language of TCQ. LTL operators (e.g. © next state, � some time in
the future) allow the formulation of advanced temporal queries, such as �a critical
event happened exactly three times between ten time points in the past and now�.
Nevertheless, only small parts of this expressive language are FOL-rewritable and
as such TCQ itself is restricted to a materialized and non virtual OBDA approach
(see Section 2.4).

15http://www.strabon.di.uoa.gr/

59

2. Preliminaries

Other approaches also include operators of modal temporal logic in the TBox as
seen in [23].

2.4.5. Streamifying OBDA

In the last section we tried to extend the view of OBDA with approaches on tem-
poral data. Having in mind the extended examples on temporal data, we can view
those for streaming data from two perspectives: the perspective of relational stream-
ing systems and the perspective of a streamed RDF model that uses an appropriate
query language for streams. We already discussed several Data Stream Manage-
ment Systems in Section 2.2. Therefore, we are going to extend the query model,
also described by the W3C standard query language SPARQL, for streams.

RDF Stream Model. We formalize the RDF stream notation similarly to the
model given in [29, 143, 156] and [6]. An RDF triple is a tuple 〈s, p, o〉 consisting of
subject, predicate, object as given in the RDF description of [141], see Section 2.3.3.
We de�ne a timestamped triple st as a pair of a triple and a timestamp (〈s, p, o〉, τ),
where the timestamp τ is de�ned on a sequence of monotonically increasing time
values (T,≤).
Then an RDF Stream can be described as a (potentially) unbounded sequence of
timestamped triples in monotonically increasing order. For every i > 0, (〈si, pi, oi〉,
τi) is a timestamped RDF statement and the stream S:

. . .

(〈si, pi, oi〉, τi)
(〈si+1, pi+1, oi+1〉, τi+1)

. . . (2.8)

is a sequence on RDF triples in non decreasing order over the timestamp values τ ,
where τi ≤ τi+1.
The de�nition of an RDF Stream is not enough for actually accessing ontology based
streaming data. For example, operators have to be de�ned for accessing the data
in a sliding window fashion, operating on temporal sequence or merging streams
with static data and much more. In the literature some approaches are already
provided, most cases extend the standard for querying RDF data with temporal
and stream functionalities other use a mix of SPARQL and temporal operators. In
the following we give an overview on the most important approaches.

60

2.5. Stream Based SPARQL - Extensions

2.5. Stream Based SPARQL - Extensions

Following the idea of streamifying OBDA from the last section, we see that the
underlying streaming systems and query languages, already presented in Section 2.2,
are explicitly designed for relational models and languages that are not able to
formulate ontology based queries. Therefore, we have an additional interest in
ontology based streaming query languages. The most obvious solution that most
applications choose is an extension of the W3C standard for querying RDF data:
SPARQL (Section 2.3.3). In this section we give an overview and a comparison of
the main applications for querying RDF data streams. We show an example query
in the sensor measurement scenario for each language that demonstrates speci�c
operators and functionalities in each case. A discussion on SPARQL extensions for
streams can also be found in [56].

2.5.1. Streaming SPARQL

Streaming SPARQL [48] was the �rst approach for a SPARQL streaming extension
with window operators in 2008. While extending the query language with stream-
ing operators, it is the goal of Streaming SPARQL to preserve as much syntax and
semantics of the SPARQL W3C standard as possible. Streams are explicitly stated
in the FROM clause of the query together with window annotations. A special fea-
ture of Streaming SPARQL (compared to other approaches) is that they allow an
additionally �ner window granularity in the graph patters of the where clause (see
e.g. Listing 2.6).

Streams are identi�ed with the STREAM keyword, followed by an IRI. The language
provides several di�erent window types, starting with sliding windows, which re-
quire parameters that are de�ned by RANGE (width) and SLIDE. Tumbling windows
can be abbreviated by a keyword FIXED instead of the slide parameter. Or it is
directly set to one, if neither a SLIDE, nor a FIXED keyword is used. On the other
hand, tuple based windows can be de�ned by using the ELEMS keyword, followed by
a tuple count instead of a time based de�nition with RANGE.

As mentioned above, additional sub windows can be de�ned explicitly for graph
patterns. In that case, the inner window de�nition is preferred to the original
window de�nition and evaluated w.r.t
the graph pattern (see Listing 2.6).

An example query in streaming SPARQL is given in Listing 2.6. It contains two
window de�nitions based on time in the FROM clause or tuple count in the optional
part of the graph pattern, respectively. The results of the query show all assemblies

61

2. Preliminaries

with measured values from the last 30 minutes, which are included in the last 100
measurements.

Listing 2.6: A query formulated in Streaming SPARQL (values of 30 minutes)

1 PREFIX sn : <http :// www.sensor.net/>

2

3 SELECT ?sens ?z

4 FROM STREAM <http :// www.sensor.net/data/sd.RDF >

5 WINDOW RANGE 30 MINUTE SLIDE 1 MINUTE

6 WHERE {?x sn:hasSensor ?sens .

7 OPTIONAL { ?sens sn:hasValue ?z . WINDOW ELEMS 100 }}

2.5.2. C-SPARQL

C-SPARQL [30] was proposed in a �rst version about one year later in 2009 and in
a second version in 2010 [32] by Barbieri et al. It was the �rst SPARQL stream-
ing extension that o�ered aggregation by an additional aggregation clause, while
SPARQL 1.0 itself did not support aggregations. With the introduction of SPARQL
1.1 [115] as a W3C standard, which includes aggregations, C-SPARQL dropped its
aggregation clause and followed the notation of SPARQL 1.1 in 2011 [29].

The authors use a similar approach as in Streaming SPARQL regarding window
de�nitions, but support only a single window per stream. Additionally, they adopt
the idea of registering continuous queries and execute them regularly on the system
as seen in Listing 2.7.

In the example an evaluation frequency of ten minutes is given. Periodic evaluation
and computation gets more important for queries that use more than one stream
with several window slides. Although, the window formulation for a stream is only
changed in its syntax, C-SPARQL also allows a join of streamed and static data,
which can be added in a FROM clause without STREAM keyword (see Listing 2.7).
Additionally, an example aggregation function is used that measures the average
sensor value in each window.

2.5.3. CQELS

CQELS 16 in [189] was presented in 2011 as the �rst complete query engine for
unifying the process of querying Linked Stream Data and Linked Data. It di�ers

16Continuous Query Evaluation over Linked Streams

62

2.5. Stream Based SPARQL - Extensions

Listing 2.7: A query formulated in C-SPARQL (average of 30 minutes)

1 PREFIX sn : <http :// www.sensor.net/>

2

3 REGISTER QUERY AvgSensorVals30min COMPUTE EVERY 10m AS

4 SELECT ?sens ?loc avg(?z) as ?avg

5 FROM STREAM <http :// www.sensor.net/data/sd >[RANGE 30m STEP 1m]

6 FROM <http ://www.sensor.net/data/location >

7 WHERE { ?sens hasLocation ?loc . ?sens sn:hasValue ?z }

8 GROUP BY { ?sens , ?loc}

from the previous approaches in the case that it is not only an extension of the
SPARQL query language with streaming operators, but a complete streaming en-
gine built for linked data, whose language di�ers to the previously presented query
languages in several details. And as such it does not rely on query transformation
and backend systems. Therefore, the complete query processing is under control
of the CQELS engine. The advantage of that solution is a query speci�c reorder-
ing of operators during query execution for reducing delay and complexity of the
execution process.

We give the example query for the 30 minute average of sensor values in 2.8.

Listing 2.8: A query formulated in CQELS (average of 30 minutes)

1 PREFIX sn : <http :// www.sensor.net/>

2

3 SELECT ?sens ?loc avg(?z) as ?av

4 FROM NAMED <http :// www.sensor.net/data/location >

5 WHERE {

6 STREAM <http :// www.sensor.net/data/sd >[RANGE 30m]

7 {?sens sn:hasValue ?z}

8 GRAPH <http ://www.sensor.net/data/location >

9 {?sens hasLocation ?loc}

10 }

11 GROUP BY ?sens , ?loc

One can see that the declaration of windows has changed quite a bit. The FROM

clause in CQELS only includes static linked data graphs, where streams are de-
clared directly in the where clause with its own graph pattern each. The goal of
managing linked data in graph patterns directly for each stream or static graph is,
on the one hand, to divide between data from each stream with a named reference,
which is not possible in other languages, and on the other hand for optimization
purposes of the processing, where operators can handle streams separately.

63

2. Preliminaries

A very important issue regarding CQELS is the relation-to-stream operator that
evaluates CQELS triples as fast as possible without respect to any slide parameter.
Therefore, only the latest tuples are considered in the result set (see Section 2.1.5),
which is evaluated each time a new tuple enters the window (Content-Change Pol-
icy), while C-SPARQL uses a Window Close, Non-empty Content policy and a
periodic evaluation with respect to its slide parameter.

2.5.4. SPARQLStream

Having been developed between 2010 and 2012, SPARQLStream [56, 57, 58] is in-
�uenced and inspired by previous stream extensions to SPARQL (e.g. C-SPARQL).
In comparison to C-SPARQL, it also supports features of the SPARQL 1.1 standard
(e.g. aggregations), but relies on an OBDA query transformation approach with
backend streaming systems, which is a big di�erence compared to C-SPARQL and
streaming SPARQL above that only support access on materialized linked data.

An example query formulated in SPARQLstream is shown in 2.9.

Listing 2.9: A query formulated in SPARQLstream (average of 30 minutes)

1 PREFIX sn : <http :// www.sensor.net/>

2

3 SELECT DSTREAM ?sens ?loc avg(?z) as ?avg

4 FROM NAMED STREAM <http ://www.sensor.net/data/sd.srdf > [NOW - 30 MINUTES]

5 WHERE {

6 ?sens sn:hasValue ?z .?sens hasLocation ?loc

7 }

8 GROUP BY ?sens , ?loc

Compared to CQELS, it lacks a possibility to distinguish between graph patterns
for each stream. Nevertheless, SPARQLstream does not distinguish between static
and streaming data and therefore we are also unable to identify hasLocation as a
static property.

Additionally to other languages it supports window-to-stream operators inspired
by CQL (see Section 2.1.5). In the example shown above, the DStream operator
generates only results, which are no longer a valid output compared to the previous
evaluation step.

64

2.5. Stream Based SPARQL - Extensions

2.5.5. EP-SPARQL

The approaches reviewed until now do not support detection of state sequences
or comparison of temporal states. EP-SPARQL17 [11] tries to solve this issue,
as it focuses on situatedness of triple assertions, meaning sequence based event
streams. EP-SPARQL is based on the underlying streaming system ETALIS [12]
and extends SPARQL by four new binary operators: SEQ,EQUALS, OPTIONALSEQ and
EQUALSOPTIONAL. The operators are used to combine graph patterns in the same
way that OPTIONAL and UNION do in SPARQL, but as joins based on temporal
relations.

For example the expression BGP1 SEQ BGP2 states that two basic graph patterns
build a sequence and occur next to each other for two points in time, while BGP1

EQUALS BGP2 states that two graph patterns occur exactly at the same timepoint.
The two additional operators OPTIONALSEQ and EQUALSOPTIONAL are the
equivalent time based versions of the original OPTIONAL in SPARQL.

Moreover, as no other new operators are added to SPARQL in the case of EP-
SPARQL, we witness that a window operator is totally missing. Instead, a function
getDURATION() is added to the �lter conditions, de�ning a duration for the ex-
pressed graph pattern time sequence. Examples given in [11] are exclusively based
on stock exchange scenarios. Nevertheless, we adopt the sensor based example
query from above for EP-SPARQL in Listing 2.10.

Listing 2.10: A query formulated in EP-SPARQL (values incr
by 100 in 30 mins)

1 PREFIX sn : <http :// www.sensor.net/>

2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

3 SELECT ?sens

4 WHERE { ?sens sn:hasValue ?val }

5 SEQ { ?sens sn:hasValue ?val2 }

6 FILTER (?val + 100 < ?val2 && getDURATION () < PT30M^^xsd:duration)

2.5.6. TEF-SPARQL

The authors of [138] propose a new type of data model in the RDF streaming
context and designed a query language called TEF-SPARQL [138]. TEF-SPARQL
converts information from events, which is stored as facts in a temporal table for
being maintained between di�erent window instances of the stream. The facts are
usually triggered by events to represent temporarily valid background data.

17Event Processing SPARQL

65

2. Preliminaries

Listing 2.11: A query formulated in TEF-SPARQL (values incr
by 100 in 30 mins)

1 PREFIX sn : <http :// www.sensor.net/>

2

3 CONSTRUCT FACT AssemblyStart {?ass sn:hasStatus sn:critical}

4 WHERE ((SINCE ?ass sn:hasSensor ?sens . ?sens sn:hasStatus sn:

maxTempReached)

5 UNION(TILL ?ass sn:hasSensor ?sens . ?sens sn:hasStatus sn:normal)

6)

7

8 SELECT ?ass AS ASSEMBLY

9 (AGGREGATE COUNT ?ass

10 WHERE (CURRENT ?ass sn:hasStatus sn:critical)

11 EVERY ``P10S ''^^xsd:Duration)

Therefore, the language proposes two new kinds of basic graph patterns: Events
and facts, which can be connected by di�erent operators. We give an example of a
TEF-SPARQL query in Listing 2.11 for further explanations.

The query consists of two parts. The �rst part creates facts about assemblies
in a critical state if their sensors have reached the maximum temperature. This
status holds until the sensor reaches a normal level again. The second part is
a select query that counts all assemblies, which are currently in a critical state.
Several other operators for creating temporal facts are allowed in TEF-SPARQL,
such as BEFORE, DURING, and WITHOUT. For more details we refer the reader to [138].
An implementation of TEF-SPARQL with a comparison to EP-SPARQL and C-
SPARQL can be found in [97].

2.5.7. RSP-QL

The RSP-QL18 [6, 89] query language was recently proposed by the W3C RSP
Group, which has started to work on a common model for querying RDF streams.
The group is a team of authors, previously working on CQELS, C-SPARQL and
SPARQLstream, that tries to develop a unifying formal model for querying RDF
streams, which combines the di�erent semantics of the existing systems with ele-
ments from the streaming world (CQL [16] and SECRET [51]).

Their goal is to �nd a standard query language, which is able to express all desired
operators from previous approaches. The FROM STREAM clause with the use of mul-
tiple windows on one stream, direct timestamp access from C-SPARQL, window-to-

18RDF Stream Processing - Query Language

66

2.6. Comparison of Semantic Streaming Languages

stream operators such as in SPARQLstream, named sliding windows with references
from CQELS, facts from TEF-SPARQL and �nally sequences from EP-SPARQL.

However, this work is still in the beginning and no clear decisions have been made,
only some preliminary ideas and proposals exist.

An example query formulated in the current status of RSP-QL is shown in List-
ing 2.12.

Listing 2.12: A query formulated in RSP-QL (average values of 30 minutes)

1 PREFIX sn : <http :// www.sensor.net/>

2 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>

3 REGISTER STREAM :GallehaultWasTheBar AS

4 CONSTRUCT ISTREAM {

5 ?sens sn:hasVal ?val2; sn:hasAvg ?avg;

6 }

7 FROM NAMED WINDOW :oneDay ON :stream1 [RANGE P1D STEP PT1H]

8 FROM NAMED WINDOW :oneHour ON :stream1 [FROM NOW -PT30M TO NOW]

9 WHERE {

10 WINDOW :oneDay {

11 {?sens sn:hasVal ?val}

12 }

13 WINDOW :oneHour {

14 {?sens sn:hasVal ?val1} BEGIN AT ?t1

15 {?sens sn:hasVal ?val2} BEGIN AT ?t2

16 FILTER (?t1 <?t2 && val1 + 100^^ xsd:float < val2

17 && abs(?t1 -?t2)<"PT5M "^^xsd:duration)

18 }

19 AGGREGATE {

20 GROUP BY ?sens

21 AVG(?val) AS ?avg

22 }

The query selects the average value of sensors that have increased by 100 for the
last �ve minutes in a window of 30 minutes, and it shows several features inspired
by from C-SPARQL, CQELS and SPARQLstream.

2.6. Comparison of Semantic Streaming Languages

In the last section we showed that a lot of di�erent approaches exist for access-
ing RDF based data streams, which all have its own features and advantages or
disadvantages regarding functionalities.

But till now, none of the available query languages was really satisfying especially
w.r.t
reasoning about time and timepoints as it is necessary for streaming data,

67

2. Preliminaries

where the main goal is to search for changes of high speed incoming data over time
without any memory overhead.

For that purpose a group around the W3C RDF streaming community began to
evaluate the available proposals with respect to several benchmarks and tried to
�nd a semantic baseline, which would be able to describe most streaming applica-
tions for RDF data under a hood. They designed their benchmarks in categories of
functionality, correctness and performance and explicitly with respect to semantics
of the query languages.

In this section we are going to analyze work that tries to connect the approaches
above. We will start by discussing general stream semantics for relational and linked
data and follow with an overview on available benchmarks.

2.6.1. General Semantic Models for Streams

Based on the observation of many di�erent approaches and query engines, several
proposals have been made for abstract models that are able to describe and predict
the general behavior of these systems in the world of relational streams [51, 148,
156, 184] as well as for linked data streams [37]. In the following, we will discuss
two of the most important general stream semantics for this work. The SECRET
model for relational data and the LARS framework for RDF data streams.

Semantics for Stream Processing Engines - SECRET

SECRET de�nes an abstract model for analyzing execution semantics of relational
streaming engines with a focus on time based windows and was proposed in [51].
The authors developed their semantical model along four dimensions ScopE, Con-
tent, REport and Tick (SECRET).

Scope. The Scope as a function maps an application-time value into a time inter-
val, which can be then evaluated by a continuous query. An input value to scope is
the starting time t0, which is the application time of the very �rst starting window
and is measured, depending on the streaming engine, as an absolute time value.
Besides that, the scope is also computed by the window width and slide parameters
of the query.
As an example, we assume a given query q with width 5 seconds, slide 2 seconds
and an additional system starting time of 10 seconds. Then the Scope of window

68

2.6. Comparison of Semantic Streaming Languages

w at time t = 10 seconds is Scope(10) = (6, 10] meaning that we have at timepoint
ten a window with open border at time 6 and closed border at 10. Though, that
the window opens at timepoint 6 and closes at timepoint 10.

In the Scope de�nition of SECRET, the author de�ned the scope to map to the
earliest open window. But in fact, it could also be de�ned as the most recently
closed window as in [184] or all open windows respectively. Choosing one of the
di�erent de�nitions stays a design decision.

Content. The Content is a complementary dimension to Scope and formalizes
exactly the object set according to a stream S within the interval of the Scope.
And as such can be viewed as the mapping from application time tn to elements of
S. Unlike scope, the content directly depends on the actual data of the stream and
how much of it is already available. So it might return di�erent values even with
the same value of tn concerning di�erent systems and settings.

Report. A Report formalizes conditions for evaluating a window's content and for
reporting results. According to SECRET, it can be de�ned in four categories:

• On content change: A report is only done w.r.t. t if the content of time t
changed compared to (t− 1).

• On window close: A report is emitted each time t a window closes.

• On non-empty content: Reporting is done only for windows at a timepoint
t that are not empty.

• Periodically: A report is only done if the current time t is a multiple of the
frequency λ.

Of course a system can also combine several of these de�nitions for their reporting
strategies and, e.g., say a report is done each time a window closes and its content
is non-empty.

Tick. Tick de�nes conditions under which the system reacts and takes actions
on its input, i.e., adding newly arrived data to the active time window for being
evaluated.

Basically there are two strategies de�ned by SECRET. First, the system can react
in a tuple-based way each time a new data tuple arrives to the system. And on the

69

2. Preliminaries

other hand a system can react in a time-based way according to the application
time and can add new tuples to the window to be processed for each new time
instant.

LARS Framework for Stream Reasoning Query Languages

In comparison to relational query languages, the W3C community for RDF stream
processing [233] developed its own streaming model. The LARS Framework for
Stream Reasoning Query Languages was presented in [87] and previously in [37] as
a unifying language in which stream reasoning query languages can be translated to.
It may serve as a formal language to express and compare semantics of respective
languages to analyze the semantic di�erences between CSPARQL and CQELS. The
general semantics and transformation model of LARS is shown in 2.10, preliminary
work for this model can also be found in [35] and [36]. Furthermore, the transfor-
mation strategy is organized in four steps tailored for CSPARQL and CQELS, but
also applicable for non RDF streaming engines:

Figure 2.10.: The LARS streaming model to capture RSP queries (from [37])

1. The two general push (CQELS) and pull (CSPARQL) modes of the example
languages are represented in the LARS program.

2. The window de�nitions are transformed into general LARS window operators
(see Figure 2.11).

3. The relation-to-relation operators of the query language are formed into a
Datalog program and LARS operators, e.g., given as �@ta for �a holds at
time point t� or � � a for �a holds at some given time point�. In the case of
CSPARQL and CQELS, two general strategies can be followed that join all
input streams in the default graph (CSPARQL) or each stream graph pattern
has to be directly transformed into LARS rules separately as in CQELS.

4. A post-processing method imitates RStream, IStream or DStream operators
of CQL (as seen in SPARQLstream).

The analysis of CSPARQL and CQELS with the help of the LARS framework
in [87] shows that the output of both streaming engines is identical under certain

70

2.6. Comparison of Semantic Streaming Languages

Figure 2.11.: The LARS operators as shown in [37]

conditions. Those are for example (i) the query does not include any MINUS or NOT
EXISTS operator, (ii) the query only uses time-based windows with a slide of 1, (iii)
the static dataset and the streaming data sets are disjoint.

The investigation on streaming semantics of SECRET and LARS shows that not
only the syntax of stream query languages di�ers signi�cantly, but also the seman-
tics and data processing in the stream engine. The pros and cons of each query
language and engine make the search for a standard streaming language a di�cult
task. Therefore, some benchmarks on streaming engines for linked data have been
established in recent years. The following section gives on overview on the most
important implementations.

2.6.2. Benchmarks for Linked Data

Regarding RDF streaming data, most benchmarks concentrate on functionality
and correctness tests of the query language and thus, only some minor performance
benchmarks for stream processing engines exist (e.g., CSRBench [88], YABench [142]),
although some approaches have been implemented for comparing speci�c systems
that implement their own engines, such as CQELS, C-SPARQL and JTALIS in [189]
or TEF-SPARQL, C-SPARQL and EP-SPARQL in [97]. However, systems that rely
on query transformations and external query processing are not directly compara-
ble with respect to performance, because the direct query execution depends on
external processors.

Linear Road Benchmark

The Linear Road Benchmark19 [18, 223] is a benchmark for Data Stream Man-
agement Systems based on relational data and as such can be used to benchmark

19http://www.cs.brandeis.edu/�linearroad/

71

2. Preliminaries

backend streaming systems w.r.t. the OBDA approach for comparing the perfor-
mance of systems although, it is not directly connected to OBDA or linked data.

The LRB can be seen as a speci�cation for a adaptive tolling system on express
highways, where tolls are determined by changing factors on the street, such as
tra�c and accidents.

The goal of the tolling system is to discourage drivers of using high tra�c roads,
because of an increased toll. On the other hand, the drivers would use most likely
less frequently used highways, because of decreased tolls.

Each vehicle on the highway emits its exact location, coordinates and speed at least
every 30 seconds, while the system computes tolls for each segment of each highway
in real time. The position data for each vehicle is provided by a data generator,
which can be downloaded from the web page of the project and generates data
as streams to the DSMS, where a combination of continuous and historic queries
evaluates the tolling.

Linear Road tests Data Stream Management Systems by measuring how many ex-
press highways a system can handle in real time by giving time constraints for each
query. A validation tool is used to check correctness of the results.

Implementations of the linear road benchmark for several systems exist, e.g., as an
evaluation of the STREAM Processing Core system in 2006 [125] or an implemen-
tation on the streaming system Storm [225].

Uppsala University Linear Road Implementation The Uppsala University pro-
vides an additional implementation available for Windows PCs20 as described in [220]
and [128]. They used their implemented system to evaluate SCSQ21 (pronounced
'sisque') a scalable data stream management system (see e.g. in [101, 245]). They
were able to achieve a score of L=1.5 express highways on a local machine [220]
and more than 512 express highways simultaneously on a multi machine cluster (see
[246, 247]) with SCSQ.

20http://www.it.uu.se/research/group/udbl/lr.html
21Supercomputer Stream Query processor

72

2.6. Comparison of Semantic Streaming Languages

LSBench

The LSBench22 [154] is a linked data stream synthetic benchmark that uses a so-
cial network setting. It was designed and published by the authors of CQELS (see
Section 2.5.3) and presented in 2012 for evaluating the CQELS engine against C-
SPARQL (see Section 2.5.2) and JTALIS (a Java implementation of EP-SPARQL
described in Section 2.5.5). The social media streaming scenario is based on the
data generator S2Gen from the CQELS authors, who extended the S3G2 [188] so-
cial graph generator by a sliding window approach to form a materialized dataset,
consisting of streamed and static data. An example execution as well as results of
the benchmark for comparing CQELS, CSPARQL, JTALIS can be found in [154].

The systems are tested with respect to 12 example queries, composed of operations
such as joins, nested queries, aggregations and negations. The test results show
that the streaming engines still miss several important features such as static data
joins for CSPARQL and JTALIS or nested queries for CQELS and JTALIS, as well
as negation for all implementations.

Beside these basic functionality tests, the evaluation further showed that the se-
mantics of the three SPARQL extensions had direct in�uence on the correctness
and throughput test. In fact, CSPARQL evaluates queries periodically in speci�ed
time intervals and therefore, emits many duplicates at slow data rates and certain
inputs are ignored for high data rates. On the other hand, CQELS and JTALIS
follow the eager execution strategy, meaning that they evaluate input once as soon
as it comes in and thus, do not miss inputs or produce duplicates.

SRBench

SRBench [248] from 2012 was developed by a team around the authors of SPARQL-
stream and concentrates on the coverage of SPARQL and SPARQL 1.1 operators
by di�erent RDF streaming systems. But in comparison to the LSBench, di�erent
operational semantics of the systems are not considered.

The authors evaluated SPARQLstream, CSPARQL and CQELS on the Kno.e.sis
LinkedSensorData [116], which is a real world dataset and contains US weather data
collected since 2002 from about 20.000 weather stations with a total of 100.000 sen-
sors and roughly 110 GB of data. Additionally, GeoNames [99] and DBpedia23 data

22http://code.google.com/p/lsbench/
23http://wiki.dbpedia.org

73

2. Preliminaries

is used for static data, as the LinkedSensorData refers to geographical places and
other subjects in both datasets.

SRBench consists of 17 prede�ned queries, each of which have di�erent requirements
from 7 feature groups, namely: graph pattern matching, solution modi�ers (projec-
tion and DISTINCT), query forms (SELECT, CONSTRUCT and ASK), features of SPARQL
1.1 (e.g., aggregation, negation, property paths), reasoning (RDFS:subClassOf,
RDFS:subPropertyOf, owl:sameAs), window operators, and access to di�erent data
sets. The queries can be found on the SRBench wiki page [215].

The evaluation using SRBench in [248] shows that the query engines SPARQL-
stream, CSPARQL and CQELS are still at the beginning of their development and
fail several feature tests.

So for example seven of the given queries could not be answered on any system,
because none of these supports property paths of SPARQL 1.1. Furthermore, it
is shown that none of the three tested query languages supports ASK queries or IF
expressions, SPARQLstream was not able to execute ten queries, because of miss-
ing a join between static and streaming data. Reasoning can only be evaluated for
CSPARQL as both others do not support any reasoning feature.

This benchmark led to the CSRBenchmark for additional testing of query correct-
ness and performance in 2013.

CSRBench

A benchmark for testing RDF streaming engines w.r.t. correctness is the CSRBench-
mark [88] designed by the SPARQLstream team. First, they analyze the semantics
of CSPARQL, CQELS and SPARQLstream regarding the streaming models of CQL
(see Section 2.2.6) and SECRET (see Section 2.6.1) and address the di�erent answer
sets that the query engines provide for identical queries. Finally, they present an
extension of the SRBenchmark with automatic correctness validation called CSR-
Bench.

The two streaming models de�ne basic concepts on streams. SECRET introduces
two di�erent kinds of timestamps to streams, the system time and application time,
additionally the behaviour of time windows is described by the four functions Scope,

74

2.6. Comparison of Semantic Streaming Languages

Content, Report and Tick (see Section 2.6.1), and the three window operators of
CQL: IStream, DStream and RStream (see Section 2.1.5).

The evaluation of the streaming model shows that all three streaming engines di�er
concerning their window operators. The Report strategy is realized in CSPARQL
and SPARQLstream by period windows, but in CQELS by any given content
change. SPARQLstream supports all three window operators of CQL, while both
other engines only support Rstream or Istream respectively and time in CSPARQL
is measured in seconds, while CQELS and SPARQLstream also support hundreds
of milliseconds.

In order to stress the S2R operators of the query engines, the dataset of the SR-
Benchmark was retained in the CSRBenchmark, but extended by three query types:
a variation of the window size and slide parameters, extended aggregate queries,
and comparison of values at di�erent timestamps.

For evaluating the correctness of each system, the authors propose an oracle that is
able to generate and check results for the stream engines. The oracle gets as input
a stream, a query and the operational semantics for executing the query over the
stream. Afterwards, it can check the answer of a real streaming system in compari-
son to the theoretical result of the oracle. The implemented oracle (see Figure 2.12)
is built on top of the Sesame framework and can be downloaded as an open source
project, including input data and queries [80].

The author use seven queries on their streaming model in the oracle and compare
the results to those of CSPARQL, CQELS and SPARQLstream for a subset of
SRBench dataset (the weather data of hurricane Charley).

In the experimental results it is shown that all three systems have correct results
regarding window operators and tumbling windows. On the other hand, still three
di�erent kinds of errors have been found. CSPARQL shows di�culties in computing
correct results for sliding windows with a slide parameter smaller than the window
width, because of emitting unexpected windows in the starting phase. As soon
as the window has slided for more timepoints than its width, the problem does no
longer occur. SPARQLstream has di�culties with aggregations as it uses a di�erent
starting time t0, compared to other systems, resulting in di�erent window inputs
and average values. Additionally, average values of 0 are compiled to null values,
which means that the results are di�erent although the semantics are identical.

75

2. Preliminaries

Figure 2.12.: The oracle of the CSRBench (from [88])

Finally, CQELS is unable to compare di�erent time stamps because of its time
handling strategy and therefore fails in query six and seven.

YABench

In 2015 another benchmark was shown in a demo connected to the RDF Stream
Processing Workshop at ESWC 2015, called YABench24 [142]. It was �agged as
work in progress and to the best of our knowledge no clear description is available
at the time of this writing. The authors promised an extension to previous work
that includes joint evaluation of functional, correctness and performance testing
achieved by �ve components: stream generator, prepared test queries, integrated
streaming engines and a test oracle such as in CSRBench with di�erent semantics
and an application for visualization of results.

Results in YABench can be measured by precision, recall and f-measure, while mea-
suring delay and performance. A current version of YABench can be downloaded
as open source project [104].

24Yet Another RDF Stream Processing Benchmark

76

2.7. Concluding Remarks

2.7. Concluding Remarks

In Chapter 2 we have shown an overview on state of the art technologies in the �eld
of semantic stream access.

After an introduction to general stream access, we gave a survey on relational
streaming system and languages that are already well established and highly op-
timized (e.g., Spark and Flink, see Section 2.2.11). Based on the use of relational
data stream management systems, we have described the strategy on ontology based
data access (OBDA) for linked data and relational databases.

The �nal investigation on current languages and systems for semantic stream access
has shown that there exist many di�erent systems and languages for di�erent pur-
poses, e.g., EP-SPARQL for event processing and TEF-SPARQL for storing data
facts, but there is currently only one system that is able to connect to relational
streaming systems (not even to state of the art systems such as Spark).

A second important problem of semantic streaming languages is the handling of
the �ow of time or temporal states. Most systems are not able to distinguish
between timepoints within a temporal window. While some systems use additional
temporal function to compare timepoints of di�erent triples (e.g., C-SPARQL, see
Section 2.5.2), others see the complete temporal window as a single state (e.g.,
Streaming SPARQL).

The convoluted handling of time and di�erences between the current streaming sys-
tems for linked data prevents the creation of a standard query language and makes
further research for industrial applications necessary. In the following chapter we
present a new approach and query language for semantic stream access that uni�es
the advantages of the presented solutions with the use of temporal sequences.

77

3. A New High Level Stream Query
Language: STARQL

In the last Chapter we introduced several state of the art technologies for querying
data streams in general, but also explained data access with respect to ontolo-
gies and mappings on relational systems and �nally gave an overview on current
approaches for accessing RDF streams. In the following, we describe why the pre-
sented ontology-based stream querying languages are not su�cient for industrial
sensor network and data analytics use cases.

Furthermore, we introduce our own new stream query language called STARQL1.
STARQL is able to handle the �ow of time within a window as a state sequence
(see Section 2.4.4) together with ontologies in state sequences and comes along with
several new features for combining evaluation of live streaming, recorded time series
and static data.

The work described below contributes to recent e�orts for adapting the paradigm
of ontology-based data access to scenarios within streaming data [30, 47, 57, 189]
as well as temporal data [23, 49]. The STARQL query language serves the need for
industrially motivated scenarios such as semantic sensor stream access on Siemens
gasturbines described in the Optique project [64]. STARQL also provides a uni-
�ed interface for querying historical data�as needed for reactive diagnostics�and
for querying streamed data�as needed for continuous monitoring and predictive
analytics in real-time scenarios.

In this chapter we proceed with a description of the Siemens sensor measurement
use case. Based on the use case, we de�ne resulting problems for this and hypotheses
on solutions with STARQL in Section 3.1. We explain the syntax and semantics of
STARQL as a possible solution for the problems de�ned in Section 3.2 and conclude
with a deeper look on its features and a comparison to respective functionalities
and operators in SPARQL and SPARQL 1.1.

1[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

79

3. A New High Level Stream Query Language: STARQL

3.1. OBDA Challenges in Sensor Measurement Scenarios

Today, when dealing with huge amounts of data a typical problem is e�cient data
access, which is an increasingly di�cult task with respect to the three dimensions
of Big Data: volume, velocity and variety [162]. The increasing volume comes in
hand with the need for accessing di�erent sources and formats (which is meant by
variety) from a single access point. Industrial engineers are challenged in extracting
data from the large pool of information for their tasks in limited time. Therefore,
strategies in context of easy query formulation with queries in natural language for
non expert users are needed. The Optique project on �Scalable End-user Access�
to Big Data' tries to �ll this gap as a EU funded FP7 project by bringing ontology
based data access to the industrial market [103, 134].

3.1.1. Optique - Use Case

The project is based on two use cases, which o�er a real industrial setting with
real data and users. Usually, industrial users need to rely on prede�ned queries
for accessing industrial data, but as soon as they need to formulate new queries,
the help of IT experts is needed. This situation is a clear bottleneck since it may
require a lot of additional e�ort and time on either side for experts as well as non
expert users.

One of the use cases is provided by Siemens2 [133, 137]. It focuses especially on
a combination of temporal and streamed data. In the Siemens scenario a stream
of sensor data is delivered with a rate of about 30 gigabytes a day, with many
terabytes of historical sensor data already stored in the database.

End users need to combine huge data sets of historical or streaming data as well
as non temporal (static) data within a single query. The formulation of queries
based on ontologies should help users to de�ne queries in a more natural way. For
accessing stream and historical data with ontologies, there is no clear standard
available.

Till now, although some solutions exist, a combination of historical and streaming
data is generally ignored by the only existing OBDA system (see Section 2.5),
which seriously limits the applicability in enterprises such as Siemens, where one
has to deal with large amounts of streamed data from many turbines and diagnostic
centres in combination with historical temporal relational data sources.

2www.siemens.com

80

3.1. OBDA Challenges in Sensor Measurement Scenarios

The sensor stream setting of the Optique use case will be adopted as a motivating
example for specifying the needs and requirements of a new ontology-based data
stream query language.

The Sensor Measurement Scenario

Sensor measurements in general can be seen as a typical scenario for applications
based on stream reasoning, where reasoning is used to reason about abstract formu-
lations of events or objects (e.g., some named critical event that is actually de�ned
by complex system states). Sensor based use cases are usually described by the
standard ontology for semantic sensor networks (SSN ontology, see Section 2.3.2),
which is embedded into the context of Linked Open Data and provides concepts
and properties related to sensors, measurements as well as topological structures,
observations and events. Additionally, the sensor measurement scenario makes
our results better comparable to other stream querying languages, e.g., CQELS or
SPARQLStream (Section 2.5) in the SRBenchmark (Section 2.6.2), which is espe-
cially designed for comparing functionalities in a sensor measurement setting.

As an introductory example, we describe a more simple sensor measurement ontol-
ogy compared to the W3C standard, also inspired by the industrial setting in the
Siemens use case [133].

The use case is based on two di�erent kinds of data. First, continuously queried
streaming data from thousands of sensors on thousands of turbines that are com-
bined with an additional event (or message-) input stream, which describes the
general current state of the turbine and can be queried simultaneously. Additional
messages from the event stream are generated by speci�c control units or compu-
tational modules (seen as black boxes).

Other relevant data of the system is non-streamed and already stored historical
or static data. That includes data such as turbine infrastructure data, as well as
recorded measurement data from the past.

A simpli�ed version of a static dataset is shown below as a (normalized) relational
DB schema. The schema was identi�ed by the Siemens Corporated Technology
(CT) division as a good representation of their original usage in central databases
and will be used as a running example in the further sections. Primary keys are
underlined, and foreign key speci�cations are introduced in the text.

For the static dataset we describe the topology of the turbine, the sensor (Sname)
and component names (Cname) as well as corresponding types (TID). The type

81

3. A New High Level Stream Query Language: STARQL

TID, points as a foreign key to the SENSORTYPE relation, indicating a temperature,
pressure or rotation per time measuring sensor.

SENSOR(SID, Sname, Cname, TID)

SENSORTYPE(TID, Tname)

As mentioned above, streamed data in the turbine scenario consists of two main
types, measurements and event data (also called event messages or, shorter, mes-
sages). In the following we will describe the schema of sensor measurement data.

MEASUREMENT(MtimeStamp, SID, Mval)

Here, a measurement is displayed by a tuple of three items, having a timestamp
MtimeStamp, a sensor ID SID (foreign key to SENSOR) and an associated value Mval,
which was measured at the exact time signaled by MtimeStamp. The schema of event
data can be identi�ed accordingly. The sensorID is replaced by an AssemblyID AID

and the associated value by an event text Etext (not shown here).

As we are also able to process streamed measurement data from the past, stream
querying can also be e�ectively used for event detection in a reactive diagnosis
setting by �replaying� historical measurements. While streaming historical events
and measurements as fast as possible, the process can be evaluated much faster
than in real time (e.g., looking for a speci�c sequence of past events). We call these
recorded data for reactive use cases historical data.

Though it is possible to have a stream of data for every sensor and every control
unit, we assume in the following that all measurements and events are combined
into one single input stream. The two streams are denoted in the following by
SMsmt , the stream of measurement data, and Sevents , the stream of event data.

The measurement streams are streams in the classical sense, namely, homogeneous
streams containing timestamped tuples of the same type (here: the same relation
schema) and thus could be directly processed by a DSMS such as STREAM (see
Section 2.2.6).

It should be noted that in contrast to continuous queries running on a data stream
management system, temporal historical queries can indeed also be handled by
standard database systems such as PostgreSQL.

82

3.1. OBDA Challenges in Sensor Measurement Scenarios

Lifting the Data to a Logical Level

Ontology-based query answering is very helpful in the industrial sensor measure-
ment scenario, because for di�erent historical datasets one might use ontologies
with di�erent axioms and mappings to the underlying relational data sources (such
as PostgreSQL) without changing the queries.

For ontology-based data access the usually chosen method is that of declarative
mappings (Section 2.4.2), formally realized as rules with a conjunctive query on the
left and a SQL query on the righthand side in which all the variables of the CQ are
selected.

For our sensor scenario, we assume that the ontology signature contains, e.g., a
concept symbol Sensor and an attribute symbol hasV alue. The following mapping
induces a set of ABox assertions, stating which individuals are sensors and are
located at the burnertip of a turbine.

BurnerT ipSensor(x) ←− SELECT SID as x

FROM SENSOR s

WHERE s.cName = 'BurnerTip'

In the same way we can de�ne mappings for ABox sensors of various kinds, which
are installed at di�erent components. These assertions are not time based, as the
sensortypes do not change over time. Its data is completely static and therefore,
we declare the set of non temporal ABox assertions as a static ABox.

On the other hand we also de�ne mappings for assertions that change over time
such as the hasV alue attribute (given below).

hasV alue(x, y)〈t〉 ←− SELECT SID as x, Mval as y, MtimeStamp as t

FROM MEASUREMENT

The ABox axiom of the mapping is written in non-rei�ed time (see Section 2.4.4)
with a temporal fourth dimension. Further, we call the set of ABox assertions with
(possibly di�erent) temporal dimensions a temporal ABox.

The role of the TBox, as a means to constrain the interpretations to the intended
ones, is demonstrated for the concepts of sensors and burnertip temperature sensors.
The mapping-induced extensions of both concepts should be such that all burner

83

3. A New High Level Stream Query Language: STARQL

tip temperature sensors are also temperature sensors and also sensors (for which
we do not have a mapping, say).

An example for a TBox is shown below, containing the following axioms:

BurnerT ipSensor v TempSensor, TempSensor v Sensor.

For example, assume that the mapping for burner tip temperature sensors generates
(virtual) ABox assertionsBurnerT ipTempSensor(s0), BurnerT ipTempSensor(s1),
. . . . Then, the individual s0 is also an instance of TempSensor, or, to put it in
other words, the TBox and ABox entail the assertion TempSensor(s0). Therefore,
a query that asks for all temperature sensors or pressure sensors can be de�ned
without additional mappings if one uses the intensional knowledge de�ned in the
TBox to get all (correct) answers. On the SQL side, the top category of sensors
is then simply replaced by the union of its subtypes in a rewriting step (see Sec-
tion 2.4.1).

The stream of ABox assertions that underlies most of the following examples is the
measurement stream SMsmt . The initial example stream, which is called S

≤3s
Msmt here,

contains timestamped ABox assertions giving the value of a temperature sensor s0
on a three seconds interval, starting at 0s.

S≤3sMsmt = { hasVal(s0, 90◦C)〈0s〉,
hasVal(s0, 93◦C)〈1s〉,
hasVal(s0, 94◦C)〈2s〉,
hasVal(s0, 92◦C)〈3s〉 }

The input streams on which the query language operates are di�erent from rela-
tional streams; in the latter, the domain of stream objects are tuples of some type,
more concretely, instances of a relational schema. While in the OBDA/ABDEO set-
ting for stream processing, the domain of streamed objects are ABox assertions over
a given ontology signature. In general, these streams are inhomogeneous, mean-
ing that they may contain timestamped ABox assertions with di�erent signature
elements.

For instance in the (virtual) stream of measurements, we may additionally have
timestamped ABox assertions of the kind Event(criticalEvent0)〈t0〉 at arbitrary
timepoints, which make the sensor stream heterogeneous.

84

3.1. OBDA Challenges in Sensor Measurement Scenarios

S≤3sMsmt = { hasVal(s0, 90◦C)〈0s〉,
hasVal(s0, 93◦C)〈1s〉,
Event(criticalEvent0)〈1s〉,
hasVal(s0, 94◦C)〈2s〉,
Event(criticalEvent0)〈2s〉,
hasVal(s0, 92◦C)〈3s〉 }

It is not necessarily the case that we use heterogeneous streams in the scenario
directly, but indirectly as we have to combine two streams (e.g., a measurement
and an event stream), which are merged internally and have to be handled as
heterogeneous stream in the sense de�ned above.

