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Abstract Practical description logic systems play an ever-growing role for knowledge rep-
resentation and reasoning research even in distributed environments. In particular, the on-
tology layer of the often-discussed semantic web is based on description logics (DLs) and
defines important challenges for current system implementations. The article introduces and
evaluates optimization techniques for the instance retrieval problem w.r.t. the description
logic SHIQ(Dn)−, which covers large parts of the Web Ontology Language (OWL). We
demonstrate that sound and complete query engines for OWL-DL can be built for practi-
cally significant query classes. Experience with ontologies derived from database content
has shown that it is often necessary to effectively solve instance retrieval problems with
respect to huge amounts of data descriptions that make up major parts of ontologies. We
present and analyze the main results about how to address this kind of scalability problem.

Keywords Description logics · Instance retrieval

1 Introduction

Practical description logic systems play an ever-growing role for knowledge representation
and reasoning research. In particular, the ontology layer of the semantic web [7] is based on
description logics (DLs) and defines important challenges for current system implementa-
tions. Recently, one of the main standards for the semantic web has been proposed: the Web
Ontology Language (OWL) [50]. Although implemented description logics become more
and more expressive (e.g., [40]), studies [56,51] have revealed that scalability w.r.t. DL ex-
pressiveness is still an ongoing research topic. Besides expressiveness, scalability it is also
necessary to be able to deal with huge amounts of data descriptions very effectively. Thus,
in practice, description logic systems offering high expressivity must also be able to handle
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large bulks of assertional knowledge (also referred to as data descriptions) possibly derived
from database content. Users expect that DL systems scale w.r.t. data descriptions.

We consider two kinds of scalability: scalability w.r.t. large sets of data descriptions (data
description scalability), i.e., runtimes scale well with increased data sizes but unchanged
conceptual descriptions, and scalability w.r.t. increased expressivity (expressivity scalabil-
ity), i.e., a reasoner can still process an ontology in reasonable time if the data size remains
unchanged but more complex conceptual descriptions (e.g., full negation, disjunction) are
added.

In the literature, the data description scalability problem has been tackled from dif-
ferent perspectives. We see two main approaches, the layered approach and the integrated
approach. In the layered approach the goal is to use databases for storing and accessing
data, and exploit description logic ontologies for convenient query formulation. The main
idea here is to support ontology-based query translation to relational query languages (SQL,
Datalog). See, for example, DLDB [28], Instance Store [6], deductive databases [52], or
DL-Lite [11]. We notice that these approaches are only applicable if reduced expressivity
for conceptual descriptions is acceptable. Despite the most appealing argument of reusing
database technology (in particular services for persistent data), at the current state of the art
it is not clear how expressivity can be increased to, e.g., SHIQ, without losing the applica-
bility of transformation approaches (e.g., [10]). Hence, while data description scalability is
achieved, it is not clear how to extend these approaches to achieve expressivity scalability
(at least for some parts of the data descriptions).

We employ the integrated approach because it allows us to investigate solutions to both
the expressivity and data description scalability problem. This approach, on the other hand,
addresses query answering with a tableau-based description logic system augmented with
new techniques inspired from database systems. We note that this approach needs a solution
to persistency, i.e., how can a tableau-based system support persistent knowledge bases and
inference results without sacrificing its performance too much, but we do not further address
this issue here.

This article introduces and evaluates optimization techniques for instance retrieval w.r.t.
the logical basis of OWL-DL (without nominals in concept descriptions), and discusses
practical experiments with the description logic system RACERPRO1 (version 1.9.1) which
is based on the RACER architecture [31]. The description logic SHIQ(Dn)− implemented
by RACERPRO is based on the union of SHN (Dn)− [33] and SHIQ [37]. By introduc-
ing optimization techniques for tableau-based algorithms we demonstrate that sound and
complete query engines for practically significant query classes of OWL-DL can be built.

In this article we also discuss grounded conjunctive queries where all variables are so-
called distinguished (or must-bind) variables [19], i.e., variables occurring in a query range
over the individuals mentioned in the Abox. Due to feedback from hundreds of users of
RACERPRO, we know that the grounded conjunctive queries we investigate in this article al-
ready cover many important application scenarios for description logics. Specific classes of
conjunctive queries with non-distinguished variables can be reduced to queries with distin-
guished variables by using a so-called rolling-up technique that is applied as a preprocessing
step.Work on general conjunctive queries is described in [12,38,41,23].

This article presupposes basic knowledge of description logics and related tableau meth-
ods (see, e.g., [3]). The next section gives a brief overview of the description logic SHIQ

1 RACERPRO is freely available for research and educational purposes
(http://www.racer-systems.com).
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Syntax Semantics
Concepts
A AI ⊆ ∆I , A is a concept name
¬C ∆I \ CI

C u D CI ∩ DI

C t D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S . C {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI , b ∈ CI}‖ ≥ n}
∃≤m S . C {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI , b ∈ CI}‖ ≤ m}
Roles
R RI ⊆ ∆I ×∆I

R− {(a, b) ∈ ∆I ×∆I | (b, a) ∈ RI}

Terminological Axioms
Syntax Satisfied if
R ∈ T RI = (RI)

+

R v T RI ⊆ TI

C v D CI ⊆ DI

Assertional Axioms
Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

a
.
= b aI = bI

a 6 .= b aI 6= bI

Fig. 1 Syntax and Semantics of SHIQ (n, m ∈ N, n > 1, m > 0, ‖ · ‖ denotes set cardinality, S is a
simple role).

and DL-based inference services. The interested reader can find a more detailed discussion
in the DL Handbook [4].

The contribution of this article is twofold. By introducing and analyzing practical in-
stance retrieval algorithms tested in one of the most mature, sound, and complete description
logic systems (see also [51] for an evaluation of different DL reasoners and their reliability
and scalability), the development of better scalable semantic web query engines is directly
supported. This part is partially based on [32] but combines and extends the previously
reported results with new optimization techniques and new insights derived from further ap-
plication ontologies. On the other hand the contribution also presents and analyzes the main
results we have found about how to start solving the scalability problem with tableau-based
prover systems given large sets of data descriptions for a large number of individuals and
grounded conjunctive queries. The optimization techniques might very well be appropriate
for general conjunctive queries. The part on grounded conjunctive queries is partially based
on [43] but provides some new techniques and a far more comprehensive evaluation.

2 The Description Logic SHIQ

For the sake of completeness and readability we briefly introduce the description logic
SHIQ [37] using a standard Tarski-style semantics based on an interpretation I = (∆I , ·I),
where ∆I is the non-empty domain and ·I the interpretation function. The interpretation I
gives meaning to the atomic constructs of SHIQ and is extended to complex constructs as
shown in Figure 1. We assume a set of concept names CN and a set of role names RN .
The disjoint subsets P and T of RN denote non-transitive and transitive roles, respectively
(RN = P ∪ T ).

If R,T ∈ RN are role names, then the terminological axiom R v T is called a role inclu-
sion axiom. A role hierarchy R is a finite set of role inclusion axioms. In order to preserve
decidability a syntactic restriction holds for the combinability of number restrictions and
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transitive roles in SHIQ. Number restrictions are only allowed for simple roles, a role is
called simple if it is neither transitive nor has any transitive sub-role (see [37] for details).
The concept name > (⊥) is used as an abbreviation for A t ¬A (A u ¬A) for any A ∈ CN .

If C and D are concept expressions, then C v D (generalized concept inclusion or GCI)
is a terminological axiom. A finite set of terminological axioms T is called a terminology
or Tbox w.r.t. to a given role hierarchy R.2 We use C ≡ D as an abbreviation for {C v D,
D v C}.

Let C be a concept expression, R be a role name, O be the set of individual names
(disjoint from the set of concepts names and the set of role names), a, b ∈ O be individual
names, then a :C is called an instance assertion, (a, b) :R a role assertion, and a

.
= b (a 6 .= b)

an individual equality (disjointness) assertion. A finite set of assertional axioms A w.r.t. a
Tbox T and a role hierarchy R is called an Abox.

Based on these definitions we introduce a set of inference services for concept expres-
sions. All these inference services are defined relative to a given Tbox T and a role hierarchy
R, i.e., whenever we mention some interpretation I in this section, we assume that I sat-
isfies T and R. In the following, let A and B be concept names and C and D be arbitrary
complex concepts.

– Concept satisfiability: Given a concept C, does an interpretation I exist such that CI 6= ∅.
– Concept subsumption: Given two concepts C and D, do all interpretations I satisfy

CI⊆ DI (C is subsumed by D or D subsumes C).
– Concept equivalence: Given two concepts C and D, does it hold that C subsumes D and

D subsumes C.
– Determine the parents and children of a given concept C: The parents (children) of C are

the most specific (general) concept names in CN which subsume (are subsumed by) C.
More formally:
parents(C) := {A ∈CN ∪ {>} | for all models I of the Tbox it holds that CI⊂ AI and
there does not exist a B ∈CN : CI⊂ BI ∧ BI⊂ AI}.
parents(C) := {A ∈CN ∪ {⊥} | for all models I of the Tbox it holds that AI⊂ CI and
there does not exist a B ∈CN : AI⊂ BI ∧ BI⊂ CI}.

– Tbox classification: Compute the so-called “taxonomy” of a Tbox T , a lattice defined
by the children relation between concept names where > is the root and ⊥ the bottom
node.

The following inference services are defined relative to a given Abox A which “de-
pends” on a given T and R, i.e., whenever we mention some interpretation I, we assume
that I satisfies A, T , and R.

– Check the consistency of an Abox: Given an Abox A, does an interpretation I exist
which satisfies all assertions in A. Or in other words: Are the restrictions given in A too
strong, i.e., do they cause a contradiction. Other queries are only possible w.r.t. a given
consistent Abox.

– Instance testing: Given an individual a and a concept C, does an interpretation I exist
which satisfies aI ∈ CI . In other words, is a an instance (or member) of C. This test can
be reduced to checking whether the Abox A ∪ {a :¬C} is inconsistent.

– Instance retrieval: Find all individuals in O that are instances of a given concept C:
instances(C) := {a ∈O | for all models I it holds that aI ∈ CI}.

2 The reference toR is omitted in the following.
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– Direct types: For a given individual a find the most specific concept names of which a

is an instance: direct types(a) := {A ∈CN | for all models I it holds that a ∈ AI and
there does not exist a B ∈CN : aI∈ BI and BI⊂ AI}.

