Ontology-Based Integration of Streaming & Static RDBs

Diagnostic Queries with STARQL

```
PREFIX ex: <http://www.siemens.com/onto/gasturbine/>
CREATE PULSE examplePulse WITH START = NOW, FREQUENCY = 1sec
CREATE STREAM StreamOfSensorsInCriticalMode AS
CONSTRUCT GRAPE NOW (?sensor a :InCriticalMode)
FROM STATIC ONTOLOGY ex:sensorOntology, DATA ex:sensorStaticData
WHERE (?sensor a :Reliable)
FROM STREAM sensorMeasurements [NOW - 1sec, NOW] ->> 1sec,
USING PULSE examplePulse
LIMIT 100
SEQUENCE BY StandardSequencing AS MergedSequenceOfMeasurements
HAVING EXISTS (?sensor ex:hasValue Ty ex:refSensor ex:hasValue Ty)
HAVING PearsonCorrelation(Ty, Ty) > 0.75
```

Main Features of STARQL
- **Query language over ontologies**
 - Syntax: extension of SPARQL
 - Basic graph patterns
 - Typical mathematical, statistical, and event pattern features needed in real-time diagnostic scenarios
- **Semantics**
 - Combination of open and closed world reasoning
 - Extends snapshot semantics for window operators with sequencing semantics that can handle integrity constraints such as functionality assertions
- **Efficient query enrichment and transformation**
 - Enrichment: PTime in the size of OWL 2QL ontology
 - Unfolding: in EXASTREAM hybrid queries

Demo Scenarios
- **Demo Description**
 - Siemens diagnostics tasks
 - e.g., calculate the Pearson correlation coefficient between turbine data streams
 - Siemens data
 - 950 turbines, 2002 – 11 years
 - Anonymised
 - Data distribution
 - From 1 to 128 nodes
 - Each node: 2 proc., 4GB RAM

Optique Platform

- **Main features**
 - End-to-end OBDA system
 - Fully integrated
 - For IT specialists
 - Whole OBDA lifecycle
 - Flexible configuration
 - For end-users
 - Intuitive query formulation
 - Monitoring dashboards
 - Integrated with GIS systems

- **OBDA query answering**
 - Q1: Onto Query
 - Q2: Enriched Onto Query
 - Q3: DB Query

Research Challenges

- **Deployment support**
 - Semi-automatic for ontologies and mappings
- **Query language**
 - Over ontologies, streaming and static data
 - Efficient query enrichment and transformation
- **Backend**
 - To optimise large numbers of queries
 - Efficiently execute over distributed streaming and static data

Ontology Based Data Access

- **Ontology:** conceptual domain model
- **Mappings:** ontological terms to DBs

Demo Scenarios

- **Diagonstics with our deployment**
- **Performance showcase of our deployment**
- **Diagonstics with user’s deployment**

Semantic Access to Databases

- **Large enterprise databases**
 - Many complex different schemata
 - Siemens
 - About 100s turbines produce data
 - Life, archived streams, static RDBs
 - Data access is hard:
 - Up to 80% of analytics time

- **Ontology Based Data Access**
 - Ontology: conceptual domain model
 - Mappings: ontological terms to DBs

Stream-Static Query Processing with EXASTREAM

- **Main Features**
 - Highly optimised query processing system
 - Supported queries
 - Extension of SQL
 - Hybrid stream-static
 - High-throughput

- **User Defined Functions**
 - For complex stream processing
 - Arbitrary user code

- **Architecture**
 - Parallelism by distributing Q. processing across multiple nodes
 - Query preprocessing
 - Registered at Gateway Server
 - Passed through Parser
 - Fed into Scheduler
 - Query execution
 - Scheduler finds Worker Nodes based on their load
 - Scheduler places stream & relations on selected Workers
 - Worker Nodes execute queries