3.1.2. Natural Query Examples

Having described the data setting, we will now show some tasks for typical users.
These tasks build the basis for requirements of the stream query language that
we propose. A general task that users face in context of diagnosis is monitoring
a sensor stream and looking for sequences of typical or speci�c event messages.
Interesting sequences of values should be speci�ed and formulated in advance by a
non-expert user. Afterwards, a data stream management system can evaluate the
resulting (and potentially complex) query on a DSMS.

Further examples for interesting diagnostic showcases that can be explored for a
single time window have been evaluated in the Optique project and are listed be-
low.

• The signal itself exceeds a prede�ned value.

• The frequency of spikes or outliers exceeds some value in a de�ned interval.

• Signal noise exceeds a speci�c level.

• Two sensor signals are correlated or not.

• The sensor signal is locked and does not change anymore, or its standard
deviation is below a speci�c value.

• The value of a speci�c sensor monotonically increases (or decreases).

• Looking for temporal error patterns on incoming signals.

85

3. A New High Level Stream Query Language: STARQL

We are able to identify three major categories of components to express the tasks
above: (i) basic functionalities, such as �ltering values by a threshold, (ii) aggrega-
tion operators to separate outliers from average values, and (iii) temporal sequence
operators for de�ning temporal patterns on the sensor data.

The speci�cation of tasks and patterns is often hard to derive. Furthermore, many
di�erent temporal operators and functionalities must be provided to meet practi-
cal requirements, including, data mining functionalities, aggregation operators, or
integrated correlation functions for streams.

On the other hand, these functionalities also require easy user access by the used
query language with abstractions of the raw sensor values to the user on a higher
level. Additionally, each operator (e.g. aggregation operators and grouping) must
also be available for time series description.

Thus, we can see the requirements for ontology based stream querying language
from two perspectives.

The �rst perspective is about characterizing and classifying sensor data, which has
to be realized by an ontology based layer that enriches the sensor data with semantic
information. The underlying stream query language should allow diagnosis and
classi�cations of complex time sequences using input streams as well as historical
or static data.

And second, from the data access point of view, we have to guarantee that the
DSMS can handle continuous queries on multiple streams on behalf of abstract
ontology models. Thus, considering the large number of DSMSs, CEPs and the
heterogeneity of access methods they provide, it is necessary to evolve methods for
querying these systems under an ontology based abstraction layer.

Therefore, an appropriate query language as well as corresponding query rewriting
techniques from the proposed stream query language to the underlying DSMS have
to be developed.

Functionality Requirements

We have already mentioned one important requirement for organizing time struc-
tures, additionally there are several more important things to mention. In the fol-
lowing, we collect requirements inspired from the use case described above or other
stream querying languages and split them into two groups (inspired by CQL [17])
with respect to an access on di�erent sources (i.e., R-to-S and S-to-R operators) or
direct stream operators on relations (e.g., aggregation operators).

86

3.1. OBDA Challenges in Sensor Measurement Scenarios

Window-to-Stream / Stream-to-Window Mapping Requirements: Input and
output describes the operators for a temporal access on di�erent data sources. In
that context the following goals should be achieved by the language to be devel-
oped.

Sliding Windows. We require the access to time-tagged data with sliding win-
dows, which should at least provide the use of parameters for de�ning window
borders and its movement over the stream.

Live/Historic Data. We require access to live data streams as well as recorded
time series. In the industrial use case we observe that live streaming data
is important on the one hand, but also combined with archived historical
streaming data, which can be used for predictive use cases, data mining and
machine learning or correlation of a current data stream, on the other hand.

Static Data. We require access to static tables for merging temporal with non
temporal data. The example includes static data sets, describing components
and types of sensors. This data is non time-tagged and additionally stored
in tables. It should be available and merged with live or historic data for
querying.

Multiple Streams. We require access to multiple streams, which are joined for
each window. This should be possible for historically recorded time series as
well as real time inputs with various numbers of streams.

Cascaded Streams We require orthogonality for combining streams. With or-
thogonality we are able to build infrastructures of streams and use the output
of one stream as input for another stream. For instance, we should be able to
merge several STARQL output streams into one single stream.

Output Operator. We require at least the RStream operator for generating new
stream output from each input window.

Output Synchronization. Input streams might be based on di�erent window
slides and therefore, we have to provide means for generating or synchronizing
the output with a de�ned sampling rate.

Requirements for Stream Operators: For direct operations on streams, we de�ne
the following operator requirements.

Basic Query Operators. We require basic functionalities on streams, such as
joins, unions, �ltering and optional.

SPARQL 1.1 Operators. We require SPARQL 1.1 functionalities for data ana-
lytics and query formulation, such as aggregation functions, grouping, nega-
tion, arithmetic expressions and negation.

87

3. A New High Level Stream Query Language: STARQL

Sequence Operator. We require an operator for building temporal states and
patterns as explained above. Additionally, an operator for accessing time-
based sequences in an e�cient way is mandatory.

Reasoning. Basic reasoning functionalities are required to solve problems such as
subsumption of concepts in concept hierarchies.

3.1.3. A New Query Language for Streams?

In chapter two we have introduced several datastream management systems (Sec-
tion 2.2) as well as RDF-Stream querying languages (Section 2.5). Although the
stream reasoning community is working on a standard ontology base stream lan-
guage called RSP, it is still work in progress and many problems are not solved,
e.g., standardization, the handling of time, reasoning on streams and dealing with
incomplete or noisy data.

So, as there are already a lot of stream languages that make use of the OBDA
paradigm and at least partly ful�ll the mentioned requirements, it is a justi�ed
question to ask: �Why inventing a new one?�.

Our examples above show that for industrial problems it is very important to de-
scribe and query the behavior of sensor data over time, especially w.r.t. what hap-
pens before or after certain events. This could be, for example, a sequence of
events that has to be identi�ed, which in general is accomplished by CEP systems.
EP-SPARQL (Section 2.5.5) is an ontology based extension for ETALIS (a general
CEP engine) and extends the well established SPARQL standard by two additional
operators called SEQ and EQUALS, which can join two graph patterns, if they
occur after each other (SEQ) or at the same time point (EQUALS). A problem is
that EP-SPARQL completely lacks window operator, but they can be simulated by
additional time constraints.

Other languages, not speci�cally designed for event processing, lack the SEQ op-
erator. Thus, a sequence of events cannot be expressed with languages such as
CQELS (Section 2.5.3) and C-SPARQL (Section 2.5.2), only reference a timestamp
for each triple by additional functions, but are not able to declaratively de�ne state
sequences in an appropriate way. A reason for limited sequence support of these
languages can be seen in their status as an extension to the static query language
SPARQL, where every input has the same timestamp and thus, cannot be arranged
in a temporal sequence. There are basically three disadvantages of this solution.

The semantics presupposes mixed interim states in which the constraints and con-
sequences of the ontologies (in particular inconsistencies) are not considered.

88

3.1. OBDA Challenges in Sensor Measurement Scenarios

Second, these solutions do no longer adhere to the requirements of an orthogonal
query language, where the inputs and interim-outputs are structures of the same
categories.

And �nally, in the case of knowledge bases that allow for the formulation of con-
sistency assumptions, one has to keep track of timepoints in the window operators
as they may lead to consequences at later timepoints. For example, if a sensor is
broken at a previous timepoint, it stays broken at future timepoints. One solution
to this problem was already introduced in TEF-SPARQL (see Section 2.5.6), by
using so-called data facts.

Our conclusion is that indeed data stream management systems exist, which can be
used as instruments for operating on raw streams, but for practical and industrial
use cases on stream querying with respect to ontologies no appropriate language
exists up to now.

Therefore, we propose a query language that is not only an extension of SPARQL,
but a new language that involves features from SPARQL, in addition to capabilities
for managing sequences of timepoints with speci�c operators. We formulate result-
ing research problems and hypotheses for this work below and introduce our query
language called STARQL3 by examples and continue with its detailed syntax and
semantics.

3.1.4. Resulting Problems and Hypotheses of this Work

As discussed above, some of the requirements are ful�lled by the previously dis-
cussed streaming extensions. Nevertheless, none of them is able to ful�ll all of them
or activate full ontology access for timeseries as they rely for ontology based data
access on the rewriting of a single ABox in the standard SPARQL (Section 2.3.3).

Thus, we propose a new ontology based stream query language with rewriting
algorithms to complete the picture of querying RDF streams.

From analyzing the measurement scenario as well as state of the art query languages
in previous sections, we have identi�ed the following three research problems:

P1. How can we enable full ontology usage for temporal sequences, reasoning over
time, semantic enrichment and access to streaming or historical data, while
keeping all operators and functionalities for RDF data provided by SPARQL?

P2. Are rewriting techniques to di�erent (relational) backend stream sources still
feasible if we ful�ll the listed requirements for time series analysis?

3[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

89

3. A New High Level Stream Query Language: STARQL

P3. Is query processing still e�cient enough for handling large input streams or
temporal/static data together in possible big data scenarios?

The goal of this work is to give answers to these research problems. In connection
to these problems we also formulate a more detailed list of hypotheses, which are
going to be veri�ed in the following chapters.

H1. We allow the basic functionalities of SPARQL, as well as the operators from
SPARQL 1.1 in our query language.

H2. We guarantee stream access on di�erent input data, namely, real-time, his-
torical and static data.

H3. Di�erent kinds of streams (real-time and historic) can be joined, and the
output corresponding to a query needs to be synchronized, if di�erent slide
parameters are provided for respective windows.

H4. We allow basic reasoning in the range of DL-LiteA and semantic enrichment
for STARQL.

H5. We are able to handle an OBDA approach, while using standard ontologies
such as the SSN ontology.

H6. We are able to rewrite the temporal sequences and operations without any
loss of e�ciency on the backend system.

H7. We are able to translate the continuous relational query results of high through-
put streams without delays (or at least not relevant delay).

H8. Our approach can be used in parallel and horizontally scaled on di�erent
machines for use in Big Data scenarios with modern technologies and data
bases as backend.

In the following we will present our new stream query language STARQL4 [181]
and describe its syntax and semantics by example. We will explain how a rewrit-
ing to relational algebra is possible and show comparisons to other stream query
languages. In the following chapters we will then provide an inside view on query
transformation techniques and a proof-of-concept implementation with evaluations
for several backend systems.

4[S]treaming and [T]emporal ontology [A]ccess with a [R]easoning-based [Q]uery [L]anguage

90

3.2. Introduction to STARQL

3.2. Introduction to STARQL

We will introduce the features of our streaming query language step by step accord-
ing to examples from sensor measurement scenarios and the requirements mentioned
above.

Now let us �rst see informally how an appropriate query language for sensor data
streaming scenarios could look like within the challenging paradigms of OBDA and
ABDEO. We will describe the query language STARQL(pronounced Star-Q-L) on
an abstract logical level, thereby assuming that the data in databases and relational
streams have already been mapped to the logical level static or temporal ABoxes,
as well as ABox assertion streams.

STARQL combines elements from SQL, SPARQL and descriptions logics. Instead
of the logical notation of DLs we use the machine processable turtle notation of
SPARQL [232]. Moreover, by partially using SPARQL we can also rely on its
namespace handling mechanism (though we will skip most of the namespace dec-
larations for keeping the examples short).

The syntax of STARQL extends so-called basic graph patterns of the W3C stan-
dardized SPARQL query language for RDF databases and describing their time-
based relations. Its queries can express basic graph pattern relations, and typical
mathematical, statistical and event pattern features needed in real-time diagnostic
scenarios by relying on backend computational capabilities through an OBDA ap-
proach.

3.2.1. Introduction of STARQL by Example

We give an overview on STARQL's main syntactical features below to start with a
basic example and get into the detailed features afterwards.

CREATE STREAM: A continuous query refers to one or more streams and produces a
stream again. The create statement indicates the creation of a new substream
connected to an identi�er (requires a CONSTRUCT query form). Moreover, by
referencing stream identi�ers, STARQL queries can be nested, in the sense
that the result of one substream may be used as input to another one.

SELECT/CONSTRUCT: The output of a STARQL query can be de�ned through
several di�erent query forms. It can either be a SELECT query that provides
answer sets that are given by variable binding lists or a CONSTRUCT query

91

3. A New High Level Stream Query Language: STARQL

where the answers are de�ned as a new RDF Graph that can either be stored
in an RDF Dataset or sent as input to another STARQL stream query.

FROM: In this clause the input to the query is de�ned. Inputs can be streams
(de�ned with window parameters), static ABox data or an TBox ontology.

USING: References the periodic pulse for the speci�c substream, given by an exe-
cution frequency and its absolute starting time.

SEQUENCE BY: References the periodic pulse for the speci�c substream, given by
an execution frequency and its absolute starting time.

WHERE: Inspired by the SPARQL standard for querying static RDF data, the
WHERE clause uses graph pattern matching for identifying possible variable
bindings in the static data (included in the FROM clause).

HAVING: As mentioned above, basic graph pattern matching is extended for time
based relations over all input streams in the HAVING clause. Each temporal
graph is identi�ed by an index indicating its point in time. The temporal
patterns are combined with �lter conditions to a safe �rst order logic formula.

GROUP BY/AGGREGATE: The aggregation operator consists of two clauses: a group-
ing can sort the result list based on one or more free variables in the query and
�nally the Aggregation clause calculates results by an aggregation function
for each group. Thereby STARQL is not bound to speci�c functions such as
AVG, MAX, MIN, SUM, COUNT, it even supports multi-dimensional aggre-
gations such as correlation functions.

For the sake of the following example let us �rst assume that the terminological
TBox is empty.

An engineer may be interested in whether the temperature measured by the sensor
s0 exceeds a certain threshold in the last two minutes, i.e., in the interval [NOW −
2M,NOW] (including borders). We �rst present the solution in our streaming
language STARQL to give an impression of the language and cover its details
afterwards.

Listing 3.1: Basic STARQL example 1

1 CREATE STREAM S_out_critical AS

2

3 CONSTRUCT GRAPH NOW { ?sens rdf:type :Critical }

4 FROM measurements [NOW - 2m, NOW]->1s

5 SEQUENCE BY StdSeq AS stateSequence

6 HAVING EXISTS ?i IN stateSequence(

7 GRAPH ?i {?sens :hasVal ?x} AND ?x > 90)

The solution of the threshold example is shown in Listing 3.1. It is a simple example,

92

3.2. Introduction to STARQL

which registers a stream called Sout_critical in the streaming system. The CONSTRUCT
clause de�nes its output, which is a temporal graph that de�nes a sensor s0 being
of the type Critical at timestamp NOW, where the HAVING clause is true. The
input stream is called measurements and has a sliding window with a window
size of three minutes (borders included) and a slide of one second as declared in the
FROM clause. We use �rst order logic to describe the behavior of a time sequence in
general and de�ne its content in the so called HAVING clause. Here, we use a variable
x for referring to sensor values and enforce that one of these values appears in some
time point of the sequence and is higher than 90◦C.

Inconsistency

In the case of sensor measurement scenarios, such as the described above, we often
have to deal with unclean data that can lead to inconsistent or inde�nite knowledge.
Regarding the scenario, we may have the following problem of one sensor having
more than one value at the same time. For instance, there may be two values for
the sensor s0 at time point 1s.

S≤1sMsmt = { hasVal(s0, 90◦C)〈1s〉,
hasVal(s0, 93◦C)〈1s〉 }

This situation, where a sensor has di�erent values at a time, can happen in practical
applications because of delayed streams or data providers and an unexpected sensor
setup.

We could solve this problem by directly manipulating the sensor data stream of the
DSMS, but as we follow the idea of ontology based data access, we do not want to
touch the data directly. In our case we would de�ne mappings to the data stream
that include the cleaning. One possible mapping could select all measurements for
a given sensor at the same time point calculating the respective mean value. The
outcome describes a sensor value as shown below.

hasV al(x, y)〈z〉 ←− SELECT f(SID) AS x, AVG(val) AS y, timestamp AS z

FROM measurement GROUP BY SID, timestamp

On the other hand, a drawback of this mapping-centered approach is the fact that a
user might see the mappings as a black box without having access to them. Hence,
a diagnostic engineer for example should have his own way for dealing with multiple

93

3. A New High Level Stream Query Language: STARQL

sensor values. Our example for threshold sensor values already solves this problem
as it only requires that one value is required to exist, without mentioning the
number of values per timepoint. But we could equally use an aggregation function
for each timepoint in STARQL for immitating the mapping (see our requirements
for aggregation functions), where we require the windows to be small, as too many
values could make the aggregations expensive, thus slowing down the system.

A second possible problem with respect to sensor values is that there might be
no received value at all for a given point in time from the measurement stream,
although a value is expected. For the open world assumption of the OBDA view
this means that we simply do not know whether a value actually exists or not.
Without mentioning a possible TBox that could tell us about existing values, our
threshold example does not incorporate the assumption of unknown values. We
solve the problem of unknown values by a told value approach, considering only
those cases where actually a concrete value exists as input.

Not only the raw data itself can lead to inconsistencies. Even in the case of
lightweight description logics such as DL-Lite, the TBox can contain constraints
that lead to inconsistencies with ABox assertions too. In the sensor measurement
scenarios such forms of inconsistencies are seldom; they can occur, for instance,
through disjointness axioms. A practically more relevant source for potential in-
consistencies are functionality axioms, which are directly connected to the problem
of multiple sensor values from above.

An example for a functionality axiom is the following one:

(func hasVal)

It states that at every time point there can be at most one �ller of the role hasV al
in a particular state. we assume that the TBox holds for all time points in the time
domain and does not state any conditions on the development of concepts and roles
w.r.t. di�erent points in time. So, surely the sensor may have di�erent values and
di�erent time points. If the functionality declaration is not ful�lled in an ABox,
then the whole knowledge base becomes inconsistent.

The general OBDA approach does not handle inconsistencies by repairing or revising
the ABox (or even the TBox), but gives a means for detecting inconsistencies.
Inconsistency testing is reduced to query answering for an automatically derived
speci�c query, and thus, inconsistency checking can in principle be done by SQL
engines as well.

The TBox has also e�ects on the modes of inde�niteness regarding the knowledge
of values of a sensor. For example, the TBox may say that every sensor has a value

94

3.2. Introduction to STARQL

(at every time point), formalized as

Sensor v ∃hasVal

If there is a missing value for a sensor at some temporal state t123, then we know
there is a value due to the above TBox axiom. However, we have inde�nite knowl-
edge since the value is not known. Such a TBox axiom could be useful for modeling
a notion of trust in the sensors' reliability (it shows a value at every time), but on
the other hand, we could also think of a notion of skepticism regarding the reliabil-
ity of the channels through which the sensors' readings are delivered. Incorporating
such unknown values into further processing steps, such as, e.g., counting or other
forms of aggregation is known to lead either to implausible semantics or to high
complexities [145].

Hence, in our query language the aggregation operators will work only with told-
values similar to the epistemic approach of [65]. So, for all knowledge bases KBi
in a possible ABox sequence, we demand that they entail hasVal(s0, v0) for some
value constant v0. This is the case when hasVal(s0, v0) is directly contained in the
ABox or implied with some other ABox axiom and TBox axiom. The latter is, e.g.,
the case because of the existence of a role inclusion hasTempV al v hasVal and of
the ABox assertion hasTempV al(s0, v0).

Orthogonality

The STARQL stream query language ful�lls the desirable orthogonality property
as it takes streams of timestamped assertions as input and produces again streams
of timestamped assertions. It is in general realized similarly to the CONSTRUCT

operator from the SPARQL query language, which provides the means to de�ne
the format in which the bindings of the variables should be generated.

The approach of stream topologies is motivated by the idea that query outcomes are
going to be used as inputs to other queries as well as the generation of (temporal)
ABox assertions in the application scenario itself. The produced ABox assertions
hold only in each window of the output stream in which they are generated�and
not universally.

Otherwise the generated assertions would also hold in the input stream again and
require recursion in queries, which might lead to performance issues due to a the-
oretically high complexity of the query answering problem. Though the ABox
assertions are limited to hold in the output streams, they may interact with the
TBox, leading to entailed assertions.

95

3. A New High Level Stream Query Language: STARQL

An engineer could reuse results of other streams. For example he could de�ne a
continuous query that �lters temperature sensors, which show a temperature value
higher than 90 degrees. Such a query is shown in Listing 3.2. It uses the prior
threshold example as input (see Listing 3.1), adds a �lter constraint for temperature
sensors and produces new ABox assertions de�ning critical temperature sensors at
the output.

Listing 3.2: Basic STARQL example 2

1 CREATE STREAM S_out_criticalTemp AS

2

3 CONSTRUCT GRAPH NOW { ?sens rdf:type :CriticalTemp }

4 FROM S_out_critical [NOW - 1s, NOW]->1s

5 WHERE {?sens a :TempSensor}

The query is evaluated on the stream Sout_critical, which contains assertions of the
form Critical(sens)〈t〉. At every second only the current assertion is put into the
temporal ABox (window range = 1s) so that the sequence contains only a trivial se-
quence of the past one minute (at most). The example might use oversimpli�cation
but the reader should be able to understand the main idea.

After discussing this example we will now go deeper into the operators of the query
language.

3.2.2. STARQL Stream Operators

According to the previous example we will now discuss the speci�c operators pro-
vided by STARQL. The operators can be split into three categories inspired by
CQL see Section 2.2.6). We call them Stream to Window, Window to Window and
Window to Stream Operators.

The �rst category describes operators that transform raw in�nite stream data into
smaller parts or window structures, which can be queried with di�erent STARQL
operators afterwards. The succeeding two categories operate on window struc-
tures and �nally put each result into the output stream. We start with the for-
mer category and describe the generation of window structures and sequences in
STARQL.

96

3.2. Introduction to STARQL

Figure 3.1.: Example data for a measurement input stream
Time Temporal ABox

0s {hasVal(s0, 90◦C)〈0s〉}
1s {hasVal(s0, 90◦C)〈0s〉, hasVal(s0, 93◦C)〈1s〉}
2s {hasVal(s0, 90◦C)〈0s〉, hasVal(s0, 93◦C)〈1s〉, hasVal(s0, 94◦C)〈2s〉}
3s {hasVal(s0, 93◦C)〈1s〉, hasVal(s0, 94◦C)〈2s〉, hasVal(s0, 92◦C)〈3s〉}

Stream to Window - Windowing

The presented example is centered around an input stream and window parameters
declared in the FROM clause.

Listing 3.3: Window operator from basic STARQL example 1

1 FROM S_Msmt [NOW -2m, NOW]->1s

The window of the example stream is of range (width) two seconds (see Listing 3.3).
Every second (see the slide parameter as denoted above by ->1s) the NOW moves
forward in time and gathers all timestamped assertions in each step whose times-
tamp lies in the interval [NOW-2s, NOW]. Here, NOW denotes the current time point.
We will follow in our exposition this synchronized approach, where the window
moves forward by a query de�ned time value (i.e. slide parameter). Thus, we
actually have a window with content for each step, synchronized by the sliding pa-
rameter. For example, this means for our example exactly one evaluation window
per second.

Each window content can be seen as a set consisting of timestamped assertions,
which together make up a temporal ABox. Assuming that every stream must start
somewhere at timepoint 0, there only exists one timepoint in the �rst window. As
time goes on, the time window �lls up. So within this example for the �rst two
time points 0s, 1s we do not get well de�ned intervals for [Now-2s, Now], as we
do not have information about the three past seconds, but it is natural to declare
the contents at 0s and 1s as the set of timestamped ABox assertions which have
arrived up to the current timepoint. For the other time points, we can assume to
have information on the complete interval, and so the resulting temporal ABoxes
from 0s to 2s are de�ned as given in Figure 3.1.

Our example describes at each timepoint a set of timestamped assertions for the
content of the speci�c window, varying in numbers from one to three timepoints.

97

3. A New High Level Stream Query Language: STARQL

For each point in time this set of assertions, produced by the window operator, is
stored into an ABox. As discussed before (Section 2.3), the classical reasoning is
established over single ABoxes only with time-tagged assertions, containing no more
than one timestamp for consistency reasons. Therefore, in STARQL we would like
to consider reasoning over more than one timestamp or one ABox respectively to
analyze streaming data.

So, in order to apply ABox and TBox reasoning on streams, we build an ordered
group of ABoxes representing points in time, where assertions are grouped together
into the same (pure) ABox for each timepoint. The generation of those sequences
is managed by the STARQL sequence operator.

Stream to Window - Sequencing

The result of the grouping is a �nite sequence of ABoxes (ABoxes are sequenced
with respect to the order of their timestamps). By splitting the axioms of the win-
dow operator into temporally related groups, we can prevent problems regarding
inconsistency and inde�niteness of values especially regarding functional roles and
relations (see Section 3.2.1). This sequencing can be provided by appropriate means
of the sequencing operator, such that each pure ABox is consistent in itself. The op-
erator provides di�erent sequencing strategies. In the following example we present
a standard strategy, where assertions are directly grouped together according to
their identical timestamps.

Listing 3.4: Sequence operator from Example 1

1 SEQUENCE BY StdSeq AS stateSequence

The ABox sequencing operation is introduced by the keyword SEQUENCE BY in the
query fragment (see Listing 3.4), followed by the type of sequence and a reference
name.

There may be di�erent methods to build the sequence, but the most natural one
is to merge all assertions with the same timestamp occurring in a window into
the same ABox. The sequence operator shown in Listing 3.4 refers to this built-in
sequencing method called StdSeq for standard sequence. Other sequencing methods
may be de�ned by following an SQL-like create declaration (for details see the next
sections).

98

3.2. Introduction to STARQL

We can use this sequence of classical ABoxes to �lter those values v for which it
is provable that hasV alue(s0, v) �holds� for our sequence of the threshold example
(given in Listing 3.1).

Just for illustration, we note that the ABox sequence at time 3s is de�ned by the
input data from Figure 3.1.

In our simple example, the standard ABox sequencing leads to simple ABoxes with
one assertion each, as the stream does not contain ABox assertions that have the
same timestamp. Please note that each ABox in a sequence can be combined with
larger static ABoxes (see below).

The sequence contains timestamped ABoxes, e.g., the �rst ABox contains the triple
{hasVal(s0, 93◦C)} and timestamp 〈1s〉. STARQL itself does not refer to the
timestamps of the ABoxes in the sequence, but to a natural number indicating its
ordinal position within the abstracted sequence. Hence, the actual sequence at time
point 3s can be written as follows:

Time ABox sequence

3s {hasVal(s0, 93◦C)}〈1〉, {hasVal(s0, 94◦C)}〈2〉, {hasVal(s0, 92◦C)}〈3〉

Stream to Window - Multiple Streams

Many interesting time series features require the input from several di�erent stream
sources. As shown above, the sequence for a single input stream can be implemented
in a straightforward way according to a standard strategy, but in the case of multiple
input streams the sequence states have to be coordinated with respect to the input
stream content.

In the sensor measurement scenario this could be the case for values from di�erent
measurement streams or the join of measurement and event streams in order to
detect correlations and do further data analytics.

The simplest combination of streams is a union, which can be directly provided with
the same data schema as in pure SQL. For a multi stream example in STARQL,
we consider the join of sensor values.

So, if one had two di�erent measurement input streams and one was interested in
the overall maximum value for each time window, then the STARQL FROM clause
could be formulated as given in Listing 3.5.

99

3. A New High Level Stream Query Language: STARQL

Listing 3.5: STARQL example for combining multiple streams

1 FROM S_Msmt_1 [NOW -2s, NOW]->1s,

2 S_Msmt_2 [NOW -2s, NOW]->1s

3 SEQUENCE BY StdSeq AS stateSequence

Here, we de�ne two sliding windows with parameters for two di�erent input streams
(for this example all window parameters are identical) and combine both to evalu-
ate the overall maximum value. The semantics of the stream union is given by pure
set union of the resulting temporal ABoxes generated by the window operator and
no sequencing. In many cases, the simple union of the ABoxes is not an appropriate
means, because the timestamps of the streams might not be synchronized for all
input streams, which are not comparable if one stream is delayed. And thus, the
simple idea of building a state sequence based on identical timestamp may lead to
unintended results.

Consider a temperature sensor and a pressure sensor, which are expected to show
some value regularly each minute, but the emitted temperature value is several
seconds delayed, we see that a sequence operator that arranges assertions into
the same state based on identical timestamps (as in the standard sequence) is no
longer su�cient. Thus the engineer may have an interest in putting also the delayed
assertions with identical timestamps of both streams into the same temporal sate:
Because, only if the values of both sensors ful�ll some conditions �at the same
time� (read as �in the same ABox�), will the engineer be able to infer additional
knowledge for this query. In this case for example, the engineer could formulate a
rule (formally to be represented either by a TBox axiom or by a query) saying that
if the temperature value of sensor s0 is bigger than the temperature value of s1 at
the same time, then the turbine is considered to be in a critical mode as formulated
below.

hasVal(s0, v1) ∧ attachedAt(s0, turb) ∧
hasVal(s1, v2) ∧ attachedAt(s1, turb) ∧

v2 > v1 → crit(turb)

Hence, the query language is envisioned to be used for such scenarios, it should
provide means to de�ne a sequencing strategy based on some temporal granularity
parameter, on an equivalence relation or, in its most general form, based on a
similarity relation on the timestamps.

100

3.2. Introduction to STARQL

The similarity relation then makes it possible to �nd consequences for conditions
regarding a rougher or �ner granularity. So, in the example above, the idea could
be to de�ne a sequence, where each state has the granularity of one minute instead
of one second, such that a value at timepoint one minute appears as �at the same
time� as values between second one and second sixty.

Our query language gives the �exibility to implement di�erent merges (sequences).
New sequences can be de�ned by the CREATE SEQUENCER command as demonstrated
in Listing 3.6

Listing 3.6: Example for coarsening

1 CREATE SEQUENCER seq_min AS

2 GRANULARITY = 1m

Sequencers are de�ned by a granularity parameter, which is set to 1 minute for the
example and merges assertions in a time interval of one minute into the same point
in time. Merging timestamps into one timepoint can have several disadvantages or
inconsistencies, especially for functional roles as mentioned before. The sequencing
operator therefore picks only the latest functional role assertional to be merged for
one timepoint automatically.

In reality there might be more advanced requirements for the use of functional roles.
An engineer could be interested to merge only the average of several sensor values
into each time point. Here, we can make use of the orthogonality factor explained in
the orthogonality section, which means that we are able declare a pseudo sequencer
by adding another STARQL query stream as input to the actual STARQL query.
The sub query would then evaluate the average values for each state and provide
input to the actual query. This input could be synchronized to other input streams
and merged into the sequence.

Window to Window - Adding Static Data and Additional Knowledge

Until now, in all previous examples for STARQL we focused on temporal ABoxes
only, and did not refer to entailment w.r.t
TBox knowledge. In this section, we
demonstrate the e�ects of TBoxes and their use with a small example.

Considering our last example, where a user was interested in �nding monotonically
increasing sensor values, we are now only interested in a subclass of sensors for the
evaluation, namely the subclass of temperature sensors.

101

3. A New High Level Stream Query Language: STARQL

We assume that there is a data source (i.e., the dataset presented in the last section)
with information on sensors types, declaring speci�c sensors as BurnerTipTempSen-
sor (i.e., temperature sensor located at the burner tip of a turbine).

Information on sensor location is static (does not change over time) and could for
example be saved in a standard SQL data base table. Additionally, let us assume
that there is a mapping for burner tip located temperature sensors that maps the
data to ABox assertions. The assertions contain facts that hold at every time point
and one assertion for our sensor example, namely BurnerT ipTempSens(s0).

Now we would like to combine the static information with the time tagged sequence
of the sensor values stored in several ABoxes for querying. In STARQL this is
possible by adding the static dataset in one line to the FROM clause of the previous
examples, but this would only allow us to query for speci�c BurnerTipSensors.

By adding a TBox, we can make use of additional knowledge. Here, the user may
state the relationship between two concepts by a subsumption relationship. As
described in the section on the data model, we assume that the TBox contains
the following axioms BurnerT ipTempSensor v TempSensor, TempSensor v
Sensor. We can use the TBox to model the relationship between the concept
names BurnerT ipTempSensor and TempSensor.

Now, we formulate the query by extending our previous threshold example with
static information (see Listing 3.7).

Listing 3.7: STARQL example with static information

1 CREATE STREAM S_out_static AS

2

3 SELECT ?sens

4 FROM S_Msmt [NOW -2s, NOW]->1s,

5 STATIC ABOX <http :// example.com/Astatic >,

6 TBOX <http :// example.com/TBox >

7 WHERE { ?sens rdf:type :TempSensor }

8 SEQUENCE BY StdSeq AS stateSequence

9 HAVING EXISTS ?i, ?x in stateSequence: GRAPH ?i { ?sens :hasVal ?x }

We see the addition of the static ABox and TBox within the extended FROM clause.
Although the static information is now included in the dataset, it is not queried yet.
While querying time tagged data in the HAVING clause, we use a separate clause for
querying static data with STARQL.

Within the WHERE clause we can specify relevant conditions. Here it is just the
condition TempSensor(sens) that requires temperature sensors. The evaluation of
the conditions in the WHERE clause as well as the HAVING clause considers not only

102

3.2. Introduction to STARQL

the temporal ABoxes in the generated sequence, but also the TBox and the static
ABox.

In order to identify the sensor s0 in the input stream as a temperature sensor,
one has to exploit the fact from the static ABox stating that s0 is a burner tip
temperature sensor, and one exploits the respective axiom from the TBox, in order
to conclude that s0 is a temperature sensor.

So, for ABoxi at position i in the time sequence, the relevant local knowledge base
is given by KBi = TBox ∪ABoxstatic ∪ABoxi.

Window to Window - Aggregation and Group By

Listing 3.8 shows an example with a more complex condition in the HAVING clause
using grouping and the average aggregator. We are interested in those temperature
sensors with a recent average value higher than 99 degrees in the last 4 hours.
Furthermore, we would like to retrieve the average of the sensor values in that case.
This can be realized by adding two further clauses, the GROUP BY clause, which
groups all sensors, and the HAVING AGGREGATE clause, which calculates the average
value for each group using the aggregation operator.

Listing 3.8: STARQL example for an aggregation operator

1 CREATE STREAM S_out_4 AS

2

3 SELECT ?sens AVG(?x) AS ?avg

4 FROM STREAM S_Msmt 0s<-[NOW -3h, NOW]->1s,

5 STATIC ABOX <http :// optique.project.ifi.uio.no/Astatic >

6 WHERE { ?sens rdf:type :TempSensor }

7 SEQUENCE BY StdSeq as stateSequence

8 HAVING EXISTS ?i, ?x in stateSequence:GRAPH ?i { ?sens :hasVal ?x }

9 GROUP BY ?sens

10 HAVING AGGREGATE AVG(?x) > 99

We see that average value is selected by the output with its respective sensors and
bound to a variable called avg. In this manner arbitrary aggregation functions can
be used, if they are provided by the backend system. In the case of the Exareme
system, STARQL even provides multi column operators such as the Pearson corre-
lation function, which calculates the correlation between sequences of two variable
bindings in a single window (see Listing 3.12 for an example).

103

3. A New High Level Stream Query Language: STARQL

Window to Window - Operating on State Sequences

Now, as there is a sequence of ABoxes generated for each window, at each time point
one can refer to every (pure) temporal ABox by state variables in order to apply DL
reasoning. This is actually done in STARQL (and our basic query example) within
the HAVING clause (see Listing 3.9). The HAVING clause is a boolean expression. In
general, it may be some predicate logical formula with open variables. (For the
details see Section 3.3.2).

In the HAVING clause we make use of the graph pattern matching used in SPARQL
by a notation of 'GRAPH i {[GP]}' and apply these patterns on each ABox of the
sequence and bind the state numbers to index variable i wherever the speci�c graph
pattern GP holds. Each identi�ed state number is bound in a binding list to variable
i.

We consider the following example in Listing 3.9 and make use of relations between
di�erent states of the generated sequence by referencing temporal states with index
variables.

Listing 3.9: Basic STARQL HAVING example

1 CREATE STREAM S_out_moninc AS

2

3 CONSTRUCT GRAPH NOW { s_0 rdf:type :RecentMonInc }

4 FROM S_Msmt [NOW -2m, NOW]->1s

5 SEQUENCE BY StdSeq AS SEQ1

6 HAVING FORALL ?i,?j IN SEQ1 ,?x,?y (

7 IF GRAPH ?i { s_0 :hasVal ?x }

8 AND GRAPH ?j { s_0 :hasVal ?y }

9 AND ?i < ?j

10 THEN ?x <= ?y)

The example queries for timepoints, in which values of a sensor s0 show mono-
tonically increasing behavior for the speci�ed three minutes time window. There-
fore, the declaration RecentMonInc(s0) is evaluated to true each time the HAVING
clause holds for the following FOL formula:

∀i, j, x, y((hasV al(i, s0, x) ∧ hasV al(j, s0, y) ∧ i < j)→ (x ≤ y)) (3.1)

Saying that for any pair of ABoxes in the sequence, where sensor s0 shows a value,
the value of the �rst state must be lower or equal to the value in the second one.

104

3.2. Introduction to STARQL

This formula is represented by the HAVING clause of Listing 3.9. We use a further
condition in the formula using the FORALL operator. It evaluates the boolean con-
dition in its scope on all ABoxes of the sequence and outputs the truth value true,
if the condition for an operational mode holds in all ABoxes. Further, variables ?i
and ?j are timepoints of time-tagged graph patterns, while the variables ?x and ?y
are variables for the speci�c sensor values at the given timepoint.

The evaluation of the HAVING expression in Listing 3.9 is based on DL deduction:
Find all x that can be proven to be a �ller of hasV alue for s0 w.r.t. the ABox
ABoxi. A TBox and other (static) ABoxes used for deduction can also be mentioned
in the FROM clause (see below).

Considering the example data from Figure 3.1 at 3s, the output stream for the
monotonic increase example in Listing 3.9 is de�ned as follows:

S≤3sout = {RecMonInc(s0)〈0s〉, RecMonInc(s0)〈1s〉, RecMonInc(s0)〈2s〉}

So, the query correctly generates assertions saying that there were recent monotonic
increases according to the query for time points 0s, 1s, and 2s.

Window to Stream - Synchronizing Output Streams by a Pulse

In the previous section we discussed multiple input streams using the same win-
dow parameters slide and width for each stream (see Listing 3.5). Using identical
slide parameter means that the input streams are automatically synchronized and
windows with the same windowId are automatically matched, considering that for
each slide exactly one windowId is collected for all streams and one result graph
generated for the query. Thus, mentioning continuous queries, we can say that the
continuous output is generated by a frequency similar to the window slide, which
is identical for all input streams in this case.

With STARQL we can also formulate more advanced queries using di�erent window
parameters for several input streams. An especially interesting feature it provides
is the ability to use synchronized output pulses, formulating the frequency of the
generated streaming output without taking into account the di�erent frequencies
of arriving input streams.

Listing 3.10: Example for pulse de�nition

1 CREATE PULSE examplePulse AS

2 frequency = 1m

105

3. A New High Level Stream Query Language: STARQL

One simple example for de�ning a pulse declaration by a reference name is shown
in Listing 3.10. The pulse declaration is generally given by a frequency value,
followed by optional start and end parameters.

The example query from Listing 3.11 uses the declared pulse examplePulse from
Figure 3.10 for the output and checks if the average value of sensorA from stream
SMsmt (updated every minute) has been higher in the last 10 minutes than the
maximum of sensorB from stream SMsmt2 (updated each 24 hours) in the complete
last day.

Listing 3.11: STARQL example for advanced multi streams

1 CREATE STREAM S_out_pulse AS

2 SELECT ?x

3 FROM S_Msmt [NOW -9m, NOW]->1m

4 FROM S_Msmt2 [NOW -24h, NOW]->1d

5 USING PULSE examplePulse

6 SEQUENCE BY StdSeq as stateSequence

7 HAVING EXISTS i IN stateSequence (

8 { :sensA :hasVal ?x . :sensB :hasVal ?y })

9 AGGREGATE AVG(?x) > MAX(?y)

We see two di�erent sliding window parameters for the two input streams, one with
slide parameter one minute and another de�nition with the slide parameter of one
day. In this case the window generation for the input streams is no longer synchro-
nized and therefore it could no longer be automatically equivalent to the output
frequency of the input stream slide parameter. In STARQL we therefore have
introduced a pulse frequency parameter controlling the global output frequency,
which can be formulated in the query as shown in Listing 3.10.

In Listing 3.10 we de�ne the pulse frequency to one minute for a pulse named exam-
plePulse. A pulse can also be referenced in each declared stream by the statement
USING PULSE <name> (see Listing 3.11).

Additionally to the declaration of a pulse frequency, someone could also be inter-
ested in using a start or end time in the pulse signal. These parameters of the
signal are also speci�ed in the pulse declaration. Start and end parameters are
used with respect to historical queries, when, for example, one evaluates data from
the beginning of the past year to its end. Thus, we distinguish streams in three
di�erent categories regarding the pulse.

Live Stream. In previous examples we showed how to query live streams with
continuous result sets. Live streams are the most common use of STARQL. The

106

3.2. Introduction to STARQL

backend query engine is connected to live input streams and answers queries re-
garding to the current input. In this case we do not need to specify any start or
endpoint of the pulse and the pulse is always active.

Historical Stream. Another way of using streams in STARQL is to use a recorded
stream and evaluate it against other recorded or live streams. This strategy is used
in particular for sensor correlation tests, we have a recorded stream of data from one
year ago and we know that certain interesting conditions hold for that particular
streaming input, then we would like to know if the current live stream correlates to
the recorded stream.

Therefore, we set a start parameter for the pulse condition to synchronize between
live and recorded streams. Additionally we formulate a lag parameter connected to
the recorded stream. The parameter is added in front of the window parameter as
shown below (here lag = 1 Day, see line 9 of Listing 3.12). Having both parameters,
we can set the evaluation startpoint of the live stream and automatically calculate
the evaluation point of the recorded stream, having two pointers according to the
di�erent inputs. The full example is shown in Listing 3.12.

Listing 3.12: Example for comparison of live and recorded streams

1 CREATE PULSE historic WITH

2 START = "2015 -11 -21 T00 :00:00 CET",

3 FREQUENCY = "PT1M"

4

5 CREATE STREAM OperationalModeStream AS

6 CONSTRUCT GRAPH NOW { ?sensor a :InNormalOperationalMode }

7 FROM STREAM

8 measurement [NOW -10S,NOW]->1S,

9 measurementHist 1D <-[NOW -10S,NOW]-> 1S

10 USING PULSE historic

11 SEQUENCE BY StdSeq AS SEQ1

12 HAVING EXISTS i in SEQ1 (

13 GRAPH i { ?sensor :hasValue ?y . ?sensor :hasHistoricValue ?z })

14 GROUP BY ?sensor

15 HAVING AGGREGATE correlationFactor (?y, ?z) > 0.75

The combination of live and historic data is only applicable on speci�c backends
(e.g. on Exareme, see Section 5.3.2), where the architecture allows for a combination
of stream and batch processing as also described in the Lambda Architecture (see
Section 2.1.6).

Temporal Query. In the same way we can compare two historically recorded
streams. If we compare a recorded stream with a live stream, the data is updated

107

3. A New High Level Stream Query Language: STARQL

each time a new tuple arrives at the streaming engine and evaluated with respect
to the pulse frequency. But, if we have recorded data only, we do not need to wait
for arriving tuples, thus, we can evaluate the query as fast as possible relying on
the already recorded dataset. These queries are called temporal queries. They are
marked by a pulse having a start and end time parameter from the past.

Window to Stream - De�ning the Output

For de�ning the output window of streams there are basically three strategies based
on the de�nitions of CQL, namely ISTREAM, DSTREAM and RSTREAM operator. While
ISTREAM and DSTREAM only send parts of the result set to the output, namely those
assertions that have been changed compared to results beforehand, the RSTREAM
provides the complete resultset of the time window without dependencies on prior
windows. As this appears to be the most intuitive operator for users and both other
strategies could be directly derived from the RSTREAM operator, it is currently
chosen as the only output parameter for STARQL.