– Abox realization: Compute for all individuals mentioned inA their corresponding set of
direct types.

– Role fillers: role fillers(a,R) := {b ∈ O | for all models I it holds that (aI, bI) ∈ RI}.
Note that this might not just be a trivial lookup in the Abox because SHIQ supports
role hierarchies, transitive roles, and number restrictions.

For brevity, for an Abox assertion α we also write (T ,A) |= α if α is satisfied by all models
of T and A.

3 General Optimizations

There are some general, well known, optimization techniques that we employ. To make this
article more self-sufficient, we describe them briefly in this section.

3.1 Individual Pseudo Model Merging

In this part we review the individual pseudo model merging technique [35]. The technique
of using an individual model merging test is based on the observation that individuals are
usually members of only a small number of concepts, and the Aboxes used as input for
instance tests are proven as consistent in most cases. This was the motivation for devising
the individual pseudo model merging technique. The basic idea is to have a fast sound but
possibly incomplete test to check whether a focused individual i is an instance of a concept
term D without the need to explicitly consider role and concept assertions for all other in-
dividuals occurring in A. These possible “interactions” are reflected in the definition of an
“individual pseudo model” of i (see below).

For instance, in the DLALC a pseudo model for an individual i mentioned in a consistent
initial Abox A w.r.t. a Tbox T is defined as follows. Since A is consistent, there exists a set
of completions C of A (again, see [35] for an exact definition). Let A′ ∈ C. An individual
pseudo model M for an individual i in A is defined as the tuple 〈MA,M¬A,M∃,M∀〉 w.r.t.
A′ as follows.

MA = {A | i :A ∈ A′, A is a concept name}

M¬A = {A | i :¬A ∈ A′, A is a concept name}

M∃ = {R | i :∃R.C ∈ A′} ∪ {R | (i, j) :R ∈ A′}

M∀ = {R | i :∀R.C ∈ A′}

The pseudo model of a concept D is defined analogously by using a completion of an
initial Abox A = {i :D}.

Whenever a role assertion exists which specifies a role successor for an individual i in
the initial Abox, the referenced role name is added to the set M∃. Cached individual pseudo
models should not refer to other individuals in order to be compatible with concept pseudo
models. Thus, it is sufficient to reflect a role assertion (i, j) :R ∈ A by adding the role name
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Algorithm 1 pmodels mergable?(M1,M2)

return atoms mergable(M1, M2) ∧ roles mergable(M1, M2)

R to M∃. This guarantees that possible interactions via the role R are reflected. The function
pmodels mergable? is defined in Algorithm 1.

The algorithm atoms mergable tests for a possible concept interaction between a pair of
pseudo models. It is applied to these pseudo models and returns false if (MA

1 ∩M¬A
2 ) 6= ∅

or (M¬A
1 ∩MA

2 ) 6= ∅. Otherwise it returns true.
The algorithm roles mergable tests for a possible role interaction between a pair of

pseudo models. It returns false if (M∃1 ∩M∀2 ) 6= ∅ or (M∀1 ∩M∃2 ) 6= ∅. Otherwise it returns
true. The reader is referred to [35] for the proof of the soundness of this technique and for
further details.

The algorithm ind model merge poss? (used in the following sections) can be reduced
to a pseudo model merging (see Algorithm 2 below). It is assumed that imodel(i,A) returns
the pseudo model of individual i w.r.t. A and cmodel(D) the pseudo model of concept D.

Algorithm 2 ind model merge poss?(i,D,A):
return pmodels mergable?(imodel(i,A), cmodel(D))

Individual pseudo model merging can be easily extended to SHIQ by additionally con-
sidering role hierarchies, number restrictions, transitive and functional roles. For the sake of
brevity we do not present these extensions in this article.

3.2 Individual Concept

Based an a given Abox (or completion) A one can define a so-called individual concept. It
is defined as a concept derived from all instance and role assertions in A where this indi-
vidual occurs, i.e., individual concept(i,A) = u({C | i :C ∈ A} ∪ {∃≥1 R | (i, j) :R ∈ A}∪
{∃≥1 R− | (j, i) :R ∈ A}). If the unique name assumptions holds, ∃≥n R and ∃≥n R− are in-
cluded where n depends on the number of different individual names jk occurring in (i, jk ) :R

and (jk , i) :R. By definition, an individual i is an instance of its associated individual concept.
Individual concepts are used later (see Section 5.3 and 5.4) as individual representatives in
retrieval inference services.

3.3 GCI Absorption and Lazy Unfolding

Another standard optimization technique, GCI absorption [36,39,57], tries to transform
GCIs in an satisfiability-preserving way in order to facilitate the application of the lazy
unfolding technique [2]. In general, a Tbox can be divided into two sets of axioms. The set
TU contains axioms of the form A v C or ¬A v D respectively, where A is a concept name
and C and D are concept expressions. The concept names occurring on the left-hand side
of the axioms in TU are called unfoldable. The second set TG contains axioms of the form
C v D where C and D are concept expressions (see [39,57] for a more detailed analysis of
GCI absorption).
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The lazy unfolding technique works as follows. Whenever a tableau algorithm encoun-
ters an assertion of the form a :A (a :¬A) for the first time in an Abox, and an axiom of the
form A v C (¬A v D) can be found in TU , it adds a :C (a :D) to the Abox. A terminology is
called cyclic if the unfolding of a concept name A during a concept satisfiability test might
result in unfolding A again.

The GCI absorption technique tries to maximize the effectiveness of lazy unfolding by
transforming axioms in TG in such a way that they can be moved to TU . If possible, the
set TG should become empty after the application of GCI absorption. If axioms remain in
TG, they have to be considered as possible disjunctions for every individual encountered
during a concept satisfiability or Abox consistency test (again, see [39,57] for more details).
The number of remaining axioms in TG is usually a good indication for the hardness of a
given Tbox. Some of the optimization techniques presented in the following sections rely
on subsumption tests which might become expensive if TG is not empty after the absorption
preprocessing step.

4 Research Approach and Benchmark Philosophy

We evaluated the optimization techniques presented in the following sections in the context
of Abox realization and instance retrieval problems for application knowledge bases. In par-
ticular, we consider applications for which Abox reasoning is actually required, i.e., implicit
information must be derived from Abox statements and Tbox axioms, and Aboxes are not
only used to store relational data. Thus, instance retrieval cannot be reduced to computing
queries for (external) relational databases (see, e.g., [8], [10], [6]).

We do not compare query answering speed with other DL systems but instead investigate
the effect of optimization techniques that could be exploited by any (tableau-based) DL
inference system that already exists or might be built. From a methodological point of view,
performance comparisons with other systems (e.g., see [44]) are not as informative as one
might think. The reason is that, in general, it is hard to operate systems in the same mode
with optimization techniques switched on and off. In addition, whether a certain system
seems to be slow for some specific knowledge base and query, might be the result of various
effects that can hardly be tracked down from an external point of view, and those effects tell
us nothing about the usefulness of the optimization techniques under investigation.

Recently, various optimization techniques for partitioning Aboxes into independent parts
and/or creating condensed (summary) Aboxes [20,26,16] have been reported. The advan-
tages of Abox partitioning are not the topic of this investigation. RACER employs a straight-
forward Abox partitioning technique [30] which is based on pure connectedness of graphs
because an Abox can be viewed as a possibly cyclic graph defined by a set of role asser-
tions. More precisely, if an Abox can be partitioned into independent parts which are also
not related via assertions involving concrete domains, RACER employs a divide-and-conquer
strategy which applies the algorithms described below to each partition and combines the
results afterwards.

We would like to emphasize that the optimization techniques reported in this article are
still very useful in the presence of more refined Abox partition schemes because they are
applicable to single partitions. Moreover, our techniques are even more vital for scenarios
where Aboxes cannot be partitioned or contain large partitions.

For the evaluation we selected a set of 10 application knowledge bases (see also Section
7.1 for more details) with usually small and simple Tboxes but large Aboxes whose sizes are
varying between 700 and 18K individuals, 9K and 51K individual assertions, and between
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650 and 88K role assertions. Furthermore we tested three ontologies with very large Aboxes.
LUBM [29] is used with two different Tboxes (LUBM-lite and LUBM) and 6 different
Abox sizes (5 to 50 universities) which result for 50 universities in 1 082K individuals,
3 355K individual assertions, and 3 298K role assertions. UOBM [42] was derived from
LUBM. It exhibits a more complicated Tbox. The Aboxes we investigated contain up to
138K individuals, 509K individual assertions, and 563K role assertions. Wordnet (version
1.7.1) is an OWL-DL KB representing the WordNet 1.7.1 lexical database and contains
84K concept names, 269K individual assertions, 548K individual assertions, and 304K role
assertions.

All these ontologies are tested with various sets of optimization settings which disable
or enable particular optimization techniques that are introduced in the following sections.
In general, we use two scenarios for the evaluation: (i) Abox realization and (ii) instance
retrieval or, more general, query answering (without precomputing a realization).

5 Optimization Techniques for Instance Retrieval

In this section we first review known optimization techniques and then present novel tech-
niques that are partially based on or extend these known techniques. We discuss answering
strategies for instance retrieval that do not rely on Abox realization, which usually takes a
long time. However, as we will see later, these techniques can also be exploited if index
structures are to be computed. For applications, which either generate Aboxes on the fly as
part of their problem-solving processes and/or ask a few queries w.r.t. an Abox, computing
index structures by realization might not always be worth the effort (see also Section 7 for
evidence supporting this heuristic). We like to point out that some of the techniques pro-
posed in this section take advantage of a precomputed taxonomy, i.e., some of the proposed
indexing techniques become more effective if the Tbox has already been classified. The only
technique which requires a classified Tbox as prerequisite is static index-based instance re-
trieval (introduced in Section 5.7). In case the Tbox has not been classified, it is assumed
that all concept names have > as parent and ⊥ as child.

5.1 Transformation of Aboxes

In order to make Abox reasoning as fast as possible we investigated ways to maximize
the effect of caching techniques. The efficacy of caching techniques from a theoretical and
practical point of view is well known (e.g., see [34,17,14,15,25]). We transform the original
Abox in such a way that acyclic “chains” formed by role assertions are represented by ap-
propriate existential restrictions (see [34] for a formal definition of the transformation rules).
The corresponding concept and role assertions representing the chains are deleted from the
Abox. Given a particular inference service request for selected individuals, the idea is to
transform tree-like role assertions (or “chains”) starting from these individuals into asser-
tions with existential restrictions such that an equisatisfiable Abox is derived to answer this
request (see [34] for details). These contractions need to be computed on demand and de-
pend on the involved individuals and the requested Abox inference services.