The output pattern of STARQL can be directly de�ned in two ways. First, as
we have formulated previously, with variable bindinglists for the example shown
in Listing 3.13. The operator returns a list of bindings for each named variable
directly. The star operator �*� is an abbreviation that selects all free variables in
the query.

Listing 3.13: Example for SELECT operator

1 SELECT NOW ?var1 ?var2

The second output expression is the CONSTRUCT query form, which returns a
single RDF graph speci�ed by a graph pattern. The result is an RDF graph formed
by taking each query solution in the solution sequence, substituting for the variables
in the graph pattern and combining the triples into a single RDF graph by set
union.

The graph pattern can contain triples with no variables (known as ground or explicit
triples), and these also appear in the output RDF graph returned by the CONSTRUCT
query form. In front of the graph template, a time identi�er is used. This could also
be an abstract NOW for using the current time or a directly de�ned timestamp.
An example of a CONSTRUCT query form is shown in Listing 3.14.

Listing 3.14: Example for CONSTRUCT operator

108

3.3. Formal Syntax and Semantics

1 CONSTRUCT GRAPH NOW { ?sensor a :InNormalOperationalMode }

The main advantage of using the CONSTRUCT query form is its orthogonality (see
3.2). As the output is de�ned as new time-tagged RDF triples, those can be directly
used as an input source or stream and evaluated in another STARQL query. Thus,
STARQL can also be de�ned in a sub query like matter for enhanced sequences.

3.3. Formal Syntax and Semantics

After having introduced the operators of STARQL, we will now show its formal
syntax and semantics in detail.

3.3.1. General STARQL Syntax

A STARQL grammar is shown in Figure 3.2, except for details of the HAVING clause.
The HAVING clause grammar uses more complex expressions that are required for
query transformations w.r.t. backend systems and will be de�ned separately in the
following section.

The grammar contains parameters OL and ECL that have to be speci�ed in instan-
tiations. There is the ontology language OL and the embedded condition language
ECL. ECL is a query language referring to the signature of the ontology language.
STARQL uses ECL conditions as atoms in its WHERE and HAVING clauses, de�ning
graph patterns. To directly embed axioms of the ontology into the query language
(see also Section 2.4.1), we have chosen an ECL that consists of unions of conjunc-
tive queries (UCQs), which are commonly known to be domain independent [4] and
FOL rewritable with respect to DL-Lite ontologies [61].

Every STARQL query consists of one or more CREATE clauses, which de�ne either
a stream, pulse or sequence declaration respectively. All of them can be referred
to with a speci�c reference name within the STARQL query declaration, which
uses streams as an input source, respectively the speci�c pulse or sequence for
manipulating its output.

Pulse expressions are de�ned with a frequency and optionally (indicated by square
brackets in the grammar) with start and end timestamps for historical queries (see
Section 3.2.2). Additionally, the declaration of several sequence methods is possible
by a granularity parameter (see Listing 3.6).

109

3. A New High Level Stream Query Language: STARQL

STARQLExp −→ [prefixdeclarations] createExp

createExp −→ CREATE

(STREAM streamName AS streamExp

| SEQUENCE seqName AS seqExp

| PULSE pulseName AS pulseExp)

streamExp −→ (CONSTRUCT GRAPH constrHead(~x) | SELECT selHead(~x))

FROM STREAM listWinStreamExp

[, STATIC (ABOX | TBOX)URI]

[USING PULSE pulseName]

[WHERE whereClause(~xwcl)]

SEQUENCE BY seqName

HAVING safeHavingClause(~xwcl, ~xhcl)

[GROUP BY ~x]

[HAVING AGGREGATE aggregateClause(~x)]

pulseExp −→ frequency [, start] [, end]

seqExp −→ seqMeth

constrHead(~x) −→ timeExp ECL(~x)

selHead(~x) −→ ArithExp(~x) [varBinding(~z)][, selHead(~x)]

listWinStreamExp −→ streamNamewindowExp [, listWinStreamExp]

windowExp −→ [lag<-][timeExp1 , timeExp2]->slide

whereClause(~x) −→ ECL(~xwcl)

seqMeth −→ StdSeq | seqDef

timeExp −→ NOW | NOW - constant | timestamp

Figure 3.2.: Simpli�ed syntax for STARQL (OL, ECL)

110

3.3. Formal Syntax and Semantics

For each create stream de�nition, the query head can be de�ned as either a graph
pattern (see Section 3.2.2) or a list of variable bindings (see Listing 3.13) by the
respective keywords CONSTRUCT or SELECT, which bind free variables to instantiate
a graph pattern or produce a binding list.

We denote ~x = ~xwcl ∪ ~xhcl as the combined set of all free variables for individuals
or constants in the WHERE and HAVING clause.

Besides we de�ne the input to the STARQL query in the stream declaration by
the FROM statement, which is followed by some optional static data source (see also
Listing 3.5). There are several optional elements for each stream declaration related
to the evaluation of the input data. In the WHERE clause we can formulate conditions
depending on static data, which becomes mandatory in all states that are de�ned
by the sequence operator (see Section 3.2.2). The syntax of the where cause itself
is given by an embedded conditional language (ECL).

As STARQL is designed to be a framework, we can embed di�erent languages to
de�ne intra state conditions. Thus, for the scenario of ontology based data access
we require the language to be transformable into other backend system domains.
Furthermore, we extend the ECL by an OPTIONAL operator and thus, allow simple
basic graph patterns from SPARQL (see Section 2.3.3) without additional �ltering,
which is not necessary as we allow global �ltering for the complete HAVING clause.

A sequencing method (here StdSeq) maps an input stream to a sequence of ABoxes
according to a grouping criterion de�ned after the CREATE SEQUENCE statement and
can be accessed in the query by the HAVING clause (see next section).

The safeHavingClause as well as the WHERE clause share free variables (indicated in
parentheses as ~x), which can be referred to in the query head SELECT or CONSTRUCT
clause.

A select or graph pattern output can be further de�ned by aggregators and group-
ings. It is either directly expressed in the SELECT clause and returned in the result
binding list, or the aggregation is only used as a constraint in the HAVING AGGREGATE

clause. These operators can also be bound to variable groupings, which are de�ned
in the GROUP BY by a list of free variables (see Listing 3.8).

As mentioned above, safety criteria are required in the HAVING clause and will be
discussed in detail throughout the next subsection.

111

3. A New High Level Stream Query Language: STARQL

3.3.2. STARQL HAVING Clause Syntax and Safety Criteria

As described in the last section, STARQL makes use of an embedded conditional
language for intra state data evaluations. Since the ECL has no dependencies on
time itself or respectively dependencies on the created temporal state sequence, it
can be evaluated for each state separately.

Per state evaluation is used if we de�ne graph patterns in the WHERE clause, which
holds at any time of the sequence, or by de�ning a graph template in the HAVING

clause, evaluated on each ABox state separately for generating the output.

On the other hand, we have also chosen to evaluate the STARQL state sequence
for inter state or time based dependencies using an ABox sequence in the HAV-
ING clause, where STARQL allows �rst order logic with references to states for
specifying conditions on ABox sequences as shown for example in the monotonicity
example (see Listing 3.9).

The semantics of a HAVING clause (as given in Listing 3.9) is based on a structure
of interpretations It for each ABox At, where the domain ∆It does not only consist
of the individuals or value constants and the so called active domain according to
database terminology as used in [4], but also of the whole set Dom, which also
includes state indexes that are produced by the sequencing operator.

For transforming from STARQL to another for database query language it must
be guaranteed that the evaluation of the HAVING clause and the ABox sequence is
only evaluated on the actual active domain of the streaming data base. In that
case we can say that the HAVING clause is domain independent (d.i. for short). To
realize this domain independence, we introduce a safety mechanism for STARQL
HAVING clauses.

De�nition 9. Domain independence A query q is domain independent, if and
only if for two interpretations I1, I2, having two di�erent domains ∆I1 ,∆I2 ⊆ Dom
and identical denotation functions (·)I1 = (·)I2 , the answers for q in interpretation
I1 are the same as the answers for q in interpretation I2.

Without any safety mechanism, a HAVING clause of the form ?y > 3, where ?y is a
free concrete domain variable, would be allowed in the query, but the result set of
bindings for ?y would be in�nite (?y would match all real numbers bigger than 3).
We can also say that the range of ?y is not restricted and therefore, ?y > 3 cannot
be domain independent because the �lter condition does actually not depend on the
active domain of the database in the case of the free variable ?y as it is required.
On the other hand a formula ?y = 3 evaluates y to a value of 3 only, and in this
case we say that the formula is a safe range formula or range restricted.

112

3.3. Formal Syntax and Semantics

A simple safety mechanism can be given by a direct binding of the concrete domain
variable to values of the active domain in the query. Therefore, a graph pattern is
added for each unrestricted domain variable in the HAVING clause, as, e.g., shown
for the following HAVING fragment: GRAPH ?i { ?sens :hasVal ?y } AND ?y >
3.

While the query fragment is safe with respect to the active domain, the complete
HAVING clause used in the speci�c query is not necessarily a safe range formula.
It could include other unrestricted free variables or even consist of further frag-
ments that make the variable ?y of the originally safe fragment unsafe again in the
complete query, e.g., if we have disjunctions of a safe and an unsafe variably ?y.

Thus, safety conditions ensure that all free variables of a STARQL query are also
range restricted. A detailed de�nition of range restriction (rr for short) and domain
independence can be found in [4].

The authors of [4] assume that the safe range formula is already in an advanced
form that they call safe range normal form, but as we de�ne the HAVING clause
grammar in the context of a grammar for user-de�ned STARQL queries, we can
not assume a safe range normal form in general. Additionally, we also have to take
care of other free WHERE clause variables ~xwcl, which are not bound, but referenced
in the HAVING clause. This leads to many sub-cases in our grammar rules.

One strategy for checking the safety criteria is to go through each subformula of
the HAVING clause and connect each of its free variables to variable guards gi, while
declaring a speci�c status for each guard variable in each subformula and then
combine the status of each subformula through operators by speci�c rules, which
results in one safety status for each variable ~z in each HAVING clause.

The HAVING clause grammar is constructed by several rules shown in Figure 3.3.
Its main rule (Eq. 3.2) safeHavingClause(~z) −→ hCl(~z+) de�nes that every safe
HAVING clause is a HAVING clause, where all free variables in ~z are safe (indicated by
a plus at the right hand side of the rule). The further rules de�ne safety conditions
for free variables in each HAVING clause fragment. The lowest level of the HAVING

clause fragments are constructed by state atoms and arithmetic expressions (see
Eq. 3.4 to 3.6), which are combined to �rst order logic formulas. Each combination
of atoms propagates or changes the safety status of the underlying variables in the
complete formula. The safety status is expressed in so-called adornments.

De�nition 10. Adornments The adornments ~g = g1, . . . , gn are de�ned as a list
of guard status gi (g-status for short) for the vector of free variables ~z, where gi ∈
{+,−+,−, ∅}. We use ~z~g as an abbreviation for zg11 , . . . , z

gn
n where ~z = z1, . . . , zn

and ~g = g1, . . . , gn.

113

3. A New High Level Stream Query Language: STARQL

safeHavingClause(~z) −→ hCl(~z+) (3.2)

stateAtom(~x+) −→ GRAPH i ECL(~x) (3.3)

arithEqAtom(x+) −→ x = a | a = x (for a ∈ ~xwcl ∪ Const) (3.4)

arithEqAtom(x−) −→ x = a | a = x (for a /∈ ~xwcl ∪ Const) (3.5)

arithInEqAtom(x−) −→ x op a (for op ∈ {<,<=, >=, >} (3.6)

hCl(~z~g) −→ stateAtom(~z~g) | arith(In)EqAtom(~z~g) (3.7)

hCl(~z~g
1∨~g2) −→ hCl(~z~g

1
) OR hCl(~z~g

2
) (3.8)

hCl(~z~g
1∧~g2) −→ hCl(~z~g

1
) AND hCl(~z~g

2
)

(both conjuncts are not arithEqAtoms) (3.9)

hCl(zgmax
1 , zgmax

2 , ~z3
~g3) −→ hCl(zg11 , z

g2
2 , ~z3

~g3) AND zg11 = zg22
(for gmax = max{g1, g2}) (3.10)

hCl(~z¬~g) −→ NOT hCl(~z~g) (3.11)

hCl(~z~g
1→~g2) −→ IF hCl(~z~g

1
) THEN hCl(~z~g

2
) (3.12)

hCl(~z~g
1∧~g2) −→ EXISTS y hCl(~z~g

1
, y+) AND hCl(~z~g

2
, yg) (3.13)

hCl(~z~g
1→~g2) −→ FORALL y IF hCl(~z~g

1
, ~y+) THEN hCl(~z~g

2
, yg)

(3.14)

Figure 3.3.: Grammar for STARQL HAVING clauses

Figure 3.3 contains the grammar of the complete HAVING clause with its safety
mechanism for each fragment as described by the variable guards. Each rule is
denoted with possible free variables and a resulting safety status shown in the rule
head for the given subformula in the rule body.

We illustrate the meaning of the HAVING clause grammar with two example rules
from the grammar, the safeHCL rule (see Rule 3.2) as well as Rule 3.8) for the OR
case in Figure 3.3 and then go into more detail to explain the adornments.

The resulting safe HAVING clause (denoted by the start symbol safeHavingClause
in rule 3.2) is only allowed to contain free variables that have a safe guard status
+, all free variables with a di�erent guard status are de�ned as non safe.

Furthermore, the two example rules 3.2 and 3.8 say the following: if during the
derivation of a formula starting at the term safeHavingClause(~z) one reaches a

114

3.3. Formal Syntax and Semantics

term of the form hCl(~z~g
1
), then one may infer a disjunction of two HAVING clause

fragments under some conditions on the variables ~z that occur in them.

More concretely: For a clause hCl(~z~g) with variables ~z and some adornment ~g,
Rule (3.8) justi�es the production of hCl(~z~g

1
) OR hCl(~z~g

2
), if the adornment ~g can

be represented as ~g = ~g1 ∨ ~g2, i.e., ~g is the result of applying a function ∨ on the
adornment lists ~g1, ~g2.

We have to distinguish between two kinds of variables that occur in the HAVING

clause. The �rst kind of variables describes entities, which are either individuals
(such as a ?turbine in �sensor123 is attached to some ?turbine�) or literal values
(such as ?x in �sensor123 measured temperature ?x�) in the dataset or for the
second kind we have variables that refer to temporal states or more concrete to an
ABox that occurs in the state sequence (such as ?i in �at point ?i in time sensor123
shows value 99�).

Therefore, we investigate guard status only in the former case as we say that state
variables cannot occur as free variable, but must be bound by some FORALL or
EXISTS quantor and thus, only need to check variables declaring individuals or
values for range restriction, which simpli�es or HAVING syntax.

The functions ¬,∨,∧,→ over g-status vectors are de�ned in Figure 3.4. Combina-
tions with the g-status ∅ are handled in an extra table, namely Table 3.4b.

Furthermore, we assume the ordering ∅ � − � −+ � + on the guard values. This
ordering is relevant for the calculation of gmax in the rule of Fig. 3.3, where the
clause is constructed from an arbitrary clause hCl and an identity atom. In the
following example we show the evaluation of functions over g-status vectors.

Example 3. Assume that one has produced a HAVING clause HCL(x−1 , x
+
2 , x

−+

3),
where x1 has g-status �−�, x2 has g-status �+�, and x3 has g-status �−+�. Then
rule (3.8) and the tables allow, e.g., the production of HCL1(x

−
1 , x

+
2 , x

−+

3) OR

HCL2(x
+
1 , x

+
2 , x

∅
3).

Let us verify this for the variable x1: Its g-status �−� in HCL1 and its g-status �+�
in HCL2 combine to the g-status − = −∨+ in HCL according to the entry for the
pair (−,+) in the table of ∨ (see 3.4a).

The special case of gi = ∅ is a convenience notation meaning for x∅ that x does not
occur at all in the formula. In between of not occurring and safe state we see two
forms of unsafety. The regular unsafe variable state (represented by �−�) and an
immediate state, which are actually negated safe variables (represented by �−+�)
and thus, can be returned into a safe state again by adding a negation (represented
by �¬�). Regular unsafe variables stay unsafe also in the case of a negation.

115

3. A New High Level Stream Query Language: STARQL

g1 g2 ¬g1 g1 ∧ g2 g1 ∨ g2 g1 → g2
− − − − − −
− −+ − − −+ −+

− + − + − −
−+ − + − −+ −
−+ −+ + −+ −+ −+

−+ + + + − +

+ − −+ + − −+

+ −+ −+ + −+ −+

+ + −+ + + −+

(a) Variables existent in both subformulas

g1 g2 g1 ∧ g2 g1 ∨ g2 g1 → g2
− ∅ − − −
−+ ∅ −+ −+ −
+ ∅ + − −+

∅ − − − −
∅ −+ −+ −+ −+

∅ + + − −

(b) Variable missing in one subformula

Figure 3.4.: Combination of Guards

We also require the additional guard status −+. This status is required as we do
allow negations in arbitrary places of the formula, while in safe range normal form
it is required to be in front of atoms or quantors.

We also allow double negations, which can possibly turn a safe range variable into
the immediate non safe status −+ and back again. Additionally, we allow implica-
tions, which basically leads to more subcases for the same reason, as we can rewrite
implications of A→ B into ¬A ∨B using negations.

Domain Independence of STARQL HAVING Clauses

In the following we will show that safe STARQL HAVING clauses are indeed domain
independent and therefore, transformable into relational algebra.

A well-known theorem from the literature states that every FOL-formula in domain
relational calculus corresponds to a relational algebra expression, which is known
to be domain independent [4, p.86]. Hence, to prove that also every STARQL
HAVING clause is domain independent, (according to [4]) we have to show that each
STARQL HAVING clause is already in or transformable into a safe range normal
form and at the same time range restricted.

Safe Range Normal Form A formula that is in Safe Range Normal Form (SRNF)
results from a transformation, which ensures that (i) no variable is bound and free
or bound by di�erent quanti�ers, (ii) F → G is rewritten to ¬F ∨ G, (iii) ∀z
is rewritten to ¬∃¬z, (iv) negation only occurs in front of an exists quanti�er or
atomic element.

116

3.3. Formal Syntax and Semantics

1. rr(t1, . . . , tn) = variables in t1, . . . , tn.

2. rr(x op y) = ∅ for x, y ∈ V arval, op ∈ {<,>,≤,≥}

3. rr(x op v) = rr(v op x) = ∅ for x ∈ V arval, v ∈ Constval, op ∈ {<,>,≤,≥}

4. rr(x = a) = rr(a = x) = {x} (for x ∈ V ar, a ∈ Const)

5. rr(F AND G) = rr(F) ∪ rr(G)

6. rr(F AND (x = y)) =

{
rr(F) ∪ {x, y} if rr(F) ∩ {x, y} 6= ∅
rr(F) else

7. rr(F OR G) = rr(F) ∩ rr(G)

8. rr(NOT F) = ∅

9. rr(EXISTS ~xF IN <Seq>) =

{
rr(F) \ ~x if ~x ⊆ rr(F)
⊥ otherwise

Figure 3.5.: Rule set for checking a formula in SRNF for range restriction from [4]

This transformation into SRNF can be achieved by several transformation steps
applied to STARQL HAVING clauses. The concrete steps are described in 4.2.1.

Range Restriction In the second step it has to be checked that the formula re-
sulting from STARQL HAVING in SRNF is also range restricted, which means that
every free variable of the formula is range restricted and thus, all possible answer
sets are �nite. This can be checked by a function rr given in Figure 3.5 [4].

Having de�ned a function rr(), we can further de�ne range restriction for a given
formula F as follows.

De�nition 11. range restricted. A formula F in SRNF is called range restricted
i� free(F) = rr(F) and no subformula returns ⊥.

For a transformation of STARQL HAVING clauses in safe range normal form and for
the realization safe range queries, we have introduced the concept of safe HAVING

clauses in the HAVING clause grammar above.

Theorem 1. All safe HAVING clauses are range restricted.

117

3. A New High Level Stream Query Language: STARQL

Let safeHCl(~u+) be a safe HAVING clause and safeHClNF (~u) be a HAVING clause
in safe range normal form. We see that for all subformulas G(~x+, ~y−+ , ~z−) in
safeHClNF (~u) we have

(*) rr(G) = ~x+ (= all variables in G with g-status +)

The proof of (∗) is by structural induction on construction of the formula safeHClNF (~u).

Proof. We check (∗) for each fragment case of safeHCl(~u+):

• Let G(~x+, ~y−+ , ~z−) be an atomic clause. Then rr(G) = ~x follows from
looking at the adornments of the atomic clauses F in Fig. 3.3 and checking
that only those with g-status + are in rr(G). Hereby, variables ~xwcl are
treated as constants in the de�nition of rr(·).

• The case of conjunction is clear as any + g-status combines with any other
g-status to +.

• The claim also holds for a disjunction,because a positive g-status for a vari-
able in a disjunction is identi�ed only if both variables are existing in the
disjuncts and are labelled with +.

• Now take negation G = NOT F (~x+, ~y−+ , ~z−). Per de�nition of the STARQL
HAVING grammar we know that ¬(~x+) = ~x−. Additionally, we know that in
all SRNF formulas a negation on F can only exist if F is an atomic formula.
Therefore, by looking at the HAVING grammar, we see that no one of the atomic
formulas returns a g-status ~y−+ , hence actually ~y = ∅ for atomic formulas and
we only have G(~x−, ~z−). Thus, there exists no variable in G with g-status +
and we get indeed that rr(G) = ∅ (see rule number 8 in Figure [4]), which is
equal to the variables in G with g-status +.

• The �nal case is that of quanti�ers and especially the existential quanti�er,
where we have that G = EXISTS ~x F (~x+, ~y−+ , ~z−). According to our induc-
tion assumption rr(F) = ~x and our STARQL grammar given in Figure 3.3,
we assume that G may result from a transformation of an exists subformula
EXISTS x hCl(x+, . . .) AND F ′ in safeHCl(~u+).

So, the variable x is by de�nition in the set ~x of variables in F with g-status
+, hence rr(G) = rr(F) \ {x}. However, x does not occur as free variable in
G, hence the set of variables in G with g-status + is actually ~x without x,
which proves the induction claim.

As we allow also non SRNF formulas, we have to consider a FORALL quan-
ti�er. Here, G can be directly transformed by applying the rule FORALL ≡

118

3.3. Formal Syntax and Semantics

NOT EXISTS NOT such that there is a formula with variables that have g-status
+ and are bounded by the exists quanti�er. Finally, one gets again a formula
of the form EXISTS x hCl(x+, . . .) AND F ′.

Relating our set of g-status with the set of g-status used in [4] for the de�nition of
range restriction leads to the desired theorem.

Theorem 2. All safe HAVING clauses (considered as queries on the DB It of
certain answers within the actual ABox sequence at t) are domain independent.

3.3.3. STARQL Semantics

In general we can instantiate our STARQL framework with di�erent parameters
regarding the ontology language and the embedded conditional language (ECL)
that is used for UCQ graph patterns. For the proposed OBDA view, presented
in the last sections, we use the standard W3C OBDA ontology language OWL 2
QL and unions of conjunctive queries, which are generally known to be domain
independent [4].

Furthermore, STARQL was designed as a framework to also solve problems without
query transformations and ontology based data access on triple stores, e.g., for using
more expressive ontologies in the case of ABDEO (see Section 2.4.3). Therefore, to
de�ne the semantics regarding instantiations of STARQL (OL,ECL), we require the
parameters for OL (ontology language) and ECL (embedded conditional language)
to be de�ned in such a way that they provide a notion of certain answers for the
ECL w.r.t. an ontology.

To explain the semantics of STARQL, we analyze the schema of a STARQL stream
Sout in the following. We specify the denotation JSoutK of Sout recursively by de�ning
the denotations of the components.

Sout = CONSTRUCT GRAPH timeExpCons Θ(~awcl, ~y)

FROM S1 winExp1 , . . . , Sm winExpm ,Ast, T
WHERE ψ(~awcl) SEQUENCE BY seqMeth HAVING φ(~awcl, ~y)

GROUP BY ξ(~awcl, ~y) HAVING AGGREGATE Γ(~awcl, ~y)

For ease of exposition we also assume that a query Sout speci�es only one output
sub-graph pattern and that there is exactly one static ABox Ast and one TBox T
mentioned. Similar to the approach of LTL in [49], the TBox is assumed to be non-
temporal in the sense that there are no special temporal or stream constructors.

119

3. A New High Level Stream Query Language: STARQL

Windowing

Let JSiK for i ∈ [m] be the streams of timestamped ABox assertions as de�ned in
Section 2.4.5. The denotation of the windowed stream wsi equals the evaluation of
stream Si by the STARQL window operator with window expression WinExpr =
lagi<-[timeExp1

i , timeExp2
i]->sli and is de�ned by specifying a window operator

function FwinExpi s.t.:

JwsiK = FwinExpi(JSiK)

JwsiK is a windowed stream with timestamps for each window from the set T ′ ⊆ T ,
where T ′ = (tj)j∈N is �xed by the pulse declaration with t0 being the starting
timepoint of the pulse. The domain D of the resulting window stream JwsiK is a
temporal ABox.

For each windowed stream wsi having timestamp tj , we de�ne the temporal ABox
Ãi〈tj〉 ∈ JwsiK. Assume that λt.g1i (t) = JtimeExpi1K and λt.g2i (t) = JtimeExpi2K are
the unary functions of time denoted by the window expressions of each windowed
stream.

If tj < sli − 1, then Ãi〈tj〉 = ∅. Otherwise �rst set tstarti = btj/slic × sli and
tendi = max{tstart−(g2i (t)−g1i (t)), 0}. On that basis we de�ne the joint ABox of each
windowed stream wsi and timepoint tj as Ã〈tj〉 = {ax〈t〉 | ax〈t〉 ∈ JSK and tiend ≤
t ≤ tistart}. Finally, the STARQL window operator joins the denotations of all
windowed streams in a joined stream js w.r.t. the timestamps in T ′:

js(Jws1K, . . . , JwsmK) := {
⋃
i∈[m]

Ãi〈t〉 | t ∈ T ′ and Ãi〈t〉 ∈ JwsiK}

Sequencing

The stream js(Jws1K, . . . , JwsmK) is processed according to the sequencing method
that is speci�ed in the query. The output stream has timestamps from T ′ and its
domain D now consists of �nite sequences of ABoxes.

The sequencing methods used in STARQL refer to an equivalence relation ∼ to
specify which assertions go into the same ABox. The relation ∼ is required to
respect time ordering, i.e., it has to be a congruence over T . The equivalence
classes are referred to as states and are denoted by variables i, j etc.

Let Ã〈t〉 be the temporal ABox of the joined stream js at t. Let T ′′ = {t1, . . . , tl}
be the time points occurring in Ã〈t〉 and let k′ be the number of equivalence classes
generated by the time points in T ′′.

120

3.3. Formal Syntax and Semantics

Then de�ne the sequence at t as (A1, . . . ,Ak′) where for every i ∈ [k′] the ABox Ai
is Ai = {ax〈t′〉 | ax〈t′〉 ∈ Ãt and t′ in ith equiv. class}. The standard sequencing
method StdSeq is just seqMeth(=). Let F seqMeth be the function realizing the
sequencing.

WHERE Clause

In the WHERE clause onlyAst and T are represented. So, purely static conditions (e.g.
asking for sensor types as in the example above) are evaluated only on Ast ∪ T .

As the WHERE clause is directly evaluated over graph patterns of the ECL, its results
are de�ned by bindings ~awcl ∈ cert(ECL(~xwcl), 〈Ast, T 〉). This set of bindings is
used in the HAVING clause φ(~awcl, ~y).

HAVING Clause

STARQL's semantics for the HAVING clauses is based on the certain answer seman-
tics of the embedded ECL. We have to de�ne the semantics of φ(~awcl, ~y) for every
binding ~awcl from the evaluation of the WHERE clause. For every t we de�ne how to
get bindings for ~y. Assume that the sequence of ABoxes at t is seq = (A1, . . . ,Ak).
The set of bindings for ~y is what we call the separation-based certain answers,
denoted certsep:

certsep(φ(~awcl, ~y), 〈Ai ∪ Ast, T 〉)

We distinguish two cases: If for any i ∈ Seq the pure ontology 〈Ai ∪ Ast, T 〉 is
inconsistent, then we set certsep = NIL, where NIL is a new constant not contained
in the signature. In the other case, the bindings are de�ned as follows. For t one
constructs a sorted �rst order logic structure It: The domain of It consists of the
index set {1, . . . , k} as well as the set of all individual constants of the signature.
For every stateAtom GRAPH i ECL(~z) in φ(~awh, ~y) with a vector of free variables ~z
having length l, say, introduce an (l+1)-ary symbol R and replace GRAPH i ECL(~z)
by R(~z, i). The denotation of R in It is then just stipulated as the set of certain
answers of the embedded condition ECL(~z) w.r.t. the ith ABox Ai:

RIt = {(~b, i) | ~b ∈ cert(ECL(~z), 〈Ai ∪ Ast, T 〉)}

Constants denote themselves in It. This �xes a structure It with �nite denotations
of its relation symbols. The evaluation of the HAVING clause is then nothing more
than evaluating the FOL formula (after substitutions) on the structure It.

Let F φ(~awcl,~y) be the function that maps a stream of ABox sequences to the set of
bindings (~b, t) where ~b is the binding for φ(~awcl, ~y) at time point t.

121

3. A New High Level Stream Query Language: STARQL

Aggregation

The grouping and aggregation operators are applied as modi�ers on the resulting
binding list of values for free variables from the HAVING and WHERE clause. The
binding list is grouped according to one or more free and safe variables related to
their ordering in the GROUP BY clause.

On each group, an aggregate function is applied with one result per group. If no
grouping is de�ned, the aggregation is done with respect to the complete result
binding list.

Aggregation operators can be applied on free and safe variables either in the SELECT
or HAVING AGGREGATE clause, but only in the later logical expression and evaluations
on their results are possible.

Additionally, if any aggregate function is used, every variable that appears in the
SELECT clause is also required to appear as a grouping variable.

Finally, let Θagg be a function that additionally maps the set of result bindings
from the HAVING clause to aggregated and grouped binding lists, then by summing
up we get the following denotational decomposition:

JSoutK = {GRAPH JtimeExpConsK Θagg(~awcl,~b) | ~awh ∈ cert(ψ(~x),Ast ∪ T) and

(~b, t) ∈ F φ(~awcl,~y)
(
F seqMeth(js(FwinExp1(JS1K), . . . , FwinExpm(JSmK)))

}

Properties of STARQL

The motivation for the STARQL semantics is a strict separation of the semantics
provided by the embedded condition language ECL and the semantics used on
top of it. This allows for embedding any ECL without repeatedly rede�ning the
semantics of STARQL.

The separation-based semantics has an immediate consequence for perfect rewritabil-
ity, which is adapted to the sequenced setting as follows. Let O = 〈(Ai)i∈[n], T 〉
be a sequenced ontology SO. Let the canonical model DB((Ai)i∈[n]) of a sequence
of ABoxes be de�ned as the sequence of minimal Herbrand models DB(Ai) of the
ABoxes Ai. Let QL1 and QL2 be two query languages over the same signature of
an SO, and OL be a language for the sequenced ontologies SO.

122

3.3. Formal Syntax and Semantics

De�nition 12. QL1 allows for QL2-rewriting of query answering w.r.t
the ontology
language OL i� for all queries φ in QL1 and TBoxes T in OL there exists a query
φT in QL2 such that for all n ∈ N and all sequences of ABoxes (Ai)i∈[n] it holds
that: cert(φ, 〈(Ai)i∈[n], T 〉) = ans(φT , DB((Ai)i∈[n]))

Assume that the ECL allows for perfect rewriting w.r.t
OL such that the rewritten
formula is again an ECL condition. We call such an ECL language rewritability
closed w.r.t. the OL. Then, an immediate consequence of the separated semantics
is the following proposition.

Proposition 1. Let ECL be a rewritability-closed condition language and consider
the instantiation of a HAVING clause language called QL1. Then QL1 allows for
QL2 rewriting for separation-based certain query answering w.r.t. the OL.

3.3.4. Comparison of STARQL to SPARQL Syntax and Semantics

SPARQL, as presented in Section 2.3.3, is a W3C5 recommendation since January
2008 and therefore well established as a query language for accessing on RDF data
in triple stores or virtual access to other backend data bases by query transforma-
tion.

SPARQL itself does not directly support access to streaming data, nor to historical
time stamped data, because of missing temporal operators. Nonetheless, as a stan-
dard query language for static data it sets the ground for a lot of RDF based query
languages, which rely on SPARQL operators. Also STARQL was designed with
the goal in mind that a SPARQL user has no di�culties when using its grammar
and operators. Hence, we designed the STARQL syntax and semantics as close
as possible related to SPARQL properties, although it is only a proof of concept
design, not covering all possible features of SPARQL 1.1.

In the following we compare similar operators of STARQL as well as SPARQL and
their usage in both languages.

Query Registration. SPARQL queries are one time queries in general, where a
single query is sent to an endpoint and a query answer is retrieved as response.
STARQL queries in comparison are continuous queries, they are continuously
querying the dataset on a regular basis and therefore also have regular answer

5http://www.w3.org/

123

3. A New High Level Stream Query Language: STARQL

sets changing from time to time. For the registration process at the backend sys-
tem STARQL provides a CREATE clause. The CREATE clause registers a stream with
a speci�c name, allowing it to be referenced by other streams in the FROM clause.

Additionally to stream registration, the CREATE clause also allows a registration of
pulse or sequencing functions, which supports the streaming topology in managing
the timestamps and timebased input sources.

Query Forms. SPARQL o�ers four di�erent kinds of query forms, namely SELECT,
CONSTRUCT, ASK and DESCRIBE queries (see Section 2.3.3). The current version of
STARQL supports two query forms, namely the SELECT and CONSTRUCT form. As a
stream querying language its purpose is basically monitoring temporal or life data.
Users are expected to know what kind of events they are looking for and therefore
providing a describe clause, which is also not clearly de�ned and would be very
implementation speci�c, is out of scope for this work. A support of an ASK query
form is also a possible STARQL extension in the future. However, the ASK query
form can always be replaced by a SELECT or CONSTRUCT form and therefor is not
part of the prototypical implementation.

Data Input. The input of SPARQL is based on RDF Graph sources that are
available for querying. One datasource can contain di�erent named graphs and each
graph can contain di�erent triples. By using graph names indicating a temporal
order, simulating temporal data is possible for graph input.

But querying with temporal relations and operators is only provided by language
extensions. Additionally to static graph input, STARQL provides continuous ac-
cess on data streams that can be mixed with static graphs by window operators.
The use of several input streams is possible as well as several static graphs in the
FROM clause.

Accessing Static Data. Access to static data is provided in the SPARQL WHERE

clause by basic graph patterns combined with �lter conditions.

STARQL as a framework also uses a where clause for static data. Its where clause
is bound to a transformable query language for ontology based data access (ECL)
to possibly providing perfect rewriting and unfolding. The static �lter conditions
restrict all states in the time-based HAVING clause, but also variables that are already
bound in the WHERE clause.

124

3.3. Formal Syntax and Semantics

Accessing Dynamic data. While SPARQL does not o�er any inter graph compar-
ison for state sequences, STARQL can reference di�erent state graphs with �lter
conditions and manage intrastate (between di�erent states) and interstate (in a
single state) variables as well as index variables for di�erent states in a �rst order
formula. Although �lter conditions are possible in inter state fashion used in the
HAVING Clause, intra state �lter conditions are restricted to UCQs and OPTIONAL,
but can be extended in the future, e.g., using FILTER and BIND operators from
SPARQL.

SPARQL 1.1. Operators. The are many extensions o�ered with version 1.1 for
SPARQL. Next to new query language operators it comes along with federation of
data sources, updating the dataset within the query language, transfer protocols
and output in xml, json or csv language. While transferring to backend systems, not
all of these additions can be provided by an ontology-based data access approach,
but STARQL provides at least some of them, such as aggregations. Interesting
for an RDF stream query language are especially the following extensions from
SPARQL 1.1:

Aggregation: One of the new features in SPARQL 1.1 are aggregations. This
is actually a very important feature for data monitoring and analysis and
already implemented in the current version of STARQL as described in the
syntax and semantics sections above.

Negation: As a further operator negation was introduced for SPARQL, extending
the conditions in the WHERE clause by negated �lters using the keyword FILTER

NOT EXISTS. STARQL already implements negations naturally within its
HAVING clause, as negated concepts are integrated in �rst order formulas,
which are used for describing inter state relations in the ABox sequence.

Subqueries: In STARQL we design a topology approach instead of supporting
subqueries, which allows for registration of substreams, and ensure that query
results can be used as new data stream input for further registered continuous
queries.

After comparing STARQL to the static query language for RDF data SPARQL,
we explain how STARQL di�ers in accessing time in temporal states compared to
other languages in the next section.

3.3.5. Expressing Temporal States with STARQL HAVING Clauses

The way how a query language handles time has an enormous in�uence on its
use and complexity with respect to ontologies and reasoning. As an example for

125

3. A New High Level Stream Query Language: STARQL

di�erent temporal access methods it is shown in [240] that reasoning on interval-
based time models is generally more complex compared to reasoning over a point-
based one.

However, also other ontological properties with respect to time have to be considered
in parallel. Time can be integrated in di�erent ways. We can integrate time in
just another attribute, like many other RDF-Stream query languages do (see, e.g.,
Section 2.5.7, 2.5.4 or 2.5.2). Or on the other hand, we can directly integrate a
temporal dimension in the semantics as we already discussed for non streamed data
in Section 2.4.4.

Rei�ed vs. Non Rei�ed Time

In STARQL we have decided to choose a so-called non rei�ed approach, which
integrates time directly into the semantics. It basically opens a fourth dimension
for time on each triple or graph. Thus, we can say that triples, which do exist at the
same point in time belong to the same temporal graph. Furthermore, each graph
formulates a temporal state that can be related in time to other states or graphs
(see also Section 2.4.4).

A rei�ed approach integrates time into data using a certain speci�c attribute. We
argue that this approach has two major disadvantages. First, it blows up the data.
Considering the measurement scenario, for adding temporal attributes, we would
also have to add the concept of measurements. So �nally, we end up with four more
triples for the rei�ed case:

{measurementA a Measurement; hasSensor ?sensX; hasValue ?valY; hasTime ?t}

Instead of a single quadruple in the case of non rei�cation:

{?sensX hasValue ?valY <t>}

The di�erence in required memory is easy to see.

Our second argument against rei�cation is about inference. Rei�cation directly
leads to possible combinations of inconsistencies that can not be prevented by
a functional restriction in the ontology. We assume that one considers a rei�ed
approach of temporal measurements for RDF ontologies. Now, we would like to

126

3.3. Formal Syntax and Semantics

formulate that only one measurement value can exist for a single sensor at a given
point in time. As we need at least three triples to express a measurement, we
can not prevent di�erent measurements of a single sensor at the same time by a
functional property hasV alue.

Therefore, the challenge in dealing with temporal related inconsistencies, which is
handled by functional properties in the non-rei�ed case, can be seen as a disad-
vantage for the rei�ed approach. Many other solutions for RDF stream querying
languages try a rei�ed approach or even omit all timestamps inside windows (e.g.
SparqlStream, see Section 2.5.4), which can not be a solution either to prevent
temporal inconsistencies.

On the other hand, the non rei�cation method used in STARQL also supports
expressing general temporal states for the OBDA approach, as used by LTL based
languages.

Subsuming State Based Temporal Languages with STARQL HAVING Clauses

With temporal logic as introduced in Section 2.4.4 we investigate LTL-like languages
for handling state based time dimensions in query languages. We also mentioned
the most important recent query language for ontology based access on temporal
states called TCQ [25].

As far as this language deals with ontology based data, it does not deal with rela-
tional backend data sources, but uses materialized data in some triple format. And
thus, it neither uses the classical OBDA approach, nor is it restricted to a DL-Lite
ontology language.

In [182] we showed how STARQL can be used to embed a particular TCQ fragment,
which still holds for domain independence, in a HAVING clause and thus provide a
classical OBDA approach with the help of STARQL also for TCQ.

Hence, we proved that STARQL allows for a classical OBDA approach with TCQ
operators by two steps. We introduced a second semantics for HAVING clauses
called holistic semantics, which no longer uses the separation based semantics that
we have introduced in this work. And in a second step proved that the domain
independent fragment of TCQ can be directly transformed into HAVING clauses by
following the non separated approach.

As TCQ provides some operators without safety restrictions, STARQL is unable
to embed all of them. This safetyness is a necessary feature of STARQL to be
applicable for strict OBDA scenarios, where the background query languages are
SQL like.

127

3. A New High Level Stream Query Language: STARQL

On the other hand, we can show that STARQL is still more expressive than the
embedded fragment of TCQs. It o�ers user de�ned methods for creating ABox
sequences, where as TCQ assumes that a sequence is given in advance without
mentioning its creation.

Moreover, TCQ only allows intra state quanti�ers within embedded CQs, but is
unable to use inter state quanti�ers, which are needed to express several kinds of
queries, e.g., the STARQL monotonicity condition as shown in 3.9.

3.4. Concluding Remarks

Within this chapter we have presented a new query language called STARQL. The
design of this language is grounded on the observations that we have described in
Section 3.1 and especially on the state of the art technologies in Chapter 2, which
each lack important features needed in use cases as given in the Optique project.

We further introduced syntax and semantics of STARQL, including two opera-
tors for handling temporal sequences. The sequencing operator itself and a HAVING

clause for accessing the de�ned temporal states that can be used to subsume other
standard temporal language in an OBDA approach (see Section 3.3.5). The query
language additionally provides operators for combined access to streaming and tem-
poral data, including a pulse function that synchronizes possible asynchronous input
streams.

In the next chapter we further discuss the STARQL operators and explain how we
can transform them from an ontology based view into relational systems.

128

4. Transformation of STARQL into
Queries for Relational Systems

In the last chapter we have introduced the syntax and semantics of STARQL.
This chapter discusses a so-called direct transformation strategy that allows us to
compile STARQL queries based on a DL-Lite ontology, e.g., the Semantic Sensor
Network ontology from Section 2.3.2, into the query language of a chosen relational
backend streaming system (source). The proposed transformation strategy extents
the classical OBDA approach in several important directions to Ontology-Based
Stream-Static Data Integration and can be seen as a �rst step towards a fully �edged
analytical, and cost aware OBDA system [135].

The idea behind our transformation steps that realize ontology-based temporal
operators on relational backend systems is to extend the approach for static query
transformations from Section 2.4.2 with additional query compilation for the STARQL
window operator and HAVING clause aligning basic graph patterns with temporal
information. The general transformation strategy is sketched in Figure 4.1.

As we consider a virtual ontology-based approach the �gure consists of two lay-
ers, the virtual upper ontology-based layer with a query QSTARQL and the actual
database layer underneath evaluating the transformed query QQL, where QL is the
the query language of the employed backend system.

The left hand side of the �gure describes the query transformation process used
by the STARQL engine. It consist of two main parts: (i) a transformation of
the window operator and (ii) a transformation of the STARQL HAVING clause into
relational algebra. Both transformations are applied for itself and its results are
combined afterwards in QQL.

We can implement window operators in a direct way as relational DSMS are gen-
erally equipped with additional stream operators. A well-known query language
for DSMS, e.g., is CQL [17] (see Section 2.2.6). In fact, for the implementation of
a STARQL prototype in the Optique use case we propose as backend a stream-
extended version of the Exareme system [227], which provides window operators
for real time streaming in the spirit of CQL.

129

4. Transformation of STARQL into Queries for Relational Systems

Figure 4.1.: Schematic Transformation of STARQL queries

Having shown that a STARQL HAVING clause is indeed domain independent is the
main step towards using STARQL for OBDA in the classical sense according to
which queries at an ontology level are rewritten and unfolded into queries over a
data source.