We illustrate this contraction idea by an example presented in Figure 2. If one assumes
the query whether the individual i is an instance of ∃ r1 .C2, the contracted Abox in the
lower part of Figure 2 is sufficient to answer this query. Rolling-up techniques developed
for conjunctive query answering (e.g., [22]) apply a similar transformation. The contraction
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i j k

r3 r2 r1 s1 s2 s3

C4 C3 C2 C1 D1 D2 D3

i j k

s1 s2

D1 D2 !!"#3.D3C1 !!"$1.(C2 !!"$2.(C3 !!"$3.C4))

Examples for “chains”

i1i2i3 k1

Fig. 2 An example for contracting an Abox. The Abox parts in the rectangles are replaced with concept
assertions (see the lower part for the resulting Abox).

can be useful to maximize reuse of caches about the satisfiability status of existential concept
expressions. Contracting an Abox is part of the process to build internal data structures for
Abox reasoning and it can be potentially expensive. Currently, this transformation is only
applied to Aboxes which, considering the Tbox, use the language ALC. The procedure, as
specified here, is not applicable to DLs with number restrictions.

5.2 Linear Instance Retrieval

The following sections (5.2-5.8) have the goal to present various optimization techniques to
implement the Abox inference service of retrieving all instances for a given query concept
C and an AboxA: instance retrieval(C,A). However, from a methodological point of view
it is advantageous to provide a lower-level inference service that only tests a specified set
of individuals (called candidates) whether they are instances of C: instance retrieval(C,A,
candidates). Whenever we use instance retrieval(C,A) in the following sections (without
specifying a value for candidates), it is assumed that this is used as an abbreviation for
instance retrieval(C,A, individuals(A)) where individuals(A) returns the set of individu-
als mentioned in the Abox A.

A traditional way to implement instance retrieval is to iterate over all known individu-
als. Hence, instance retrieval(C,A, candidates) can be rewritten as linear retrieval(C,A,
individuals(A)). The function linear retrieval collects all instances of a concept C from a
set of candidates as specified by Algorithm 3. Except for the contraction idea, linear instance
retrieval has already been implemented in a similar way in first generation DL systems (see,
e.g., [46]).

Algorithm 3 linear retrieval(C,A, candidates):
result := ∅
for all ind ∈ candidates do

if instance?(ind , C, contract(ind ,A)) then
result := result ∪ {ind}

return result
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The function contract(i,A) computes the contracted variant of Abox A w.r.t. the indi-
vidual i. In the following we assume that SAT (ASAT ) is the standard concept satisfiability
(Abox consistency) test implemented by an optimized tableau calculus [37,33].

5.3 Obvious Non-Instances: Exploiting Completion Information

The function call instance?(i,C,A) could be reduced to ¬ASAT (A ∪ {i :¬C}). However,
although this implementation of instance? is sound and complete, it is quite inefficient. A
faster variant is given in Algorithm 4. It uses sound but incomplete initial tests for detecting
“obvious” non-instances: the individual pseudo model merging test (see [35] and Section
3.1) and the Abox completion test (see below). If one of the “guards” in instance? returns
true, the result of instance? is false. Otherwise the result of an appropriate Abox inconsis-
tency test is returned. In this way the function instance? is optimized for the average case
but remains sound and complete.

Algorithm 4 instance?(i,C,A):
if obv non instance?(i, C,A) ∨ completion ASAT (i, C,A) then

return false
else

return ¬ASAT (A ∪ {i :¬C})

The Algorithms 5 and 7 define two tests which are used in Algorithm 4 as guards with
the goal to avoid the use of ASAT .

Algorithm 5 obv non instance?(i,C,A):
if ind model merge poss?(i, negated concept(C),A) then

return true
else if use subsumption test on negated concept then

return subsumes?(negated concept(C), individual concept(i,A))
else

return false

The function obv non instance? calls the individual pseudo model merging test with
the negated query concept and possibly a subsumption test checking whether the negated
query concept subsumes the individual concept. The function negated concept returns the
negation of its input concept. The individual concept is defined in Section 3.2. The sub-
sumption test subsumes? is defined in Algorithm 6. For some KBs (with simple Tboxes)
a SAT test with an individual concept is often faster compared to a corresponding ASAT

test (although both are of the same worst-case complexity). The reason is that better op-
timization techniques are available for SAT than for ASAT tests. However, if the GCIs
contained in an KB are “difficult”, i.e., enforce a high amount of runtime, the concept
subsumption test in Algorithm 6 might become too expensive. A good indicator seems
to be the set of axioms which could not be absorbed (see Section 3.3). If this set is not
empty, proofs tend to be complex. Our findings suggest to initialize the global parameter
‘use subsumption test on negated concept’ with false by default.
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Algorithm 6 subsumes?(C,D):
if pmodels mergable?(cmodel(negated concept(C)), cmodel(D)) then

return false
else

return ¬SAT (D u ¬C)

Let us turn back to the function instance? now. Although the call of obv non instance?

is often successful, we devised another non-instance test reusing information from a saved
Abox completion. The function completion ASAT (see Algorithm 7) invokes ASAT but
uses a saved completion A′ instead of the original input Abox A. If completion ASAT is
unsuccessful, an “expensive” instance test using the original AboxA is performed as shown
in Algorithm 4.

Algorithm 7 completion ASAT (i,C,A)

return ASAT (completion(A) ∪ {i :¬C})

The function completion(A) returns an associated completion A′ for an Abox A. The
completion technique is sound but incomplete. If the completion A′ extended by the asser-
tion i :¬C is satisfiable, then the individual i is obviously not an instance of C. However, if
the union of the completion A′ and {i :¬C} is unsatisfiable, an ASAT test, where the orig-
inal input Abox A is extended, might still find a different completion A′′ that additionally
satisfies the assertion i :¬C.

Although for many instance retrieval queries the result set often consists of a small set
of individuals, some individuals might still cause the “expensive” ASAT test to be invoked,
regardless of the “guards” in Algorithm 4. Thus, the number of ASAT tests should be further
reduced in order to improve the performance of instance retrieval.

5.4 Obvious Instances: Exploiting Precompletion Information

This observation leads to another optimization technique with the goal to find “obvious”
instances with minimum effort. This can improve data description scalability, for example
for ontologies with large Aboxes where many individuals are obvious instances of concepts.
For reasons of brevity, an element of a completion is called a constraint in the following.

Given an initial Abox consistency test and a completion, we assume that each element
of a completion is marked with a set of dependency constraints which were used to de-
rive the element. Let us illustrate this with a very simple example. Given an Abox (with
an empty Tbox) A = {(a, b) :R, a :∀R.C} the tableau rule for universal restrictions would
create the completion {〈(a, b) :R, ∅〉, 〈a :∀R.C, ∅〉, 〈b :C, {〈(a, b) :R, ∅〉, 〈a :∀R.C, ∅〉}〉}. The
dependency set for b :C consists of the constraints (and their dependencies) required to trig-
ger the tableau rule for universal restrictions.

Given a completion C, a precompletion is now defined as the set C \ {〈c, E〉 ∈ C | E 6= ∅
and con(dep(E)) contains a concept of the form C t D or ∃≤n R .> or ∃≤m R .C} with
n > 1 and m ≥ 1. We use two auxiliary functions dep(E) = E ∪

S
〈c,E′〉∈E dep(E ′)

and con(E) = {C | 〈c, E′〉 ∈ E and E′ contains an assertion of the form 〈a :C,E ′′〉}.
The constraints of a precompletion are also referred to as deterministic constraints in the
following.



12

Given the precompletion constraints, for an individual i an approximation of its most-
specific concept (MSC ) can be computed (the approximation is called MSC ′). The gener-
ation of MSC ′ is identical to the generation of an individual concept (see Section 3.2) but
it is based on a precompletion instead of a completion. If MSC ′ is subsumed by a query
concept C, then i must be an instance of C.

Our analysis of KBs from the semantic web community showed that quite a few of these
KBs have large Aboxes (e.g., LUBM or InfoGlue) which contain assertions that lead to many
deterministic constraints in tableau proofs and, thus, large precompletions. This results in the
fact that for many instances of a query concept C (e.g., for LUBM the concept Faculty used
in query Q9, see also Section 6) the instance problem is decided with a subsumption test
based on the MSC ′ of each individual. Subsumption tests are known to be usually fast due
to caching and pseudo model merging. The more precisely MSC ′ approximates MSC , the
more often an individual can be determined to be an obvious instance of a query concept.
Clearly, it might be possible to determine obvious instances by directly considering the
precompletion data structures. However, at this implementation level a presentation would
be too detailed. The main point is that, due to our findings, the crude approximation with
MSC ′ suffices to solve many instance tests in KBs such as LUBM.

If concept names are used for query optimization (e.g., in the case of LUBM), a large
number of tests for obvious non-instances or obvious instances can determine the result (see
also Section 6.1). However, for some individuals i and query concepts C both tests might
not determine whether i is (not) an instance of C (e.g., this is the case for the concept Chair

in LUBM). Since both of these “cheap” tests are incomplete, for these individuals (e.g., i)
a refutational Abox consistency test, where the assertion i :¬C has been added to the Abox,
must be decided with a sound and complete tableau prover. For some concepts, the set of
candidates might become quite large. Considering the volume of assertions in LUBM (see
Section 7.3.2 for details), it is easy to see that the Abox consistency test should not start
from the initial, unprocessed Abox in order to ensure scalability.

For large Aboxes and many repetitive instance tests it is a waste of resources to “expand”
the very same initial constraints over and over again. Therefore, the precompletion resulting
from the initial Abox consistency test is used as a starting point for refutational instance
tests. The tableau prover keeps the precompletion in memory. If some constraint is added,
only a limited amount of work needs to be done.

5.5 Binary Instance Retrieval

Despite the techniques explained in the previous sections, in some cases refutational Abox
consistency tests on single individuals are required. How can these Abox consistency tests
be avoided or at least their number be reduced? The observation for many KBs is that only
very few additions toA of the kind {i :¬C} lead to an inconsistency in the function instance?

(i.e., in very few situations i is indeed an instance of C). Thus, it might be advantageous to
combine several individual (non-)instance tests into one Abox consistency test based on a
standard divide-and-conquer strategy. This scheme is based on splitting a set of individuals
into binary partitions for instance retrieval as shown in Algorithm 8.

We assume in the following that instance retrieval(C,A) is implemented by calling
binary retrieval(C,A, individuals(A)). The function partition is defined in Algorithm 9.
It divides a set of individuals into two partitions of approximately the same size. Given the
partitions, binary retrieval calls partition retrieval . The idea of partition retrieval (see
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Algorithm 8 binary retrieval(C,A, candidates):
if candidates = ∅ then

return ∅
else
〈partition1 , partition2 〉 := partition(candidates)
return partition retrieval(C,A, partition1 , partition2 )

Algorithm 11) is to first check whether none of the individuals in a partition is an instance
of the query concept C. This is done with the function non instances? (see Algorithm 10).

Algorithm 9 partition(s): /* s[i] refers to the i th element of the set s */
if |s| ≤ 1 then

return 〈s, ∅〉
else

return 〈{s[1], . . . , s[bn/2c]}, {s[bn/2c+ 1], . . . , s[n]}〉

Algorithm 10 non instances?(cands,C,A):
return ASAT (A ∪ {i :¬C | i ∈ cands ∧ ¬obv non instance?(i, C,A)})

The potential performance gain is based on the observation that the non instances? test
is successful in many cases. Hence, with one “expensive” Abox test a large set of candidates
can be eliminated. The underlying assumption is that, in general, the computational costs of
checking whether an Abox (A ∪ {i :¬C, j :¬C, . . .}) is consistent is largely dominated byA
alone. Hence, it is assumed that the size of the set of constraints added toA has only a limited
influence on the runtime. For knowledge bases with, for instance, terminological cycles or a
non-empty set TG of unabsorbed GCIs, this may not be the case, however. Partitioning a set
of candidates in two parts of approximately the same size can be controlled by heuristics.
This has not yet been fully explored. Thus, further performance gains might be possible.

Algorithm 11 partition retrieval(C,A, part1 , part2 ):
if |part1| = 1 then

let i be the only member of part1
if instance?(i, C,A) then

return {i} ∪ binary retrieval(C,A, part2 )
else

return binary retrieval(C,A, part2 )
else if non instances?(part1 , C,A) then

return binary retrieval(C,A, part2 )
else if non instances?(part2 , C,A) then

return binary retrieval(C,A, part1 )
else

return binary retrieval(C,A, part1 ) ∪ binary retrieval(C,A, part2 )
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5.6 Dependency-based Instance Retrieval

Although binary retrieval is found to be faster than linear retrieval in the average case, one
can do better. If the function non instances? returns false, one can analyze the dependen-
cies of the tableau structures (“constraints”) involved in all clashes of the tableau branches.
Analyzing dependency information for a clash reveals the “original” Abox assertions re-
sponsible for the clash. If the clashes in all attempts to construct a completion are due to an
added constraint i :¬C, then, as a by-product of the test, the individual i is known to be an
instance of the query concept C. The individual can be eliminated from the set of candidates
to be investigated, and it is definitely part of the solution set of the query. Dependency infor-
mation is kept for other optimization purposes as well [36] and dependency analysis does
not involve much overhead.

Eliminating candidate individuals detected by dependency analysis prevents the rea-
soner from detecting the same clash over and over again until a partition of cardinality 1 is
tested. If the solution set is large compared to the set of individuals in an Abox, there is some
overhead compared to linear instance retrieval because only one individual is removed from
the set of candidates at a time as well, with the additional cost of collecting dependency
information during the tableau proofs.

5.7 Static Index-based Instance Retrieval

The techniques introduced in the previous sections can also be exploited if indexing tech-
niques are used for instance retrieval (see, e.g., [46, p. 108f]). Basically, the idea is to reduce
the set of candidates that have to be tested by computing the direct types (see Section 2)
of every individual. An index is constructed by specifying a function associated inds ap-
plicable to each concept name A mentioned in the Tbox such that i ∈ associated inds(A)

iff A ∈ direct types(i,A). The optimizations techniques for maximally exploiting explicitly
given information are inspired by the marking and propagation techniques described in [2].

5.7.1 One Individual at a Time

In the following we assume that CN is the set of all concept names mentioned in a given
Tbox (including the name >). Furthermore, it is assumed that the function children(A)

(parents(A)) returns the least specific subsumees (most specific subsumers) of A whereas
the function descendants(A) (ancestors(A)) returns all subsumees (subsumers) of A. The
descendants and ancestors of A include A. Subsumers and subsumees of a concept A are
concept names from CN . The function synonyms(A) returns all concept names from CN

which are equivalent to A.
The standard way to compute the index is to compute the direct types for each indi-

vidual mentioned in the Abox separately (one-individual-at-a-time approach). In order to
compute the direct types of individuals w.r.t. a Tbox and an Abox, the Tbox must be clas-
sified first (see Section 2). Static index-based instance retrieval was investigated in [46,
p. 108f.] and a variation of it is implemented as shown Algorithm 12. The input parameter
supplied candidates can be used to restrict the set of candidates. In case supplied candidates

is empty, it is set to the set all of individuals known in the given Abox. The default value for
the parameter supplied candidates is the empty set.

One might be tempted to simplify the line marked by an asterisk and only consider
the parents of the query concept A. Thus, this line would be changed to the following:
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Algorithm 12 static index based retrieval(A,A, supplied candidates):
if ∃N ∈ CN : N ∈ synonyms(A) then

return
S

B∈descendants(A) associated inds(B)

else
known :=

S
B∈descendants(A) associated inds(B)

if supplied candidates = ∅ then
supplied candidates := individuals(A)

candidates :=
S

P∈parents(A)

S
B∈descendants(P) associated inds(B) ∩ (*)

supplied candidates
return known ∪ instance retrieval(A,A, candidates \ known)

candidates :=
S

P∈parents(A) associated inds(B) ∩ supplied candidates . However, the fol-
lowing counterexample exists where some candidates would be ignored by this simplifica-
tion. Let us assume the Tbox T = {A ≡ ∃R .X,D ≡ ∃R .Y,Y v X} and the given query
concept Q := ∃R .X u ∃≥1 S. Given this Tbox the set of parents for Q is {A}. Obviously, Q

is not subsumed by D. Now let us consider the Abox A = {(i, j) :R, (i, j) :S, j :Y}. It is easy
to see that it holds that i ∈ associated inds(D). Hence, the simplification to use only the
associated individuals of the parents to compute the candidates would not consider instances
of D and thus the “simplification” would make Algorithm 12 incomplete.

It is obvious that instance retrieval used in Algorithm 12 can be implemented by any
of the techniques introduced in the previous sections.

5.7.2 Sets of Individuals at a Time

Computing the index structures (i.e., the function associated inds) is known to be time-
consuming. Our findings (see also Section 7) indicate that for many applications this might
take several minutes or even hours, i.e., index computation is often only possible in a setup
phase. Since for many applications this is not tolerable, new techniques had to be developed.
The main problem is that for computing the index structure associated inds the direct types
are computed for every individual in isolation. Rather than looping over all individuals and
asking for the direct types of each individual in a separate query, we investigated the idea
of using sets of individuals which are “sieved” into the taxonomy. We call this approach the
sets-of-individuals-at-a-time approach (see Algorithms 14 and 13).

Algorithm 13 compute index sets of inds at a time(A):
for all A ∈ CN do

has member(A) := unknown
associated inds(A) := ∅

has member(>) := individuals(A)
traverse(individuals(A),>,A, has member)
for all A ∈ CN do

if has member(A) 6= unknown then
for all ind ∈ has member(A) do

if ¬∃B ∈ children(A) : ind ∈ has member(B) then
associated inds(A) := associated inds(A) ∪ {ind}

The traverse procedure (Algorithm 14) sets up the index has member . For a concept
name A the function has member is used to specify the set of individuals which are “known”
to be instances of A. The procedure compute index sets of inds at a time (Algorithm 13)
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Algorithm 14 traverse(inds,A,A, has member):
if inds 6= ∅ then

for all B ∈ children(A) do
if has member(B) = unknown then

instances of B := instance retrieval(B, inds,A)
has member(B) := instances of B
traverse(instances of B , B,A, has member)

uses has member in order to check if the instances of a concept name are not instances of
the children of the concept name. If this is the case, the concept name is marked as one of the
direct types of each of the instances. This is done by setting up the index associated inds .

5.8 Dynamic Index-based Instance Retrieval

Precomputing a complete index (realization) as described in the previous subsection is rea-
sonable if many queries (using concept names) are posed w.r.t. a “fixed” Abox (and Tbox).
However, realization is often too time-consuming if only a few queries are executed after-
wards. Therefore, we investigated a new strategy that exploits (i) explicitly given informa-
tion (e.g., from Abox assertions of the form i :A where A is a concept name) and (ii) the
results of previous instance retrieval queries. This dynamic index resembles realization be-
cause it also focuses on concept names but it is created and maintained lazily. In contrast to
static index-based retrieval, the version in this section does not depend on a classified Tbox
but its performance can be improved by an already existing taxonomy.

The idea is to have a function dyn associated inds which associates a set of individuals
with each concept name A such that for each i ∈ Inds it holds that (i) i is an instance of A,
(ii) B ∈ (descendants(A) ∪ ancestors(A))⇒ i 6∈ dyn associated inds(B).

The function dyn associated inds is updated due to the results of queries. Let us assume
i ∈ dyn associated inds(A) and A ∈ ancestors(E). If it turns out that i is an instance of
E, the function dyn associated inds is changed accordingly. Thus, the index evolves as
instance retrieval queries are answered. Therefore, we call this strategy dynamic index-based
instance retrieval.

In contrast to associated inds from the previous section, dyn associated inds(A) re-
turns an individual i even if A is not “most specific”, i.e., even if there might exist a yet
unknown subconcept B of A such that i is also an instance of B. The consequence is that
Algorithm 12 is no longer complete. The idea of only considering the parents (and their
descendants) of the query concept (see the line marked with an asterisk in Algorithm 12)
must be dropped to regain completeness. Before we give a complete algorithm for dynamic
index-based instance retrieval, further optimization techniques are introduced.