The overall evaluation of the temporal sequence can then be summarized in two
steps. First, we map the graph patterns of each state to the database views of
the underlying de�ned source by the window operator. This is possible by creating
simple SPARQL queries out of every single graph pattern and transforming them
into relational queries with the standard algorithm for static ontology-based queries.
Furthermore, we relate the generated relational subqueries based on �rst order logic
formulas and temporal conditions in the HAVING sequence.

As (backend) data source candidates we can consider a data stream management
system (DSMS) providing a SQL like streaming language (several of these systems
are mentioned in Section 2.2) or in the case of historical data even simple database
systems providing a declarative language such as SQL. Note that a database system
does not necessarily mean a limitation in comparison with streaming approaches
(in particular our own implementations [180, 181]), which rely on relational data

130

4.1. Transformation of Window and Sequencing Operators

stream management systems (DSMS) as data sources.

The rest of the chapter describes details on the transformation process for an OBDA
approach based on STARQL queries. We �rst explain how we transform the
STARQL window operator into its representative form on the DSMS (Section 4.1).
In a second step we transform the WHERE and HAVING clause, as given by its syntac-
tical description from Section 3.3.1, into a relational algebra normal form (RANF).
Since we require the HAVING clause to be in SRNF, we additionally have to add
two normalization steps in preparation for the temporal sequence transformation
that will be described in details in Section 4.2. After normalizing and transforming
the HAVING clause, we have to consider several additional operations to complete
the transformation result. Those steps include, e.g., the transformation of aggre-
gators, GROUP BY clauses, as well as stream joins. Those are �nally described in
Section 4.3

4.1. Transformation of Window and Sequencing

Operators

The general idea for an implementation of the STARQL window operator is a
transformation of a view of timestamped tuples into a data base view that repre-
sents the sliding window and sequence information. Or more formally, according
to Chapter 2 and Chapter 3, we have that a stream S is a possibly in�nite bag
(multiset) of elements 〈s, τ〉, where s is a tuple belonging to the schema of S, and
τ ∈ Γ is the timestamp. Then, let JSiK for i ∈ [m] be the streams of timestamped
ABox assertions.

According to Section 3.3.3, we see that applying the window and sequencing op-
erators can be expressed by three functions and window or sequencing parameters
respectively, as given below.

F seqMeth(js(FwinExp1(JS1K), . . . , FwinExpm(JSmK)))

Implementing those three steps on a relational database as data streaming system
means: (i) creating a view that adds a column windowID to the rows of times-
tamped data, depending on slide and width of the related window parameters for
each stream, (ii) creating a second view. Joining all input stream windows based on
the given pulse function and (iii) creating a third view, which adds another column
ABoxID for managing the sequencing strategy and merging each timestamp into
the appropriate temporal state.

131

4. Transformation of STARQL into Queries for Relational Systems

Table 4.1.: Example for incoming data in the measurement scenario

T imestamp Sensor Value

00:00 sens1 90
00:01 sens1 91
00:02 sens1 93
00:03 sens1 94

Let the data in Table 4.1 be incoming data of a measurement stream. A corre-
sponding example view for a sliding window view with measured data is shown in
Table 4.2. It includes measurements for a single sensor and describes two windows
with WindowID 1 and 2, while the window width is three minutes and a slide of
one minute is used.

The STARQL window generator provides a virtual view that represents time tagged
data with a time series representation of the sliding window in two additional
columns, where the schema consists of WindowID, ABoxID, Timestamp and [Dat-
acolumns] for every temporal table.

Every single ABox in the sequence can then be accessed by an ABoxID in the
second column.

Table 4.2.: Example for a sliding window view in the measurement scenario

WindowID ABoxID Timestamp Sensor Value

1 1 00:00 sens1 90
1 2 00:01 sens1 91
1 3 00:02 sens1 93
2 1 00:01 sens1 91
2 2 00:02 sens1 93
2 3 00:03 sens1 94

4.1.1. Window Transformation for Historical Queries

Now, we would like to show how a sliding window view can be generated for an-
swering historical STARQL queries on relational databases such as PostgreSQL
or others. The complete function naturally depends on the underlying backend

132

4.1. Transformation of Window and Sequencing Operators

system. Thus, we only sketch the general transformation in this section and give
concrete implementation examples for di�erent systems in the next chapter.

WindowFunction. For FwinExpi we propose a generation of windowIDs by two
applied functions, namely F dataJoin(F borderGen). In the �rst step (F borderGen) we
generate temporal borders for each window, based on the window parameters width
and slide. The resulting view is a sequence of windowIDs with additional columns
for the left and right borders. The input data can be used for signaling the start
and endpoint of the window sequence, where start and end is given by tstarti =
btj/slic × sli and tendi = max{tstart − (g2i (t)− g1i (t)), 0} (see Section 3.3.3).

Second, we join this view with the actual input-data of the incoming stream (F dataJoin).
A schematic example of the implementation is shown in Listing 4.1.

Listing 4.1: Example for generating a windowed sequence

1 CREATE VIEW Stream_wid AS

2 SELECT wid , timestamp

3 FROM inputData in , (

4 // subquery for empty window generation

5 SELECT wid , leftBorder , rightBorder

6 [...]

7 FROM inputData in

8) w

9 WHERE in.timestamp >= w.leftBorder

10 AND in.timestamp <= w.rightBorder;

JoinStream. In general the implementation of function js can be seen as a simple
join of all input streams, but as we have di�erent input parameters, each window
or stream can be constructed by a di�erent size and di�erent temporal borders and
as such, they cannot be simply joined on the windowID. We already introduced a
pulse function in the last chapter for managing the join of input streams into joined
windows. Furthermore, we also need a function that chooses at each pulse in time
the related windowID of each input stream. This can be done by adopting the
windowing function from Section 3.3.3 with pulse extensions. Therefore, we join all
input stream data based on the recalculation of the windowID into a joined pulse
with name pWindowID as follows:

pWindowID =
⌊WindowID × sli

pulsefreq

⌋
.

133

4. Transformation of STARQL into Queries for Relational Systems

SequencingFunction. The third function (F seqMeth) that we have to apply adds
an additional ABoxID column to the sliding window view. In our example this can
be seen as a simple recalculation of the windowed timestamps based on a granularity
parameter of the sequencing method. Based on the parameter the time is rounded
to seconds (or minutes) and entries with the same timestamp are then merged into
respective ABoxes afterwards.

Finally, we arrive at the desired sliding window view from Table 4.2. This transfor-
mation strategy for the window and sequencing operator was implemented on the
relational data base system PostgreSQL (see Section 5.3.1).

4.1.2. Window Transformation for Continuous / Real Time Queries

The transformation described for the STARQL window operator was meant for
temporal reasoning on historical data that is stored in a RDBMS (e.g. PostgreSQL).
And so the window table generation as part of the whole transformation above is
a one-step generation for the whole dataset and not processed incrementally as in
the case of real time streaming.

In order to cope with streaming data, the transformation process has to be slightly
adapted for real time processing and thus, the window table now is assumed to be
incrementally updated by some function. Apart from that, a similar transformation
as for temporal reasoning can be applied to realize continuous OBDA querying with
STARQL. In fact, the implementation of the transformation that we evaluate in the
following only evaluates one window at a time, and hence it can be directly adapted
for non-historic databases with dynamically updated entries.

Those ideas are often implementation-speci�c and encapsulated into evaluation
functions of the backend streaming system, which means that many of these sys-
tems already provide their own window operators. An advantage is that the details
can be managed by the underlying system that simply reduces the problem into a
translation for passing the required input parameters of the operators to the speci�c
window function.

The implementation of a state based temporal sequence is still new to these systems.
Therefore, we use DSMS's that incorporates also functions for generating sequences
based on di�erent methods. One such system is Exareme, which includes ExaS-
tream as a streaming extension (see Section 2.2.9) and comes with an expendable set
of additional user-de�ned functions that simulate window operations and sequenc-
ing strategies in real time. Furthermore, ExaStream already includes scalability
and distributed processing probabilities as well as several other optimizations.

134

4.2. Rewriting and Unfolding of STARQL HAVING Clauses

4.2. Rewriting and Unfolding of STARQL HAVING

Clauses

The described transformation process generally depends on mappings for ground-
ing ontology level entities (constants, roles, concepts) in relational and streaming
data. The HAVING clause of a STARQL query may involve static concepts such
as Assembly or roles such as hasSensor and mountedAt, which can be handled by
classical mappings in the sense that they de�ne instances of roles and concepts on
the basis of classical SQL queries over static tables. Thus, these static concepts
or fragments can be transformed by standard query transformation algorithms as
already described in Section 2.4.2

Furthermore, we can create mappings for the dynamic vocabulary, with names for
roles such as hasValue that are mapped into streaming data during the unfolding
process. Dynamic roles are di�erent in a way that they are constructed from a
general static mapping schema, but also from window and sequencing parameters
of a given STARQL query as well, while composed from mappings for attributes
and schemata of STARQL query clauses and constructs.

Attributes with dynamically changing values are declared in the HAVING clause.
The schemata for temporal mappings are then dynamically generated during query
processing and involve window as well as sequencing parameters that are speci�ed
in a certain STARQL query, which makes them dependent on time-based relations
and temporal states. Note that the latter kind of mappings are not supported by
traditional OBDA systems for static data.

In general the unfolding of a STARQL HAVING clause is organized in two layers.
On the ground layer we consider each graph pattern in isolation for itself. A graph
pattern is expressed in an embedded conditional language (in our case UCQ plus
OPTIONAL) that is known to be domain independent (see Section 3.3.1) and can
be mapped according to the rewriting and unfolding steps described for the static
data.

From the top layer we see each graph pattern as a description for a single time point
(ABox) based on the time windows generated by the window operator. Therefore,
we embed the unfolding for each graph pattern in a larger structure of the trans-
formed STARQL HAVING clause, based on the given relations between di�erent
points in time, described in the �rst order formula.

135

4. Transformation of STARQL into Queries for Relational Systems

Schematic Mapping of Temporal Axioms in STARQL

For a better understanding, we show the mapping schema for the dynamic attribute
hasVal, which would have in a static case the form:

?sens hasVal ?y ← SELECT sId as ?sens, val as ?y

FROM Measurement (4.1)

For the actual description of the mapping schema we use the same notation as for
classical mappings, but additionally note that the right hand side now speci�es a
source stream together with data that is lifted to RDF triples. The actual time
based assembled mapping is given as

GRAPH i { ?sens hasVal ?y } ← SELECT sId as ?sens, val as ?y

FROM Slice(Measurement,i,r,sl,st).

The left hand side contains an indexed graph triple pattern, while the right hand
side provides results from the mapping schema by applying a function Slice, which
has to be implemented in each target system for the STARQL transformation
approach. The Slice implementation is a parametrized function that describes the
relevant �nite slice of the streamMsmt from which the triples in the ith RDF graph
of the sequence are produced. As parameters we use the window range r, the slide
sl, the sequencing strategy st and the index i.

This described approach of mapping streaming data with window parameters is due
to the fact that, in the case of STARQL, we do not unfold a query to relational
data only, but we unfold each mentioned graph pattern in the HAVING clause to
temporal ABoxes of the ABox sequence by using an index variable. Thus, we use
index variables and windowIDs to directly map the temporal states into window
data.

As the generated state sequence is individually generated by the window and se-
quencing operator, we can not directly include it into the provided mappings. Thus,
our approach rewrites the index variable connected to the unfolded graph pattern
dynamically into each unfolding of the query and delegates the generation of the
state sequence to the processing environment, as shown in the following examples.

136

4.2. Rewriting and Unfolding of STARQL HAVING Clauses

Figure 4.2.: STARQL transformation architecture

In comparison to the architectural description for static OBDA from Section 2.4.2,
we extend the transformation of temporal data by a new sequencing layer (see Fig-
ure 4.2). This top layer manages the rewriting and unfolding tasks (executed by
the Ontop module) for each graph pattern in ECL language and connects them
by adding further conditions that are constructed by input parameters of the slice
function (a detailed view on its implementation can be found in Section 5.1). For
a better understanding of this advanced unfolding technique, we describe the pro-
cessing of the HAVING clause in detail.

4.2.1. An Example Transformation for STARQL Having Clauses

To describe the transformation process in detail, we �rst consider once again our
example from Listing 4.2.

Listing 4.2: Example query in STARQL

1 CREATE STREAM S_out_MonInc AS

2 CONSTRUCT GRAPH NOW { ?s rdf:type MonInc }

3 FROM STREAM S_Msmt [NOW -9s, NOW]->"1S"^^ xsd:duration

4 WHERE {?sens sie:mountedAt ?ass}

5 SEQUENCE BY StdSeq AS seq

137

4. Transformation of STARQL into Queries for Relational Systems

6 HAVING EXISTS ?k IN seq , ?m(

7 GRAPH ?k { ?ass sie:showsMessage ?m . ?m a ErrorMessage })

8 AND FORALL ?i < ?j IN seq , ?x, ?y(

9 IF ?j < ?k AND GRAPH ?i {?sens :hasVal ?x}

10 AND GRAPH ?j {?sens :hasVal ?y}

11 THEN ?x <= ?y)

The query generally reports sensors, which are showing monotonically increasing
values for the last ten seconds and are mounted on an assembly that additionally
shows an error message at that particular time.

Furthermore, a speci�cation for an error message and monotonically increasing
values are de�ned in the HAVING clause. It states that within sequence seq there is
no timepoint j before k (where the error message is recorded) and after a timepoint
i, where the measured value of a sensor is lower than before�meaning that there is
a monotonic increase of values for the particular sensor on the complete sequence.

In the following, we use the view of �rst order logic for a more formal description
of the query processing. We transform the given HAVING clause into a pure FOL
formula, by substituting each stateAtom GRAPH i GP(~z), where ~z is the vector of
free variables in the graph pattern GP with length l, having an appropriate (l+1)-
ary relation R(~z, i) for representing the set of certain answers of the embedded
graph pattern in the ith ABox Ai.

In the example from Listing 4.2 three di�erent HAVING clause graph patterns are
de�ned, which can be represented in FOL formulas accordingly by three relations
R1 (representing the message state), R2 (representing the former sensor value) and
R3 (representing the later sensor value). The resulting FOL formula for the given
query in Listing 4.2 is shown below.

∃k,m(R1(sens, ass,m, k)) ∧
∀i, j, x, y((R2(sens, x, i) ∧R3(sens, y, j) ∧ i < j)→ (x ≤ y)) (4.2)

Making these assumptions, the given HAVING clause of STARQL can be transformed
by following the algorithm below to transform from Safe Range Normal Form into
Relational Algebra Normal Form (for detailed informations and proofs, see [4]).
It basically includes three steps. (i) We show that the particular query is indeed
domain independent. Therefore, we �rst transform it into the so called Safe Range
Normal Form (SRNF) and check whether every free variable is range restricted. (ii)
We reformulate the query in Relational Algebraic Normal Form, which allows for
the algebra transformation. (iii) We apply the algebra transformation as given in

138

4.2. Rewriting and Unfolding of STARQL HAVING Clauses

[4]), but use additional constraints concerning the window operator parameters for
a fourth temporal dimension.

Safe Range Normal Form

In the following we will use the Safe Range Normal Form (SRNF) to show that
the FOL formula (see Formula 4.2) for increasing sensor values is indeed domain
independent (what was already proven for the general case in Section 3.3.2). It can
be applied as follows.

For a formula F let SRNF (F) be the formula in Safe Range Normal Form (SRNF)
[4, S.85] resulting from applying the following normalization steps:

• Rename variables such that no variable symbol occurrence is bound by dif-
ferent quanti�ers and such that no variable occurs bound and free;

• rewrite IF F THEN G to NOT F OR G; eliminate double negations;

• rewrite FORALLz with NOT EXISTS z NOT;

• push NOT through using de Morgan rules.

These steps are applied in some order until they cannot be applied anymore. A
formula F is said to be in SRNF i� F = SRNF (F).

A formula F in SRNF is called range restricted i� free(F) = rr(F) and no sub-
formula returns ⊥. A well-known theorem states that range restricted formulas in
SRNF are exactly as expressive as relational algebra�which is known to be d.i.
Hence, it is well-known that safe range formulas are d.i. (in particular all sets of
answers are �nite).

After applying the four transformation steps, we result in Formula ??.

One can directly see that the only existing free variable is sens and as it only
appears in graph patterns, we say that it is bound to the �nite answers set of the
database and thus is range restricted. Therefore, free(F) = rr(F) yields true and
our desired formula is indeed domain independent.

139

4. Transformation of STARQL into Queries for Relational Systems

Relational Algebraic Normal Form

In the second step, we normalize again for the Relational Algebraic Normal Form
by three additional rules:

1. Push into or: We push every or upwards until there is no or as a child of
an and.

2. Push into quanti�er: if ψ is of the form ψ1 ∧ ... ∧ ψn ∧ ∃~xξ and not all
free variables of ξ are range restricted, we push a subset of ψ1 ∧ ... ∧ ψn as
conjunct into ξ until all free variables of ξ are range restricted.

3. Push into negated quanti�er: if ψ is of the form ψ1 ∧ ...∧ψn ∧¬∃~xξ and
not all free variables of ξ are range restricted, copy a subset of ψ1 ∧ ... ∧ ψn
as conjunct into ξ until all free variables of ξ are range restricted.

We can prove the correctness of the given transformation into Relational Algebraic
Normal Form by two steps.

Proof. It can be shown by a case analysis that there exists no SRNF that is not in
RANF and none of the given rewrite rules can be applied.

• The �rst rule is automatically applicable for any conjunctive query that has
an or as a child of an and.

• The second and third rule are automatically applicable for any SRNF sub-
formula ψ, because any free variables of ξ has to be range restricted in at
least one subformula of ψ1 ∧ ... ∧ ψn by de�nition and therefore in any given
STARQL query.

Second, the termination of the given algorithm is given because each applied trans-
formation rule reduces the number of given subformulas in ψ.

In fact, these rules do not change the meaning of our given example formula and
therefore, after both normalization steps the HAVING clause example from listing
4.2 can now be transformed from RANF into algebra as shown below.

140

4.2. Rewriting and Unfolding of STARQL HAVING Clauses

Algorithm 2: Translation from RANF to Algebra
input : A formula ψ in modi�ed RANF
output: An algebra query Eψ equivalent to ψ

R(ẽ) −→ δf (πwID ,x1,...,xn(σF (R)))

x = a −→ {〈x : a〉}
ψ ∧ ξ −→ if ξ is x = x, then Eψ

if ξ is x = y, (with x, y distinct) then

σx=y(Eψ), if {x, y} ⊆ free(ψ)

σx=y(Eψ on δx→yEψ), if x ∈ free(ψ) and y /∈ free(ψ)

σx=y(Eψ on δy→xEψ), if y ∈ free(ψ) and x /∈ free(ψ)

if ξ is x 6= y, then σx 6=y(Eψ)

if ξ = ¬ξ′, then
Eψ � (Eψ on Eξ′), if free(ξ′) ⊂ free(ψ)

Eψ � Eξ′ , if free(ξ′) = free(ψ)

otherwise, Eψ on Eξ

¬ψ −→ {〈〉} � Eψ (if ¬ψ does not have �and� as parent)

ψ1 ∨ ... ∨ ψn −→ Eψ ∪ ... ∪ Eψ
∃x1,...,xnψ(x1,...,xn, y1,...,ym) −→ πwid ,y1 ,...,yn (Eψ)

Transformation into Relational Algebra

For transforming a formula ψ from Relational Algebraic Normal Form (RANF)
into an algebraic query Eψ, we adopt the Algorithm from [4] and arrange it by
projections of the window parameters for each relation by introducing a new and free
variable wID, which connects each subresult to a windowID (see Algorithm 2).

To apply Algorithm 2, it must be shown that q(ψ,O) and Eψ are equivalent. In
fact, STARQL HAVING clauses are by de�nition domain independent and therefore
it is already guaranteed that every STARQL query q is FOL-rewritabile:

cert(q(ψ),O) = Eψ.

Additionally, a proof of the correctness of the algorithm can be given by straight-
forward induction for each fragment case as shown in [4, p. 89].

141

4. Transformation of STARQL into Queries for Relational Systems

πwID,sens(R1) �

πwID,sens(σx>y(σi<j(πwID,sens,x,i(R2) on πwID,sens,y,j(R3)))) (4.3)

By following the given algorithm for the STARQL HAVING clause in Formula 4.2,
we arrive at an algebraic query shown in Formula 4.3, which can now directly be
written in SQL. For writing the shown FOL formula in SQL, we have to unfold
each graph pattern from static mappings (as described in Section 2.4.2) and insert
the results for the relation term with R1, R2 and R3.

The unfoldings U of R2 and R3 (referring to hasValue) can be generated according
to the described mapping in Formula 4.1. For relation R1 (showsMessage, type
ErrorMessage) as well as the static mountedAt property from the WHERE clause,
we give three simple mappings below in Formula 4.4, 4.5, 4.6. Please note that we
need to join the static information for the location of each sensor into each temporal
state as it was previously de�ned for STARQL in Section 3.3.3.

?ass showsMessage ?m ← SELECT cName as ?ass, mId as ?m

FROM Messages (4.4)

?m a ErrorMessage ← SELECT DISTINCT mId as ?m

FROM Messages (4.5)

?sens mountedAt ?ass ← SELECT sId as ?sens, cName as ?ass

FROM Sensor (4.6)

By replacing the placeholders for temporal �states� in the algebra (R1, R2, R3),
we result in a complete unfolding Uhaving for the HAVING clause as given in List-
ing 4.2. The �nal algebra query is shown according to the unfolding Uhaving in
Formula 4.7.

142

4.3. Additional Transformation of STARQL Operators

Uhaving(wID,sens) = πwID,sens(

δsId→sens,cName→assπsId,cName(Sensor)

on δcName→assπwID,cName,mId(Messages)

)

� πwID,sens(σx>y(σi<j(

πwID,sens,x,i(

δsId→sens,cName→assπsId,cName(Sensor)

δsId→sens,val→xπwID,sId,val,i(Measurements)

) on πwID,sens,y,j(

δsId→sens,cName→assπsId,cName(Sensor)

δsId→sens,val→yπwID,sId,val,j(Measurements)

)

))) (4.7)

�

4.3. Additional Transformation of STARQL Operators

The complete transformation process of STARQL has to consider several additional
operators that have been introduced in Chapter 3.

Aggregations

As described in the last section, all states are �nally temporally related in the
unfolding according to the de�ned FOL formula of the HAVING clause, which results
in a returned vector ~x of free variables that are restricted by the temporal and static
constraints of the query.

Mentioning the free variables, we see that a number of aggregations, as directly
de�ned in the STARQL query, can now be unfolded into queries for the backend
system. The aggregations are not de�ned in the ontology, but in the query itself and
can be directly applied, while created dynamically using the aggregation clause.

Let agg(~z) be an aggregate function on ~z, ~z ◦ r an arithmetic expression on ~z and
Eagg an aggregate mapping resulting from STARQL queries. Then, we can de�ne

143

4. Transformation of STARQL into Queries for Relational Systems

SQLEagg of the mapping Eagg ← SQLEagg based on the free HAVING clause variables
and aggregation operators as follows:

Eagg ← SELECT x, agg(y) FROM Uhaving(x,y,z)
GROUP BY wID, x

HAVING agg(z) ◦ r (4.8)

Additionally to the already unfolded HAVING clause subview Uhaving(x,y,z), we have
to consider an evaluation of the aggregation functions de�ned in the SELECT or
HAVING AGGREGATE clause according to the complete temporal window using the
windowID as a grouping variable.

STARQL is designed to support advanced aggregation functions, such as multi col-
umn aggregation and more. This actually requires the same functionalities also in
the backend system, as STARQL only references by internal mappings to functions
of the backend language. A system that provides these functionalities is Exareme
(see Section 2.2.9). Its engine allows us to use many di�erent implemented user
de�ned functions (UDFs), extending the globally used standard aggregations such
as MIN, MAX and AVG. One popular UDF investigates on correlations between di�er-
ent sensor signals with the Pearson function, which delivers results between one
and zero (close to one means more correlated, close to zero less correlated). We
conclude by giving the HAVING AGGREGATE unfolding for a sensor example using the
pearsonCorrelation function of Exareme in the following statement:

SELECT sensor FROM Uhaving(sensor,y,z)
GROUP BY wid, sensor
HAVING pearsonCorrelation(y, z) > 0.75;

Furthermore, we cannot guarantee a correct evaluation of multi column aggregation
in other systems beside Exareme, as it is not included in the current SQL standard
SQL2011.

Orthogonality

We already discussed the orthogonality feature of STARQL in Section 3.2.1. For
making sure that STARQL streams can be cascaded and reused within a query,
we also have to consider mappings for managing the transformation of STARQL
base streams to STARQL top level streams.

144

4.3. Additional Transformation of STARQL Operators

A common scenario for using orthogonality is the preprocessing of values for easier
computation in a user friendly way. Let be given the STARQL query from List-
ing 4.3. A preprocessing step is done here in the Sout_movavg stream by calculating
a moving average over sensor values from the input stream. It helps to eliminate
outliers, when evaluating a possible monotonic increase in a succeeding substream
(see also the example from Listing 3.9). Let incoming sensor values arrive every
second, then in Sout_movavg the window with width of one minute provides a smooth
curve as input for the following monotonic stream.

Listing 4.3: An example for STARQL orthogonality

1 CREATE STREAM S_out_movavg AS

2

3 CONSTRUCT GRAPH NOW { ?sens :hasAvg AVG(?y) }

4 FROM S_input [NOW - 1m, NOW]->1s

5 SEQUENCE BY StdSeq AS SEQ1

6 HAVING EXISTS i IN SEQ1 (

7 { ?sens :hasVal ?y .)

8 GROUP BY ?sens

9

10 CREATE STREAM S_out_moninc AS

11

12 CONSTRUCT GRAPH NOW { ?sens rdf:type RecentMonInc }

13 FROM S_out_movavg [NOW -1m, NOW]->1s

14 SEQUENCE BY StdSeq AS SEQ1

15 HAVING FORALL i,j IN SEQ1 ,?x,?y (

16 IF GRAPH i { ?sens :hasAvg ?x }

17 AND GRAPH j { ?sens :hasAvg ?y } AND i < j

18 THEN ?x <= ?y)

For connecting both streams in the backend, we calculate a dynamic mapping that
can be generated on the �y during query processing. This mapping is actually
constructed by two cascading mappings. One reverse mapping for building an
intermediate tuple view represents the output tuples of the �rst stream (output
mapping) and an additional mapping vice versa, which is used by the second stream
for identifying the incoming tuples from the substream (input mapping).

Let Eout be an reverse output mapping from the triple based stream Sout_movavg
(as given in Listing 4.3) to an intermediate tuple view. Then, we can compute
SQLEout of the mapping Eout → SQLEout as follows:

Eout ← CREATE VIEW S_out_movavg_trples AS

SELECT timestamp, ?sens AS subject, ':hasAvg' AS predicate,

?avg AS object

FROM S_out_movavg_having (4.9)

145

4. Transformation of STARQL into Queries for Relational Systems

After having de�ned the intermediate view, let Ein be a mapping from an interme-
diate view to the triple based stream Sout_moninc. Then, we can formulate SQLEin

of the mapping Ein ← SQLEin as follows:

Ein ← SELECT timestamp, subject, predicate, object

FROM S_out_movavg_trples

WHERE predicate = ':hasAvg' (4.10)

This procedure can generally be applied for connecting two STARQL streams. Nev-
ertheless, the transformation requires a backend that provides dynamically updated
views as it is the case for the Exareme1 system. The strategy is also restricted to be
used together with the CONSTRUCT query form, because STARQL input streams are
lifted through the OBDA approach from the backend tuple view to a triple view,
which should not be contradicted.

After being mapped from a STARQL input, the stream can be handled as any
other stream considering the given window and sequence based functions.

4.4. Concluding Remarks

The past chapter has explained how the overall translation process of the STARQL
query language can be realized in an algorithm. We started with window and
sequencing operators for live and historical data in Section 4.1, looked inside the
classical translation for static data as also done for the STARQL WHERE clause, and
�nally, we described a new approach for translating temporal sequences based on
classical algorithm for transforming safe range normal forms into relational algebra.
We concluded by giving further examples on translations with respect to aggregation
operators and cascaded STARQL streams.

The presented transformation strategy has been implemented in the stream query
answering prototype of the EU Optique project. A detailed description and evalu-
ation of several examples will be presented in the following chapters.

1www.exareme.org

146

5. Querying Relational Streaming
Engines with STARQL

The last chapter has shown a detailed view on query transformation techniques
for connecting the STARQL framework to relational based (streaming) backend
databases. In this section we will show an overall description of the system, which
transforms input queries and communicates to the backend. Furthermore, we would
like to practically show that we are able to compile STARQL queries based on
common ontologies in a proof-of-concept implementation into relational database
queries. Therefore, we further de�ne our test data in Section 5.2, which we already
sketched during the last chapter to align it concretely with the semantic sensor
network ontology. Furthermore, we de�ne standardized queries to test the general
STARQL features within speci�c test scenarios that are based on mappings to the
underlying data model. Finally, in Section 5.3 we discuss transformation results for
di�erent implemented backend systems according to given test queries for historical
and live streaming scenarios.

5.1. Implementation of a STARQL Streaming Engine

We can further combine each part of the STARQL transformation process in an
architecture, by a prototypical implementation of the transformation given in the
last chapter. Our architecture is related to the original architecture for an static
OBDA approach in [57] as it is constructed at the top-level by four generally similar
modules shown in Figure 5.1.

A module on the application level, which formulates the query and shows results,
communicates to the transformation layer. Then, in the direction from application
to data stream layer the STARQL transformation component translates the time
based HAVING clause into the desired target language, while it rewrites and un-
folds each temporal graph separately and without temporal speci�cation as a static
SPARQL query using the Ontop module for static query transformations. It �nally
translates everything into the target system using a speci�c query adapter that is
implemented individually for each engine.

147

5. Querying Relational Streaming Engines with STARQL

The �nal query can than be transfered to the backend system, for example using
REST API, depending on the underlying system. We will later describe an example
for a REST API based on the Exareme system, but note that not every underlying
system or query language supports the same functionalities or features and there-
fore, di�erent APIs are used in each case. Further, it is not even guaranteed that
all features of the STARQL query language can be applied in a particular backend
system. We show examples for di�erent data stream management systems in the
following parts of this chapter.

The third important module of the implementation is the actual DSMS backend,
which is connected to the transformation component using a query handler. It
usually organizes the communication process to the backend using a REST API,
which registers continuous queries in the streaming case (or one-time SQL queries
in the historical case) and provides an interface to retrieve results from the DSMS
later.

For the backward direction from data stream to application layer a fourth module,
namely the data serialization module, transforms streamed results, which are pulled
through the REST API, into a ontology format. Its results are triples or tuples,
based on the query form that is either a CONSTRUCT (triples) or SELECT (tuple
bindings) query form.

Figure 5.1.: Schematic implementation of the STARQL prototype

148

5.1. Implementation of a STARQL Streaming Engine

5.1.1. Transformation Module

We present the implementation of the transformation module in Figure 5.2. It
shows the combined approach of a general transformation and the query adapter
module. Besides parsing and providing the query data structure, the general module
handles the transformation of UCQs into SQL fragments with respect to mappings
handled by the external Ontop module. According to the process described in
Chapter 4, each GRAPH i {...} form referring to state (i) is rewritten and unfolded
locally. Results are joined internally into a new query in the query adapter, which
guarantees a combined unfolding based on the syntactical requirements of the target
system. Therefore, we call its output an X-SQL query, because it could be a dialect
in SPARK, ExaStream, PipelineDB or other relational languages.

Additionally, mapping and ontology information have to be available independently
for each use case. Also the speci�c backend DSMS has to be known in advance and
a speci�c query adapter has to be chosen that initiates additional steps in the query
unfolding or execution process and allows for running queries in a �exible way on
di�erent systems such as SPARK or Exareme.

In practice, information on the query adapter have to be added in a preprocessing
step before the transformation starts. Thus, we have chosen a data source en-
capsulation for the STARQL framework. In this data source we can save further
required parameters, such as the used mapping and ontology combination or infor-
mation on the available backend streams and data, which have a reference name
on the application layer, but might be referenced in the backend by an IP/port
con�guration.

Furthermore, the abstract data source view allows to expose di�erent virtual ab-
stractions from the same streaming source, while using di�erent sets of mappings
or ontologies for the transformation. An abstract data source can also expose the
desired federation approach, where several di�erent sources are combined to one
streaming source, for example to provide a combination of streaming and static
sources as it is proposed in the Optique project1.

5.1.2. Query Processing

In Section 2.2 we presented several data stream management systems as possible
stream backends for the STARQL framework. For our prototype we have chosen
systems that provide declarative languages, where most current implementations
use standards such as SQL or closely related streaming languages as CQL. The

1www.optique-project.eu

149

5. Querying Relational Streaming Engines with STARQL

Figure 5.2.: Processing pipeline of the STARQL transformation

query processing between the STARQL framework and the backend system in
these cases signi�cantly depends on the implementation of the backend. In most
cases the STARQL framework uses a speci�c REST API for registering continuous
queries or receiving results via pull delivery.

Furthermore, a DSMS, which supports continuous queries, typically tracks all reg-
istered queries via a reference identi�er. This identi�er can either be delivered by
the STARQL framework or received from the backend system after registering a
query, depending on the implemented query adapter and the backend system itself.
This reference can later be used to retrieve results or to delete a speci�c query.

A REST-API for transferring streaming data can be designed from two perspectives.
Each of these models has one active and one passive side.

In the pull model the sender remains passive until it receives a request from the
consumer node. It then provides the queried content to the requesting consumer
node. An advantage of the scenario is that the receiving node is able to choose
the exact amount and the content of the data it receives. However, the main
disadvantage appears to be a case where the sender might receive too many requests
(intended or unintended) that it is unable to serve. Additionally the server must
have data in large endpoint bu�ers, which is largely impractically.

On the other hand, in a push model the sender is active, while the receiver remains
passive. The sender starts sending its content as soon as it is ready to be published
to the receiver. Thus, it does not have to wait for the receiver, while sending or

150

5.1. Implementation of a STARQL Streaming Engine

multicasting its content. The scenario has a clear advantage, as the sender does
not get interrupted and a minimum of communication is ensured. A disadvantage
could be that a receiver might get content, which is no longer interesting and lacks
control on incoming data, until the receiver unsubscribe from the source.

We decided to implement a pull model in our prototype, because we suppose to
have a secure use case environment and prefere the receiver to have control on the
incoming data.

The prototypical query adapter is implemented in a simple setup case for connecting
the STARQL framework to the popular DSMS of Exareme2. In the following we
give a short description of the used API and refer the reader to [42] for more
details.

Method Type URL Param Return Value

Register Stream Post http://HOST/{Method}/{Name} register_query = {Query}
200 OK,

409 Con�ict Error,
429 Too Many Requests

Delete Stream Delete http://HOST/{Method}/{Name} -
200 OK,

404 Not Found
Get Stream Info Get http://HOST/ - 200 OK

Get Stream Results Get http://HOST/{Method}/{Name}
last={N},

startTimestamp={S},
endTimestamp={E}

200 OK,
404 Not Found

Historical Query Post http://HOST/{Method}/{Name} - 200 OK
Read Table Post http://HOST/{Method}/{Name} - 200 OK

Table 5.1.: Exareme REST API Functionality Overview

The REST service of Exareme supports two main functionalities. First, a registra-
tion of continuous queries together with pull facilities for retrieving its results, and
second, the possibility to make one time historical queries on previously recorded
streams and retrieving the answer set from a calculated table. We now brie�y
describe both processes.

Continuous Queries. A continuous query can be registered as given in Table 5.1.
The used URL consists of the hostname, the method description and a unique
identi�er name, which represents the query reference name. Using this reference,in
a second we retrieve step results of the speci�c query by using either the last
parameter and a number (e.g. 5 for the last �ve tuples) or a combination of start
and end timestamps for receiving results that are evaluated over a speci�c time

2www.Exareme.org

151

5. Querying Relational Streaming Engines with STARQL

period (see row four of Table 5.1). On the other hand, the reference name allows
for a deletion of the named stream (second row of Table 5.1).

Historical Queries. Historical queries can also be handled by the Exareme API.
Instead of mentioning a reference identi�er for such queries, we have to transfer a
parametric name for a temporal output table. All query results are saved in the
table and can be received by users (see row six of Table 5.1).

The implementation of the API above as prototype is used for evaluation purposes,
and depending on the backend system, we can also think of other implementations
such as the deployment of a server side JAR �le in the case of Spark. We also
provide a simple transformation prototype for transforming STARQL queries into
the required backend format for running them manually on the desired system.

5.1.3. Serialization

The idea of serialization in computer science is the translation of data structures or
objects into a storable or transferable format to be reconstructed later on the same
or another machine. The operation of serializing (also called marshalling) is often
used for transforming complex object structures into linear streams and turning
them back again into the original structure.

Our proof of concept implementation is based on a serialization strategy for trans-
lating streamed results from the backend system into a storable and transferable
format with respect to the underlying ontology, which should remain unchanged
(e.g. for storing it on a triple store). In the case of RDF data, many di�erent kinds
of storage formats exist that can be transformed into or reassembled from streams.
A �rst de facto standard was RDF/XML [40], an XML based syntax originally in-
troduced to de�ne RDF and the �rst standard RDF format. Much more compact
and readable is Notation3 (N3) [44], together with the Turtle format [39], while
N3 is similar to a SPARQL dialect (see Section 2.3.3). Much less complex than N3
or RDF/XML are line-based formats such as N-Triples [38] or N-Quads [86], which
simply present an easy parsable format with one triple or quad per line.

However, we decided to use another format that has recently become popular,
namely JSON-LD [153]. On the one hand it is easy for humans to read, write
and understand and on the other hand it can easily be parsed, generated and
streamed by machines. Developers who are familiar with the JSON standard can
easily adopt its syntax and the large number of JSON parsers can also be used
for JSON-LD. Further, it is a W3C recommendation since January 2014 [214]. It
is commonly used in many projects such as the Google Knowledge Graph [212],

152

5.2. Test Dataset

Microsoft Cortana [164] or BBC online content [33]. More professional JSON-LD
users can be found on its own o�cial Github page [55].

Therefore, we implemented a serialization component, for receiving answers in
tuple-wise way from the relational data stream management system and for trans-
forming them into a serialized JSON-LD format. An example JSON-LD query
answer from the mentioned component can be found in Listing 5.1.

Listing 5.1: Example answer set for Query1 in JSON-LD format

1 [{" @graph ":[{" _sens ":" siemens:sensorinst -4"," _val ":"707.500"} ,

2 {"_sens ":" siemens:sensorinst -5"," _val ":"690.000"} ,

3 {"_sens ":" siemens:sensorinst -6"," _val ":"683.700"} ,

4 {"_sens ":" siemens:sensorinst -7"," _val ":"720.200"}] ,

5 "@id ":"2016 -06 -16 T14 :24:02+00:00"} ,

6 {" @graph ":[{" _sens ":" siemens:sensorinst -4"," _val ":"708.300"} ,

7 {"_sens ":" siemens:sensorinst -7"," _val ":"719.600"} ,

8 {"_sens ":" siemens:sensorinst -8"," _val ":"690.300"} ,

9 {"_sens ":" siemens:sensorinst -11"," _val ":"831.900"} ,

10 "@id ":"2016 -06 -16 T14 :24:03+00:00"}]

At pulse rate or window slide rate we receive one linked data graph in jsonLD
format. The example in Listing 5.1 shows two succeeding graphs at timestamps
14:24:02 and 14:24:03 that deliver four di�erent sensor measurements each. The
given test data will be further described in the next section.

5.2. Test Dataset

It is important for our experiments that the test dataset, consisting of an ontology,
a mapping, some relational data and interesting queries, is clearly de�ned to be
reproducible and comparable within di�erent sensor network scenarios. Therefore,
we clearly de�ne the used experimental dataset in detail and compare it to standard
ontologies such as the Semantic Sensor Network ontology (see Section 2.3.2).

5.2.1. Data Schema and Example Data

We have already introduced the database schema together with STARQL examples
in Chapter 3, which are based on data sets provided for the Optique3 project. It
basically consists of two types of input streams (sensor measurement and event
streams) and a table with static information about the system and its devices. The

3www.optique-project.eu

153

5. Querying Relational Streaming Engines with STARQL

database scheme are listed below in a simpli�ed way, where sensors are named as
sensorIDs (SID) and Assemblies by assemblyIDs (AID).

MEASUREMENT(TimeStamp, SID, Value)

EVENT(TimeStamp, AID, Category, Eventtext)

SENSOR(SID, Name)

Assembly(AID, Name)

SENSORMETADATA(SID, Property, Unit, RangeMin, RangeMax, MonitoredPart,

Location)

Furthermore, the sensormetadata table provides static information for each sensor.
It describes the speci�c type, e.g. temperature, pressure or speed, its measurement
unit and location at the turbine. Additionally, we give example entries for each
category in Table 5.2 below.

MEASUREMENT
TimeStamp SID Value

2015-11-20 00:00:01 25921 6.300

SENSOR
SID Name

25921 TC260

Assembly

AID Name

1 GasTurbine2103/01

SENSORMETADATA
SID Property Unit RangeMin RangeMax MonitoredPart Location

25921 Temperature Degrees celsius -40 1000 BurnerTip GasTurbine2103/01

Table 5.2.: Example Data as used for query experiments

Along with the data schema we provide a dataset for further tests with measurement
streams. The synthetic data provides sensor measurements of 19 sensors with a
sampling rate of one minute per sensor. Further, the complete data has a temporal
volume of three years, which is enough to represent a big data use case, as we
can adjust the window parameter in any direction. The dataset roughly contains
30 million tuples. Therefore, if we use a sliding window approach with slide one

154

5.2. Test Dataset

minute and width three years, we already deal with millions of windows and billions
of tuples.

We continue with the ontological representation queries for our experimental eval-
uation (see Chapter 6) in the next sections.

5.2.2. Ontology

The presented semantic sensor net (SSN) ontology in Section 2.3.2 can be seen as the
standard representation for ontology based sensor measurement scenarios. Based
on the given dataset described in the last section, we concentrate our representation
on the core module of the SSN ontology, the so called Stimulus-Sensor-Observation
(SSO) Pattern (also described as skeleton module in Figure 2.7, see also [76] or
directly for a stimuli description of the SSN Ontology [126]).

As an example, we consider the observation of temperature sensors deployed on
a speci�c turbine. We describe the sensor as an instance of ssn:Sensor, while
using the Deployment and PlatformSite module of the SSN ontology to de�ne its
topology (see Listing 5.2). Here, wee see the description of two di�erent sensors of
type ssn:Sensor, they are mounted on Gasturbine2103/01 and measure either the
temperature or rotation speed of the turbine.

Listing 5.2: Representation of two Siemens sensors used in a turbine installation

1 sie:TC260

2 rdf:type ssn:Sensor;

3 ssn:onPlatform sie:GasTurbine2103 /01;

4 ssn:observes sie:Temperature;

5

6 sie:R117

7 rdf:type ssn:Sensor;

8 ssn:onPlatform sie:GasTurbine2103 /01;

9 ssn:observes sie:RotationSpeed.

Besides that, according to the processing of external stimuli, we can de�ne repre-
sentations of observations and observation results as given in Listing 5.3. In this
case an observation is shown which is observed by temperature sensor TC260 and
shows a value of 91.

Listing 5.3: Representation of a sensor observation

1 ssn:Observation1

2 rdf:type ssn:Observation;

3 ssn:observedBy sie:TC260;

155

5. Querying Relational Streaming Engines with STARQL

4 ssn:observationResult ssn:Result1.

5 ssn:Result1 ssn:hasValue ``91''.