Let us assume the concept B is a subsumer of A. In addition, let us assume the direct
types of an individual i had been previously computed for answering some query. If it is
known for an individual i ∈ dyn associated inds(B) that B ∈ direct types(i), then i is re-
moved from the set of candidates for the query concept A. Since B is a subsumer of A and
B is a direct type (i.e., B is most specific), i cannot be an instance of A.

With each concept name we also associate a set of non-instances. The non-instances
are found by queries for the direct types of an individual (the non-instances are associ-
ated with the children of each direct type) or by exploiting previous calls to the function
instance retrieval . If an individual i is found not to be an instance of a query concept B, this
is recorded appropriately by including i in dyn associated non instance(B) provided there
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does not exists a concept E ∈ ancestors(B) such that i ∈ dyn associated non instance(E)

(non-redundant caching). The non-instances of a query concept can then be discarded from
the set of candidates. The new algorithm for instance retrieval is shown in Algorithm 15. It
has a parameter supplied candidates which can be used to extend the set of possible candi-
dates. In case supplied candidates is empty, it is set to the set of all individuals known in
the given Abox. The default value for the parameter supplied candidates is the empty set.

Algorithm 15 dynamic index based retrieval(A,A, supplied candidates):
known :=

S
B∈descendants(A) dyn associated inds(B)

if supplied candidates = ∅ then
supplied candidates := individuals(A)

possible candidates :=
S

B∈(ancestors(A)\{A}) dyn associated inds(B) ∪
supplied candidates

candidates := possible candidates \
S

B∈ancestors(A) dyn associated non instances(B)

return known ∪ instance retrieval(A,A, candidates \ known)

Note that instead of testing the descendants of the parents as done in Algorithm 12 (see
the line marked with an asterisk), in Algorithm 15 the ancestors of the query concept A are
taken into consideration for possible candidates. In other words, it is not a problem if an
individual i is returned by dyn associated inds(B) although there exist subconcepts of B of
which i is also an instance.

5.9 OWL-DL Datatype Properties

RACER supports concrete domain reasoning as defined in [33] and reasoning about fillers of
OWL-DL datatype properties can be easily mapped on concrete domain reasoning using ap-
propriate concrete domains for strings, booleans, integers, and reals. However, this mapping
turned out to be too expensive for datatype properties unless some of them are restricted by
number restrictions. RACER analyzes submitted KBs and dynamically enables a special and
simpler reasoning method for datatype properties if possible. Fillers of datatype properties
adhere to a locality restriction, e.g., if two different individuals i and j have fillers “joe” and
“bill” for an OWL-DL datatype property has name, the reasoning remains local w.r.t. i and j

respectively. In other words: there cannot exist an interaction between the datatype property
filler of i and j. This optimization technique seems to be quite effective for very large Aboxes
such as LUBM containing many assertions about datatype properties.

5.10 Indexing of Role Assertions

Tableau algorithms do not apply a rule to assertions of the form i :∃R.C if there already exists
a R-role filler for i that is known to be an instance of concept C. Index structures are required
to efficiently determine whether there already exists a corresponding role filler. With index
structures maintained efficiently, a role filler lookup can be implemented in almost constant
time.
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6 Optimizations for Grounded Conjunctive Queries

In addition to the basic concept-based instance retrieval inference service, more expressive
query languages are required in practical applications. Well-established is the class of con-
junctive queries. A conjunctive query consists of a head and a body. A query is a structure
of the form ans(X1, . . . , Xn) ← atom1, . . . , atomm. The head lists variables for which
the user would like to compute bindings. The body consists of query atoms (see below) in
which all variables from the head must be mentioned. If the body contains additional vari-
ables, they are seen as existentially quantified. A query answer is a set of tuples representing
bindings for variables mentioned in the head.

Query atoms can be concept query atoms (C(X)), role query atoms (R(X,Y )), same-
as query atoms (X = Y ) as well as so-called concrete domain query atoms. The latter are
introduced to provide support for querying the concrete domain part of a knowledge base
and will not be covered in detail here. Conjunctive queries are built from query atoms using
boolean constructs for conjunction (indicated with comma) or union (∨).

In standard conjunctive queries, variables (in the head and in query atoms in the body)
are bound to (possibly anonymous) domain objects. A system supporting (unions of) stan-
dard conjunctive queries is QuOnto [1]. In so-called grounded conjunctive queries, C(X),
R(X,Y ) orX = Y are true if, given some bindings α for mapping from variables to individ-
uals mentioned in the Abox A, it holds that (T ,A) |= α(X) : C, (T ,A) |= (α(X), α(Y )) :

R, or (T ,A) |= α(X)
.
= α(Y ), respectively. In grounded conjunctive queries the standard

semantics can be obtained for so-called tree-shaped queries by using corresponding exis-
tential restrictions in query atoms. Due to space restrictions, we cannot discuss the details
here. In the following, we consider only grounded conjunctive queries. For more informa-
tion on RACER’s Abox query language we refer to [53,54]. The language is called nRQL
(pronounce: “niracle” and hear it as “miracle”).

We use the LUBM benchmark for illustrative purposes in this section. LUBM queries are
modeled as grounded conjunctive queries referencing concept, role, and individual names
from the Tbox. Below, the LUBM queries 9 and 12 are shown in order to demonstrate
LUBM query answering problems – note that ‘www.University0.edu’ is an individual and
subOrganizationOf is a transitive role. Please refer to [27–29] for more information about
the LUBM queries.

Q9 : ans(x , y , z )← Student(x ),Faculty(y),Course(z ),

advisor(x , y), takesCourse(x , z ), teacherOf (y , z )

Q12 : ans(x , y)← Chair(x ),Department(y),memberOf (x , y),

subOrganizationOf (y ,www.University0.edu)

In order to investigate the data description scalability problem, we used the Tbox pro-
vided with the LUBM benchmarks. The Tbox declares (and sometimes uses) inverse and
transitive roles as well as domain and range restrictions, but no number restrictions, value
restrictions or disjunctions. Among other axioms, the LUBM Tbox contains axioms that ex-
press necessary and sufficient conditions for some concept names. For instance, the Tbox
contains an axiom for Chair: Chair ≡ Person u ∃headOf.Department. For evaluating our
optimization techniques for query answering we consider runtimes for a whole query set
(queries 1 to 14 in the LUBM case).

If grounded conjunctive queries are answered in a naive way by evaluating subqueries
in the sequence of syntactic notation, acceptable answering times can hardly be achieved.
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For efficiently answering queries, a query execution plan is determined by a cost-based
optimization component (c.f., [21, p. 787ff.], see also [13]) which orders query atoms such
that queries can be answered effectively. Query execution plans are specified here in the
same notation as queries (whether a query is seen as an execution plan will be clear from
context). We assume that in query execution plans the execution order of atoms is determined
by the order in which they are textually specified.

Let us consider the execution plan ans(x , y)← C (x ),R(x , y),D(y). Processing the
atoms from left to right will start with the atom C(x). Since there are no bindings known for
the variable x, the atomC(x) is mapped to a query instance retrieval(C,A, individuals(A)).
The elements in the result set of the retrieval query are possible bindings for x.C(x) is called
a generator. The next query atom in the execution plan isR(x, y). There are bindings known
for x but no bindings for y. Thus,R(x, y) is also a generator (for y-bindings). Given the atom
R(x, y) is handled by a role filler query for each binding of x, there are possible bindings
generated for y. Afterwards, the atom D(y) is treated. Since there are bindings for y avail-
able, the atom is mapped to an instance test (for each binding). We say, the atom D(y) acts
as a tester.

Determining all bindings for a variable (with a generator) is much more costly than
verifying a particular binding (with a tester). Treating the one-place predicates Student ,
Faculty , and Course from query Q9 (see above) as generators for bindings for correspond-
ing variables results in a combinatorial explosion (cross product computation). Optimization
techniques are required to provide for efficient query answering in the average case.

6.1 Query Optimization

The optimization techniques that we investigated are inspired by database join optimiza-
tions, and, for example, exploit the fact that there are few Faculty members but many
Students in the LUBM data descriptions. For instance, in case of query Q9, the idea is
to use Faculty as a generator for bindings for y and then generate the bindings for z follow-
ing the role teacherOf . The heuristics applied here is that the average cardinality of a set of
role fillers is rather small. For the given z bindings we apply the predicate Course as a tester
(rather than as a generator as in the naive approach). Given the remaining bindings for z,
bindings for x can be established via the inverse of takesCourse. These x bindings are then
filtered with the tester Student .

If z was not mentioned in the set of variables for which bindings are to be computed
(in the head of the query), and the tester Course was not used, there would be no need to
generate bindings for z at all. One could just check for the existence of a takesCourse role
filler for bindings w.r.t. x. This way, further optimizations are possible.

In the second example, query Q12, the constant (individual) ‘www.University0.edu’
is mentioned. Starting from this individual the inverse of the role subOrganizationOf is
applied as a generator for bindings for y which are filtered with the tester Department . With
the inverse of memberOf , bindings for x are computed which are then filtered with Chair .
Since for the concept Chair sufficient conditions are declared in the Tbox, instance retrieval
reasoning is required if Chair is a generator. Thus, it is advantageous that Chair is applied
as a tester (and only instance tests are performed).

For computing a query execution plan, a total order relation on query atoms with respect
to a given set of data descriptions (assertions in an Abox) is required. For determining the or-
der relation, we need information about the number of instances of concept and role names.
An estimate for this information can be computed in a preprocessing step by considering
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given data descriptions [49], or could be obtained by examining the result set of previously
answered queries.

In Section 5.7 we have discussed that it is advantageous to compute and maintain an
index associated inds that allows us to find “obvious” instances by exploiting precomple-
tion information. The index associated inds is organized in such a way that retrieving the
instances of a concept A, or one of its ancestors, requires (almost) constant time (in com-
bination with the descendants, see Algorithm 12). This kind of index is particularly useful
to provide bindings for variables if, despite all optimization attempts for deriving query ex-
ecution plans, concept names must be used as generators. In addition, the index is used to
estimate the cardinality of concept extensions. The estimates are used to compute an order
relation for query atoms. The less the cardinality of a concept or a set of role fillers is as-
sumed to be, the more priority is given to the query atom. Optimizing LUBM queryQ9 with
the techniques discussed above yields the following query execution plan.

Q9 ′ : ans(x , y , z )← Faculty(y), teacherOf (y , z ),Course(z ),

advisor−(y , x ),Student(x ), takesCourse(x , z )

Using this kind of rewriting, queries can be answered much more efficiently.
If the Tbox contains only GCIs of the form A v A1 u . . . u An, i.e., if the Tbox forms a

hierarchy, the index-based retrieval discussed in Section 5.7 is complete (see [6]). How-
ever, this is not the case for LUBM. In LUBM, besides domain and range restrictions,
axioms are also of the form A ≡ A1 u A2 u . . . u Ak u ∃R1.B1 u . . . u ∃Rm.Bm (actually,
m = 1). If sufficient conditions with existential restrictions are specified as in the case of
Chair , optimization is much more complex. In LUBM data descriptions, no individual is
explicitly declared as a Chair and, therefore, reasoning is required, which is known to be
rather costly. If Chair is used as a generator and not as a tester such as in the simple query
ans(x )← Chair(x ), optimization is even more important. The idea to optimize instance
retrieval is to detect an additional number of obvious instances by transforming sufficient
conditions into conjunctive queries.

6.2 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we can detect obvious instances based on told and taxonomical information
(almost constant time, see the previous section) as well as information extracted from the
precompletion (linear time w.r.t. the number of remaining candidate individuals and a very
fast test, see Section 5.4). Known non-instances can be determined with model merging
techniques applied to individual pseudo models (also a linear process w.r.t. the number of
remaining candidate individuals but with a very fast test, see Section 5.3). However, there
might still be some candidates left. Using the results presented in Section 5 it is possible
to use dependency-directed instance retrieval and binary partitioning. Our findings suggest
that in the case of LUBM, for example for the concept Chair , the remaining refutational
tableau proofs are very fast. However, for Chair quite many candidates remain since there
are many Persons in LUBM. In application scenarios such as those we investigate with
LUBM, we have 200 000 individuals and more (see the evaluation in Section 7), among
them many Persons . Even if each single instance test lasts only a few dozen microseconds,
query answering will be too slow, and hence additional techniques should be applied to solve
the data description scalability problem.
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Algorithm 16 rewrite(tbox , concept , var):
if unabsorbed gcis(tbox) 6= ∅ ∨ definition(concept) = > then

return make atom(concept , var)
else
{atom1 , . . . , atomn} := rewrite 0 (tbox , concept , var , {})

return (atom1 , . . . , atomn )

The central insight for another optimization technique is that conjunctive queries can be
optimized according to the above-mentioned arguments whereas for concept-based queries,
optimization is much harder to achieve. Let us consider the query ans(x )← Chair(x ). For
the concept Chair , a sufficient condition Person u ∃headOf.Department is given as part of
the Tbox. Thus, in principle, we are looking for instances of Person u ∃headOf.Department.
The key to optimizing query answering becomes apparent if we transform the sufficient
condition of Chair into a conjunctive query and derive the optimized version Q15′:

Q15 : ans(x)← Person(x ), headOf (x , y),Department(y)

Q15′ : ans(x)← Department(y), headOf −(y , x ),Person(x )

Because there exist fewer Departments than Persons in LUBM, the search for bindings
for x is substantially more focused in Q15′ (which is the result of automatic query optimiza-
tion, see above). In addition, in LUBM, the extension of Department can be determined
with simple index-based tests (only hierarchies are involved).

In addition, in the Tbox there is a domain restriction Professor for the role headOf, which
can be exploited to further optimize the query by making atoms as specific as possible.
Due to the domain restriction for headOf, the variable x in Q15’ must refer to a Professor

instance, which can be made explicit. If we further exploit that Professor is subsumed by
Person, it is clear that the atom Person(x) can be dropped.

Q15′′ : ans(x)← Department(y), headOf −(y , x ),Professor(x )

With the Chair example one can easily see that the standard approach for instance re-
trieval can be optimized dramatically with rewriting concept query atoms if certain condi-
tions are met.

The idea of the rewriting is to implement the inverse of the contraction or rolling-up
technique (see [22] and also Section 5.1). Here, however, existential restrictions are “rolled-
down” to conjunctive queries. The rewriting is reminiscent of a rewriting introduced by
Borgida in [9]. In this work, description logic concepts are translated to first-order logic
formulae. The transformation approach discussed in this section is also reminiscent to a
transformation approach discussed in [45]. Note, however, that in our approach, we addi-
tionally consider domain and range restrictions for roles in order to maximize information
that can be used for exploiting indexes.

The rewriting algorithm is defined in Algorithms 16, 17, and 18. Every concept query
atom C(x) used in a conjunctive query is replaced with rewrite(query tbox ,C , x ) (and
afterwards, the query is optimized with the techniques describe above). If the transformation
approach is applied to Q15, the query Q15′′ is derived.

Some auxiliary functions are used. The function definition(C) returns sufficient condi-
tions for a concept name C (the result is a concept), the function make atom(c, v) returns
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Algorithm 17 rewrite 0 (tbox , concept , var , exp):
if definition(concept) = > ∨ concept ∈ exp then

return {make atom(concept , var)}
else

;; catch installs a marker to which the control flow can be thrown
catch not rewritable

rewrite 1 (tbox , concept , definition(tbox , concept), var , {concept} ∪ exp)

Algorithm 18 rewrite 1 (tbox , concept name, definition, var , exp):
if (definition = A) where A is a concept name then

return rewrite 0(tbox, definition, var, {definition} ∪ exp)
else

if (definition = ∃R.C) then
filler var := fresh variable()
return {R(var , filler var)} ∪ rewrite 0 (tbox , C, filler var , exp)

∪ rewrite 0 (tbox , role domain(R), var , exp)
∪ rewrite 0 (tbox , role range(R), filler var , exp)

else
if (definition = C1 u . . . u Cn) then

return rewrite 1 (tbox , concept name, C1, var , exp)
∪ · · · ∪
rewrite 1 (tbox , concept name, Cn, var , exp)

else
;; throw the control flow out of rewrite 1 recursion
;; back to the call to rewrite 1 in rewrite 0 and
;; return {concept name(var)}
throw not rewritable {concept name(var)}

the atom c(v), and the function unabsorbed gcis(tbox) indicates whether there are some
unabsorbed GCIs left after GCI transformation, i.e., TG 6= ∅ (see Section 3.3, the result is a
set of concepts). In addition, we use a function fresh variable that generates a new variable
that was not used before. The functions role domain and role range return the domain and
range restrictions of a role (after GCI absorption).

If there is no specific definition or the function unabsorbed gcis returns a non-empty
set, rewriting is not applied (see Algorithm 16). It is easy to see that the rewriting approach
is sound. However, it is complete only under specific conditions, which can be automatically
detected. If we consider the Tbox T = {D ≡ ∃R.C}, the Abox A = {i :∃R.C} and the query
ans(x )← D(x ), then due to the algorithm presented above the query will be rewritten as
ans(x )← R(x , y),C (y). For variable bindings, the query language nRQL (see above) con-
siders only those individuals that are explicitly mentioned in the Abox. Thus i is not part of
the result set because there is no binding for y in the Abox A. Examining the LUBM Tbox
and Abox it becomes clear that in this case for every ∃R.C which is applicable to an individ-
ual i there already exist assertions (i, j) :R and j :C in the original Abox (LUBM’s design was
inspired by a database schema). Existential restrictions are fulfilled by named individuals
(see Section 5.10). However, even if this is not the case, the technique can be employed un-
der some circumstances. Usually, in order to construct a model (or a completion to be more
precise), tableau provers create a new individual for each constraint of the form i :∃R.C and
add corresponding concept and role assertions (if not already present). These newly created
individuals are called anonymous individuals. Let us assume, during the initial Abox consis-
tency test a completion is found. As we have discussed above, a precompletion is computed
by removing all constraints that depend on a choice point. If there is no such constraint,
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the precompletion is identical to the completion that the tableau prover computed. Then,
the set of bindings for variables generated by fresh variable() used in Algorithm 18 is ex-
tended to the anonymous individuals found in the precompletion. The rewriting technique
for concept query atoms is applicable (i.e., is complete) under these conditions. Even if the
rewriting technique is not complete (because something has been removed from a comple-
tion to derive a precompletion), it can be employed to reduce the set of candidates for binary
partitioning techniques that can speed up this process considerably in the average case. In
the following section, we will evaluate how the optimization techniques introduced up to
now provide a contribution to the data description scalability problem.

7 Evaluation

In this section we discuss the impact of the optimization techniques investigated in this
article by considering runtimes for the traditional inference service of Abox realization and
for KB specific queries. The runtimes we present in this section are used to demonstrate the
order of magnitude of time resources that are required for solving inference problems when
the complexity of the input problem is increased. They allow us to analyze the impact of the
presented optimization techniques.

7.1 Benchmark Knowledge Bases

We selected two sets of knowledge bases for benchmarking. The first set consists of ten KBs
with large Aboxes that were derived from various applications of DL technology within the
semantic web community. The second set contains three knowledge bases with very large
Aboxes.

7.1.1 A Selection of Large Application Knowledge Bases

The OWL knowledge bases discussed in this section contain relatively simple Tboxes but
large Aboxes. The characteristics of these KBs are summarized in Table 1 and 2. The second
column in Table 1 characterizes the Tbox logic determined by RACER. The Tbox logic of
the input file might be different because RACER might add disjunctions to the processed KB
due to GCI absorption (e.g., this is the case for the LUBM KB). The third column shows the
number of concept names, the fourth indicates the number of roles, and the fifth presents the
number of Tbox axioms. The second column in Table 2 gives the Abox logic determined by
RACER. The third to fifth columns show the number of individuals, individual assertions,
and role assertions. It is interesting to note that the Abox logic is sometimes slightly more
complex than the Tbox logic.

The Tbox/Abox logic is indicated using the standard DL terminology (see [4] for de-
tails). We additionally denote the DL supporting only conjunction and primitive negation
by L and L− stands for L without primitive negation. Both variants of L also admit sim-
ple concept inclusions whose left-hand sides consist only of a name. The notation “(D)”
is used to denote the use of concrete domain expressiveness (see [33,4] for details). The
occurrence of “(D)” is caused by OWL datatype properties that are restricted by number
restrictions (and RACER applies concrete domain reasoning to these constructs) whereas
“(D−)” denotes “(D)” without number restricted datatype properties. Furthermore, the use
of functional roles is denoted as f and of transitive roles as R+ (or S).
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Table 1 Tbox characteristics of the 10 application KBs used for benchmarking.