5.2.3. Mappings

We have already shown the relational dataset as well as the describing ontology
for sensors and observations of our OBDA example dataset. Now, we would like
to explain how both layers are connected by mappings of a R2RML �le (see Sec-
tion 2.4.2).

Listing 5.4: Mapping of sensor meta data based on a turbine installation

1 @prefix rr : <http ://www.w3.org/ns/r2rml#>

2 @prefix ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 ssn:SensorMap

5 a rr:TriplesMap;

6 rr:logicalTable [rr:tableName "SensorMetaData"];

7 rr:subjectMap [

8 rr:template "http :// www.sensor.net/{ Sensor }";

9 rr:class ssn:Sensor;

10];

11 rr:predicateObjectMap [

12 rr:predicate ssn:onPlatform

13 rr:objectMap [rr:column "Location"];

14];

15 rr:predicateObjectMap [

16 rr:predicate ssn:observes

17 rr:objectMap [rr:column "Property"];

18].

First, the mapping of the sensor topology, as shown in Listing 5.4, describes the
mapping of sensors, e.g., those that are given in Listing 5.2, to the columns of the
SensorMetaData table. While second, we create dynamic mappings for changing
sensor values and observations to a relational measurement table that are shown in
Listing 5.5.

Listing 5.5: Mapping of sensor observations based on the SSN ontology

1 @prefix rr : <http ://www.w3.org/ns/r2rml#>

2 @prefix ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 ssn:ResultMap

5 a rr:TriplesMap;

6 rr:logicalTable [rr:tableName "Measurement"];

7 rr:subjectMap [

156

5.2. Test Dataset

8 rr:template "http :// www.sensor.net/result /{ Sensor }/{ Timestamp }/{

Value }";

9 rr:class ssn:Result;

10];

11 rr:predicateObjectMap [

12 rr:predicate ssn:hasValue

13 rr:objectMap [rr:template "http :// www.sensor.net/{ Value }";];

14].

15

16 ssn:ObservationMap

17 a rr:TriplesMap;

18 rr:logicalTable [rr:tableName "Measurement"];

19 rr:subjectMap [

20 rr:template "http :// www.sensor.net/observation /{ Sensor }/{ Timestamp

}/{ Value }";

21 rr:class ssn:Observation;

22];

23 rr:predicateObjectMap [

24 rr:predicate ssn:observedBy

25 rr:objectMap [rr:parentTriplesMap <ssn:SensorMap >];

26];

27 rr:predicateObjectMap [

28 rr:predicate ssn:observationResult

29 rr:objectMap [rr:parentTriplesMap <ssn:ResultMap >];

30].

5.2.4. Queries

Next, we are going to de�ne four standardized queries in STARQL, which are used
for testing the most important functionalities of our framework. For the following
queries we assume that a measurement backend stream, as well as the mentioned
static data for sensor descriptions are provided.

The �rst query (Listing 5.6) evaluates temperature sensor observations with a spe-
ci�c value higher than 41 degrees. Here, values are evaluated on a Window, which
has a width of only a single minute as the query does not need to compare more
than one measurement at a time. Additionally, the temporal stream is combined
with static data, saying that observed sensors are mounted on GasTurbine2103/01
and measure temperature data.

Listing 5.6: STARQL Query Q1 (Threshold and static data)

1 PREFIX : <http ://www.siemens.com/Optique/OptiquePattern#>

2 PREFIX ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 CREATE

5 PULSE example_pls WITH FREQUENCY = "PT2M "^^XSD:DURATION

6

157

5. Querying Relational Streaming Engines with STARQL

7 CREATE STREAM S_out AS

8

9 CONSTRUCT GRAPH NOW { ?sens :hasVal ?x }

10 FROM STREAM Measurement [NOW - "PT1M "^^XSD:DURATION , NOW]-> "PT1M "^^XSD

:DURATION

11 USING PULSE example_pls

12 WHERE { ?sens a ssn:Sensor; ssn:onPlatform sie:GasTurbine2103 /01;

13 ssn:observes sie:Temperature .}

14 SEQUENCE BY StdSeq AS SEQ1

15 HAVING

16 EXISTS i in SEQ1 , ?val (GRAPH i { ?obs a ssn:Observation;

17 ssn:observedBy ?sens;

18 ssn:observationResult ?val;} AND ?val > 41)

The second query (in Listing 5.7) is a query already known from Section 3.2.2.
It shows the sequencing capabilities of the STARQL framework and queries for
sensors, which have been showing monotonically increasing values in the last hour.

Listing 5.7: STARQL Query Q2 (Sequencing)

1 PREFIX : <http ://www.siemens.com/Optique/OptiquePattern#>

2 PREFIX ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 CREATE PULSE example_pls WITH FREQUENCY = "PT1H "^^XSD:DURATION

5

6 CREATE STREAM S_out AS

7

8 CONSTRUCT GRAPH NOW { ?c2 a :RecentMonInc }

9 FROM STREAM Measurement [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1H "^^XSD

:DURATION

10 USING PULSE example_pls

11 SEQUENCE BY StdSeq AS SEQ1

12 HAVING FORALL i, j IN SEQ1 , ?x,?y(

13 IF GRAPH i { ?obs a ssn:Observation;

14 ssn:observedBy ?sens;

15 ssn:observationResult ?x;}

16 AND GRAPH j { ?obs a ssn:Observation;

17 ssn:observedBy ?sens;

18 ssn:observationResult ?y; }

19 AND i < j

20 THEN ?x <= ?y)

The next query in Listing 5.8 tests the ability to use di�erent kinds of aggregations,
which are used directly in the SELECT header or in an additional HAVING AGGREGATE

clause. Here, we �lter query results by a constraint that says no value is allowed to
di�er more from the average value than s6 units, which is a basic query for dropping
outliers from the signal. In the answer set we show its maximum, its average and
how much they di�er from each other.

158

5.2. Test Dataset

Listing 5.8: STARQL Query Q3 (Aggregation)

1 PREFIX : <http ://www.siemens.com/Optique/OptiquePattern#>

2 PREFIX ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 CREATE PULSE example_pls WITH FREQUENCY = "PT1M "^^ XSD:DURATION

5

6 CREATE STREAM S_out AS

7

8 SELECT ?sens MAX(?z) AS ?max , AVG(?z) AS ?avg , (MAX(?z)-AVG(?z)) AS ?diff

9 FROM STREAM Measurement [NOW - "PT5M "^^XSD:DURATION , NOW]

10 -> "PT1M "^^XSD:DURATION

11 USING PULSE example_pls

12 SEQUENCE BY StdSeq AS SEQ1

13 HAVING EXISTS i in SEQ1 (

14 GRAPH i { ?obs a ssn:Observation;

15 ssn:observedBy ?sens;

16 ssn:observationResult ?z;})

17 GROUP BY ?sens

18 HAVING AGGREGATE AVG(?z) + 6 < MAX(?z)

19 \

In the �nal query (Listing 5.9) we again use a technique for eliminating outliers
or noise. To accomplish this, we have foreseen two cascaded STARQL streams.
The �rst one is a moving average over sensor values, evaluated for a window of �ve
seconds each. While the second evaluates the output of this stream and sends only
the maximum values of the moving average for the last one minute to the output.

Listing 5.9: STARQL Query Q4 (Orthogonality)

1 PREFIX : <http ://www.siemens.com/Optique/OptiquePattern#>

2 PREFIX ssn : <http :// purl.oclc.org/NET/ssnx/ssn#>

3

4 CREATE PULSE example_pls WITH FREQUENCY = "PT1M "^^ XSD:DURATION

5

6 CREATE STREAM S_out_avg AS

7

8 CONSTRUCT GRAPH NOW { ?sens :hasAvg AVG(?z)}

9 FROM STREAM Measurement [NOW - "PT2M "^^XSD:DURATION , NOW]

10 -> "PT1M "^^XSD:DURATION

11 USING PULSE example_pls

12 SEQUENCE BY StdSeq AS SEQ1

13 HAVING

14 EXISTS i in SEQ1 (

15 GRAPH i { ?obs a ssn:Observation;

16 ssn:observedBy ?sens;

17 ssn:observationResult ?z;})

18 GROUP BY ?sens

19

20 CREATE STREAM S_out_max AS

21

22 SELECT ?sens , MAX(?z)

159

5. Querying Relational Streaming Engines with STARQL

23 FROM STREAM S_out_avg [NOW - "PT1H "^^ XSD:DURATION , NOW]-> "PT1M "^^ XSD:

DURATION

24 USING PULSE example_pls

25 SEQUENCE BY StdSeq AS SEQ1

26 HAVING

27 EXISTS i in SEQ1 (GRAPH i { ?sens :hasAvg ?z})

28 GROUP BY ?sens

All of the mentioned queries above can either be evaluated on a live stream or on
temporal data if the underlying system supports this functionality. The examples
are designed for a real time streaming case. For the evaluation of archived temporal
data the pulse function has to be extended by start and end parameter. An example
pulse for historical data can be found in Section 3.2.2. Further, we have listed
explicit transformation results for each query in Appendix A.

5.3. Implementation of the Ontology Based Streaming

Back End Adapter

We already discussed several general aspects of the unfolding strategy into relational
algebra and handling of streaming and temporal query structures in the general case,
e.g., in Section 4.1 and 4.1.2, where we described the transformation of STARQL
window operators.

However, data stream management systems often use their own syntax, in partic-
ular when it comes to the evaluation of historically recorded data, because many
DSMSs are only optimized for real time streams. Therefore, we tried to simulate
window operators that are closely related to standard SQL in Section 4.1 to sup-
port access on both types of input. PostgreSQL has no internal window operator
implementation suitable for the management of time-based windows and thus, re-
quires a complex alignment of di�erent SQL operators to achieve a similar universal
implementation of windows, which is also used for a implementation of a STARQL
engine based on historic data in systems that are optimized for real time input.

Thus, the syntax as well as other speci�c execution properties of di�erent backend
systems have to be considered in each query adapter, for rewriting an SQL query
to di�erent backends. As shown in Figure 5.1, the Query Adapter is integrated in
the transformation module.

In the following, with examples we describe all necessary implementation steps to
transform STARQL queries for several backends. We use the threshold query from
Section 3.2.1 with an additional pulse function (shown in Listing 5.6) as an example
to give a proof of concept for each example backend system. In the historical case,

160

5.3. Implementation of the Ontology Based Streaming Back End Adapter

Table 5.3.: Comparison of implemented backend examples
PostgreSQL Exareme Spark PipelineDB

Live Streams No Yes Yes Yes
Static Data Yes Yes Yes Yes
Historic Streams Yes Yes Yes No
API JDBC REST API REST API / built in JDBC

we de�ne the dataset to an absolute time series of one hour, which is referred to the
pulse function (see Section 3.2.2). If the standard sequence method of STARQL can
not be o�ered by a certain backend system, we choose an appropriate sequencing
replacement strategy.

In fact, we show four di�erent implementations. While two of them (SPARK and
Exareme) support historical as well as live stream processing, PipelineDB supports
only streamed data and PostgreSQL only historic processing.

5.3.1. Experiments on PostgreSQL Back End

The �rst possible backend system we consider is PostgreSQL, which can be seen as a
standard SQL database, being really close to the SQL standard, but not optimized
for stream processing. Therefore, it can not be con�gured as a service for continuous
queries on a real time stream. PostgreSQL lacks the ability to handle continuously
(possibly in�nite) incoming data streams and queries as well as a generation of
temporal windows on the �y.

Nevertheless, a PostgreSQL server still handles static data, which in the case of
historically recorded input could also mean tuples with an additional timestamp
column. Thus, our strategy for evaluating STARQL queries in the case of Post-
greSQL leads into a system for answering historical queries that rely on recorded
data and evaluate all necessary temporal windows in a single precalculation step.
The STARQL framework considers temporal queries by direct use of a pulse func-
tion with start and end timepoint (see Section 3.2.2).

Temporal Querying

We have already sketched the general transformation strategy for the historical
window generation in Section 4.1.1. Here, we basically introduce 5 additional steps
as an implementation for the PostgreSQL backend system: (i) a de�niton of the
pulse in SQL, (ii) de�nition of windows on the series of timestamps, (iii) creating

161

5. Querying Relational Streaming Engines with STARQL

a sampling on these windows according to the pulse function (iv) join of the data
into the sampling view and (v) a generation of temporal ABox sequences for each
window. The process can be formulated in �ve succeeding views for PostgreSQL, as
shown in Listing 5.10. For the example transformation a pulse start of '2010-05-12
01:00:00' and end parameter of '2010-05-12 02:00:00' is chosen.

Listing 5.10: Example SQL Code for Query Example 1 in PostgreSQL

1

2 -- 1) Generate Pulse

3 CREATE VIEW pulse_example_pls AS

4 SELECT row_number () OVER (ORDER BY pulse) - 1 AS wid , pulse AS time

5 FROM (SELECT generate_series ('2010-05-12 01:00:00 ':: timestamp ,

6 '2010-05-12 02:00:00 ':: timestamp , '0 seconds ':: interval) AS pulse)

series;

7

8 -- 2) Window borders of Input Stream

9 CREATE VIEW measurement_public_window_range AS

10 SELECT row_number () OVER (ORDER BY time) - 1 AS wid ,

11 time - ('60 seconds ':: interval) AS left , time AS right ,

12 lead(time , 1) over(order by time) as next

13 FROM (SELECT generate_series ('2010-05-12 01:00:00 ':: timestamp ,

14 '2010-05-12 02:00:00 ':: timestamp , '60 seconds ':: interval) AS time

15) series;

16

17 -- 3) Input Window sampling by pulse function

18 CREATE VIEW measurement_public_window_pulse_join AS

19 SELECT p.wid , m.left , m.right FROM

20 measurement_public_window_range m RIGHT JOIN pulse_example_pls p

21 ON p.time BETWEEN m.right AND m.next AND m.next > p.time;

22

23 -- 4) join data and timestamps into new WindowIDs

24 CREATE VIEW measurement_public_data AS

25 SELECT DISTINCT wid , tble.*

26 FROM measurement_public_window_pulse_join pj

27 LEFT OUTER JOIN measurement_public tble

28 ON tble.timestamp BETWEEN pj.left AND pj.right;

29

30 -- 5) Create ABoxIDs for each window

31 CREATE VIEW measurement_public_stream AS

32 SELECT dense_rank () OVER (PARTITION BY wid ORDER BY timestamp ASC)

33 AS abox , * FROM measurement_public_data;

In addition to the general SQL schema shown in Section 4.1, several Postgres-
speci�c functionalities are used. We give an overview for each of the �ve steps in
the following list.

1. The pulse is generated by a Postgres-speci�c function generate_series(start,
end, interval) that uses the pulse frequency as interval and its start and end
parameters. On top a function row_number() is used to turn row numbers of

162

5.3. Implementation of the Ontology Based Streaming Back End Adapter

the generated series into windowIDs.

2. Similar to the pulse, we generate stream windows for each input stream, but
have to consider the window width. Thus, we select a right and left border
for each window instead of a single time point.

3. In a third step the pulse view is used as a sampling function on the generated
input windows and joined into the previous view.

4. We join the windows once again with the incoming data based on their times-
tamps in the fourth step.

5. Finally, we add a ABox numbering by a dense rank function, which is similar
to a normal rank function, but does not omit any numbers.

Furthermore, the PostgreSQL framework strongly conforms to the ANSI-SQL:2008
standard regarding its SQL implementation [193]. That makes an evaluation of
the described STARQL transformation result from Chapter 4 fairly simple as no
further adjustments are necessary. The transformed SQL query, based on query
Q1, is shown in Listing 5.11.

Listing 5.11: Transformed HAVING clause in PostgreSQL for example Q1

1 CREATE VIEW S_out_having AS

2 SELECT wid , _sens , _z

3 FROM

4 (SELECT * FROM

5 (

6 SELECT sens AS _sens , ass AS _ass FROM (

7 [... WHERE CLAUSE transformation ...]

8) SUB_QVIEW

9) SUB_WHERE

10 NATURAL JOIN

11 (SELECT wid , _z , _sens FROM (

12 SELECT * FROM(

13 -------------------modified ontop result begin

14 SELECT wid , abox AS i, z AS _z , sens AS _sens FROM (

15 SELECT DISTINCT qview1.wid , qview1.abox , qview1 ."value"

AS "z",

16 ('http ://www.siemens.com/Optique/OptiquePattern#' ||

qview2 ."name") AS "sens"

17 FROM

18 measurement_stream qview1 ,

19 sensor qview2

20 WHERE

21 (qview1 ." sensor" = qview2 ."id") AND

22 qview2 ."name" IS NOT NULL AND

23 qview1 ."value" IS NOT NULL

24) SUB_QVIEW

25 -----------------modified ontop result end

26) SUB_TRIPLE0

163

5. Querying Relational Streaming Engines with STARQL

27) SUB_QVIEW

28) SUB_HAVING

29) SUB_FROM;

One can see that the HAVING clause transformation is a join of a static and tem-
poral part of the query (HAVING and WHERE clause respectively) that each selects
the unbound variables from both clauses. At the heart of the temporal part are
its ABox states (only one state is referred in query Q1), whose SQL structure is
directly derived from the Ontop [60] module in each case. A postprocess of the
STARQL framework joins each state and allows direct access to the previously
generated window structure with a particular selection of its windowID and ABox
variables.

Finally, all bindings are derived by the global selection of free variables and windowIDs
in the SUB HAVING SQL view, which are further modi�ed by groupings and aggre-
gation views (not shown here) or directly send to the output.

Scalabity of PostgreSQL with Multiple Session

What PostgreSQL servers lack, and thus also our backend implementation for Post-
greSQL, is a feature for horizontal scalability or parallelization, which is naturally
not supported by the query engine. Its whole implementation is process-based [110]
(not threaded) and uses a single operating system process for each database session.
Hence, each database connection (or query) only utilizes a maximum of one CPU
core. Basically, the resulting idea for a better scalable approach on PostgreSQL is
a split of the STARQL query into smaller queries or sessions, which can �nally be
automatically spread across all available cores of the operating system.

A streaming system such as our STARQL framework, typically supports such a
split for temporal data, as the generated windows are evaluable separately with
dedicated queries. For that purpose, we propose two di�erent approaches.

The �rst idea is to split the dataset of computed windows into smaller parts, such
that each part of windows can be evaluated in its own database session on its own
CPU core with di�erent queries aiming for one of the smaller parts each. However,
this approach needs a manual data split and additional manual formulating of new
queries, where the window generating would su�er at the start and end border of
each data part.

Besides this rather naive version, we also implemented another approach that has
been tested during this work. It automatically distributes a STARQL query over
several PostgreSQL sessions or hosts using the procedural language pl/pgsql as an

164

5.3. Implementation of the Ontology Based Streaming Back End Adapter

extension. The idea here is to evaluate each window automatically on the �y,
while they are distributed over di�erent SQL sessions that run on one or more
machines. Therefore, the query is not connected to an underlying window table or
view, but to a client function that directly computes a single data window based on
raw temporal sensor values and evaluates this window separately on the backend
system. A simpli�ed example for query Q1 and multiple pl/pgsql sessions is shown
in Listing 5.12.

Listing 5.12: Transformed HAVING clause in pl/pgsql for query example1

1 CREATE FUNCTION measurement_window(BigInt)

2 RETURNS SETOF my_window

3 AS $$

4 BEGIN

5 RETURN QUERY

6 SELECT $1 as WID , rank() OVER (ORDER BY timestamp ASC) as ABOX , *

7 FROM measurement_public where timestamp between

8 (SELECT * FROM time_start($1)) and (SELECT * FROM time_end($1));

9 END

10 $$

11 LANGUAGE plpgsql;

12

13 CREATE FUNCTION s_out_having(BigInt)

14 RETURNS SETOF my_hasval AS

15 $$

16 BEGIN

17 RETURN QUERY

18 SELECT wid , _sens , _z

19 FROM

20 (SELECT * FROM

21 (

22 SELECT sens AS _sens , ass AS _ass FROM (

23 [... WHERE CLAUSE transformation ...]

24) SUB_QVIEW

25) SUB_WHERE

26 NATURAL JOIN

27 (SELECT wid , _z , _sens FROM (

28 SELECT * FROM(

29 -------------------modified ontop result begin

30 SELECT wid , abox AS i, z AS _z , sens AS _sens FROM (

31 SELECT DISTINCT qview1.wid , qview1.abox , qview1 ."value"

AS "z",

32 ('http ://www.siemens.com/Optique/OptiquePattern#' ||

qview2 ."name") AS "sens"

33 FROM

34 measurement_window($1) qview1 ,

35 sensor qview2

36 WHERE

37 (qview1 ." sensor" = qview2 ."id") AND

38 qview2 ."name" IS NOT NULL AND

39 qview1 ."value" IS NOT NULL

40) SUB_QVIEW

41 -----------------modified ontop result end

42) SUB_TRIPLE0

165

5. Querying Relational Streaming Engines with STARQL

43) SUB_QVIEW

44) SUB_HAVING

45) SUB_FROM;

46 END

47 $$

48 LANGUAGE plpgsql;

In the pl/pgsql example the transformed HAVING clause is no longer a view, but
a function de�ned in a procedural language. The previous selection of the mea-
surement_stream is now the call of a procedural window function. As parameter
we simply take the windowID, which is further used to compute temporal borders
of each window on the �y in the particular timestart and timeend function (not
explicitly shown here). The advantage is that there is no precalculation of any win-
dows required, everything is done per session and each session could be run on a
di�erent core or even separated machines, if the pl/pgsql code was deployed there.
The complete server and client implementation for example Q2 in pl/pgsql can be
found in Appendix B.

Additionally, a client side management of the process is required to distribute all
desired sessions on the server and collect each answer set as soon as a window result
is ready. The process was implemented on the client side by a distributed round
robin structure and cursors that can split answer sets in result batches when they
become large. We have evaluated this implementation in Section 6.3.2.

5.3.2. Experiments on Exareme

Compared to the previous PostgreSQL implementation, Exareme4 is a scalable sys-
tem that was originally designed for cost-aware distributed processing and data
streaming as well (see Section 2.2.9). Recently it has been recently extended with
user de�ned python functions for streaming and window processing. Thus, a for-
mulation of the window stream is not necessarily done directly in SQL (as shown
in Listing 5.10 for PostgeSQL), but can be encapsulated in python functions.

We show an excerpt of the transformation result for Exareme in Listing 5.13. This
query reads an input stream directly from TCP port inside the newTimesliding-
Window function (see line four). The remainder of the query then is again a list of
streams, while the measurement stream is used as a subquery inside of the having
sub-stream (line 8).

Listing 5.13: Simply�ed transformation in Exareme for query Q1

4www.Exareme.org

166

5.3. Implementation of the Ontology Based Streaming Back End Adapter

1 CREATE STREAM measurement AS WCACHE SELECT * FROM

2 (newtimeslidingwindow timecolumn :0 timewindow :60 frequency :0 granularity

:1 equivalence:floor

3 SELECT cast(strftime('%s', timestamp) as float) as epoch , * FROM

4 (file dialect:json 'http ://192.168.11.37:8989/ measurement '));

5

6 [...]

7

8 CREATE STREAM S_out_having AS WCACHE

9 SELECT DISTINCT wid , _sens , _z

10 FROM

11 (SELECT * FROM(

12 (SELECT * FROM S_out_sub_ontop2) SUB_TRIPLE1

13 NATURAL JOIN

14 (SELECT * FROM S_out_sub_ontop3) SUB_TRIPLE2

15 NATURAL JOIN

16 (SELECT * FROM S_out_sub_ontop1) SUB_TRIPLE3

17) SUB_WHERE

18 NATURAL JOIN

19 (SELECT wid , _z , _sens FROM(

20 (SELECT * FROM S_out_sub_ontop0) SUB_TRIPLE4

21) SUB_QVIEW

22) SUB_HAVING

23) SUB_FROM;

24

25 [...]

Furthermore, Exareme is able to read from di�erent sources, while in the example we
read from TCP/port, streaming data could also be read from �les or data bases.

The Exareme system requires a syntax that di�ers from the PostgreSQL case, as
it does not directly support functionalities such as LEFT JOIN, UNION or EXCEPT

in the streaming case. To realize these features, it requires a combination of the
Exareme-speci�c WCACHE operator and Python functions to call substreams as in
the following example:

SELECT * FROM (streamexcept 'S_out_sub1, S_out_sub2') SUB_EXCEPT

(5.1)

However, Exareme can not support the given semantics of STARQL completely.
Its newTimeslidingWindow function generates a grid for temporal states, which
means that also empty ABoxes are included in its result, which is not part of the
STARQL semantics (see Section 3.3.3).

Finally, Exareme is especially optimized for distributing subqueries and thus, each
query is divided into many substreams for optimization purposes (e.g. see SUB_TRIPLE1
to SUB_TRIPLE4 in Listing 5.13) STARQL and Exareme have been developed

167

5. Querying Relational Streaming Engines with STARQL

very closely together in a prototypical implementation during the Optique project,
which is presented in [130] and [131].

5.3.3. Experiments on Spark

Compared to PostgreSQL and Exareme, which are both based on a SQL like query
language, Apache Spark provides an application programming interface centered
on RDD data structures for Java, Python, Scala and R (see also Section 2.2.11).
Furthermore, for our tests we implemented a Java program that can be deployed on
the master node of a Spark cluster, instead of using a single SQL query as previously
explained. The Java program has to de�ne which transformations and actions are
performed on the RDD. Thus, as transformations we can de�ne the generation of
temporal views, e.g., such as sparkSession.sql("select value from measurement where
value < 70").createOrReplaceTempView("low_values");, while an action starts the
evaluation of the program, such as in the case of sparkSession.sql("select * from
low_values).show;.

Therefore, the idea is to provide a query adapter for the STARQL framework that
provides a transformation result, which can be used in a single deployable Java
program to generate all necessary RDD transformations and actions on the Spark
cluster.

Real Time Evaluation with SPARK Streaming

As it is already optimized for window generation and processing, SPARK Streaming
is the �rst choice when implementing real time data evaluation on Spark. Though it
is not enough to pass a single query directly to spark, the engine naturally supports
the generation of windows through its programming API, which is highly optimized
for partitioning on the Spark cluster.

Thus, we have to compile a program that includes the complete transformation pro-
cess in advance. The STARQL application is then executed on the spark Cluster,
while it manages the evaluation of windows as well as its RDD transformations and
actions directly on the master node.

Listing 5.14: Transformation result in Spark Streaming for Query Example 1

1 WINDOW Measurement_stream 60 60 stdsequence;

2

3 [Transformed SQL result for HAVING clause without WID]

168

5.3. Implementation of the Ontology Based Streaming Back End Adapter

An example transformation result for Spark Streaming is shown in Listing 5.14.
The Listing can be divided into two parts: parameter for window generation and
an SQL query, which is very close to the PostgreSQL result in Listing 5.11, but
without any additional windowID variable, as the engine already guarantees that
the query is executed separately on each window (RDD).

While the SQL result in the second part can just be transformed into transforma-
tions and actions for SQL statements, as given above, the previous lines have to
be parsed for con�guring each inputstream on the Spark cluster. We assume that
the data is derived as strings via TCP port, which requires the following transfor-
mations internally by the deployed Java code to transform a DStream into window
structures of tables. (i) Each tuple (timestamp, sensor, value) of the input stream
(DStream) is added into an RDD array list, (ii) the string array is transformed
into a precon�gured DStream of measurement table objects, (iii) we transform the
object stream into a stream of windows with respect to the input parameters and
�nally (iv) the windowed DStream is transformed into an SQL view with added
ABox information depending on the sequencing method. A simpli�cation of the
Spark Java code is shown in Listing 5.15.

Listing 5.15: Simpli�ed Java code for Spark windows

1 JavaDStream <String > in = ssc.socketTextStream(host , port);

2 JavaDStream <String > list =

3 in.flatMap(Arrays.asList(line.split ("\n")).iterator ();

4 JavaDStream <Row > window =

5 win.transform([<String > -> <measurementObjRDD >]);

6 JavaDStream <Row > win = list.window (60 ,60);

7 Dataset <Measurement_Public > objTable =

8 sparkSession.createDataset(objRDD.rdd(),

9 Encoders.bean(Measurement.class));

10 objTable.createOrReplaceTempView (" window ");

11 Dataset <Row > out = sparkSession.sql(

12 "SELECT rank() OVER (ORDER BY timestamp ASC) AS abox , * FROM WINDOW ;");

13 out.createOrReplaceTempView (" Measurement_stream ");

The integrated window structures of Spark Streaming already guarantee a window
per window evaluation. Thus, no explicit window column is necessary and the pro-
vided SQL query can directly be evaluated by the transformer (see the PostgreSQL
query without window generations for an example).

Temporal Evaluation with SPARK SQL

While real time queries are handled pretty well by the window generation of Spark
Streaming, this is not the case for already recorded temporal data. The window

169

5. Querying Relational Streaming Engines with STARQL

operator of Spark is not designed to use synthetic timestamps and such, it is not
possible to evaluate timestamped data naturally with windows. The API would
rather try to use real time timestamps on the incoming data and not the recorded
ones. Even a replay of the data with synchronized time would not guarantee a
correct result as recorded dataset would not be evaluated as fast as possible, but
either too fast for the system or too slow.

Therefore, our idea for temporal data on Spark is once again to generate the time
windows ourselves by using SPARK SQL. We show the changed transformer result
with window generation for SPARK SQL in Listing 5.16.

Listing 5.16: Transformation result for SPARK SQL

1 VIEW time AS

2 select distinct unix_timestamp(timestamp) as value from measurement order

by timestamp;

3 VIEW time_win AS

4 select collect_list (*) over (order by value range between *window width*

preceding and 0 following) as array , value from time;

5 VIEW time_wid AS

6 select dense_rank () over (order by value) as wid , explode(array) as

timestamp from time_win;

7 VIEW win AS

8 select wid - 1 as wid , from_unixtime(timestamp) as timestamp from

time_wid where pmod(wid - 1, " + slide + ") = 0;

9 VIEW measurement_wid AS

10 select ceil(wid / *window slide*) as wid , timestamp from win;

11

12 [Transformed SQL result for HAVING clause with WID]

As already discussed, in the temporal case we bypass the streaming API of Spark
and directly transform into SQL code for the window generation, which is then
parsed and transformed statement per statement into SQL views on the spark
cluster. As a side e�ect of the window generation, we require again a windowID
column to guarantee the desired evaluation per window.

5.3.4. Experiments on PipelineDB

By an implementation of a query adapter for PipelineDB we face three major prob-
lems compared to other systems: (i) we need an additional client implementation
that pushes the data into streams (streams can not be read or pulled from an exter-
nal source in PipelineDB), (ii) no real window operator exists that could de�ne a
sliding parameter (width only), thus we cannot implement any pulse function, and
(iii) a join of two data streams in one query is not possible.

170

5.3. Implementation of the Ontology Based Streaming Back End Adapter

Once we have arranged ourselves with these disadvantages, the implementation
appears rather simple. First, we implement a client module that pushes our mea-
surement data into PipelineDB streams, e.g., by using a copy command:

COPY stream(t timestamp, sens integer, val numeric(12,3)) FROM 'msmnt.csv'.

And second, we build the transformation result that consists of STREAMs and CONTINUOUS
VIEWs as shown in Figure 5.17.

Listing 5.17: Transformation result for example1 in PipelineDB

1 CREATE STREAM measurement_stream(t timestamp , sensor integer , value

numeric (12 ,3))

2

3 CREATE CONTINUOUS VIEW measurement WITH (max_age = '1 minute ') AS

4 SELECT dense_rank () OVER (PARTITION BY wid ORDER BY timestamp ASC) AS

abox ,

5 * FROM measurement_stream;

6

7 CREATE CONTINUOUS VIEW measurement_having AS

8 SELECT _sens , _z

9 FROM

10 (SELECT * FROM

11 (

12 SELECT sens AS _sens , ass AS _ass FROM (

13 [... WHERE CLAUSE transformation ...]

14) SUB_QVIEW

15) SUB_WHERE

16 NATURAL JOIN

17 (SELECT _z, _sens FROM (

18 SELECT * FROM(

19 -------------------modified ontop result begin

20 SELECT abox AS i, z AS _z , sens AS _sens FROM (

21 SELECT DISTINCT qview1.abox , qview1 ."value" AS "z",

22 ('http ://www.siemens.com/Optique/OptiquePattern#' ||

qview2 ."name") AS "sens"

23 FROM

24 measurement qview1 ,

25 sensor qview2

26 WHERE

27 (qview1 ." sensor" = qview2 ."id") AND

28 qview2 ."name" IS NOT NULL AND

29 qview1 ."value" IS NOT NULL

30) SUB_QVIEW

31 -----------------modified ontop result end

32) SUB_TRIPLE0

33) SUB_QVIEW

34) SUB_HAVING

35) SUB_FROM;

36

37 select * from measurement_having;

171

5. Querying Relational Streaming Engines with STARQL

After having declared the input streams and continuous views in PipelineDB, 100%
of the PostgreSQL code can be reused and therefore, the succeeding views are quite
similar to the ones used in the case of PostgreSQL (Listing 5.10 and 5.11). The only
main di�erence can be seen in the formulation of continuous views, windows with
max_age expression and the omitting of the windowID, which is also described
in 2.2.10.

5.4. Concluding Remarks

This chapter has set the ground for experiments and evaluations in the upcoming
chapter. We described the implementation of our approach in three steps:

We provided signi�cant example queries together with mappings for a small ontolog-
ical implementation of the Semantic Sensor Network ontology to provide a typical
setting and scenario from industrial sensor network use cases in Section 5.2.

We gave an overview of the overall architecture and described the implementation of
its components in Section 5.1. The approach is an extension of the classical OBDA
approach with an integration of the algorithm for temporal sequences as shown in
the previous chapter, and sketch a query adapter that allows transformations to
di�erent backend systems.

In Section 5.3 we have analyzed di�erent implementations of the query adapter for
several backends. The overview has shown that they all require di�erent syntaxes
or even techniques of deployment as in the case of Spark. Finally, they all have
their pros and cons. While Exareme has been speci�cally optimized to �t a speci�c
sensor stream use case as it is given in the Optique project, Spark is a system that
allows for streaming and temporal data as well, while PostgreSQL only handles
historical data, but can be used for optimized distributed window computations.

We evaluate the execution of the given test queries on di�erent backend systems in
the next chapter.

172

6. Evaluation of Query Processing
with STARQL

In Chapter 3 we formulated three research problems that we would like to address
in this thesis. They can basically be summarized by: (P1) Can we design a query
language that provides all necessary functionalities for an ontology based industrial
streaming scenario?, (P2) Is an OBDA approach with query transformations still
feasible? and (P3) Does the approach support an e�cient execution on scalable big
data architecture for streaming and temporal data?.

To answer these questions and to support the more detailed hypotheses that we
additionally have stated additionally in Section 3.1.4, we evaluate experiments and
measure functionality, feasibility and e�ciency of the implemented approach in this
chapter.

We �nally conclude with an overview and evaluation of each hypothesis in Sec-
tion 6.4.

6.1. Functionality Evaluation - Comparison of RDF

Stream Processing Engines

Our �rst goal regarding an evaluation of the STARQL framework is to show that
its functionalities are at least comparable to other current RDF streaming lan-
guages and engines, but also su�cient for expressing complex queries in sensor
measurement scenarios.

As described in Section 2.5, several RDF streaming systems have been developed
besides STARQL. While all have their advantages and disadvantages, STARQL
found its niche with respect to sequence based time handling and evaluation of
historic data to make a great step forward in academic research.

We are �rst going to compare the properties of STARQL to concurrent streaming
languages and second, investigate the STARQL language on formulating realistic

173

6. Evaluation of Query Processing with STARQL

Table 6.1.: Comparison of RDF-Stream query languages (Part1)
Name Data Model Union, Join, Optional, Filter IF Expression Aggregate Property Paths Time Windows Triple Windows

Streaming SPARQL RDF-Streams Yes No No No Yes Yes

C-SPARQL RDF-Streams Yes Yes Yes Yes Yes Yes

CQELS RDF-Streams Yes No Yes No Yes No

SPARQLStream (virtual) RDF-Streams Yes Yes Yes Yes Yes No

EP-SPARQL RDF-Streams Yes No Yes No No No

TEF-SPARQL RDF-Streams Yes No Yes No Yes Yes

STARQL (virtual) RDF-Streams Yes Yes Yes No Yes No

complex queries in the measurement scenario using the SR and CSR Benchmark
(see Section 2.6.2).

6.1.1. Comparing RDF-Stream Query Languages

For the functionality evaluation we have adopted a language overview table from [56],
extended it for STARQL and updated the features of all other query languages to
the best of our knowledge. Its result is shown in two parts in Table 6.1 and 6.2
respectively.

In part one we compare the implementation of the main SPARQL characteris-
tics and features for each case. While all languages support basic functionalities
such as UNION, JOIN, OPTIONAL and FILTER, we see that some languages (including
STARQL) have already been further developed in the spirit of SPARQL 1.1 with
IF clauses, aggregations, arithmetic expressions (not listed here) and others.

Furthermore, all of them, excepting EP-SPARQL (which is more based on events
than time), support temporal windows, though only three of them support triple
windows. Especially in the case of SPARQLStream and STARQL triple windows
would lead into wrong results as they both use relational DSMS as backend systems,
which do not use triples but tuples and, thus, it could be the case that many triples
on the one hand represent a single tuple on the other.

The speci�c streaming capabilities and operators of each query language are com-
pared in the second table. We can identify two groups of query languages, which
di�er in the management of time and for temporal operators in general. On the one
hand we have a group that allows access to timestamps by operators that access
each triple or object within windows. This group includes, e.g., SPARQLStream,
C-SPARQL and STARQL.

While SPARQLStream uses rei�ed time with additional axioms and STARQL a
non rei�ed version with a semantics of temporal states, C-SPARQL uses something
in between and o�ers temporal functions on objects for retrieving their timestamp,

174

6.1. Functionality Evaluation - Comparison of RDF Stream Processing Engines

Table 6.2.: Comparison of RDF-Stream query languages (Part2
Name W-to-S Operator Cascading Streams Intra window time Sequencing Synchronized Pulse Historic data

Streaming SPARQL RStream No No No No No

C-SPARQL RStream No Yes No No No

CQELS RStream No No No No No

SPARQLStream RStream, IStream, DStream No Yes No No No

EP-SPARQL RStream No No Yes No No

TEF-SPARQL RStream No No Yes No No

STARQL RStream Yes Yes Yes Yes Yes

which could lead to inconsistencies if an object occurs several times inside a window
in di�erent temporal states.

However, we �nd a group of languages being developed with respect to temporal se-
quences and speci�c sequencing operators, such as in EP-SPARQL, TEF-SPARQL,
and STARQL, that build a bridge to event processing. Though EP-SPARQL is
di�erent from the two other approaches, as it is more a CEP based language,
they all share the possibility to de�ne temporal sequences with operators. While
EP-SPARQL extends SPARQL by four new binary operators: SEQ, EQUALS,
OPTIONALSEQ and EQUALSOPTIONAL, TEF-SPARQL de�nes temporal facts
and STARQL makes use of its special HAVING clause.

Finally, STARQL o�ers several new operators with functionalities that have not
been included in previous systems. Next to cascaded streams, which can be seen
as temporal sub queries, it o�ers the possibility of querying historically recorded
data or even comparing it with a current live stream (see Section 3.2.2). Those
di�erent kinds of input streams (possibly using di�erent kinds of window widths
and slides) can additionally be synchronized in STARQL by one or more pulse
functions, which allow a regularly query output for possibly asynchronous input.

The given overview has shown that STARQL subsumes most of the other languages
and o�ers several novel features.

6.1.2. Comparing RDF based Streaming Systems

We presented a prototypical implementation of the STARQL framework for ontol-
ogy based data access on temporal and streaming data in Chapter 5. This approach
is based on R2RML mappings and query rewriting techniques as additionally pre-
sented in Chapter 4.

For a proof-of-concept implementation we proposed four di�erent backend trans-
formations and implementations showing di�erent strengths of the overall system:
(i) PostgreSQL as a standard relational database, (ii) PipelineDB as a standard

175

6. Evaluation of Query Processing with STARQL

Table 6.3.: Comparison of RDF stream query languages
Language Input Execution Query Optimization Stored Data Reasoning

Streaming SPARQL RDF-Streams physical stream algebra Static plan optimization Yes No

C-SPARQL RDF-Streams DSMS based evaluation with triple store Static plan optimization Internal triple store RDF entailment

CQELS RDF-Streams RDF stream processor Adaptive query processing operators Stored linked data No

SPARQLStream Relational streams external query processing Static algebra optimizations, host evaluator speci�c Data source dependent No

EP-SPARQL RDF-Streams logic programming, backward chaining rules No No RDFS, Prolog equivalent

TEF-SPARQL RDF-Streams Yes No Yes Yes

STARQL Relational streams external query processing Static algebra optimizations, host evaluator speci�c Datasource dependent Yes (DL-LiteA)

streaming extension for PostgreSQL, (iii) Exareme as a scalable relational database
on di�erent nodes with integrated python functions that manage aggregations, and
(iv) a standard and heavily used big data system, namely Spark, which is highly
scalable and provides built-in streaming as well as graph and data mining libraries
for speci�c additional purposes.

Our system can be compared to other existing RDF-streaming engines. We sum-
marize the main facts of these architectures and compare them to the STARQL
framework in Table 6.3.

Most of the streaming engines rely on native implementations of query processors.
CQELS, for example, reimplements functionalities which do already exist in DSMS
and therefore can be seen as a standalone engine. EP-SPARQL is based on logical
programming and backward chaining, but is also implemented from scratch. Finally,
C-SPARQL relies on an internal DSMS, but has no �exibility for mappings or
rewritings.

Therefore, the only two systems supporting an ontology-based data access approach
with mappings and a �exible backend are SPARQLStream and STARQL. As they
both rely on external DSMS, they also both su�er from respective disadvantages.
Query rewriting and translation of results can be expensive, also the expressiveness
of the underlying system restricts the input of the RDF-Streaming queries (see also
Section 2.4.1).

On the other hand, the query rewriting process also o�ers possibilities for query
optimization, e.g., in the rewriting/unfolding process itself or on the backend, which
might execute the query in a more e�cient way compared to a directly implemented
query processor.

6.1.3. Evaluating Functionalities in a Benchmark

When talking about a functionality benchmark for RDF-Stream query languages,
probably the best choice is the SRBenchmark (see Section 2.6.2). It o�ers 17 well
chosen queries in natural language and tests functionalities of SPARQL 1.0 and

176

6.1. Functionality Evaluation - Comparison of RDF Stream Processing Engines

Table 6.4.: SRBench result table
Language Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

SPARQLStream 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

C-SPARQL 3 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3 3

CQELS 3 3 3 3 3 3 3 3 7 3 3 7 7 7 7 7 7

STARQL 3 3 7 3 3 3 3 3 3 3 3 7 7 7 7 7 7

SPARQL 1.1 in a realistic scenario with respect to data from the linked open data
cloud [85].

The tested features of the benchmark can be characterized by seven categories as
listed below.

Graph Pattern Matching: included are basic operations on RDF tripel such as
UNION or OPTIONAL.

Solution Modi�er: covered are only projection and distinction, as the other mod-
i�cations are generally covered by time or window properties.

Query Form: the queries of the SRBench are using SELECT, CONSTRUCT and ASK

query forms.
SPARQL 1.1: several operators of the SPARQL extension are tested, including:

aggregates, subqueries, negations, arithmetic expressions, property paths and
assignments.

Reasoning: the queries currently involve reasoning over the following properties:
owl:subClass, owl:subProperty and owl:sameAs.

Streaming Feature: the covered features are time-based windows with parame-
ters and streaming operators (RStream, DStream, IStream) .

Data Access: the benchmark includes four di�erent data sets from the linked open
data cloud.