Knowledge Base Tbox Logic Concept Names Roles Axioms

SoftEng L−H 37 30 76
SEMINTEC FL0f 59 24 345
FungalWeb ALCH(D) 3 601 77 7 209
InfoGlue ALCH 41 37 83
WebMin 1 ALEHf(D−) 444 175 1 714
WebMin 2 ALEHf(D−) 520 204 1 893
LUBM ALCH 43 41 85
FERMI L 5 136 15 10 265
UOBM-lite ALCHf 51 49 101
VICODI L−H 194 10 387

Table 2 Abox characteristics of the 10 application KBs used for benchmarking.

Knowledge Base Abox Logic Inds Ind. Assertions Role Assertions

SoftEng L−HR+ 6 735 5 595 25 896
SEMINTEC FL0f 17 941 17 941 41 174
FungalWeb ALCH(D) 12 556 12 705 1159
InfoGlue SH 15 464 15 937 88 316
WebMin 1 ALCHf(D−) 1 427 9 193 1 146
WebMin 2 ALCHf(D−) 6 532 28 676 15 915
LUBM SH(D−) 17 174 51 207 49 336
FERMI EL 700 9 998 650
UOBM-lite SHf(D−) 5 674 10 790 11 970
VICODI L−H 16 942 16 942 36 704

It is also important to mention that RACER computes the Tbox/Abox logic of a KB by
analyzing it in detail. For instance, if a KB declares a transitive (inverse) role (as in the case
of LUBM) but never uses this role within an axiom or, in the case of an inverse role, there
does not exist an interaction between a role and its inverse (e.g., ∃R . ∀R− .C), then the
Tbox logic does not refer to transitive or inverse roles. The same methodology is applied to
Aboxes but the logic of the Abox is always at least as expressive as the one of its Tbox.

The selected ten knowledge bases can be described as follows.

– The SoftEng ontology was created by a reverse engineering approach [55] where an
abstract representation of Java code is represented as a KB and DL inference services
were used to reason about security concerns.

– The SEMINTEC3 ontology models financial services.
– The FungalWeb4 ontology is an outcome of an project using DL technology in the con-

text of fungal genomics [48,5].
– The InfoGlue ontology is the by-product of a DL-based approach to support the com-

prehension and maintenance of software systems [47].
– The two Web Mining ontologies (WebMin 1 and 2) are proprietary and were contributed

by users of RACER.
– The LUBM5 ontology [27–29] (see also below) represents the structural organization

of a set of universities (with a varying number of departments). Although LUBM is

3 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
4 http://www.cs.concordia.ca/FungalWeb/
5 http://swat.cse.lehigh.edu/projects/lubm/index.htm
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an artificial benchmark the distribution of entities matches real-world universities quite
well.

– The FERMI6 ontology was generated in the context of a project about formalization and
experimentation on the retrieval of multimedia information.

– The UOBM-lite ontology [42] was derived from LUBM but has a more complicated
Tbox and Abox structure. It represents the structural organization of one university (with
all departments).

– The VICODI7 ontology is about European history.

7.1.2 Very Large Knowledge Bases

In order to better investigate Abox scalability, the following three knowledge bases with
very large Aboxes are used.

– The Lehigh University Benchmark (LUBM, [27–29]) is used with two different Tboxes
(lite and normal) and 6 different Abox sizes ranging from 5 to 50 universities (with
all departments). The original LUBM Tbox is in ELH but RACER’s GCI absorption
process adds disjunctions to the axioms resulting in a Tbox which is in ALCH. In the
case of LUBM another absorption is possible that avoids the addition of disjunctions but
this is currently not supported by RACER. However, a slight modification to the original
LUBM Tbox can avoid the unnecessary addition of disjunctions. Thus, we decided to
investigate two variants of LUBM, the original one, called LUBM, and the modified
one, called LUBM-lite. The characteristics of the LUBM KBs are described in Table 9.

– The UOBM or UOB ontology [42] was derived from LUBM. For benchmarking the
variant based on OWL-lite is used with 5 different Abox sizes ranging from 1 to 5
universities (with all departments). The UOBM ontology extends the LUBM ontology
and adds more expressiveness to both Tbox and Abox. The characteristics of the UOBM
KBs are shown in Figure 10.

– The Wordnet knowledge base (version 1.7.1)8 is an OWL-DL KB representing the
WordNet 1.7.1 lexical database [18]. The L− Tbox of Wordnet contains 84K concept
names and 85K axioms. Its ELR+(D−) Abox consists of 269K individuals, 548K indi-
vidual and 304K role assertions (see also Figure 5 and Table 8).

Besides having very large Aboxes the LUBM and UOB knowledge bases were selected
because they are well-known and have been used for various evaluations of DL reasoners.
They have the disadvantage of being synthetic which is offset by their advantage of being
scalable. Moreover, the authors of these ontologies argue that their knowledge bases reflect
typical data that could have been extracted from databases and they underwent substantial
efforts in making them very close to application data [29,42]. The Wordnet ontology was
selected because it also has a very large Abox and its database counterpart [18] is used in
numerous applications worldwide.

7.2 Evaluation of Large Knowledge Bases

As outlined earlier we evaluated the application KBs using the inference service of Abox
realization which heavily relies on the techniques introduced in the previous sections. This

6 http://www.dcs.gla.ac.uk/fermi/
7 http://www.vicodi.org/
8 http://taurus.unine.ch/files/wordnet171.owl.gz
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Table 3 Processing times of application KBs using the standard optimization setting (in secs).

Knowledge Base Load Classification Realization

SoftEng 7.43 0.03 5.61
SEMINTEC 7.25 0.07 18.60
FungalWeb 3.20 1.71 59.20
InfoGlue 28.00 0.04 161.00
WebMin 1.00 1.57 0.90 14.80
WebMin 2.00 8.63 0.74 104.00
LUBM 14.20 0.04 46.40
FERMI 7.56 3.35 1.33
UOBM-lite 4.73 0.05 61.60
VICODI 5.65 0.07 34.10

(Load = load time, Tbox = Tbox classification time, Abox = Abox realization time)

kind of Abox indexing w.r.t. to concept names stress-tests these techniques and is especially
suitable if a sufficient number of specific benchmark queries for the selected ontologies are
not available. Another argument for realization are RDF query languages such as SPARQL,
which heavily relies on concept names for querying. In cases where a reasonable number of
queries were available (as in the case of LUBM and UOBM) we additionally tested these
KBs with these sets of queries (as detailed in Section 7.3).

7.2.1 Experimental Settings

All experiments were conducted by switching on or off selected optimization techniques
(as introduced in the previous sections) in order to assess the positive (and sometimes also
negative) impact of these techniques on the runtimes. The tests were conducted on a Sun
server V890 with 8 dual core processors and 64 GB of main memory (although all these
tests usually require less than 2 GB of memory usage and each test was executed on a
single processor). For each setting the average runtimes of the 10 application KBs were
sequentially computed where each KB test was repeated 5 times. Each setting was tested
with a fresh image of RACER, i.e., the restarts of RACER correspond to the number of
settings tested, and the given runtimes include the time for garbage collection. The runtimes
using the “standard” optimization setting of RACER are presented in Table 3. The second
column shows the time for loading the KB, the third for classification, and the fourth for
realization (including the time for the initial Abox consistency test). It can be seen that
the classification times can be mostly neglected (as expected) and the realization times vary
between less than 2 seconds and almost 3 minutes. The average runtimes are usually inflated
by the overhead caused by garbage collection.

For the evaluation of the application KBs the following 11 parameters were used to
switch optimization techniques on or off.

P1 Individual pseudo model merging (see Section 3.1): switched on by default.
P2 Abox contraction (see Section 5.1): switched on by default.
P3 Sets-of-individuals-at-a-time instance retrieval (see Section 5.7): switched on by default.

If it is switched off, linear instance retrieval (see Section 5.2) is selected.
P4 Abox completion (see Section 5.3): switched on by default.
P5 Abox precompletion (see Section 5.4): switched on by default.
P6 Binary instance retrieval (see Section 5.5): switched on by default.
P7 Dependency-based instance retrieval (see Section 5.6): switched on by default.
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P8 Static index-based instance retrieval (see Section 5.7): switched off by default (time and
memory demands can be excessive in general).

P9 Dynamic index-based retrieval (see Section 5.8): switched off by default (time and mem-
ory demands can be excessive in general).

P10 OWL-DL datatype properties simplification (see Section 5.9): switched on by default.
P11 Re-use of role assertions for existential restrictions (see Section 5.10): switched on by

default.

To verify the effectiveness of the optimization techniques related to these 11 parameters,
17 different benchmark settings were created. These settings were selected to demonstrate
the positive (and sometimes also negative) effect of optimization techniques. In most set-
tings exactly one optimization is switched off (on) that is normally switched on (off) in the
standard setting. In a few settings up to three optimizations are switched off (on) because
they either depend on one another or one would compensate for others that are disabled. The
exact composition of these 17 settings is shown in in the rows of Table 4. The settings have
the following meaning:

1. Standard setting with only static (P8) and dynamic index-based retrieval (P9) disabled.
All the following settings are based on this standard setting.

2. Abox completion (P4) switched off.
3. Abox precompletion (P5) switched off.
4. Abox completion (P4) and precompletion (P5) switched off.
5. Individual pseudo model merging (P1) switched off.
6. Abox contraction (P2) switched off.
7. Sets-of-individuals-at-a-time (P3) switched off.
8. Sets-of-individuals-at-a-time (P3) and binary instance retrieval (P6) switched off.
9. Sets-of-individuals-at-a-time (P3), binary instance retrieval (P6), and dependency-based

instance retrieval (P7) switched off.
10. OWL-DL datatype simplification (P10) switched off.
11. Re-use of role assertions (P11) switched off.
12. Static index-based instance retrieval (P8) switched on.
13. Dynamic index-based instance retrieval (P9) switched on.
14. Dependency-based instance retrieval (P7) switched off.
15. Binary instance retrieval (P6) switched off.
16. Abox precompletion (P5) and dependency-based instance retrieval (P7) switched off.
17. Abox precompletion (P5) and binary instance retrieval (P6) switched off.