In its initial paper [248] three di�erent RDF-Stream query engines where compared,
namely C-SPARQL, CQELS and SPARQLStream. Recently, these languages have
been further extended and their results for the SRBench improved. Their new re-
sults that give the expressable queries for each language, are shown in Table 6.4
together with a result for the STARQL framework. All updated queries of the
benchmark together with their latest representations in the respective query lan-
guage can also be found on the web [215].

While in 2012 SPARQLStream failed at 14 and CQELS/C-SPARQL at ten query
formulation tests each, it now seems that SPARQLStream and C-SPARQL have
been extended to express most of the test queries. However, the current implemen-
tation of STARQL was not able to express seven queries out of 17 and therefore,
lies somewhere between the �rst results from 2012 and the latest updates of the

177

6. Evaluation of Query Processing with STARQL

concurrent systems (except CQELS, which still has not been updated since 2012).
The ten SRBench queries, which can be expressed in STARQL, are found in Ap-
pendix C.

We list the major functionalities that prevent STARQL from expressing the �nal
queries:

ASK queries: currently the STARQL framework supports no ASK query form,
which is required for query Q3. This query form also was not available in
the original 2012 version of SPARQLStream and has been added recently. As
this feature can always be replaced by a SELECT or CONSTRUCT form, we
see it less important for a simple proof of concept implementation, but still
is a possible candidate for future updates.

IF clauses: the IF clauses used in STARQL are not identical to those used in
SPARQL or SPARQL extensions (as required in query Q9). While STARQL
uses them in a declarative way and returns only a boolean value, which is
similar to �if A is correct, then B also has to be correct�, in SPARQL (and
its stream extensions) IF clauses are used as function with return values, say,
�if A is correct, then return B, else return C�. These di�erences do not allow
a direct implementation of Q9 in STARQL. Nevertheless, we are able to
express the query by using a substream for every IF clause (see Appendix).

Property Paths: the feature with the strongest impact on the SRBench results
are property paths. As originally no RDF-Stream query language supported
them in 2012, at least SPARQLStream and C-SPARQL claim to do this in
their latest version. Furthermore, this feature is required in incomprehensibly
many queries and therefore, all test queries betweenQ12 andQ17 can neither
be expressed in CQELS, nor in STARQL. Though, only two di�erent kinds
of property path modi�ers are used (i.e. �|� and �+�) from the large operator
set [9].

Besides the three listed functionalities above, which could be implemented in future
versions of STARQL, there are no further issues in�uencing the results of the
SRBenchmark or make queries of these kinds not expressible.

6.1.4. Discussion of the Functionality Evaluation

We can say that the basic functionalities of handling graph patterns are covered
in the STARQL query language according to Table 6.1, which includes several
features of SPARQL 1.1 (e.g., aggregates, arithmetic expressions, and negations)
that also support hypothesis H1. Only very few features regarding graph patterns,
which recently have been integrated in SPARQLStream and C-SPARQL, such as

178

6.1. Functionality Evaluation - Comparison of RDF Stream Processing Engines

property paths, have not yet been implemented. Nevertheless, an integration in
future versions is possible.

Nevertheless, STARQL integrates a lot of functionalities for streaming and time
handling that have not found their way into any or just partially into very few other
RDF-Stream query languages yet. As shown in Table 6.1, those features are based
on stream operators such as the sequencing method together with its HAVING clause
or the pulse function that allows an evaluation of historically recorded time series
and synchronizes stream outputs for non-synchronized input streams and especially
in a mixed setting of live and recorded data (see Section 3.2.2).

Furthermore, we show evidence for supporting hypothesis H2 and H3, which ex-
actly state the support of historic and streamed data in one query.

The system most comparable to STARQL might be SPARQLStream because it
also relies on an OBDA approach, which �nally restricts the expressiveness of a
query to a maximum of DL-LiteA, but nevertheless also supports hypothesis H4.
Additionally, both systems use query transformations with respect to perfect rewrit-
ing from the RDF-Stream level to a relational level, where other languages directly
implement their desired features in their own query processor (in a non-relational
way) and reach a possible higher level of expressiveness.

Furthermore, STARQL shows features that also SPARQLStream supports and vice
versa, as apparent in the SRBenchmark. The di�erences between the expressiveness
of STARQL queries and SPARQLStream for the SRBenchmark are based on their
di�erences in the rewriting techniques. While the STARQL implementation uses
the Ontop framework for the translation of graph patterns (that currently does not
support property paths), the implementation of SPARQLStream bene�ts from the
Kyrie2 [171] rewriting module. The Kyrie approach tries to reduce the rewriting
by existential constraints in a so called EBox inspired by Prexto [205].

For providing features such as property paths, Kyrie also needs to extend the ex-
pressiveness to ELHIO, which is no longer in the range of perfect rewriting, but
is based on Datalog rewriting as it requires recursive Datalog. Hence, it is also no
longer ensured that the output can be reduced to a (�nite) UCQ query and there-
fore, the result can be incomplete or even include wrong answers (see also [144]).

This discussion shows that, although features such as property paths can be added
to a rewriting approach, they come at a cost of probably incorrect results, which
still makes adding property paths questionable.

179

6. Evaluation of Query Processing with STARQL

6.2. Evaluation of Rewriting and Transformation

In this section we review hypothesis H5, H6, H7 and thus, evaluate the query
rewriting and transformation process of STARQL itself.

6.2.1. (Non) Rei�cation of Direct Mapping and Time

In Section 3.3.5 we already mentioned the problematic situation of handling times-
tamps as part of the underlying semantics or as part of the dataset. We now also
would like to address this issue from a mapping and transformation perspective and
explain how di�erent ontologies or temporal semantics may or may not change the
transformation result in the case of the STARQL framework.

Mapping of the Semantic Sensor Network Ontology

We recap the sensor observation description from Section 5.2.2 for the SSN Ontology
and investigate its transformation result.

In Chapter 3 we used a very minimalistic model with axioms such as ?sens :hasVal
?x, but in practice, ontologies can be more complex, like in the case of the SSN
ontology. Here we have a rei�ed data model in such a way that each measurement
is modeled with a speci�c sensor observation object which is then part of further
axioms for declaring the sensor, result values, the observed property, and other
features (see Listing 6.1).

Listing 6.1: Representation of a sensor observation

1 ?obs a ssn:Observation;

2 ssn:observedBy ?sens;

3 ssn:observationResult ?r.

4 ?r ssn:hasValue ?x.

Transformation of graph patterns have been addressed in Chapter 2. According
to the results in Section 2.4.2, we would expect that more axioms in a graph pat-
tern also result in (probably unnecessary) joins in the transformation result, but
tests with query rewriting and unfolding tools show that these (self) joins can be
eliminated in an optimization step.

We show a transformation result of the observation model in Listing 6.1, tested
in the Ontop transformation module with respect to R2RML mappings from the

180

6.2. Evaluation of Rewriting and Transformation

implementation chapter in Listing 6.2 (names for result and observation are abbre-
viated).

Listing 6.2: Example transformation for observations and results (abbreviated)

1 SELECT r AS _r, x AS _x , sens AS _sens , obs AS _obs FROM (

2 SELECT qview1 ."value" AS "x",

3 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

4 ('http ://www.sensor.net/result/' || qview1 ."sid") AS "r",

5 ('http ://www.sensor.net/observation/' || qview1 ."sid") AS "obs"

6 FROM measurement_stream qview1

7) SUB_QVIEW

The transformation results show that, although we have a join of four triples on
the RDF layer, the unfolding can be optimized by optimization algorithms that
eliminate all (self) joins, which makes us con�dent that the complex structures of
the SSN ontology can be rewritten and unfolded with respect to mappings, but
without any additional joins in the unfolding and thus, without any performance
loss or increased complexity for the SQL query.

Rei�ed vs. Non-Rei�ed Time Transformation

The SSN ontology does not prescribe how timestamps should be handled. However,
as explained in Section 3.3.5, we decided to choose a non rei�ed time approach and
integrate it directly into the semantics of the ontology, while most other approaches
(e.g. SparqlStream) have chosen a rei�ed approach and additional temporal axioms
for each object.

Listing 6.3: Representation of a sensor observation (rei�ed)

1 ?obs1 a ssn:Observation;

2 ssn:observedBy ?sens;

3 ssn:observationTime ?t1.

4

5 ?obs2 a ssn:Observation;

6 ssn:observedBy ?sens;

7 ssn:observationTime ?t2.

8 FILTER (?t1 < ?t2)

Therefore, it is a reasonable question, if a non-rei�ed approach can be implemented
and transformed in the same way as the classical rei�ed one. To shed light on
this, we have made two further experiments. First, we have evaluated a rei�ed
temporal approach regarding its transformation with respect to the SSN ontology

181

6. Evaluation of Query Processing with STARQL

Listing 6.4: Transformation of a sensor observation (rei�ed)

1 SELECT t2 AS _t2 , obs1 AS _obs1 , t1 AS _t1 , sens AS _sens , obs2 AS _obs2

FROM (

2 SELECT DISTINCT

3 ('http ://www.sensor.net/' || qview1 ." timestamp ") AS "t1",

4 ('http ://www.sensor.net/' || qview2 ." timestamp ") AS "t2",

5 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

6 ('http ://www.sensor.net/observation/' || qview1 ."sid") AS "obs1",

7 ('http ://www.sensor.net/observation/' || qview2 ."sid") AS "obs2"

8 FROM

9 measurement_stream qview1 ,

10 measurement_stream qview2

11 WHERE

12 (('http :// www.sensor.net/' || qview1 ." timestamp ")

13 < ('http ://www.sensor.net/' || qview2 ." timestamp "))

14) SUB_QVIEW

and mappings. Thus, we handle timestamps simply as additional assertions, which
can be seen in the example from Listing 6.3.

We model two observation with two di�erent timestamps and add a �lter constraint,
which declares that observation1 happened before observation2.

A look at the transformed query in Listing 6.4 shows that the additional observation
object and timestamp of the RDF layer results in a self join of the measurement
table in the SQL result. In comparison to the previous example, this can not be
prevented by an optimization algorithm, as we try to combine two di�erent temporal
states.

Listing 6.5: Representation of a sensor observation (rei�ed)

1 HAVING EXISTS i,j in SEQ1 (GRAPH i {

2 ?obs1 a ssn:Observation;

3 ssn:observedBy ?sens }

4 AND GRAPH j {

5 ?obs2 a ssn:Observation;

6 ssn:observedBy ?sens.}

7 AND i < j)

We now would like to compare these results to our non rei�ed approach that is used
in the STARQL framework. Thus, we formulate the same observation model of
two observations, but with di�erent timestamps in a STARQL HAVING clause (see
Listing 6.5) and evaluate its transformation result in Listing 6.6.

182

6.2. Evaluation of Rewriting and Transformation

Listing 6.6: Transformation of a sensor observation (non-rei�ed)

1 SELECT * FROM(

2 (SELECT DISTINCT qview1 ."abox" AS "i",

3 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

4 ('http ://www.sensor.net/observation/' || qview1 ."sid") AS "obs2"

5 FROM

6 measurement_stream qview1

7) SUB_QVIEW

8 NATURAL JOIN

9 (SELECT DISTINCT qview1 ."abox" AS "j",

10 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

11 ('http ://www.sensor.net/observation/' || qview1 ."sid") AS "obs1"

12 FROM

13 measurement_stream qview1

14) SUB_QVIEW

15)SUB WHERE i < j

While noticing that the timestamps t1 and t2 now have changed to temporal state
ABox variables i and j, the experiment shows a transformation result, which is
similar to the result of the rei�ed approach before. We again have a self join of
the measurement table, though each instance is encapsulated in a subquery. as we
basically have the same join and selection.

Furthermore, the approach for using non-rei�ed time in temporal states could pro-
vide cases, which would be even more e�cient. If we thought about further con-
straints for a speci�c sensor, say sensor1, then this sensor would be selected in the
rei�ed case after a self join, but for the non rei�ed version even before, which can
reduce the cost of joins a lot, depending on the speci�c constraints we choose.

Finally, we showed that a rewriting of the SSN ontology with non rei�ed temporal
semantics does not have any negative e�ect on the resulting SQL transformation,
but for some cases it can even be more e�cient.

6.2.2. Evaluation of Transformation and Delays

Our prototypical implementation of a STARQL engine provides four di�erent query
adapters, each with its own characteristics. While Exareme and Spark are scalable
systems for historical and live streaming data, we also support PostgreSQL as an
example for the SQL standard with historical processing and PipelineDB, which is
an extension of PostgreSQL for live streaming only.

Before we focus on a comparison between these systems, we �rst concentrate on
evaluating the general rewriting and translation performance, which is the ground-

183

6. Evaluation of Query Processing with STARQL

ing for each backend connection. Thus, we would like to measure the additional
overhead that these techniques add to the query processing in real scenarios.

In order to do that we evaluate the temporal costs of the back translation process,
which is necessary each time we retrieve a tuple from the backend system and
translate it into a JSON-LD format by the STARQL serialization module (see
Section 5.1). As the query is rewritten only once (with translation times usually
below 1 second), but the query results are translated regularly for each resulting
tuple, we concentrate on the translation of query results, but also show the query
transformation time afterwards.

We evaluate query translation times of the STARQL framework for di�erent tuple
rates and di�erent window sizes, using a simple query as given in Listing 5.6 and
compare it to the results for SPARQLStream from [56]. The translation process
was evaluated on a single machine with an Intel i7 2.8 GHz processor and 8 GBs of
RAM.

Figure 6.1.: Comparison of tuple translation delay

First, one can see that the results between STARQL and SPARQLstream are pretty
close, although STARQL results are a little bit less delayed. As we expected,
the delay increases according to the streamed tuples to be transfered per second
and the window size of the query. The STARQL engine already transfers some
transformation steps into the backend, which allows for e�cient processing and
shorter delays on the client side (see also Chapter 4).

184

6.2. Evaluation of Rewriting and Transformation

Table 6.5.: Query rewriting delays for di�erent query examples

System Example1 Example2 Example3 Example4

PostgreSQL 251ms 336ms 307ms 295ms

Spark 317ms 337ms 300ms 307ms

Second, we show the query transformation times for PostgreSQL and Spark. Trans-
formation has to be done once before registering each query in the backend. We list
the delay in milliseconds for each of our four example queries from Section 5.2.4 in
Table 6.5.

The table basically shows the feasibility of translating all chosen example queries.
Translation Times lie within a range of 250 to 350 milliseconds for PostgreSQL or
Spark, which literally explains why query rewriting is not an issue when it comes
to estimating the performance of query answering. In particular, query rewriting is
only executed once in the process, namely each time a new query is registered on a
backend system.

6.2.3. Discussion of the Transformation Process

In this section we answered three di�erent questions, which are important for the
overall results of the STARQL framework.

We �rst had a look at the rewriting process of the standard ontology for semantic
sensor data and showed that additional complex axioms in the ontology on the
one hand does not necessarily require any additional complexity for queries on the
relational data base side. Using an appropriate set of mappings and a primary
as well as foreign key structure on the database level, ontology based data access
modules are able to optimize the rewriting and unfolding in such a way that no
unnecessary joins are produced. These observations also support our hypothesis
H5 from Chapter 3.

Second, we also discussed the representation of time and its impact on query rewrit-
ing. The investigation of an example showed that the rewriting and unfolding is
not identical, but the comparison of di�erent timepoints comes hand in hand with
a join of the time series data on the relational backend. But on the other hand a
clear distinction between temporal states also allows for a pre�ltering of the join
beforehand, which makes it less complex and more e�cient at the end. And thus,

185

6. Evaluation of Query Processing with STARQL

we can show that unfolding with the STARQL engine and its non rei�ed tempo-
ral semantics is potentially more e�cient than other implementations using rei�ed
semantics (e.g
, SPARQLStream). This �nding also supports hypothesis H6.

Finally, with hypothesis H7 we require that both the query rewriting and the
translation of results from the backend system is possible with minimal delay. Both
translation directions were shown to be e�cient, and lie in the range of milliseconds
for the given queries and results.

We even were able to outperform SPARQLStream in the case of query result trans-
formations by approximately 50%.

6.3. Evaluation of Query Execution

We already mentioned above that a performance evaluation of the STARQL frame-
work in a competitive benchmark cannot be seen as a desirable task. The perfor-
mance benchmarks that we have described in Section 2.6.2 aim on systems which
rely on their own query engine. STARQL uses an ontology based data access
approach for relational backends (similar to SPARQLStream) and thus, can only
provide an API for plugging in di�erent query adapters and DSMSs as described in
Chapter 5. A performance evaluation of relational systems is out of scope of this
work, but see, e.g
, [19] for a comparison of Spark to other systems.

Nevertheless, with STARQL we introduce a framework that also supports process-
ing of historically recorded timeseries data. Therefore, we would like to show how
the chosen example queries behave with di�erent window parameters in the follow-
ing section. Additionally, we show how those queries can be optimized for parallel
execution in a scalable setting.

6.3.1. Evaluation of Historical Queries

We �rst evaluate our example queries from Section 5.2.4 on a single machine with
di�erent window parameters.

Similarly to our previous experiments, we have chosen a machine with i7 2.8 GHz
core and 8 GB of RAM. Further, we have evaluated queries Q1 to Q4 on four
di�erent synthetic data sets with sensors emitting one value per minute: (i) one
sensor over three days, (ii) 20 sensors over three days, (iii) one sensor over three
years, (iv) 20 sensors over three years (more than 31 million tuples). Their results
are shown in Table 6.6.

186

6.3. Evaluation of Query Execution

Table 6.6.: Query times for di�erent examples and parameters

Postgres Spark

3 Days 3 Years 3 Days 3 Years

Q1 (1 Sens.) 0.2 s 22 s 1 m 22 s 8 m 51 s

Q1 (20 Sens.) 3.1 s 6 m 47 s 3 m 5 s 14 m 8 s

Q2 (1 Sens.) 3 s 10 m 51 s 1 m 45 s 17 m 37 s

Q2 (20 Sens.) 1 m 17 s out of memory 2 m 39 s 2 h 41 m 58 s

Q3 (1 Sens.) 0.6 s 2 m 54 s 3 m 10 s 15 m 48 s

Q3 (20 Sens.) 12.4 s 1 h 13 m 6 m 10 s 20 m 16 s

Q4 (1 Sens.) 13 s N/A 14 m 20 s N/A

Q4 (20 Sens.) 7 m 47 s N/A 44 m 5s N/A

One can see in the results that measured time scales are roughly linear in the
PostgreSQL case with respect to the number of sensors and the used window size
as well, by a factor of about 20 for sensors and less than 300 for the two time
periods as expected. Besides that, there are two special cases. The case Q4 does
not scale by the expected factor of 20, but a factor of 40. This is because of the
two cascaded streams that we use in the query, where we have to build the window
structure twice in a row, which can not be parallelized by the Postgres engine. In
the case of the 3 years dataset Q4 took too long and we even canceled the execution
of experiments for the largest dataset after �ve hours.

The second observation is about the memory consumption of query Q2, which is
the only query that compares two di�erent abstract time points that are de�ned on
the temporal sequence. Therefore, the unfolding result tries to join the temporal
relational data of both states on the backend system. The join between two tables,
with a couple of gigabytes each, was so memory consuming that it could not be
handled by the machine used in the experiments.

These initial observations for PostgreSQL show that the set up of the system scales
vertically with respect to a growing dataset, but direct horizontal scaling with the
PostgreSQL system is not possible, due to the Postgres query execution process,
which can only run on a single core.

Furthermore, we compare the Postgres implementation to a STARQL implemen-
tation with Spark engine backend on the same machine with four installed worker

187

6. Evaluation of Query Processing with STARQL

Table 6.7.: Query times for distributed window execution
Query Postgres (1 core) Postgres (2 cores) Postgres (3 cores) Postgres (4 cores)

Q2 (1 Sens.) / 3 Days 1.5 s 0.9 s 0.6 s 0.5 s

Q2 (20 Sens.) / 3 Days 12.8 s 7.7 s 6.5 s 5.6 s

Q2 (1 Sens.) / 3 Years 7 m 16 s 3 m 36 s 2 m 48 s 2 m 14 s

Q2 (20 Sens.) / 3 Years 1 h 25 m 57 m 52 m 43 m

units. The execution on Spark shows its design for a huge datasets, while Post-
greSQL is found to be fast for small datasets and small joins, Spark shows its
power in handling larger data sets and regarding larger joins without any memory
problems. Although the execution of a Spark jobs produces overhead itself and
additional overhead for the transformation between RDDs and Dataframes (see
Section 2.2.11), we see an improved scaling with respect to the increasing dataset
that is based on the parallel execution on di�erent cores. In most cases the scaling
from one to twenty sensors and three days to three years is just a one digit fac-
tor. The overhead for Spark jobs could be even further reduced by �xing di�erent
system parameters, e.g
, for partitioning and shu�ing data between the di�erent
worker units as we simply used the standard Spark con�guration parameters for
our proof of concept implementation.

6.3.2. Scalability of Query Execution

In Chapter 5 we described PostgreSQL as a process based system that cannot
execute multi threading. Therefore, although we can scale vertically, we have not
shown a possible horizontal scaling with parallel execution of windows in di�erent
threads. Additionally, the shown approach already has disadvantages in memory
usage if di�erent temporal states are compared in a sequence.

To solve these problems, we also implemented a second approach that is described
in Section 5.3.1 and can be seen as a proof-of-concept implementation for the dis-
tributed execution of single windows. For our experiments (results shown in Ta-
ble 6.7) we have chosen once again example Q2, because we would like to evaluate
its computation time and memory consumption in comparison to the previous ex-
periments.

The resulting table (see Table 6.7) presents values for di�erent numbers of Post-
greSQL sessions (each executed on a single core) on the machine with four cores.
One can see that the distributed window approach even outperforms the non dis-
tributed approach on a single core. The reason is simple, because now every window

188

6.4. Discussion of Evaluation Results

is executed for its own on a smaller piece of data and thus, the necessary joins in
each case are reduced massively.

Furthermore, the approach proves that STARQL queries are also scalable in a hor-
izontal direction by adding more cores or machines. Although the queries executed
on a single multi core machine with shared memory, the execution time is nearly
halved by adding a second CPU core (session). The addition of further cores has a
measurable, but reduced e�ect, because the distribution overhead and splitting of
windows was also managed by the same machine, and requires a CPU core.

While this experiment shows promising results on a PostgreSQL server, it is not
applicable in the same way to a Spark engine because of the overhead for each
Spark job. Mentioning that we execute each window in a new session or job, we
soon arrive at millions of jobs, which currently cannot be handled by Spark, but
are handled well in distributed sessions with PostgreSQL. An implementation of
manually distributed Spark processing would require further �ne tuning of Spark
execution parameters and system variables, which is out of scope for this work.

Finally, we are also able to support hypothesis H8, as we showed a horizontal
scalability of our general implementation with Postgres and are able to translate
queries to big data engines such as Spark (although not e�ciently in the case of
Q2).

6.4. Discussion of Evaluation Results

This chapter presented experimental results for supporting the eight hypothesis
from the beginning of our thesis.

We proceed by going through each hypothesis once again and discuss their status
with respect to the evaluation results given in this chapter. Therefore, we split the
hypothesis into three groups and start by functionalities, succeed with the query
transformation and conclude by a discussion on e�cient scalability with di�erent
backend systems.

6.4.1. Evaluation of Functionalities

An overview on functionalities and operators of STARQL was �rst presented in
Chapter 3. The list has been compared to other RDF-Stream query languages and
systems in Table 6.2 and 6.2, While its results are already discussed in Section 6.1.4,
they can help us to check the following hypothesis:

189

6. Evaluation of Query Processing with STARQL

H1. We support the basic functionalities of SPARQL, as well as operators from
SPARQL 1.1 in our query language.

A comparison between STARQL and SPARQL (especially SPARQL 1.1) with re-
spect to their query operators can be found in Section 3.3.4. It shows that all
important operators are also provided in STARQL, with a few exceptions: the
SRBenchmark has shown that ASK queries, IF clauses, as well as Property Paths

are currently not supported or supported in a di�erent way by STARQL. While
ASK queries can basically be replaced by other query forms and IF clauses by cas-
caded selection streams, the absence of Property Paths can be seen as a small
disadvantage when it comes to the access of RDF data in industrial measurement
scenarios.

Although other competitors provide operators for property paths, we decided to
omit them. The expressivity of such queries would be required to be extended
to ELHIO, which is no longer in the range of a perfect rewriting approach and
therefore, could lead to incomplete and incorrect results (see Section 6.1.4).

H2. We guarantee stream access on di�erent kinds of temporal and non temporal
input, namely, live streamed, historically recorded and static data.

The STARQL framework provides di�erent (window) operators for accessing all
three kinds of data as presented in Section 3.2 and in our experimental results from
the current chapter. Additionally, we can formulate exclusive static data access in
the WHERE clause and temporal access in the HAVING clause. Thus, we can state these
hypothesis as directly supported. Nevertheless, the access on di�erent data inputs
is highly dependent on support in the speci�c backend implementation, while, e.g.,
Exareme allows for live and historic data, the implementation of PostgreSQL only
processes recorded temporal data.

H3. Di�erent kinds of streams (live and historic) can be joined and its output
synchronized, if di�erent slide parameters are provided.

All possible inputs can be declared in the FROM clause and are automatically joined
at the backend. This functionality is also supported by a pulse operator with
start/end parameters, as well as a sampling frequency for synchronizing the output.
Further, we provide a lag parameter for each window description, which allows a
mix of live and historic data (see Section 3.2.2).

H4. We allow basic reasoning in the range of DL-LiteA and semantic enrichment
for STARQL.

190

6.4. Discussion of Evaluation Results

The heart of our reasoning solution is the extension of rewriting approach of the
Ontop module that was rearranged with temporal parameters for our architecture
to allow a non-rei�ed temporal layer (see Chapter5). As already mentioned in
connection to H1, the OBDA approach allows for an expressivity of DL-LiteA in
connection with perfect rewriting. This a general limitation of the OBDA approach
and was not to be solved by our implementation. Therefore, the hypothesis can
also be seen as supported.

6.4.2. Feasibility of the OBDA Approach

In connection to H4, which is already supported, we will now check hypothesis H5
toH7 for a more detailed evaluation of the rewriting process (see also Section 6.2).

H5. We are able to handle our OBDA approach, while using sensor ontologies such
as the SSN ontologies.

The rewriting of the SSN ontology with respect to R2RML mappings and the
STARQL framework was shown in Section 6.2. Although we represent single tu-
ples on the relational database side with a large number of triples, its transformation
does not lead to unnecessary joins, due to optimization techniques of the transfor-
mation module. Thus, this hypothesis can also be stated as supported.

H6. We are able to rewrite the used the extended temporal sequences and operations
without any loss of e�ciency on the backend system.

The rewriting and translation for sequences of temporal states was an important
goal of this thesis and is implemented in the STARQL prototype. We evaluate
and discuss the transformation in Section 6.2.1 and show that unfolding is not only
comparable to an rei�ed temporal approach, but also more e�cient in some cases
if used together with �ltering.

H7. We are able to translate the continuous relational query results of high through-
put streams without delays (or at least not relevant delays).

We have shown our experimental results for translating query answers with respect
to mappings in Figure 6.1, as well as temporal measurements for the query rewriting
process in Table 6.5. In both cases we see that the delay is in an acceptable range.
While query rewriting for our examples takes only up to 350ms (executed once per
query), the translation of query answers took up to 40 ms in the case of 1000 tuples
per second, which makes us con�dent that we are able to handle up to 25,000 tuples
transfered to a client per second on a single machine until a user would recognize a
one second delay.

191

6. Evaluation of Query Processing with STARQL

6.4.3. E�ciency and Scalability of the Implemented Approach

Finally, we discuss our last hypothesis based on backend e�ciency and scalability.

H8. Our approach can be used in parallel and horizontally scalable with relational
data stream management systems as backends in big data scenarios.

The scalability of STARQL queries for the historical approach was measured on
distributed PostgreSQL sessions and the big data engine Spark, and realized by
implementing a parallel distributed window execution. Our results show that the
addition of further CPU cores scaled nearly linear, while also processing the data
distribution on the same machine. These observations make us con�dent that the
currently implemented architecture is also applicable for big data scenarios with
even larger volumes of data than the 20 sensors and measurements shown over
three years.

192

7. Conclusion

The presented work in this thesis constitutes a major breakthrough in research
on temporal ontology-based data access. We support this claim by designing a
domain independent streamed temporal query language based on advanced query
transformation techniques.

We started in Chapter 3 by formulating three research problems:(i) How do we
design a state-based query language for RDF streams and temporal RDF data?,
(ii) How do we support the OBDA translation?, (iii) How do we enable parallel
execution for streaming and temporal data for big data solutions?

We addressed those issues throughout the thesis by presenting the STARQL frame-
work. In Chapter 3 we also introduced a query language on RDF data with opera-
tors for accessing streams as well as temporal data and explained how we apply an
OBDA approach with rewriting and query transformations for full access to di�er-
ent relational DSMSs and DBMSs in Chapter 4. We continued be giving a complete
architecture description and implementation of the STARQL prototype together
with query, mapping and data examples. Finally, we evaluated our approach in
experiments with respect to functionality, feasibility of rewriting and e�ciency of
translated queries executed on backend systems.

In recent years several concurrent query languages for RDF streams have been
developed. Although they all allow access on streams with SPARQL-based lan-
guages, those approaches also miss several important features. They either do not
provide real temporal semantics , do not provide important operators for describing
temporal patterns, or even omit window operators.

Additionally, most of these systems implement their own query engine into the
system and do not provide �exible access on external streaming systems, with only
one exception. SPARQLstream supports a query rewriting approach on relational
streaming backends. Though it bene�ts from the �exibility of using modern and
optimized systems, it provides only a rei�ed temporal approach and no access to
historical data.

Therefore, we are con�dent in adding important research results to the RDF stream-
ing community, by having uni�ed di�erent temporal operators in one single query

193

7. Conclusion

language (e.g. sequence operator, window operators and operators from SPARQL
1.1), added temporal semantics with respect to ontologies and mappings, �exible
backend access on relational streaming and non streaming systems,comparable to
the Lambda Architecture.

Furthermore, we have veri�ed eight research hypotheses, formulated at the begin-
ning of our work, in Section 6.4. Our detailed contributions are given in following
section.

7.1. Contributions

We provide contributions in terms of new ways for accessing RDF stream and
historic data on relational backends, by a design of the STARQL framework. The
detailed contributions associated to the described research problems can be listed
in four parts:

• We have formulated the new query language STARQL with syntax and
semantics. It was �rst presented in Chapter 3 and can be seen as a combina-
tion of elements from SPARQL 1.1, di�erent SPARQL streaming extensions
and additional concepts for temporal based analysis. While targeting for �ex-
ible access to di�erent relational streaming and non-streaming engines, it also
allows for a combined approach on historically recorded and live stream data
as also given in lambda architectures (depending on the backend).

• We have extended the classical query rewriting approach by a rewriting of
temporal states and sequences. The translation is based on mappings
for hiding the heterogeneity of di�erent data schemes on backends behind
modern ontologies for sensor networks (e.g. the SSN ontology). Further, the
translation was enriched by a fourth temporal dimension on top of temporal
concepts of the ontology, which is a direct part of the query semantics and
was shown in Chapter 4.

• We provided an architectural design for accessing historical and stream
data by an OBDA approach. The architecture, as shown in Chapter 5, con-
sists basically of two parts: (i) the rewriting and transformation module,
which parses the query and unfolds the STARQL HAVING clause into rela-
tional expressions that are representations of the given temporal states, and
(ii), an implementation of di�erent query adapters for accessing relational
backends and integrating their speci�c window operators and constructions.
The implementation was described for four backends: PostgreSQL, Exareme,

194

7.2. Outlook and Future Work

Spark and PipelineDB and was also used in the FP7 EU project Optique with
an Exareme engine.

• We evaluated our implementation and compared it to other approaches
on the market. The evaluation, as given in Chapter 6, has shown that our
approach combines many positive features and approaches of other designs,
while it adds a real temporal layer on top of the ontology and provides com-
bined access to historic and streamed data. Furthermore, we have shown that
the approach scales if executed on modern big data solutions such as Spark
and can be massively accelerated by the use of more than one processing core
or machine.

7.2. Outlook and Future Work

The approach for RDF stream access to relational sources already contributes to
the work in this �eld and has been one of the major building blocks of the Optique
project. However, there are still open issues to be addressed.

The evaluation of the SRBenchmark has shown that still several features are missing
in the STARQL framework and query language, those could be at least partially
implemented in the future, especially features of SPARQL 1.1 such as di�erent
kinds of property paths that do not require recursion (e.g., path alternatives) or
additional functions such as IF clauses or regular expressions.

Furthermore, we might want to add functionalities that are naturally supported
by the attached backend system, but not currently implemented in the query lan-
guage. The Exareme system provides a large number of analytical Python functions
(e.g
for correlation), which can be exposed to an front end RDF query language (i.e
,
STARQL) as additional aggregation functions. Many of these Exareme-speci�c
functions are already supported by STARQL. However, with respect to the used
underlying system, also more advanced functionalities for statistical or data anal-
ysis could be supported or even integrated into an extension of the used DL-LiteA
ontology language.

One �rst approach can be found in [130] and [135], where an extension of the OBDA
approach for streams was shown that leads to a more analytics, source and cost-
aware system. The authors presented their system based on three components:
(i) the ontology language DL-LiteaggA , which extends DL-LiteA with aggregations
as �rst class citizens and a corresponding mapping language with STARQL con-
structs, (ii) the STARQL framework for accessing streams and static data and (iii)

195

7. Conclusion

a highly optimized version of Exareme for streams (i.e., ExaStream) capable of han-
dling complex streaming and static queries with source and cost aware optimization
techniques. The architecture can be seen as a �rst step towards the development of
an fully-�edged and analytics aware OBDA systems with access on static relational
and streaming data.

Another interesting research �eld of ontology based approaches considers the �eld of
federation, which is already a part of SPARQL 1.1 and �rst work has been seen done
in the sensor network community (e.g. in [95]). Nevertheless it is not implemented
in OBDA streaming systems yet. Say, one would like to refer to a stream that uses
data with respect to a static dataset which is distributed over several relational
databases. This exposes a need for references to di�erent streaming or static data
servers directly within the query language. Furthermore, we could think about an
ecosystem of sensing devices, which o�ers an API for data access through a web
interface as also used in the architectural implementation shown in Chapter 5.

Moreover, we can think of an extension of the overall reasoning capabilities of the
system in various directions. Current approaches of RDF-streaming engines only
allow for inexpressive reasoning. Since OBDA and perfect rewriting approaches
are limited to DL-Lite. Also systems based on their own RDF stream processing
language use limited reasoning. First work on extending the expressiveness in the
case of query rewriting for streams has been presented in [59] for CQELS (see
also Section 2.5.3), while the same drawbacks remain as discussed in Section 6.1.4.
Other current research has also started investigations on stream reasoning for non-
rewriting approaches, but they have focused on a materialization of ontological
axioms from streams as, e.g., in [31], [197] or [155].

However, as all these approaches use a rei�ed temporal version of RDF streams,
we can hardly say that they use a real temporal OBDA approach in our sense.
The authors of [25] propose a query language TCQ with built in LTL operators,
while [22] also investigates on rewritability problems of temporal queries and on-
tologies. Nevertheless, we have already mentioned in 3.3.5 that STARQL HAVING

clauses are able to express rewritable TCQ queries. Therefore, we could invest
more e�ort in the enrichment of the query language with temporal constructs and
operators as given above or even try to extend the ontology language with similar
constructs for expressing temporal states. However, some ontology standards for
temporal concepts already exist (see [236]).

Finally, the di�erent approaches for RDF-streaming query languages create a rea-
sonable demand for a standardized query language. Such a process was started with
the query language RSP-QL (see Section 2.5.7), but it is still an ongoing process,
and the insight of STARQL o�ers a lot of opportunities for further research in the
community.

196

Appendices

197

A. Transformation of Example Queries

Listing A.1: Transformation results - example Q1

1 CREATE VIEW S_out_having AS

2 SELECT DISTINCT wid , _sens , _val

3 FROM

4 (SELECT * FROM

5 (SELECT * FROM

6 (SELECT sens AS _sens FROM (

7 SELECT DISTINCT

8 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens"

9 FROM

10 sensormetadata qview1

11 WHERE

12 (qview1 ." property" = 'Temperature ') AND

13 (qview1 ." location" = 'GasTurbine2103 /01') AND

14 qview1 ."sid" IS NOT NULL

15) SUB_QVIEW

16) SUB_TRIPLE1

17) SUB_WHERE

18 NATURAL JOIN

19 (SELECT wid , _sens , _obs1 , _val FROM (

20 SELECT * FROM(

21 SELECT * FROM(

22 SELECT wid , abox AS i, obs1 AS _obs1 , val AS _val , z AS _z, sens

AS _sens FROM (

23 SELECT DISTINCT qview1.wid , qview1.abox ,

24 ('http ://www.sensor.net/result /[...] qview1 ." value ") AS "z",

25 ('http ://www.sensor.net /[...] qview1 ."sid") AS "sens",

26 ('http ://www.sensor.net/observation /[...] qview1 ."value ") AS "

obs1",

27 qview1 ."value" AS "val"

28 FROM

29 Measurement_public_stream qview1

30 WHERE

31 qview1 ." timestamp" IS NOT NULL AND

32 qview1 ."sid" IS NOT NULL AND

33 qview1 ."value" IS NOT NULL

34) SUB_QVIEW

35) SUB_TRIPLE0

36)SUB WHERE _val > 41

37) SUB_QVIEW

38) SUB_HAVING

39) SUB_FROM;

199

A. Transformation of Example Queries

Listing A.2: Transformation results - example Q2

1 CREATE VIEW S_out_having AS

2 SELECT DISTINCT wid , _sens

3 FROM

4 (SELECT * FROM

5 (SELECT wid , _z2 , _sens , _z , _obs1 , _obs2 FROM

6 (SELECT wid , _z, _z2 , _sens , _obs1 , _obs2 FROM

7 (SELECT * FROM(

8 SELECT wid , abox AS j, y AS _y , z2 AS _z2 , sens AS _sens ,

obs2 AS _obs2 FROM (

9 SELECT DISTINCT qview1.wid , qview1.abox ,

10 qview1 ."value" AS "y",

11 ('http ://www.sensor.net/result /[...] qview1 ."value ")

12 AS "z2",

13 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

14 ('http ://www.sensor.net/observation /[...] qview1 ."value ")

15 AS "obs2"

16 FROM measurement qview1

17 WHERE

18 qview1 ." timestamp" IS NOT NULL AND

19 qview1 ."sid" IS NOT NULL AND

20 qview1 ."value" IS NOT NULL

21) SUB_QVIEW

22) SUB_TRIPLE0

23)SUBJOIN1

24 NATURAL JOIN

25 (SELECT * FROM(

26 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x AS _x, sens

AS _sens FROM (

27 SELECT DISTINCT qview1.wid , qview1.abox ,

28 ('http ://www.sensor.net/result /[...] qview1 ."value ")

29 AS "z",

30 qview1 ."value" AS "x",

31 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

32 ('http ://www.sensor.net/observation /[...] qview1 ."value ")

33 AS "obs1"

34 FROM measurement qview1

35 WHERE

36 qview1 ." timestamp" IS NOT NULL AND

37 qview1 ."sid" IS NOT NULL AND

38 qview1 ."value" IS NOT NULL

39) SUB_QVIEW

40) SUB_TRIPLE1

41)SUBJOIN2

42) SUB_QVIEW

43 EXCEPT

44 SELECT wid , _z, _z2 , _sens , _obs1 , _obs2 FROM (

45 SELECT * FROM(

46 SELECT * FROM(

47 (SELECT * FROM(

48 SELECT wid , abox AS j, y AS _y , z2 AS _z2 , sens AS

_sens , obs2 AS _obs2 FROM (

49 SELECT DISTINCT qview1.wid , qview1.abox ,

50 qview1 ."value" AS "y",

51 ('http ://www.sensor.net/result /[...] qview1 ." value ")

52 AS "z2",

200

53 ('http ://www.sensor.net/'|| qview1 ."sid") AS "sens",

54 ('http ://www.sensor.net/obs /[...] qview1 ."value")

55 AS "obs2"

56 FROM measurement qview1

57 WHERE

58 qview1 ." timestamp" IS NOT NULL AND

59 qview1 ."sid" IS NOT NULL AND

60 qview1 ."value" IS NOT NULL

61) SUB_QVIEW

62) SUB_TRIPLE2

63)SUBJOIN1

64 NATURAL JOIN

65 (SELECT * FROM(

66 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x AS _x,

sens AS _sens FROM (

67 SELECT DISTINCT qview1.wid , qview1.abox ,

68 ('http ://www.sensor.net/result /[...] qview1 ."value ")

69 AS "z",

70 qview1 ."value" AS "x",

71 ('http ://www.sensor.net/'|| qview1 ."sid") AS "sens",

72 ('http ://www.sensor.net/obs /[...] qview1 ."value")

73 AS "obs1"

74 FROM measurement qview1

75 WHERE

76 qview1 ." timestamp" IS NOT NULL AND

77 qview1 ."sid" IS NOT NULL AND

78 qview1 ."value" IS NOT NULL

79) SUB_QVIEW

80) SUB_TRIPLE3

81)SUBJOIN2

82)SUB WHERE i < j

83)SUB WHERE _x > _y

84) SUB_QVIEW

85)SUB_EXCEPT

86) SUB_HAVING;

Listing A.3: Transformation results - example Q3

1 CREATE VIEW S_out_having AS

2 SELECT DISTINCT wid , _sens , _x

3 FROM

4 (SELECT * FROM

5 (SELECT wid , _z, _x, _sens , _obs1 FROM (

6 SELECT * FROM(

7 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x AS _x,

8 sens AS _sens FROM (

9 SELECT DISTINCT qview1.wid , qview1.abox ,

10 ('http ://www.sensor.net/result /[...] qview1 ."value ") AS "z",

11 qview1 ."value" AS "x",

12 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

13 ('http ://www.sensor.net/observation /[...] qview1 ."value ")

14 AS "obs1"

15 FROM

16 Measurement_public_stream qview1

17 WHERE

201

A. Transformation of Example Queries

18 qview1 ." timestamp" IS NOT NULL AND

19 qview1 ."sid" IS NOT NULL AND

20 qview1 ."value" IS NOT NULL

21) SUB_QVIEW

22) SUB_TRIPLE0

23) SUB_QVIEW

24) SUB_HAVING

25) SUB_FROM;

26

27 CREATE VIEW S_out_agg_MAX_x AS

28 SELECT wid , MAX(_x:: numeric) as _agg_MAX_x , _sens

29 FROM S_out_having

30 GROUP BY wid , _sens;

31

32 CREATE VIEW S_out_agg_AVG_x AS

33 SELECT wid , AVG(_x:: numeric) as _agg_AVG_x , _sens

34 FROM S_out_having

35 GROUP BY wid , _sens;

36

37 CREATE VIEW S_out_tJoin AS

38 SELECT DISTINCT *

39 FROM S_out_having NATURAL JOIN S_out_agg_AVG_x

40 NATURAL JOIN S_out_agg_MAX_x;

41

42 CREATE VIEW S_out_starqlout AS

43 SELECT DISTINCT time AS timestamp , _sens , _agg_MAX_x AS _max ,

44 _agg_AVG_x AS _avg , (_agg_MAX_x - _agg_AVG_x) AS _diff

45 FROM S_out_tJoin

46 WHERE (_agg_AVG_x + 6) < _agg_MAX_x;

47

48 SELECT * FROM S_out_starqlout;

Listing A.4: Transformation results - example Q4

1 CREATE VIEW S_out_avg_having AS

2 SELECT DISTINCT wid , _sens , _x

3 FROM

4 (SELECT * FROM

5 (SELECT wid , _z, _x, _sens , _obs1 FROM (

6 SELECT * FROM(

7 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x AS _x,

8 sens AS _sens FROM (

9 SELECT DISTINCT qview1.wid , qview1.abox ,

10 ('http ://www.sensor.net/result /[...] qview1 ."value ") AS "z",

11 qview1 ."value" AS "x",

12 ('http ://www.sensor.net/' || qview1 ."sid") AS "sens",

13 ('http ://www.sensor.net/observation /[...] qview1 ."value ")

14 AS "obs1"

15 FROM Measurement qview1

16 WHERE

17 qview1 ." timestamp" IS NOT NULL AND

18 qview1 ."sid" IS NOT NULL AND

19 qview1 ."value" IS NOT NULL

20) SUB_QVIEW

21) SUB_TRIPLE0

202

22) SUB_QVIEW

23) SUB_HAVING

24) SUB_FROM;

25

26 CREATE VIEW S_out_avg_agg_AVG_x AS

27 SELECT wid , _sens , AVG(_x:: numeric) as _agg_AVG_x

28 FROM S_out_avg_having

29 GROUP BY wid , _sens;

30

31 CREATE VIEW S_out_avg_tJoin AS

32 SELECT DISTINCT *

33 FROM S_out_avg_having NATURAL JOIN S_out_avg_agg_AVG_x;

34

35 CREATE VIEW S_out_avg_starqlout AS

36 SELECT DISTINCT time AS timestamp , _sens AS Subject , ':hasAVG ' AS Predicate ,

37 _agg_AVG_x AS Object FROM S_out_avg_tJoin;

38

39 CREATE VIEW S_out_avg_starqlout_stream AS

40 [Window generation of S_out_avg_starqlout]

41

42 CREATE VIEW S_out_max_strminfo AS

43 SELECT * FROM S_out_avg_starqlout_stream;

44

45

46 CREATE VIEW S_out_max_having AS

47 SELECT DISTINCT wid , _sens , _x

48 FROM

49 (SELECT * FROM

50 (SELECT wid , _x, _sens FROM (

51 SELECT * FROM(

52 SELECT * FROM(

53 SELECT DISTINCT

54 wid , Object AS _x, Subject AS _sens

55 FROM S_out_max_strminfo

56 WHERE (S_out_max_strminfo.Predicate = ':hasAVG ')

57) SUB_NONMAPPED1

58) SUB_TRIPLE0

59) SUB_QVIEW

60) SUB_HAVING

61) SUB_FROM;

62

63 CREATE VIEW S_out_max_agg_MAX_x AS

64 SELECT wid , MAX(_x:: numeric) as _agg_MAX_x , _sens

65 FROM S_out_max_having

66 GROUP BY wid , _sens;

67

68

69 CREATE VIEW S_out_max_tJoin AS

70 SELECT DISTINCT *

71 FROM S_out_max_having

72 NATURAL JOIN S_out_max_agg_MAX_x;

73

74 CREATE VIEW S_out_max_starqlout AS

75 SELECT DISTINCT time AS timestamp , _sens , _agg_MAX_x FROM S_out_max_tJoin;

76

77

78 SELECT * FROM S_out_max_starqlout;

203

B. Distributed Window execution with
pl/pgSQL

Listing B.1: Distributed window implementation - Client

1 --CREATE EXTENSION dblink;

2

3 DROP TYPE my_hasval CASCADE;

4 CREATE TYPE my_hasval AS (

5 WID bigint ,

6 ABOX bigint ,

7 "timestamp" timestamp ,

8 sensor integer ,

9 VALUE numeric (12,3)

10);

11 DROP TYPE my_starqlout CASCADE;

12 CREATE TYPE my_starqlout AS (

13 WID bigint ,

14 subject varchar ,

15 predicate varchar ,

16 Object varchar);

17

18 DROP TYPE my_sout CASCADE;

19 CREATE TYPE my_sout AS (

20 WID bigint ,

21 _sens text

22);

23

24

25 CREATE OR REPLACE FUNCTION distribute(wid BigInt , con int)

26 RETURNS VOID

27 AS $$

28 DECLARE

29 sql text;

30 conn text;

31 BEGIN

32 conn := 'conn_ ' || con;

33 sql := 'SELECT dblink_send_query(' || QUOTE_LITERAL(conn) || ',' ||

QUOTE_LITERAL('SELECT * FROM start_eval(' || wid || ');') || ');';

34 RAISE NOTICE 'SELECT dblink_send_query (%,%);', QUOTE_LITERAL(conn),

QUOTE_LITERAL('SELECT * FROM start_eval(' || wid || ');');

35 execute sql;

36 END

37 $$

38 LANGUAGE plpgsql;

39

205

B. Distributed Window execution with pl/pgSQL

40 ---connection management

41 CREATE OR REPLACE FUNCTION stream(wids BigInt , cons Int)

42 RETURNS SETOF my_starqlout

43 AS $$

44 DECLARE

45 sout my_starqlout;

46 conn text;

47 sql text;

48 host text;

49 port text;

50 db text;

51 usr text;

52 pw text;

53 send BOOLEAN;

54 status integer;

55 dispatch_error text;

56 BEGIN

57 host := 'localhost '; --host := '141.83.117.124 ';

58 port := '5432';

59 db := 'publicdatadiss '; --- host connections

60 usr := 'postgres ';

61 pw := 'postgres ';

62 FOR i IN 1.. cons LOOP

63 conn := 'conn_ ' || i;

64 RAISE NOTICE 'connect %', conn;

65 sql := 'SELECT dblink_connect(' || QUOTE_LITERAL(conn) || ',' ||

QUOTE_LITERAL('host=' || host || ' port=' || port || ' dbname=' || db

|| ' user=' || usr || ' password=' || pw) || ');';

66 RAISE NOTICE 'connected %', conn;

67 execute sql;

68 END LOOP;

69 send := FALSE;

70 FOR i IN 0.. wids LOOP --- loop through windows

71 RAISE NOTICE 'trying to send wid %', i;

72 WHILE send != TRUE LOOP

73 FOR con IN 1.. cons LOOP

74 conn := 'conn_ ' || con;

75 sql := 'SELECT dblink_is_busy(' || QUOTE_LITERAL(conn) || ');';

76 execute sql into status;

77 RAISE NOTICE 'Received status % from con %', status , con;

78 IF status = 0 THEN --- con not busy

79 status := 1; --- set to busy

80 FOR sout IN --- receive results

81 SELECT * FROM dblink_get_result(conn) AS my_starqlout(WID

bigint , subject varchar , predicate varchar , Object varchar

)

82 LOOP --- gebe results aus

83 RAISE NOTICE 'Received % from con %', sout , con;

84 RETURN NEXT sout;

85 END LOOP;

86 RAISE NOTICE 'Con % is ready ', con;

87 FOR sout IN

88 SELECT * FROM dblink_get_result(conn) AS my_starqlout(WID

bigint , subject varchar , predicate varchar , Object varchar

)

89 LOOP

90 RAISE NOTICE 'Received % from con %', sout , con;

91 RETURN NEXT sout;

206

92 END LOOP;

93 PERFORM distribute(i, con); --- send wid

94 RAISE NOTICE 'i have send wid % to con %', i, con;

95 send := TRUE;

96 EXIT;

97 ELSE

98 RAISE NOTICE 'Connection % not ready. Status is %', conn ,

status;

99 status := 0;

100 sql := 'SELECT dblink_error_message(' || QUOTE_LITERAL(conn)

|| ');';

101 execute sql into dispatch_error;

102 if dispatch_error <> 'OK' THEN --- If not 'ok', show error

103 RAISE 'Error: %', dispatch_error;

104 end if;

105 END if;

106 END LOOP;

107 RAISE NOTICE 'next try ';

108 --sql := 'select pg_sleep (0.1) ';

109 --execute sql;

110 END LOOP;

111 send := FALSE;

112 END LOOP;

113 --- collect results

114 FOR i IN 1.. cons LOOP

115 status := 1;

116 RAISE NOTICE 'Waiting till connection % has finished ', i;

117 conn := 'conn_ ' || i;

118 WHILE (status = 1)

119 LOOP

120 sql := 'SELECT dblink_is_busy(' || QUOTE_LITERAL(conn) || ');';

121 execute sql into status;

122 END LOOP;

123 FOR sout IN

124 SELECT * FROM dblink_get_result(conn) AS my_starqlout(WID bigint ,

subject varchar , predicate varchar , Object varchar)

125 LOOP

126 RAISE NOTICE 'Received % from con %', sout , i;

127 RETURN NEXT sout;

128 END LOOP;

129 sql := 'SELECT dblink_disconnect(' || QUOTE_LITERAL(conn) || ');';

130 execute sql;

131 RAISE NOTICE 'Connection % has finished ', i;

132 END LOOP;

133 RETURN;

134 END;

135 $$

136 LANGUAGE 'plpgsql ';

137

138 CREATE OR REPLACE FUNCTION disconnect(cons Int)

139 RETURNS VOID

140 AS $$

141 DECLARE

142 conn text;

143 sql text;

144 BEGIN

145 FOR i IN 1.. cons LOOP

146 conn := 'conn_ ' || i;

207

B. Distributed Window execution with pl/pgSQL

147 RAISE NOTICE 'disconnect %', conn;

148 sql := 'SELECT dblink_disconnect(' || QUOTE_LITERAL(conn) || ');';

149 RAISE NOTICE 'disconnected %', conn;

150 execute sql;

151 END LOOP;

152 END;

153 $$

154 LANGUAGE 'plpgsql ';

155

156 CREATE OR REPLACE FUNCTION disconnect(cons Int)

157 RETURNS VOID

158 AS $$

159 DECLARE

160 conn text;

161 sql text;

162 BEGIN

163 FOR i IN 1.. cons LOOP

164 conn := 'conn_ ' || i;

165 RAISE NOTICE 'connect %', conn;

166 sql := 'SELECT dblink_disconnect(' || QUOTE_LITERAL(conn) || ');';

167 RAISE NOTICE 'connected %', conn;

168 execute sql;

169 END LOOP;

170 END;

171 $$

172 LANGUAGE 'plpgsql ';

173

174 select distinct * from stream (457 ,2) order by wid; ---Params: number of wIDs

, number of cons

Listing B.2: Distributed window implementation - Server

1 DROP TYPE my_hasval CASCADE;

2 CREATE TYPE my_hasval AS (

3 WID bigint ,

4 ABOX bigint ,

5 "timestamp" timestamp ,

6 sid integer ,

7 VALUE numeric (12,3)

8);

9 DROP TYPE my_starqlout CASCADE;

10 CREATE TYPE my_starqlout AS (

11 WID bigint ,

12 subject varchar ,

13 predicate varchar ,

14 Object varchar);

15

16 DROP TYPE my_sout CASCADE;

17 CREATE TYPE my_sout AS (

18 WID bigint ,

19 _sens text

20);

21

22

23

208

24 --------------------------

25 --SET ALL VARIABLES AND RUN

26 --------------------------

27

28 CREATE OR REPLACE VIEW win_vars AS -- Breite und slide in minutes

29 SELECT 60 as width , 60 as slide , (SELECT min(timestamp) FROM

measurement_public3y1) as start , (SELECT max(timestamp) FROM

measurement_public3y1) as ende;

30

31 ---------------------------

32 --END OF VARIABLE SECTION

33 ---------------------------

34 CREATE OR REPLACE VIEW stream_vars AS

35 SELECT (SELECT width FROM win_vars), (SELECT slide FROM win_vars), (SELECT

start FROM win_vars), (SELECT ende FROM win_vars),

36 (SELECT trunc(date_part('epoch ',(SELECT max(timestamp) FROM

measurement_public)

37 - (SELECT min(timestamp) FROM measurement_public))/((SELECT width FROM

win_vars)*60)) :: int) as num_wid;

38

39 --

40 -- TRANSFORMED HAVING BEGIN

41 --

42

43 CREATE or REPLACE FUNCTION s_out_having(BigInt)

44 RETURNS SETOF my_sout AS

45 $$

46 BEGIN

47 RETURN QUERY

48 SELECT DISTINCT wid , _sens

49 FROM

50 (SELECT * FROM

51 (SELECT wid , _z2 , _sens , _z, _obs1 , _obs2 FROM

52 (SELECT wid , _z , _z2 , _sens , _obs1 , _obs2 FROM (

53 SELECT * FROM(

54 SELECT * FROM(

55 (

56 SELECT * FROM(

57 SELECT wid , abox AS j, y AS _y , z2 AS _z2 , sens

AS _sens , obs2 AS _obs2 FROM (

58 SELECT DISTINCT qview1.wid , qview1.abox ,

59 5 AS "yQuestType", NULL AS "yLang", qview1 ."

value" AS "y",

60 1 AS "z2QuestType", NULL AS "z2Lang", ('http

:// www.sensor.net/result/' || qview1 ."sid"

|| '/' || qview1 ." timestamp" || '/' ||

qview1 ."value") AS "z2",

61 1 AS "sensQuestType", NULL AS "sensLang", ('

http ://www.sensor.net/' || qview1 ."sid") AS

"sens",

62 1 AS "obs2QuestType", NULL AS "obs2Lang", ('

http ://www.sensor.net/observation/' ||

qview1 ."sid" || '/' || qview1 ." timestamp"

|| '/' || qview1 ." value ") AS "obs2"

63 FROM

64 split_measurement_public($1) qview1

65 WHERE

66 qview1 ." timestamp" IS NOT NULL AND

209

B. Distributed Window execution with pl/pgSQL

67 qview1 ."sid" IS NOT NULL AND

68 qview1 ."value" IS NOT NULL

69) SUB_QVIEW

70

71) SUB_TRIPLE0

72)SUBJOIN1

73 NATURAL JOIN

74 (

75 SELECT * FROM(

76 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x

AS _x, sens AS _sens FROM (

77 SELECT DISTINCT qview1.wid , qview1.abox ,

78 1 AS "zQuestType", NULL AS "zLang", ('http ://

www.sensor.net/result/' || qview1 ."sid" ||

'/' || qview1 ." timestamp" || '/' || qview1

."value") AS "z",

79 5 AS "xQuestType", NULL AS "xLang", qview1 ."

value" AS "x",

80 1 AS "sensQuestType", NULL AS "sensLang", ('

http ://www.sensor.net/' || qview1 ."sid") AS

"sens",

81 1 AS "obs1QuestType", NULL AS "obs1Lang", ('

http ://www.sensor.net/observation/' ||

qview1 ."sid" || '/' || qview1 ." timestamp"

|| '/' || qview1 ." value ") AS "obs1"

82 FROM

83 split_measurement_public($1) qview1

84 WHERE

85 qview1 ." timestamp" IS NOT NULL AND

86 qview1 ."sid" IS NOT NULL AND

87 qview1 ."value" IS NOT NULL

88) SUB_QVIEW

89

90) SUB_TRIPLE1

91)SUBJOIN2

92)SUB

93)SUB

94) SUB_QVIEW

95 EXCEPT

96 SELECT wid , _z, _z2 , _sens , _obs1 , _obs2 FROM (

97 SELECT * FROM(

98 SELECT * FROM(

99 (

100 SELECT * FROM(

101 SELECT wid , abox AS j, y AS _y , z2 AS _z2 , sens

AS _sens , obs2 AS _obs2 FROM (

102 SELECT DISTINCT qview1.wid , qview1.abox ,

103 5 AS "yQuestType", NULL AS "yLang", qview1 ."

value" AS "y",

104 1 AS "z2QuestType", NULL AS "z2Lang", ('http

:// www.sensor.net/result/' || qview1 ."sid"

|| '/' || qview1 ." timestamp" || '/' ||

qview1 ."value") AS "z2",

105 1 AS "sensQuestType", NULL AS "sensLang", ('

http ://www.sensor.net/' || qview1 ."sid") AS

"sens",

106 1 AS "obs2QuestType", NULL AS "obs2Lang", ('

http ://www.sensor.net/observation/' ||

210

qview1 ."sid" || '/' || qview1 ." timestamp"

|| '/' || qview1 ." value ") AS "obs2"

107 FROM

108 split_measurement_public($1) qview1

109 WHERE

110 qview1 ." timestamp" IS NOT NULL AND

111 qview1 ."sid" IS NOT NULL AND

112 qview1 ."value" IS NOT NULL

113) SUB_QVIEW

114

115) SUB_TRIPLE2

116)SUBJOIN1

117 NATURAL JOIN

118 (

119 SELECT * FROM(

120 SELECT wid , abox AS i, obs1 AS _obs1 , z AS _z, x

AS _x, sens AS _sens FROM (

121 SELECT DISTINCT qview1.wid , qview1.abox ,

122 1 AS "zQuestType", NULL AS "zLang", ('http ://

www.sensor.net/result/' || qview1 ."sid" ||

'/' || qview1 ." timestamp" || '/' || qview1

."value") AS "z",

123 5 AS "xQuestType", NULL AS "xLang", qview1 ."

value" AS "x",

124 1 AS "sensQuestType", NULL AS "sensLang", ('

http ://www.sensor.net/' || qview1 ."sid") AS

"sens",

125 1 AS "obs1QuestType", NULL AS "obs1Lang", ('

http ://www.sensor.net/observation/' ||

qview1 ."sid" || '/' || qview1 ." timestamp"

|| '/' || qview1 ." value ") AS "obs1"

126 FROM

127 split_measurement_public($1) qview1

128 WHERE

129 qview1 ." timestamp" IS NOT NULL AND

130 qview1 ."sid" IS NOT NULL AND

131 qview1 ."value" IS NOT NULL

132) SUB_QVIEW

133

134) SUB_TRIPLE3

135)SUBJOIN2

136)SUB WHERE i < j

137)SUB WHERE _x > _y

138) SUB_QVIEW

139) SUB_EXCEPT

140) SUB_HAVING

141) SUB_FROM;

142 END

143 $$

144 LANGUAGE plpgsql;

145

146 CREATE or REPLACE FUNCTION s_out(BigInt)

147 RETURNS SETOF my_starqlout AS

148 $$

149 BEGIN

150 RETURN QUERY

151 SELECT DISTINCT wid , _sens:: varchar AS Subject , 'a':: varchar AS Predicate ,

':RecentMonInc ':: varchar AS Object FROM S_out_having($1);

211

B. Distributed Window execution with pl/pgSQL

152 END

153 $$

154 LANGUAGE plpgsql;

155

156 --

157 -- TRANSFORMED HAVING END

158 --

159

160 CREATE OR REPLACE FUNCTION time_start(BigInt)

161 RETURNS timestamp

162 AS $$

163 DECLARE

164 Result timestamp;

165 BEGIN

166 Result := (SELECT start + $1 * slide * interval '1 minute ' from stream_vars)

;

167 RETURN Result;

168 END $$

169 LANGUAGE plpgsql;

170

171 CREATE OR REPLACE FUNCTION time_end(BigInt)

172 RETURNS timestamp

173 AS $$

174 DECLARE

175 Result timestamp;

176 BEGIN

177 Result := (SELECT (SELECT * FROM time_start($1)) + (width - 1) * interval '1

minute ' from stream_vars);

178 RETURN Result;

179 END $$

180 LANGUAGE plpgsql;

181

182 CREATE OR REPLACE FUNCTION split_measurement_public(BigInt)

183 RETURNS SETOF my_hasval

184 AS $$

185 BEGIN

186 RETURN QUERY

187 SELECT $1 as WID , rank() OVER (ORDER BY timestamp ASC) as ABOX , *

188 FROM measurement_public3y1 where timestamp between (SELECT * FROM time_start

($1)) and (SELECT * FROM time_end($1));

189 END

190 $$

191 LANGUAGE plpgsql;

192

193 --- Start of STARQL evaluation

194 CREATE OR REPLACE FUNCTION start_eval(integer)

195 RETURNS SETOF my_starqlout

196 AS $$

197 DECLARE

198 sout my_starqlout;

199 BEGIN

200 RAISE NOTICE 'start eval ';

201 FOR sout IN

202 SELECT * from s_out($1)

203 LOOP

204 RAISE NOTICE 'Received % for wid %', sout , $1;

205 RETURN NEXT sout;

206 END LOOP;

212

207 END

208 $$

209 LANGUAGE plpgsql;

210

211 select * from stream_vars;

213

C. SRBench - Queries expressed in
STARQL

Listing C.5: SRBench - Q6

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4 SELECT ?sensor

5 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

6 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION

7 SEQUENCE BY StdSeq AS SEQ1

8 HAVING EXISTS i,j,k in SEQ1 ,? observation (

9 GRAPH i

10 { ?observation om-owl:procedure ?sensor ;

11 a weather:VisibilityObservation ;

12 om-owl:result [om-owl:floatValue ?value] .

13 } AND ?value < 10

14 OR GRAPH j

15 { ?observation om-owl:procedure ?sensor ;

16 a weather:RainfallObservation ;

17 om-owl:result [om-owl:floatValue ?value] .

18

19 } AND ?value > 30

20 OR GRAPH k

21 { ?observation om-owl:procedure ?sensor ;

22 a weather:SnowfallObservation .

23 }

24 })

Listing C.6: SRBench - Q7

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2

3 SELECT ?sensor

4 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

5 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION

6 SEQUENCE BY StdSeq AS SEQ1

7 HAVING NOT EXISTS i in SEQ1 (GRAPH i {

8 sensor om-owlgeneratedObservation observation .

9 })

215

C. SRBench - Queries expressed in STARQL

Listing C.1: SRBench - Q1

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4 SELECT DISTINCT ?sensor ?value ?uom

5 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

6 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION

7 SEQUENCE BY StdSeq AS SEQ1

8 HAVING EXISTS i in SEQ1 (GRAPH i {

9 ?observation om-owl:procedure ?sensor ;

10 a weather:RainfallObservation ;

11 om-owl:result ?result .

12 ?result om-owl:floatValue ?value ;

13 om-owl:uom ?uom .

14 })

Listing C.2: SRBench - Q2

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4 SELECT DISTINCT ?sensor ?value ?uom

5 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

6 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION

7 SEQUENCE BY StdSeq AS SEQ1

8 HAVING EXISTS i in SEQ1 (GRAPH i {

9 ?observation om-owl:procedure ?sensor ;

10 a weather:PrecipitationObservation ;

11 om-owl:result ?result .

12 ?result ?p1 ?value .

13 OPTIONAL {

14 ?result ?p2 ?uom .

15 }

16 })

216

Listing C.3: SRBench - Q4

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4 SELECT ?sensor AVG(? windSpeed) AS ?averageWindSpeed

5 AVG(? temperature) AS ?averageTemperature

6 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

7 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT10M "^^XSD:DURATION

8 SEQUENCE BY StdSeq AS SEQ1

9 HAVING EXISTS i in SEQ1 (GRAPH i {

10 ?temperatureObservation om-owl:procedure ?sensor ;

11 a weather:TemperatureObservation ;

12 om-owl:result ?temperatureResult .

13 ?temperatureResult om-owl:floatValue ?temperature ;

14 om-owl:uom ?uom .

15 ?windSpeedObservation om -owl:procedure ?sensor ;

16 a weather:WindSpeedObservation ;

17 om-owl:result ?windResult .

18 ?windResult om -owl:floatValue ?windSpeed .

19 } AND ?temperature > 32)

20 GROUP BY ?sensor

Listing C.4: SRBench - Q5

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4

5 CONSTRUCT { _:obs a weather:Blizzard; om -owl:procedure ?sensor }

6 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

7 [NOW - "PT3H "^^XSD:DURATION , NOW]-> "PT10M "^^XSD:DURATION

8 SEQUENCE BY StdSeq AS SEQ1

9 HAVING EXISTS i in SEQ1 (GRAPH i {

10 ?sensor om-owl:generatedObservation [a weather:SnowfallObservation] ;

11 om-owl:generatedObservation ?o1 ;

12 om-owl:generatedObservation ?o2 .

13 ?o1 a weather:TemperatureObservation ;

14 om-owl:observedProperty weather:_AirTemperature ;

15 om-owl:result [om-owl:floatValue ?temperature] .

16 ?o2 a weather:WindObservation ;

17 om-owl:observedProperty weather:_WindSpeed ;

18 om-owl:result [om-owl:floatValue ?windSpeed] .

19 })

20 GROUP BY ?sensor

21 HAVING AGGREGATE

22 AVG(? temperature) < 32 AND # fahrenheit

23 MIN(? windSpeed) > 40.0 #milesPerHour

217

C. SRBench - Queries expressed in STARQL

Listing C.7: SRBench - Q8

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3 PREFIX wgs84_pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos >

4

5 SELECT MIN(? temperature) AS ?minTemperature MAX(? temperature) AS ?

maxTemperature

6 FROM STREAM <http :// www.cwi.nl/SRBench/observations >,

7 STATIC <http :// www.cwi.nl/SRBench/sensors >

8 [NOW - "PT1D "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION

9 SEQUENCE BY StdSeq AS SEQ1

10 HAVING EXISTS i in SEQ1 (GRAPH i {

11 ?sensor om-owl:processLocation ?sensorLocation ;

12 om-owl:generatedObservation ?observation .

13 ?sensorLocation wgs84_pos:alt "% Altitude %"^^ xsd:float ;

14 wgs84_pos:lat "% Latitude %"^^ xsd:float ;

15 wgs84_pos:long "% Longitude %"^^ xsd:float .

16 ?observation om-owl:observedProperty weather:_AirTemperature ;

17 om-owl:result [om -owl:floatValue ?temperature] .

18 })

19 GROUP BY ?sensor

Listing C.8: SRBench - Q9

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3 PREFIX wgs84_pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos >

4

5 CREATE STREAM sourceStream AS

6 CONSTRUCT {_:bn1 weather:_WindSpeed AVG(? windSpeed);

7 weather:_WindDirection AVG(? windDirection) . }

8 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

9 [NOW - "PT1D "^^XSD:DURATION , NOW]-> "PT1D "^^XSD:DURATION ,

10 STATIC <http :// www.cwi.nl/SRBench/sensors >

11 WHERE{

12 ?sensorLocation wgs84_pos:alt "% Altitude %"^^ xsd:float ;

13 wgs84_pos:lat "% Latitude %"^^ xsd:float ;

14 wgs84_pos:long "% Longitude %"^^ xsd:float .

15 }

16 SEQUENCE BY StdSeq AS SEQ1

17 HAVING EXISTS i in SEQ1 (GRAPH i {

18 ?sensor om-owl:processLocation ?sensorLocation ;

19 om-owl:generatedObservation ?o1 ;

20 om-owl:generatedObservation ?o2 .

21 ?o1 om-owl:observedProperty weather:_WindSpeed ;

22 om-owl:result [om -owl:floatValue ?windSpeed] .

23 ?o2 om-owl:observedProperty weather:_WindDirection ;

24 om-owl:result [om -owl:floatValue ?windDirection] .

25 })

26 GROUP BY ?sensor

27

28 CREATE STREAM if0 AS

29 CONSTRUCT {_:bn1 weather:_WindSpeed 0;

218

30 weather:_WindDirection ?windDirection . }

31 [NOW - "PT1D "^^XSD:DURATION , NOW]-> "PT1D "^^XSD:DURATION

32 SEQUENCE BY StdSeq AS SEQ1

33 HAVING EXISTS i in SEQ1 (GRAPH i {

34 _:bn1 weather:_WindSpeed ?windspeed;

35 weather:_WindDirection ?windDirection.

36 } AND ?windSpeed < 1)

37

38 [...]

39

40 CREATE STREAM resultStream AS

41 SELECT ?windSpeed AS ?windForce ?windDirection

42 FROM STREAM if0

43 [NOW - "PT1D "^^XSD:DURATION , NOW]-> "PT1D "^^XSD:DURATION ,

44 STREAM if1 [...]

45 SEQUENCE BY StdSeq AS SEQ1

46 HAVING EXISTS i in SEQ1 (GRAPH i {

47 _:bn1 weather:_WindSpeed ?windspeed;

48 weather:_WindDirection ?windDirection.

49 })

50 GROUP BY ?sensor

Listing C.9: SRBench - Q10

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3 PREFIX wgs84_pos: <http :// www.w3.org /2003/01/ geo/wgs84_pos >

4

5 SELECT DISTINCT ?lat ?long ?alt

6 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

7 [NOW - "PT1D "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION ,

8 STATIC <http ://www.cwi.nl/SRBench/sensors >

9 WHERE{

10 ?sensorLocation wgs84_pos:alt ?alt ;

11 wgs84_pos:lat ?lat ;

12 wgs84_pos:long ?long .

13 }

14 SEQUENCE BY StdSeq AS SEQ1

15 HAVING EXISTS i in SEQ1 (GRAPH i {

16 ?sensor om-owl:generatedObservation [a weather:SnowfallObservation] .

17 ?sensor om-owl:processLocation ?sensorLocation .

18 })

Listing C.10: SRBench - Q11

1 PREFIX om-owl: <http :// knoesis.wright.edu/ssw/ont/sensor -observation.owl#>

2 PREFIX weather: <http :// knoesis.wright.edu/ssw/ont/weather.owl#>

3

4

5 SELECT DISTINCT ?sensor

6 FROM STREAM <http :// www.cwi.nl/SRBench/observations >

219

C. SRBench - Queries expressed in STARQL

7 [NOW - "PT1H "^^XSD:DURATION , NOW]-> "PT1M "^^XSD:DURATION ,

8 STATIC <http :// www.cwi.nl/SRBench/sensors >

9 WHERE {

10 ?sensor om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLocation] .

11 ?sensor2 om-owl:hasLocatedNearRel [om-owl:hasLocation ?nearbyLocation] .

12 }

13 SEQUENCE BY StdSeq AS SEQ1

14 HAVING EXISTS i in SEQ1 (GRAPH i {

15 ?sensor om-owl:generatedObservation ?observation

16 ?observation a ?observationType ;

17 om-owl:result [om -owl:floatValue ?value] .

18 ?sensor2 om-owl:generatedObservation ?observation2.

19 ?observation2 a ?observationType ;

20 om-owl:result [om -owl:floatValue ?value2] .

21 })

22 HAVING AGGREGATE (?value - AVG(? value2) / ?avgValue) > 0.10

23 OR (? value - AVG(? value2) / ?avgValue) < -0.10

220

Bibliography

[1] 52North. Initiative for Geospatial Open Source Software GmbH. http://

52north.org/. Accessed: 2016-07-15.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The design of
the Borealis stream processing engine. In CIDR, volume 5, pages 277�289,
2005.

[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and archi-
tecture for data stream management. The VLDB Journal. The International
Journal on Very Large Data Bases, 12(2):120�139, 2003.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[5] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
M. Palmieri, and R. Rosati. Quonto: querying ontologies. In AAAI, vol-
ume 5, pages 1670�1671, 2005.

[6] D. D. Aglio, E. D. Valle, J.-P. Calbimonte, and O. Corcho. RSP-QL semantics:
a unifying query model to explain heterogeneity of RDF stream processing
systems. International Journal on Semantic Web and Information Systems
IJSWIS, Volume 10(4). IGI Global, 2015.

[7] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise,
O. Kao, M. Leich, U. Leser, V. Markl, et al. The Stratosphere platform for
big data analytics. The VLDB Journal, 23(6):939�964, 2014.

[8] J. F. Allen. Towards a general theory of action and time. Arti�cial Intelli-
gence, 23(2):123�154, 1984.

[9] W. Andy Seaborne. SPARQL 1.1 property paths. https://www.w3.org/TR/
sparql11-property-paths/. Accessed: 2016-07-15.

221

http://52north.org/
http://52north.org/
https://www.w3.org/TR/sparql11-property-paths/
https://www.w3.org/TR/sparql11-property-paths/

Bibliography

[10] R. Angles and C. Gutierrez. The Semantic Web - ISWC 2008: 7th Interna-
tional Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October
26-30, 2008. Proceedings, chapter The Expressive Power of SPARQL, pages
114�129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[11] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a uni�ed
language for event processing and stream reasoning. In WWW, pages 635�
644, 2011.

[12] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Stream reasoning and
complex event processing in ETALIS. Semantic Web, 3(4):397�407, 2012.

[13] G. Antoniou and F. Van Harmelen. Web ontology language: OWL. In Hand-
book on ontologies, pages 67�92. Springer, 2004.

[14] H. Appelrath, D. Geesen, M. Grawunder, T. Michelsen, D. Nicklas, et al.
Odysseus: a highly customizable framework for creating e�cient event stream
management systems. In Proceedings of the 6th ACM International Confer-
ence on Distributed Event-Based Systems, pages 367�368. ACM, 2012.

[15] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom. Stream: The Stanford data stream management
system. Book chapter, 2004.

[16] A. Arasu, S. Babu, and J. Widom. CQL: A language for continuous queries
over streams and relations. In Database Programming Languages, pages 1�19.
Springer, 2004.

[17] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. The VLDB Journal, 15:121�142,
2006.

[18] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts. Linear road: a stream data management
benchmark. In Proceedings of the Thirtieth international conference on Very
large data bases, pages 480�491. VLDB Endowment, 2004.

[19] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data
processing in Spark. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1383�1394. ACM, 2015.

[20] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. J. Artif. Intell. Res. (JAIR), 36:1�69, 2009.

222

Bibliography

[21] A. Artale and E. Franconi. A survey of temporal extensions of description
logics. Annals of Mathematics and Arti�cial Intelligence, 30(1-4):171�210,
Mar. 2001.

[22] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, and M. Za-
kharyaschev. Temporal OBDA with LTL and DL-Lite. In M. Bienvenu,
M. Ortiz, R. Rosati, and M. Simkus, editors, Proc. of the 27th Int. Workshop
on Description Logics (DL14), volume 1193, pages 21�32. CEUR Workshop
Proceedings, 2014.

[23] A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal de-
scription logic for ontology-based data access. In Proceedings of the Twenty-
Third International Joint Conference on Arti�cial Intelligence, IJCAI'13,
pages 711�717, 2013.

[24] A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-based event
recognition. Knowledge Eng. Review, 27(4):469�506, 2012.

[25] F. Baader, S. Borgwardt, and M. Lippmann. Temporal conjunctive queries
in expressive description logics with transitive roles. In B. Pfahringer and
J. Renz, editors, Proceedings of the 28th Australasian Joint Conference on
Arti�cial Intelligence (AI'15), volume 9457 of Lecture Notes in Arti�cial In-
telligence, pages 21�33, Canberra, Australia, 2015. Springer-Verlag.

[26] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Description
Logic Handbook, pages 43�95. Cambridge University Press, 2003.

[27] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proceedings of the twenty-�rst ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 1�16. ACM, 2002.

[28] S. Babu and J. Widom. Continuous queries over data streams. ACM Sigmod
Record, 30(3):109�120, 2001.

[29] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Stream
reasoning: Where we got so far. In Proceedings of the 4th workshop on new
forms of reasoning for the Semantic Web: Scalable & dynamic, pages 1�7,
2010.

[30] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-
SPARQL: SPARQL for continuous querying. In Proceedings of the 18th inter-
national conference on World wide web, pages 1061�1062. ACM, 2009.

223

Bibliography

[31] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. In-
cremental reasoning on streams and rich background knowledge. In Extended
Semantic Web Conference, pages 1�15. Springer, 2010.

[32] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution en-
vironment for C-SPARQL queries. In Proceedings of the 13th International
Conference on Extending Database Technology, pages 441�452. ACM, 2010.

[33] O. Bartlett. Linked data: Connecting together the BBC's on-
line content. http://www.bbc.co.uk/blogs/internet/entries/

af6b613e-6935-3165-93ca-9319e1887858. Accessed: 2016-07-15.

[34] J. Barwise. Handbook of mathematical logic. North-Holland Pub. Co, Ams-
terdam New York, 1977.

[35] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards a logic-based frame-
work for analyzing stream reasoning. In Proceedings of the 3rd International
Conference on Ordering and Reasoning-Volume 1303, pages 11�22. CEUR-
WS. org, 2014.

[36] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. Towards ideal semantics for
analyzing stream reasoning. In International Workshop on Reactive Concepts,
volume 2014, 2014.

[37] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based framework
for analyzing reasoning over streams. In Twenty-Ninth AAAI Conference on
Arti�cial Intelligence, 2015.

[38] D. Beckett and A. Barstow. N-triples. W3C RDF Core WG Internal Working
Draft, 2001. http://www.w3.org/TR/n-triples/ Accessed: 2016-07-15.

[39] D. Beckett, T. Berners-Lee, and E. Prudhommeaux. Turtle-terse RDF triple
language. W3C Team Submission, 14:7, 2008. http://www.w3.org/TR/

turtle/ Accessed: 2016-07-15.

[40] D. Beckett and B. McBride. RDF/XML syntax speci�cation (revised). W3C
recommendation, 10, 2004. http://www.w3.org/TR/rdf-syntax-grammar/

Accessed: 2015-07-15.

[41] K. Bereta, D. Bilidas, Y. Chronis, C. Mallios, V. Nikolopoulos, A. Papadopou-
los, C. Svingos, D. Theodosakis, T. Mailis, Y. Kotidis, M. Koubarakis, and
Y. Ioannidis. Deliverable D7.3 � optimization techniques for distributed query
planning and execution. Technical report, National and Kapodistrian Uni-
versity of Athens, 2015.

224

http://www.bbc.co.uk/blogs/internet/entries/af6b613e-6935-3165-93ca-9319e1887858
http://www.bbc.co.uk/blogs/internet/entries/af6b613e-6935-3165-93ca-9319e1887858
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/

Bibliography

[42] K. Bereta, D. Bilidas, H. Kllapi, C. Mallios, A. Papadopoulos, C. Svingos,
D. Theodosakis, M. Koubarakis, and Y. Ioannidis. Deliverable D7.2 � tech-
niques for distributed query planning and execution: Continuous/streaming
and temporal queries. Deliverable FP7-318338, EU, Oct. 2014.

[43] K. Bereta, P. Smeros, and M. Koubarakis. Representing and querying the
valid time of triples for linked geospatial data. In In the 10th Extended Se-
mantic Web Conference (ESWC 2013). Montpellier, France. May 26�30, 2013.

[44] T. Berners-Lee and D. Connolly. Notation3 (n3): A readable RDF syntax.
W3C Submission, Jan, 2008. https://www.w3.org/TeamSubmission/n3/

Accessed: 2016-07-15.

[45] C. Bizer and A. Seaborne. D2RQ-treating non-RDF databases as virtual
RDF graphs. In Proceedings of the 3rd international semantic web conference
(ISWC2004), volume 2004, 2004.

[46] W. Bohlken, B. Neumann, L. Hotz, and P. Koopmann. Ontology-based real-
time activity monitoring using beam search. In ICVS, pages 112�121, 2011.

[47] A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - extending
SPARQL to process data streams. In S. Bechhofer, M. Hauswirth, J. Ho�-
mann, and M. Koubarakis, editors, The Semantic Web: Research and Appli-
cations, volume 5021 of Lecture Notes in Computer Science, pages 448�462.
Springer Berlin Heidelberg, 2008.

[48] A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL extending
SPARQL to process data streams. In Proceedings of the 5th European se-
mantic web conference on The Semantic Web: Research and Applications,
pages 448�462. Springer-Verlag, 2008.

[49] S. Borgwardt, M. Lippmann, and V. Thost. Temporal query answering in the
description logic DL-Lite. In P. Fontaine, C. Ringeissen, and R. A. Schmidt,
editors, Frontiers of Combining Systems, volume 8152 of LNCS, pages 165�
180. Springer, 2013.

[50] S. Borgwardt, M. Lippmann, and V. Thost. Temporal query answer-
ing w.r.t. DL-Lite-ontologies. LTCS-Report 13-05, Chair of Automata
Theory, TU Dresden, Dresden, Germany, 2013. See http://lat.inf.tu-
dresden.de/research/reports.html.

[51] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and N. Tatbul.
Secret: a model for analysis of the execution semantics of stream processing
systems. Proceedings of the VLDB Endowment, 3(1-2):232�243, 2010.

225

https://www.w3.org/TeamSubmission/n3/

Bibliography

[52] D. Botstein, J. Cherry, M. Ashburner, C. Ball, J. Blake, H. Butler, A. Davis,
K. Dolinski, S. Dwight, J. Eppig, et al. Gene ontology: tool for the uni�cation
of biology. Nat Genet, 25(1):25�29, 2000.

[53] M. Botts, G. Percivall, C. Reed, and J. Davidson. OGC R© sensor web enable-
ment: Overview and high level architecture. In GeoSensor networks, pages
175�190. Springer, 2008.

[54] M. Botts and A. Robin. Opengis sensor model language (SensorML) imple-
mentation speci�cation. OpenGIS Implementation Speci�cation OGC, 7(000),
2007.

[55] C. Burleson. Users of json ld. https://github.com/json-ld/json-ld.org/
wiki/Users-of-JSON-LD. Accessed: 2016-07-15.

[56] J.-P. Calbimonte. Ontology-based Access to Sensor Data Streams. dissertation,
Universidad Politecnica de Madrid, 2013.

[57] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling ontology-based
access to streaming data sources. In Proceedings of the 9th international se-
mantic web conference on The semantic web - Volume Part I, ISWC'10, pages
96�111, Berlin, Heidelberg, 2010. Springer-Verlag.

[58] J.-P. Calbimonte, H. Jeung, O. Corcho, and K. Aberer. Enabling query tech-
nologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst., 8(1):43�
63, Jan. 2012.

[59] J.-P. Calbimonte, J. Mora, and O. Corcho. Query rewriting in RDF stream
processing. In International Semantic Web Conference, pages 486�502.
Springer, 2016.

[60] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao. Ontop: Answering SPARQL queries
over relational databases. Submitted to the Semantic Web Journal, 2015.
http://ontop.inf.unibz.it/ Accessed: 2016-07-15.

[61] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodríguez-Muro, and R. Rosati. Ontologies and databases: The DL-
Lite approach. In S. Tessaris and E. Franconi, editors, Semantic Technologies
for Informations Systems (RW 2009), volume 5689 of LNCS, pages 255�356.
Springer, 2009.

[62] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-
Lite: Tractable description logics for ontologies. In AAAI, volume 5, pages
602�607, 2005.

226

https://github.com/json-ld/json-ld.org/wiki/Users-of-JSON-LD
https://github.com/json-ld/json-ld.org/wiki/Users-of-JSON-LD

Bibliography

[63] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and e�cient query answering in description logics: The
DL-Lite family. Journal of Automated reasoning, 39(3):385�429, 2007.

[64] D. Calvanese, M. Giese, P. Haase, I. Horrocks, T. Hubauer, Y. E. Ioannidis,
E. Jiménez-Ruiz, E. Kharlamov, H. Kllapi, J. W. Klüwer, M. Koubarakis,
S. Lamparter, R. Möller, C. Neuenstadt, T. Nordtveit, Ö. L. Özçep,
M. Rodriguez-Muro, M. Roshchin, D. F. Savo, M. Schmidt, A. Soylu,
A. Waaler, and D. Zheleznyakov. Optique: OBDA solution for big data.
In Proc. ESWC (Satellite Events), pages 293�295, 2013.

[65] D. Calvanese, E. Kharlamov, W. Nutt, and C. Thorne. Aggregate queries over
ontologies. In Proceedings of the 2nd international workshop on Ontologies and
information systems for the semantic web, pages 97�104. ACM, 2008.

[66] D. Calvanese and D. Lembo. Ontology-based data access. In Tutorial. 6th

Int. Semantic Web Conf.(ISWC 2007), 2007.

[67] D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk, and G. Rull.
Ontology-based data integration in EPNet: Production and distribution of
food during the roman empire. Eng. Appl. of AI, 51:212�229, 2016.

[68] U. Cetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska,
M. Cherniack, J. Hwang, W. Lindner, S. Madden, A. Maskey, et al. The
aurora and Borealis stream processing engines. Data Stream Management:
Processing High-Speed Data Streams� Springer-Verlag, pages 1�23, 2006.

[69] W. Ceusters, B. Smith, A. Kumar, and C. Dhaen. Ontology-based error
detection in SNOMED-CT. Proceedings of MEDINFO, 2004:482�6, 2004.

[70] S. Chandrasekaran. Query Processing over Live and Archived Data Streams.
PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 2005.
AAI3210530.

[71] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-
stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A.
Shah. TelegraphCQ: Continuous data�ow processing for an uncertain world.
In CIDR, 2003.

[72] H. Chen, R. H. Chiang, and V. C. Storey. Business intelligence and analytics:
From big data to big impact. MIS quarterly, 36(4):1165�1188, 2012.

[73] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable con-
tinuous query system for internet databases. SIGMOD Rec. 29, 2, 379�390.,
2000.

227

Bibliography

[74] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh,
Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al. Benchmarking streaming com-
putation engines: Storm, Flink and Spark Streaming. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 1789�1792. IEEE, 2016.

[75] C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lep-
ore, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, and D. F.
Savo. MASTRO STUDIO: managing ontology-based data access applica-
tions. PVLDB, 6(12):1314�1317, 2013.

[76] M. Compton, P. Barnaghi, L. Bermudez, R. GarcÃa-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. L. Phuoc, L. Lefort, M. Leggieri, H. Neuhaus,
A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor. The SSN ontol-
ogy of the W3C semantic sensor network incubator group. Web Semantics:
Science, Services and Agents on the World Wide Web, 17(0):25�32, 2012.

[77] M. Compton, C. A. Henson, L. Lefort, H. Neuhaus, and A. P. Sheth. A
survey of the semantic speci�cation of sensors. 2nd International Workshop
on Semantic Sensor Networks, at 8th International Semantic Web Conference,
2009.

[78] M. Compton, H. Neuhaus, K. Taylor, and K.-N. Tran. Reasoning about
sensors and compositions. In SSN, pages 33�48. Citeseer, 2009.

[79] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gi-
gascope: High performance network monitoring with an SQL interface. In
Proceedings of the 2002 ACM SIGMOD international conference on Manage-
ment of data, pages 623�623. ACM, 2002.

[80] CSRBench. CSRBench-oracle. https://github.com/dellaglio/

csrbench-oracle/. Accessed: 2016-07-15.

[81] G. Cugola and A. Margara. Processing �ows of information: From data
stream to complex event processing.sing (IFP) Sys. ACM Comput. SuACM,
44(3):15:1-15:62, 2011.

[82] G. Cugola and A. Margara. Complex event processing with T-REX. Journal
of Systems and Software, 85(8):1709�1728, 2012.

[83] G. Cugola and A. Margara. Processing �ows of information: From data
stream to complex event processing. ACM Comput. Surv., 44(3):15, 2012.

[84] D. Culler, D. Estrin, and M. Srivastava. Guest editors' introduction:
Overview of sensor networks. Computer, 37(8):41�49, 2004.

228

https://github.com/dellaglio/csrbench-oracle/
https://github.com/dellaglio/csrbench-oracle/

Bibliography

[85] R. Cyganiak. The linking open data cloud diagram. http://lod-cloud.net/.
Accessed: 2015.

[86] R. Cyganiak, A. Harth, and A. Hogan. N-quads: Extending n-triples with
context. http://www.w3.org/TR/n-quads/, 2008.

[87] M. Dao-Tran, H. Beck, and T. Eiter. Contrasting RDF stream processing se-
mantics. Technical report, Technical report, Institut für Informationssysteme,
TU Wien, 2015.

[88] D. Dell Aglio, J.-P. Calbimonte, M. Balduini, O. Corcho, and E. Della Valle.
On correctness in RDF stream processor benchmarking. In The Semantic
Web�ISWC 2013, pages 326�342. Springer, 2013.

[89] D. DellAglio, J.-P. Calbimonte, E. Della Valle, and O. Corcho. Towards a
uni�ed language for RDF stream query processing. In European Semantic
Web Conference, pages 353�363. Springer, 2015.

[90] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query
language for XML. Computer networks, 31(11):1155�1169, 1999.

[91] O. Erling and I. Mikhailov. RDF support in the virtuoso DBMS. In Networked
Knowledge-Networked Media, pages 7�24. Springer, 2009.

[92] Espertech. Esper. http://www.espertech.com, 2010.

[93] A. S. Foundation. Apache Flink. flink.apache.org. Accessed: 2016-07-15.

[94] A. S. Foundation. Spark Streaming. http://spark.apache.org/

streaming/, 2015. last checked: 13.10.2015.

[95] I. Galpin, C. Y. Brenninkmeijer, F. Jabeen, A. A. Fernandes, and N. W.
Paton. Comprehensive optimization of declarative sensor network queries. In
International Conference on Scienti�c and Statistical Database Management,
pages 339�360. Springer, 2009.

[96] A. Galton. Rei�ed temporal theories and how to unreify them. In Proceedings
of the 12th international joint conference on Arti�cial intelligence - Volume
2, IJCAI'91, pages 1177�1182, San Francisco, CA, USA, 1991. Morgan Kauf-
mann Publishers Inc.

[97] S. Gao, T. Scharrenbach, J. Kietz, and A. Bernstein. Running out of bind-
ings? integrating facts and events in linked data stream processing. In Joint
Proceedings of the 1st Joint International Workshop on Semantic Sensor Net-
works and Terra Cognita (SSN-TC 2015) and the 4th International Workshop

229

http://lod-cloud.net/
http://www.w3.org/TR/n-quads/
http://www.espertech.com
flink.apache.org
http://spark.apache.org/streaming/
http://spark.apache.org/streaming/

Bibliography

on Ordering and Reasoning (OrdRing 2015) co-located with the 14th Inter-
national Semantic Web Conference (ISWC 2015), Bethlehem, Pennsylvania,
United States, October 11th - and - 12th, 2015., pages 63�74, 2015.

[98] M. Garofalakis, J. Gehrke, and R. Rastogi. Data stream management:
processing high-speed data streams (data-centric systems and applications).
Springer-Verlag New York, Inc., 2007.

[99] GeoNames. The GeoNames geographical database. http://http://www.

geonames.org/. Accessed: 2016-07-15.

[100] L. George. HBase: the de�nitive guide. " O'Reilly Media, Inc.", 2011.

[101] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler. Highly scalable trip
grouping for large-scale collective transportation systems. In Proceedings of
the 11th international conference on Extending database technology: Advances
in database technology, pages 678�689. ACM, 2008.

[102] M. Giese, D. Calvanese, P. Haase, I. Horrocks, Y. Ioannidis, H. Kllapi,
M. Koubarakis, M. Lenzerini, R. Möller, M. Rodriguez-Muro, et al. Scal-
able end-user access to big data. Big Data Computing, pages 205�245, 2013.

[103] M. Giese, O. Ozcep, R. Rosati, A. Soylu, G. Vega-Gorgojo, A. Waaler,
P. Haase, E. Jimenez-Ruiz, D. Lanti, M. Rezk, et al. Optique: Zooming
in on big data. IEEE Computer, pages 60�67, 2015.

[104] GitHub. YABench source code. https://github.com/YABench/. Accessed:
2016-07-15.

[105] L. Golab and M. T. Özsu. Issues in data stream management. ACM Sigmod
Record, 32(2):5�14, 2003.

[106] J. Golbeck and M. Rothstein. Linking social networks on the web with FOAF.
In Proc. 17th Int. World Wide Web Conf.(April 2008), 2008.

[107] S. González-Valenzuela, M. Chen, and V. C. Leung. Mobility support for
health monitoring at home using wearable sensors. IEEE Transactions on
Information Technology in Biomedicine, 15(4):539�549, 2011.

[108] G. Gottlob, G. Orsi, and A. Pieris. Ontological query answering via rewriting.
In Advances in Databases and Information Systems, pages 1�18. Springer,
2011.

[109] O. E. Group. MorphRDB, Oct. 2015.

[110] T. P. G. D. Group. PostreSQL wikipage. https://wiki.postgresql.org/

wiki/FAQ. Accessed: 2016-07-15.

230

http://http://www.geonames.org/
http://http://www.geonames.org/
https://github.com/YABench/
https://wiki.postgresql.org/wiki/FAQ
https://wiki.postgresql.org/wiki/FAQ

Bibliography

[111] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. Stream-
cloud: A large scale data streaming system. In Distributed Computing Sys-
tems (ICDCS), 2010 IEEE 30th International Conference on, pages 126�137.
IEEE, 2010.

[112] C. Gutierrez, C. Hurtado, and R. Vaisman. Temporal RDF. In In European
Conference on the Semantic Web (ECSW' 05), pages 93�107, 2005.

[113] C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing time into RDF.
Knowledge and Data Engineering, IEEE Transactions on, 19(2):207�218,
2007.

[114] S. Hallé and S. Varvaressos. A formalization of complex event stream process-
ing. In Enterprise Distributed Object Computing Conference (EDOC), 2014
IEEE 18th International, pages 2�11. IEEE, 2014.

[115] S. Harris, A. Seaborne, and E. Prud'hommeaux. SPARQL 1.1 query language.
W3C Recommendation, 21, 2013.

[116] P. K. Harshal. Linked sensor data. https://datahub.io/dataset/

knoesis-linked-sensor-data. Accessed: 2016-07-15.

[117] F. Heintz, J. Kvarnström, and P. Doherty. Stream-based reasoning support
for autonomous systems. In ECAI, pages 183�188, 2010.

[118] F. Heintz, P. Rudol, and P. Doherty. From images to tra�c behavior - a UAV
tracking and monitoring application. In FUSION, pages 1�8, 2007.

[119] M. Hert, G. Ghezzi, M. Würsch, and H. C. Gall. The Semantic Web � ISWC
2011: 10th International Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part II, chapter How to �Make a Bridge to the New
Town� Using OntoAccess, pages 112�127. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[120] M. Hert, G. Reif, and H. Gall. A comparison of RDB-to-RDF mapping
languages. In Proceedings of the 7th International Conference on Semantic
Systems (I-Semantics), Graz, Austria, SEP 2011.

[121] I. Hodkinson and M. Reynolds. Temporal logic. In P. Blackburn, J. van Ben-
them, and F. Wolter, editors, Handbook of Modal Logic, volume 6, chapter 11,
pages 655�720. Elsevier Science, 2006.

[122] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of logic and computation, 9(3):385�410,
1999.

231

https://datahub.io/dataset/knoesis-linked-sensor-data
https://datahub.io/dataset/knoesis-linked-sensor-data

Bibliography

[123] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9(3):385�410,
1999.

[124] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. Journal
of Automated Reasoning, 39(3):249�276, 2007.

[125] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venkatra-
mani. Design, implementation, and evaluation of the linear road bnchmark on
the stream processing core. In Proceedings of the 2006 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD '06, pages 431�442,
New York, NY, USA, 2006. ACM.

[126] K. Janowicz and M. Compton. The stimulus-sensor-observation ontology
design pattern and its integration into the semantic sensor network ontology.
In SSN, 2010.

[127] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks, C. Pinkel,
M. G. Skjæveland, E. Thorstensen, and J. Mora. Bootox: practical map-
ping of RDBs to OWL 2. In The Semantic Web-ISWC 2015, pages 113�132.
Springer, 2015.

[128] R. Kajic. Evaluation of the stream query language CQL. Master's thesis,
Uppsala Universitet, Institutionen for informationsteknologi, 2010.

[129] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In In Proc. 11th
Int. Conf. on Principles of Knowledge Representation and Reasoning (KR
08), pages 274�284, 2008.

[130] E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Kotidis, S. Lam-
parter, T. Mailis, C. Neuenstadt, Ö. Özçep, C. Pinkel, et al. Enabling se-
mantic access to static and streaming distributed data with Optique: demo.
In Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems, pages 350�353. ACM, 2016.

[131] E. Kharlamov, S. Brandt, E. Jimenez-Ruiz, Y. Kotidis, S. Lamparter,
T. Mailis, C. Neuenstadt, Ö. Öezçep, C. Pinkel, C. Svingos, et al. Ontology-
based integration of streaming and static relational data with Optique. In
Proceedings of the 2016 International Conference on Management of Data,
pages 2109�2112. ACM, 2016.

[132] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. L. C. Pinkel, M. Rezk, M. G.
Skjæveland, E. Thorstensen, G. Xiao, D. Zheleznyakov, E. Bjørge, and I. Hor-
rocks. Enabling Ontology Based Access at an Oil and Gas Company Statoil.
In ISWC, 2015.

232

Bibliography

[133] E. Kharlamov, S. B. M. G. E. Jiménez, R. S. Lamparter, C. Neuenstadt,
O. O. C. P. A. Soylu, D. Zheleznyakov, and I. Horrocks. Semantic access to
Siemens streaming data: the Optique way. ISWC (Posters and Demos), 2015.

[134] E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas, M. Giese,
P. Haase, I. Horrocks, H. Kllapi, M. Koubarakis, Ö. Özçep, et al. Optique:
Towards OBDA systems for industry. In The Semantic Web: ESWC 2013
Satellite Events, pages 125�140. Springer, 2013.

[135] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, Ö. Özcep,
C. Svingos, D. Zheleznyakov, S. Lamparter, I. Horrocks, et al. Towards an-
alytics aware ontology based access to static and streaming data (extended
version). In Proceedings of the 15th International Semantic Web Conference
(ISWC 2016), 2016.

[136] E. Kharlamov, N. Solomakhina, Ö. L. Özçep, D. Zheleznyakov, T. Hubauer,
S. Lamparter, M. Roshchin, A. Soylu, and S. Watson. How Semantic Tech-
nologies Can Enhance Data Access at Siemens Energy. In ISWC, 2014.

[137] E. Kharlamov, N. Solomakhina, Ö. L. Özçep, D. Zheleznyakov, T. Hubauer,
S. Lamparter, M. Roshchin, A. Soylu, and S. Watson. How semantic technolo-
gies can enhance data access at siemens energy. In The Semantic Web�ISWC
2014, pages 601�619. Springer, 2014.

[138] J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, and K. Nguyen. TEF-
SPARQL: The DDIS query-language for time annotated event and fact triple-
streams. Technical report, Technical report, University of Zurich, Department
of Informatics, 2013.

[139] J.-H. Kim, H. Kwon, D.-H. Kim, H.-Y. Kwak, and S.-J. Lee. Building a
service-oriented ontology for wireless sensor networks. In Computer and In-
formation Science, 2008. ICIS 08. Seventh IEEE/ACIS International Con-
ference on, pages 649�654. IEEE, 2008.

[140] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, and Y. Ioannidis. Elastic
processing of analytical query workloads on IaaS Clouds. arXiv preprint
arXiv:1501.01070, 2015.

[141] G. Klyne and J. J. Carroll. Resource description framework (RDF): Concepts
and abstract syntax. http://www.w3.org/TR/rdf-concepts/, 2006.

[142] M. Kolchin and P. Wetz. Demo: YABench-yet another RDF stream processing
benchmark. In RSP Workshop, 2015.

233

Bibliography

[143] S. Komazec, D. Cerri, and D. Fensel. Sparkwave: continuous schema-
enhanced pattern matching over RDF data streams. In Proceedings of the 6th

ACM International Conference on Distributed Event-Based Systems, pages
58�68. ACM, 2012.

[144] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The
combined approach to query answering in DL-Lite. In F. Lin and U. Sattler,
editors, Proceedings of the 12th International Conference on Principles of
Knowledge Representation and Reasoning (KR2010). AAAI Press, 2010.

[145] E. V. Kostylev and J. Reutter. Answering counting aggregate queries over
ontologies of the DL-Lite family. In Proceedings of the 27th AAAI Conference
on Arti�cial Intelligence (AAAI�13), Bellevue, Washington,, 2013.

[146] R. A. Kowalski and F. Sadri. Towards a logic-based unifying framework for
computing. CoRR, abs/1301.6905, 2013.

[147] R. A. Kowalski, F. Toni, and G. Wetzel. Towards a declarative and e�cient
glass-box CLP language. In WLP, pages 138�141, 1994.

[148] J. Krämer and B. Seeger. Semantics and implementation of continuous sliding
window queries over data streams. ACM Transactions on Database Systems
(TODS), 34(1):4, 2009.

[149] M. Krötzsch. OWL 2 Pro�les: An introduction to lightweight ontology lan-
guages. Springer, 2012.

[150] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35�40, 2010.

[151] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-
bell. A survey of mobile phone sensing. IEEE Communications magazine,
48(9):140�150, 2010.

[152] D. Laney. 3d data management: Controlling data volume, velocity and vari-
ety. META Group Research Note, 6:70, 2001.

[153] M. Lanthaler and C. Gütl. On using json-ld to create evolvable restful services.
In Proceedings of the Third International Workshop on RESTful Design, pages
25�32. ACM, 2012.

[154] D. Le-Phuoc, M. Dao-Tran, M.-D. Pham, P. Boncz, T. Eiter, and M. Fink.
Linked stream data processing engines: Facts and �gures. In P. Cudre-
Mauroux, J. He�in, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. Par-
reira, J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist, editors, The

234

Bibliography

Semantic Web�ISWC 2012, Lecture Notes in Computer Science, pages 300�
312. Springer Berlin Heidelberg, 2012.

[155] F. Lécué. Diagnosing changes in an ontology stream: A DL reasoning ap-
proach. In AAAI. Citeseer, 2012.

[156] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and
evaluation techniques for window aggregates in data streams. In Proceedings
of the 2005 ACM SIGMOD international conference on Management of data,
pages 311�322. ACM, 2005.

[157] L. Liu and C. Pu. A dynamic query scheduling framework for distributed
and evolving information systems. In Distributed Computing Systems, 1997.,
Proceedings of the 17th International Conference on, pages 474�481. IEEE,
1997.

[158] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE Trans. on Knowl. and Data Eng. 11, 4, 610�628.,
1999.

[159] C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in EL using
a database system. In In Proceeding of the 5th International Workshop on
OWL: Experiences and Directions (OWLED 2008), 2008.

[160] C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the
description logic EL using a relational database system. In Proceedings of
the 21st International Joint Conference on Arti�cial Intelligence (IJCAI-09).
AAAI Press, 2009.

[161] N. Marz and J. Warren. Big Data: Principles and best practices of scalable
realtime data systems. Manning Publications Co., 2015.

[162] V. Mayer-Schönberger and K. Cukier. Big data: A revolution that will trans-
form how we live, work, and think. Houghton Mi�in Harcourt, 2013.

[163] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Free-
man, D. Tsai, M. Amde, S. Owen, et al. MLlib: Machine learning in Apache
Spark. JMLR, 17(34):1�7, 2016.

[164] Microsoft. Sending �ight information to Microsoft Cortana with contextual
awareness. https://msdn.microsoft.com/en-us/library/dn632191.aspx,
2014. Accessed: 2016-07-15.

[165] V. Milea, F. Frasincar, and U. Kaymak. tOWL: A Temporal Web Ontology
Language. IEEE Transactions on Systems, Man and Cybernetics, 42(1):268�
281, 2012.

235

https://msdn.microsoft.com/en-us/library/dn632191.aspx

Bibliography

[166] E. Miller. An introduction to the resource description framework. Bulletin of
the American Society for Information Science and Technology, 25(1):15�19,
1998.

[167] R. Möller, C. Neuenstadt, O. Ozçep, and S. Wandelt. Advances in accessing
big data with expressive ontologies. In I. J. Timm and M. Thimm, editors,
KI 2013: Advances in Arti�cial Intelligence, volume 8077 of Lecture Notes in
Computer Science, pages 118�129. Springer Berlin Heidelberg, 2013.

[168] R. Möller, C. Neuenstadt, and Özgür. L. Özçep. Stream-temporal querying
with ontologies. In D. Nicklas and Özgür. L. Özçep, editors, HiDeSt '15�
Proceedings of the First Workshop on High-Level Declarative Stream Process-
ing (co-located with KI 2015), volume 1447 of CEUR Workshop Proceedings,
pages 42�55. CEUR-WS.org, 2015.

[169] J. Mora and Ó. Corcho. Engineering optimisations in query rewriting for
OBDA. In Proceedings of the 9th International Conference on Semantic Sys-
tems, pages 41�48. ACM, 2013.

[170] J. Mora and O. Corcho. Towards a systematic benchmarking of ontology-
based query rewriting systems. In International Semantic Web Conference,
pages 376�391. Springer, 2013.

[171] J. Mora, R. Rosati, and O. Corcho. Kyrie2: Query rewriting under extensional
constraints in\mathcal{ELHIO}. In International Semantic Web Conference,
pages 568�583. Springer, 2014.

[172] B. Motik. Representing and querying validity time in RDF and OWL: a
logic-based approach. In Proceedings of the 9th international semantic web
conference on The semantic web - Volume Part I, ISWC'10, pages 550�565,
Berlin, Heidelberg, 2010. Springer-Verlag.

[173] K. Munir, M. Odeh, and R. McClatchey. Ontology-driven relational query for-
mulation using the semantic and assertional capabilities of owl-dl. Knowledge-
Based Systems, 35:144 � 159, 2012.

[174] D. Namiot. On big data stream processing. International Journal of Open
Information Technologies, 3(8):48�51, 2015.

[175] C. Neuenstadt, R. Möller, and Özgür. L. Özçep. OBDA for temporal querying
and streams with STARQL. In D. Nicklas and Özgür. L. Özçep, editors,
HiDeSt '15�Proceedings of the First Workshop on High-Level Declarative
Stream Processing (co-located with KI 2015), volume 1447 of CEUR Workshop
Proceedings, pages 70�75. CEUR-WS.org, 2015.

236

Bibliography

[176] H. Neuhaus and M. Compton. The semantic sensor network ontology. In
AGILE workshop on challenges in geospatial data harmonisation, Hannover,
Germany, pages 1�33, 2009.

[177] B. Neumann and H.-J. Novak. Event models for recognition and natural
language description of events in real-world image sequences. In IJCAI, pages
724�726, 1983.

[178] B. Neumann and H.-J. Novak. NOAS: Ein System zur natürlichsprachlichen
Beschreibung zeitveränderlicher Szenen. Inform., Forsch. Entwickl., 1(2):83�
92, 1986.

[179] Ö. L. Özçep and R. Möller. Ontology based data access on temporal and
streaming data. In Reasoning Web. Reasoning and the Web in the Big Data
Era, volume 8714 of LNCS, 2014.

[180] Ö. L. Özçep and R. Möller. Ontology based data access on temporal and
streaming data. In M. Koubarakis, G. Stamou, G. Stoilos, I. Horrocks, P. Ko-
laitis, G. Lausen, and G. Weikum, editors, Reasoning Web. Reasoning and
the Web in the Big Data Era, volume 8714. of Lecture Notes in Computer
Science, 2014.

[181] Özgür. L. Özçep, R. Möller, and C. Neuenstadt. A stream-temporal query
language for ontology based data access. In KI 2014, volume 8736 of LNCS,
pages 183�194. Springer International Publishing Switzerland, 2014.

[182] Özgür. L. Özçep, R. Möller, and C. Neuenstadt. Stream-query compilation
with ontologies. In B. Pfahringer and J. Renz, editors, Poceedings of the
28th Australasian Joint Conference on Arti�cial Intelligence 2015 (AI 2015),
volume 9457 of LNAI. Springer International Publishing, 2015.

[183] Özgür L. Özçep, R. Möller, and C. Neuenstadt. A stream-temporal query
language for ontology based data access. In M. Bienvenu, M. Ortiz, R. Rosati,
and M. Simkus, editors, Proceedings of the 7th International Workshop on
Description Logics (DL-2014), 2014.

[184] K. Patroumpas and T. Sellis. Window speci�cation over data streams. In Cur-
rent Trends in Database Technology�EDBT 2006, pages 445�464. Springer,
2006.

[185] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of
SPARQL. In International semantic web conference, volume 4273, pages 30�
43. Springer, 2006.

[186] M. Perry. A Framework to Support Spatial, Temporal and Thematic Analytics
over Semantic Web Data. PhD thesis, Wright State UNiversity, 2008.

237

Bibliography

[187] D. P�sterer, K. Römer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hase-
mann, A. Kröller, M. Pagel, M. Hauswirth, et al. Spit�re: toward a semantic
web of things. IEEE Communications Magazine, 49(11):40�48, 2011.

[188] M.-D. Pham, P. Boncz, and O. Erling. S3g2: A scalable structure-correlated
social graph generator. In Selected Topics in Performance Evaluation and
Benchmarking, pages 156�172. Springer, 2012.

[189] D. L. Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for uni�ed processing of linked streams and linked data.
In International Semantic Web Conference (1), pages 370�388, 2011.

[190] pipelinedb.com. PipelineDB�the streaming SQL database, 2015.

[191] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
R. Rosati. Linking data to ontologies. Journal of Data Semantics, 10:133�173,
2008.

[192] A. Poggi, M. Rodriguez, and M. Ruzzi. Ontology-based database access with
dig-mastro and the obda plugin for protégé. In Proc. of OWLED, volume 8,
2008.

[193] T. PostgreSQL Global Development Group. About PostgreSQL. https:

//www.postgresql.org/about/. Accessed: 2016-07-15.

[194] F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and experiences of
R2RML-based SPARQL to SQL query translation using morph. In World
Wide Web Conference, 2014.

[195] F. Probst. Ontological analysis of observations and measurements. In Geo-
graphic information science, pages 304�320. Springer, 2006.

[196] F. Reiss and J. M. Hellerstein. Data triage: an adaptive architecture for load
shedding in TelegraphCQ. In Data Engineering, 2005. ICDE 2005. Proceed-
ings. 21st International Conference on, pages 155�156, April 2005.

[197] Y. Ren and J. Z. Pan. Optimising ontology stream reasoning with truth
maintenance system. In Proceedings of the 20th ACM international conference
on Information and knowledge management, pages 831�836. ACM, 2011.

[198] T. Rist, G. Herzog, and E. André. Ereignismodellierung zur inkrementellen
High-Level Bildfolgenanalyse. In ÖGAI, pages 1�11, 1987.

[199] A. Rodr�guez, R. McGrath, Y. Liu, J. Myers, and I. Urbana-Champaign.
Semantic management of streaming data. Proc. Semantic Sensor Networks,
80:80�95, 2009.

238

https://www.postgresql.org/about/
https://www.postgresql.org/about/

Bibliography

[200] J. B. Rodríguez, O. Corcho, and A. Gómez-Pérez. R2O, an extensible and
semantically based database-to-ontology mapping language. 3372:1069�1070,
August 2004. Ontology Engineering Group OEG.

[201] J. B. Rodriguez and A. Gómez-Pérez. Upgrading relational legacy data to the
semantic web. In Proceedings of the 15th international conference on World
Wide Web, pages 1069�1070. ACM, 2006.

[202] M. Rodriguez-Muro and D. Calvanese. High performance query answering
over DL-Lite ontologies. In KR, 2012.

[203] M. Rodriguez-Muro and D. Calvanese. Quest, an OWL 2 QL reasoner for
ontology-based data access. In OWLED, 2012.

[204] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Query rewriting
and optimisation with database dependencies in ontop. In Description Logics,
pages 917�929, 2013.

[205] R. Rosati. The Semantic Web: Research and Applications: 9th Extended
Semantic Web Conference, ESWC 2012, Heraklion, Crete, Greece, May 27-
31, 2012. Proceedings, chapter Prexto: Query Rewriting under Extensional
Constraints in DL-Lite, pages 360�374. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[206] R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontolo-
gies. KR, 10:51�53, 2010.

[207] D. J. Russomanno, C. R. Kothari, and O. A. Thomas. Building a sensor
ontology: A practical approach leveraging ISO and OGC models. In IC-AI,
pages 637�643, 2005.

[208] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S. Auer,
J. Sequeda, and A. Ezzat. A survey of current approaches for mapping of
relational databases to RDF. W3C RDB2RDF Incubator Group Report, pages
113�130, 2009.

[209] J. F. Sequeda and D. P. Miranker. Ultrawrap: SPARQL execution on rela-
tional data. Web Semantics: Science, Services and Agents on the World Wide
Web, 22:19�39, 2013.

[210] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop distributed
�le system. In 2010 IEEE 26th symposium on mass storage systems and
technologies (MSST), pages 1�10. IEEE, 2010.

[211] A. Silberschatz, H. F. Korth, S. Sudarshan, et al. Database system concepts,
volume 4. McGraw-Hill Singapore, 1997.

239

Bibliography

[212] A. Singhal. Introducing the knowledge graph: things, not strings. O�cial
google blog, 2012. https://developers.google.com/knowledge-graph/ Ac-
cessed: 2016-07-15.

[213] N. Spangenberg, M. Roth, and B. Franczyk. Evaluating new approaches
of big data analytics frameworks. In International Conference on Business
Information Systems, pages 28�37. Springer, 2015.

[214] M. Sporny, G. Kellogg, M. Lanthaler, W. R. W. Group, et al. JSON-LD 1.0:
a JSON-based serialization for linked data. W3C Recommendation, 16, 2014.
https://www.w3.org/TR/json-ld/ Accessed: 2016-07-15.

[215] SRBench. SRBench wiki page. http://w3.org/wiki/SRBench/. Accessed:
2016-07-15.

[216] U. Srivastava and J. Widom. Memory-limited execution of windowed stream
joins. In Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, VLDB '04, pages 324�335. VLDB Endowment, 2004.

[217] I. L. Stats. Twitter usage statistics. http://www.internetlivestats.com/

twitter-statistics/. Accessed: 2016-07-15.

[218] M. Sullivan and A. Heybey. A system for managing large databases of network
tra�c. In Proceedings of USENIX, 1998.

[219] M. Sullivan and A. Heybey. Tribeca: a system for managing large databases
of network tra�c. In In ATEC 98: Proceedings of the annual conference on
USENIX Annual Technical Conference. USENIX Association, Berkeley, CA,
USA, 2�2., 1998.

[220] M. Svensson. Benchmarking the performance of a data stream management
system. Master's thesis, MSc thesis report, Uppsala University, 2007.

[221] J. Tappolet and A. Bernstein. Applied temporal RDF: E�cient temporal
querying of RDF data with SPARQL. In Proceedings of the 6th European
Semantic Web Conference on The Semantic Web: Research and Applications,
ESWC 2009 Heraklion, pages 308�322, Berlin, Heidelberg, 2009. Springer-
Verlag.

[222] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continous queries over
append-only databases. In In Proceedings of SIGMOD 92, pages 321-330.
ACM, 1992.

[223] R. S. Tibbetts III. Linear road: Benchmarking stream-based data manage-
ment systems. Master's thesis, Massachusetts Institute of Technology, 2003.

240

https://developers.google.com/knowledge-graph/
https://www.w3.org/TR/json-ld/
http://w3.org/wiki/SRBench/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/

Bibliography

[224] S. Tobies. Complexity results and practical algorithms for logics in knowledge
representation. PhD thesis, Aachen, 2001. Aachen, Techn. Hochsch., Diss.,
2001.

[225] Z. Toptas. Implementation of the linear road benchmark on the basis of the
real-time stream-processing system Storm. Master's thesis, Hamburg Univer-
sity of Technology, 2014.

[226] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data,
pages 147�156. ACM, 2014.

[227] M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos, F. Pentaris, P. Poly-
doras, E. Sitaridi, V. Stoumpos, and Y. E. Ioannidis. Data�ow processing
and optimization on grid and cloud infrastructures. IEEE Data Eng. Bull.,
32(1):67�74, 2009.

[228] W3C. OWL. https://www.w3.org/OWL/. Accessed: 2016-07-15.

[229] W3C. OWL 2 web ontology language pro�les. https://www.w3.org/TR/

owl-profiles/. Accessed: 2016-07-15.

[230] W3C. R2RML. https://www.w3.org/TR/r2rml/. Accessed: 2016-07-15.

[231] W3C. RDB2RDF working group. http://www.w3.org/2001/sw/rdb2rdf/.
Accessed: 2016-07-15.

[232] W3C. RDF schema 1.1. https://www.w3.org/TR/rdf-schema/. Accessed:
2016-07-15.

[233] W3C. RDF stream processing community group. htps://www.w3.org/

community/rsp/. Accessed: 2016-07-15.

[234] W3C. SPARQL. https://www.w3.org/TR/rdf-sparql-query/. Accessed:
2016-07-15.

[235] W3C. SPARQL 1.1. https://www.w3.org/TR/sparql11-query/. Accessed:
2016-07-15.

[236] W3C. Time Ontology in OWL. https://www.w3.org/TR/owl-time/. Ac-
cessed: 2016-04-15.

[237] W3C. W3C semantic sensor network incubator group. https://www.w3.org/
2005/Incubator/ssn/. Accessed: 2016-07-15.

[238] S. Wandelt and R. Möller. Towards abox modularization of semi-expressive
description logics. Applied Ontology, 7(2):133�167, 2012.

241

https://www.w3.org/OWL/
https://www.w3.org/TR/owl-profiles/
https://www.w3.org/TR/owl-profiles/
https://www.w3.org/TR/r2rml/
http://www.w3.org/2001/sw/rdb2rdf/
https://www.w3.org/TR/rdf-schema/
htps://www.w3.org/community/rsp/
htps://www.w3.org/community/rsp/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/owl-time/
https://www.w3.org/2005/Incubator/ssn/
https://www.w3.org/2005/Incubator/ssn/

Bibliography

[239] C. Watterson and D. He�ernan. Runtime veri�cation and monitoring of em-
bedded systems. IET software, 1(5):172�179, 2007.

[240] W. White, M. Riedewald, J. Gehrke, and A. Demers. What is next in event
processing? In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 263�272. ACM,
2007.

[241] J. Widom et al. The stanford data stream management system. believed to
be prior to, page 24, 2007.

[242] K. J. Witt, J. Stanley, D. Smithbauer, D. Mandl, V. Ly, A. Underbrink, and
M. Metheny. Enabling sensor webs by utilizing SWAMO for autonomous
operations. In 8th NASA Earth Science Technology Conference, 2008.

[243] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli. Druid:
A real-time analytical data store. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 157�168. ACM, 2014.

[244] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation,
pages 2�2. USENIX Association, 2012.

[245] E. Zeitler and T. Risch. Using stream queries to measure communication
performance of a parallel computing environment. In Distributed Computing
Systems Workshops, 2007. ICDCSW'07. 27th International Conference on,
pages 65�65. IEEE, 2007.

[246] E. Zeitler and T. Risch. Scalable splitting of massive data streams. In
Database Systems for Advanced Applications, pages 184�198. Springer, 2010.

[247] E. Zeitler and T. Risch. Massive scale-out of expensive continuous queries.
VLDB Endowment, 4(11), 2011.

[248] Y. Zhang, P. Minh Duc, O. Corcho, and J. P. Calbimonte. SRBench: A
Streaming RDF/SPARQL Benchmark. In Proceedings of International Se-
mantic Web Conference 2012, Nov. 2012.

[249] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands of
data streams in real time. In Proceedings of the 28th international conference
on Very Large Data Bases, pages 358�369. VLDB Endowment, 2002.

242

Listings

List of Figures

2.1 Schema of an architecture for Continuous Queries 7
2.2 Schema of an architecture for continuous queries 8
2.3 General schema of a CEP network 9
2.4 General schema of CQL window and stream operator 11
2.5 Aurora graphical user interface [68] 16
2.6 Architecture of Spark components 22
2.7 Structure of the SSN ontology [76] 37
2.8 Schematic OBDA process for static data 47
2.9 Example tables and R2RML mapping in a sensor based scenario . . 56
2.10 The LARS streaming model to capture RSP queries (from [37]) . . . 70
2.11 The LARS operators as shown in [37] 71
2.12 The oracle of the CSRBench (from [88]) 76

3.1 Example data for a measurement input stream 97
3.2 Simpli�ed syntax for STARQL (OL, ECL) 110
3.3 Grammar for STARQL HAVING clauses 114
3.4 Combination of Guards . 116
3.5 Rule set for checking a formula in SRNF for range restriction from [4]117

4.1 Schematic Transformation of STARQL queries 130
4.2 STARQL transformation architecture 137

5.1 Schematic implementation of the STARQL prototype 148
5.2 Processing pipeline of the STARQL transformation 150

6.1 Comparison of tuple translation delay 184

Listings

2.1 Basic StreaQuel query (ST = start time) 13

243

Listings

2.2 Basic Tapestry Algorithm for periodic query execution 18
2.3 Example for a window operator with UDFs in ExaQL 19
2.4 Continuous view in PipelineDB with simulated window 20
2.5 A query formulated in SPARQL with �lter constraints 41
2.6 A query formulated in Streaming SPARQL (values of 30 minutes) . . 62
2.7 A query formulated in C-SPARQL (average of 30 minutes) 63
2.8 A query formulated in CQELS (average of 30 minutes) 63
2.9 A query formulated in SPARQLstream (average of 30 minutes) . . . 64
2.10 A query formulated in EP-SPARQL (values incr
by 100 in 30 mins) . 65
2.11 A query formulated in TEF-SPARQL (values incr
by 100 in 30 mins) 66
2.12 A query formulated in RSP-QL (average values of 30 minutes) 67

3.1 Basic STARQL example 1 . 92
3.2 Basic STARQL example 2 . 96
3.3 Window operator from basic STARQL example 1 97
3.4 Sequence operator from Example 1 98
3.5 STARQL example for combining multiple streams 100
3.6 Example for coarsening . 101
3.7 STARQL example with static information 102
3.8 STARQL example for an aggregation operator 103
3.9 Basic STARQL HAVING example 104
3.10 Example for pulse de�nition . 105
3.11 STARQL example for advanced multi streams 106
3.12 Example for comparison of live and recorded streams 107
3.13 Example for SELECT operator . 108
3.14 Example for CONSTRUCT operator 108

4.1 Example for generating a windowed sequence 133
4.2 Example query in STARQL . 137
4.3 An example for STARQL orthogonality 145

5.1 Example answer set for Query1 in JSON-LD format 153
5.2 Representation of two Siemens sensors used in a turbine installation 155
5.3 Representation of a sensor observation 155
5.4 Mapping of sensor meta data based on a turbine installation 156
5.5 Mapping of sensor observations based on the SSN ontology 156
5.6 STARQL Query Q1 (Threshold and static data) 157
5.7 STARQL Query Q2 (Sequencing) . 158
5.8 STARQL Query Q3 (Aggregation) 158
5.9 STARQL Query Q4 (Orthogonality) 159
5.10 Example SQL Code for Query Example 1 in PostgreSQL 162

244

List of Tables

5.11 Transformed HAVING clause in PostgreSQL for example Q1 163
5.12 Transformed HAVING clause in pl/pgsql for query example1 165
5.13 Simply�ed transformation in Exareme for query Q1 166
5.14 Transformation result in Spark Streaming for Query Example 1 . . . 168
5.15 Simpli�ed Java code for Spark windows 169
5.16 Transformation result for SPARK SQL 170
5.17 Transformation result for example1 in PipelineDB 171

6.1 Representation of a sensor observation 180
6.2 Example transformation for observations and results (abbreviated) . 181
6.3 Representation of a sensor observation (rei�ed) 181
6.4 Transformation of a sensor observation (rei�ed) 182
6.5 Representation of a sensor observation (rei�ed) 182
6.6 Transformation of a sensor observation (non-rei�ed) 183

A.1 Transformation results - example Q1 199
A.2 Transformation results - example Q2 200
A.3 Transformation results - example Q3 201
A.4 Transformation results - example Q4 202

B.1 Distributed window implementation - Client 205
B.2 Distributed window implementation - Server 208

C.5 SRBench - Q6 . 215
C.6 SRBench - Q7 . 215
C.1 SRBench - Q1 . 216
C.2 SRBench - Q2 . 216
C.3 SRBench - Q4 . 217
C.4 SRBench - Q5 . 217
C.7 SRBench - Q8 . 218
C.8 SRBench - Q9 . 218
C.9 SRBench - Q10 . 219
C.10 SRBench - Q11 . 219

List of Tables

2.1 Comparison of DSMS systems . 25
2.2 Comparison of DSMS query languages 27
2.3 Results of application function gr(g, α) for applying a PI α to an

UCQ atom g [61] . 50

245

Listings

4.1 Example for incoming data in the measurement scenario 132
4.2 Example for a sliding window view in the measurement scenario . . . 132

5.1 Exareme REST API Functionality Overview 151
5.2 Example Data as used for query experiments 154
5.3 Comparison of implemented backend examples 161

6.1 Comparison of RDF-Stream query languages (Part1) 174
6.2 Comparison of RDF-Stream query languages (Part2 175
6.3 Comparison of RDF stream query languages 176
6.4 SRBench result table . 177
6.5 Query rewriting delays for di�erent query examples 185
6.6 Query times for di�erent examples and parameters 187
6.7 Query times for distributed window execution 188

246

	Abstract
	Abstract
	Introduction
	Challenges for Stream Processing
	Research Problems and Scope of Work
	Outline

	Preliminaries
	Main Concepts of Stream Processing
	Continuous Queries on Data Streams
	Data Stream Model
	Event Stream Processing Model
	Window Processing
	Stream Operator
	Lambda Architecture

	Data Stream Management Systems and Query Languages
	TelegraphCQ
	NiagaraCQ
	OpenCQ
	Tribeca
	Aurora/Borealis
	STREAM
	Tapestry
	StreamCloud
	Exareme
	PipelineDB - SQL
	Spark
	Flink
	Summary and Overall Comparison

	Description Logic and Semantic Representation
	Description Logics
	Ontologies for Sensor Networks
	The SPARQL Query Language

	Ontology Based Data Access
	Classical OBDA
	Query Transformation for Access on Static Data
	ABDEO
	Temporalizing OBDA
	Streamifying OBDA

	Stream Based SPARQL - Extensions
	Streaming SPARQL
	C-SPARQL
	CQELS
	SPARQLStream
	EP-SPARQL
	TEF-SPARQL
	RSP-QL

	Comparison of Semantic Streaming Languages
	General Semantic Models for Streams
	Benchmarks for Linked Data

	Concluding Remarks

	A New High Level Stream Query Language: STARQL
	OBDA Challenges in Sensor Measurement Scenarios
	Optique - Use Case
	Natural Query Examples
	A New Query Language for Streams?
	Resulting Problems and Hypotheses of this Work

	Introduction to STARQL
	Introduction of STARQL by Example
	STARQL Stream Operators

	Formal Syntax and Semantics
	General STARQL Syntax
	STARQL HAVING Clause Syntax and Safety Criteria
	STARQL Semantics
	Comparison of STARQL to SPARQL Syntax and Semantics
	Expressing Temporal States with STARQL HAVING Clauses

	Concluding Remarks

	Transformation of STARQL into Queries for Relational Systems
	Transformation of Window and Sequencing Operators
	Window Transformation for Historical Queries
	Window Transformation for Continuous / Real Time Queries

	Rewriting and Unfolding of STARQL HAVING Clauses
	An Example Transformation for STARQL Having Clauses

	Additional Transformation of STARQL Operators
	Concluding Remarks

	Querying Relational Streaming Engines with STARQL
	Implementation of a STARQL Streaming Engine
	Transformation Module
	Query Processing
	Serialization

	Test Dataset
	Data Schema and Example Data
	Ontology
	Mappings
	Queries

	Implementation of the Ontology Based Streaming Back End Adapter
	Experiments on PostgreSQL Back End
	Experiments on Exareme
	Experiments on Spark
	Experiments on PipelineDB

	Concluding Remarks

	Evaluation of Query Processing with STARQL
	Functionality Evaluation - Comparison of RDF Stream Processing Engines
	Comparing RDF-Stream Query Languages
	Comparing RDF based Streaming Systems
	Evaluating Functionalities in a Benchmark
	Discussion of the Functionality Evaluation

	Evaluation of Rewriting and Transformation
	(Non) Reification of Direct Mapping and Time
	Evaluation of Transformation and Delays
	Discussion of the Transformation Process

	Evaluation of Query Execution
	Evaluation of Historical Queries
	Scalability of Query Execution

	Discussion of Evaluation Results
	Evaluation of Functionalities
	Feasibility of the OBDA Approach
	Efficiency and Scalability of the Implemented Approach

	Conclusion
	Contributions
	Outlook and Future Work

	Appendices
	Transformation of Example Queries
	Distributed Window execution with pl/pgSQL
	SRBench - Queries expressed in STARQL
	Bibliography
	Listings