7.2.2 Evaluation Using the Realization Inference Service

The first series of evaluations were performed with the KBs introduced in Section 7.1.1 and
under the conditions described at the beginning of Section 7.2.1. For all KBs the direct types
for all individuals mentioned in the associated Abox were computed and verified. Each test
was performed with all 17 settings described above. Each Abox realization was repeated
five times and the average of these five runs is shown in the Tables 5 and 6. In the following
we analyze the results by focusing on (i) the best and worst settings per KB, and (ii) for each
setting the KB having the most positive and negative impact. The graphs in Figure 3 and 4
illustrate these results per KB.

The SoftEng KB is only affected by S5 which disables individual pseudo model merging
and results in an increase of runtime by a factor of 100.
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Table 4 Composition of the selected 17 different optimization settings.

Setting P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1 · · · · · · · × × · ·
2 · · · × · · · × × · ·
3 · · · · × · · × × · ·
4 · · · × × · · × × · ·
5 × · · · · · · × × · ·
6 · × · · · · · × × · ·
7 · · × · · · · × × · ·
8 · · × · · × · × × · ·
9 · · × · · × × × × · ·

10 · · · · · · · × × × ·
11 · · · · · · · × × · ×
12 · · · · · · · · × · ·
13 · · · · · · · × · · ·
14 · · · · · · × × × · ·
15 · · · · · × · × × · ·
16 · · · · × · × × × · ·
17 · · · · × × · × × · ·

Setting 1 is the standard setting, · used for switched on, × for switched off.

Table 5 Abox realization with optimization settings 1-8 (in seconds).

Knowledge
Base

S1 S2 S3 S4 S5 S6 S7 S8

SoftEng 5.6 5.4 5.4 5.5 480 5.4 6.0 5.7
SEMINTEC 18.6 18.9 17.6 18.9 TO 18.8 12.2 11.5
FungalWeb 59.2 66.6 59.1 58.9 461 59.0 64.5 53.8
InfoGlue 160 113 TO TO TO 161 TO TO
WebMin 1 14.8 14.9 14.5 15.0 45.4 14.8 13.2 13.5
WebMin 2 104 57.7 215 215 TO 57.8 124 67.9
LUBM 46.4 49.9 133 136 TO 58.8 185 189
FERMI 1.33 1.33 1.3 1.37 6.90 1.31 1.19 1.28
UOBM-lite 61.6 68.4 914 935 834 61.6 TO TO
VICODI 34.1 22.3 23.5 23.0 TO 33.0 21.8 26.0

TO = timeout (after 1000 seconds),
S1 = standard, S2 = completion off, S3 = precompletion off,
S4 = completion+precompletion off, S5 = ind. pseudo model merging off,
S6 = contraction off, S7 = sets-of-inds-at-a-time off,
S8 = sets-of-inds-at-a-time+binary instance retrieval off.

A similar observation holds for the SEMINTEC KB, which timed out after 1000 sec-
onds. Its best runtimes are for S7-S9, which switch the sets-of-individuals-at-a-time tech-
nique off. This indicates a 50% overhead for this technique.

The FungalWeb KB has its runtime increased by a factor of 8 for setting S5. Otherwise
it remains mostly unaffected if 10% variations are ignored.

The InfoGlue KB’s best setting is S15, which switches off binary instance retrieval. This
indicates that the partitioning scheme only causes overhead in this case. The second-best one
is S2 (no completion). This indicates that the completion tests are mostly unsatisfiable and
thus wasted due to the incompleteness of this technique. InfoGlue timed out for S3-S5, S7-
S9, and S16-S17. The size of this KB and its Tbox/Abox logics (ALCH/SH) explain the
timeout for S3-S4, which switch off the precompletion technique and cause the overhead
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Table 6 Abox realization with optimization settings 9-17 (in seconds).

Knowledge
Base

S9 S10 S11 S12 S13 S14 S15 S16 S17

SoftEng 5.67 5.42 5.45 5.47 5.45 5.6 5.5 6.45 6.23
SEMINTEC 11.6 18.3 16.2 18.9 18.8 18.1 18.0 18.9 22.9
FungalWeb 53.2 59.4 56.7 59.8 59.5 60.2 57.8 65.3 59.5
InfoGlue TO 133 158 162 159 207 96.0 TO TO
WebMin 1 13.5 22.3 14.8 14.8 14.8 15.2 14.4 14.9 14.5
WebMin 2 68.0 140 55.2 57.7 88.3 78.1 64.3 202 200
LUBM 191 68.7 66.6 59.3 58.7 59.1 40.6 170 200
FERMI 1.19 1.27 1.2 1.3 1.32 1.34 1.36 1.27 1.26
UOBM-lite TO 66.8 66.2 61.5 61.8 55.9 58.1 TO 915
VICODI 25.7 33.1 21.0 33.2 32.9 23.7 28.6 29.8 23.4

TO = timeout (after 1000 seconds),
S9 = sets-of-inds-at-a-time+binary+dependency-based instance retrieval off,
S10 = datatype simplification off, S11 = Re-use of role assertions off,
S12 = static index-based instance retrieval on,
S13 = dynamic index-based instance retrieval on,
S14 = dependency-based instance retrieval off, S15 = binary instance retrieval off,
S16 = precompletion+dependency-based instance retrieval off,
S17 = precompletion+binary instance retrieval off.
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Fig. 3 Abox realization graphs of the first 5 application KBs.

of recomputation of assertions making up the precompletion. A similar effect as for SEM-
INTEC also occurs for InfoGlue for S5. The disabled sets-of-individuals-at-a-time technique
explains the timeout for S7-S9 because the then enabled linear instance retrieval causes too
much overhead.

The WebMin 1 KB remains mostly unaffected except by S5 (3 times slower) and S10
(50% slower), which disables the datatype simplification.
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Fig. 4 Abox realization graphs of the last 5 application KBs.

The best settings for the WebMin 2 KB are S2, S6, S11, where the overhead of these
techniques is saved, and S12, where the static index-based instance retrieval compensates for
the overhead of the other techniques. WebMin 2’s worst settings are S3-S4, which switch
the precompletion off.

Due to its size LUBM timed out for S5 and its best runtime is for S15, which is 10%
faster than the standard one. A factor of 4 in the increase of the runtime can be noticed for
S7-S9 due to the overhead of linear instance retrieval.

The observations for the FERMI KB are similar to SoftEng, although S5 only causes an
increase of a factor of 5. This is due to the very simple structure of this KB.

For UOMB-lite the best is S14, which disabled dependency-based instance retrieval. S3-
S4 cause an increase of a factor of 15 because they switch off the precompletion. A similar
observation can be made for S5. Both can be explained by the size of the KB. S7-S9 timed
out because sets-of-individuals-at-a-time was disabled and linear instance retrieval enabled.

The VICODI KB timed out for setting S5 and shows a variation of up to 50% in the
other settings.

The standard setting (S1) was selected with the goal to ensure a good overall perfor-
mance. This is generally confirmed by these benchmarks. For S2 some KBs (e.g., Web-
Min2) have smaller runtimes than in S1. The positive effect can be explained by the low
success rate of the completion test (e.g., 0% for WebMin 2, 66% for InfoGlue) and the in-
completeness of this technique in case it reported an (possibly unavoidable) inconsistency.
For some KBs such as LUBM and UOBM-lite we notice a slowdown of 10%. S3 shows
that the Abox precompletion technique is advantageous for most KBs and even essential
for InfoGlue and UOBM-lite. This is due to the reduced overhead in rebuilding initial data
structures. S4 indicates that the missing precompletion dominates the increase in runtime.
S5 has a very detrimental effect on the runtime. This clearly demonstrates the effectiveness
of the individual pseudo model merging technique for Abox realization. S6 is virtually iden-
tical to the standard setting except for WebMin 2, where we observe a speed-up of almost
50%. These results indicates that this technique does not seem to be very effective for these
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KBs. S7 mostly shows the positive effect of the sets-of-individuals-at-a-time technique. It
is essential for InfoGlue and UOBM-lite, which both timed out. LUBM is 3 times slower
but VICODI is 30% faster. S8-S9 demonstrate that the disabled sets-of-individuals-at-a-time
technique dominates the slowdown. The results for S10 are mixed. Some KBs such as In-
foGlue show a performance gain due to reduced overhead while others such as WebMin 1/2
have an increased runtime. S11 shows a similar pattern where WebMin 2 is twice as fast as
in the standard setting but others slowed down. S12 and S13 are different from the previous
ones because they switch techniques on that are disabled by default. The only exception
for S12 is WebMin 2, which doubled in speed. All others are in the range of the standard
setting. The next section discusses scenarios where these 2 settings are very favorable. S13
behaves similarly to S12 but WebMin 2 has only a speed-up of 20%. S14 shows also mixed
results. InfoGlue slowed down by 25% while VICODI and WebMin 2 increased in speed.
So, dependency-based instance retrieval is sometimes favorable because it helps to separate
“clash culprits” and sometimes it causes unnecessary overhead. S15 shows clearly that bi-
nary instance retrieval does not improve the runtimes for realization of the 10 KBs. S16-S17
need to be compared to S3, which also switches off precompletion. LUBM slowed down by
30-50% and UOBM-lite timed out for S16. In these cases S16 and S17 have a positive effect
due to the disabled precompletion. All other results are similar to S3.

7.2.3 Evaluation of Static and Dynamic Index-based Retrieval

In the following we illustrate the effectiveness of static and dynamic index-based instance
retrieval (see Algorithms 12 and 15) with the help of the LUBM KB (1 university) used in
the previous section. We used 2 concepts for querying their instances. The first one is the
predefined concept Chair, the second one is a concept conjunction describing a Chair whose
email address (specified by the datatype property emailAddress) has to be equal to the string
"FullProfessor2@Department12.University0.edu".

Queries can be ordered with respect to subsumption. Given the partial order induced
by subsumption, an optimal execution sequence for answering multiple queries can be
generated with a topological sorting algorithm. The more general queries are processed
first, yielding a (possibly reduced) set of candidates for more specific queries as a by-
product. This is demonstrated by considering the following query set (‘. . . ’ stands for the
string"FullProfessor2@Department12.University0.edu" and the DL nota-
tion (= emailAddress . . .) is used to restrict the value of the datatype property emailAddress).

{instance retrieval(Chair,LUBM ),

instance retrieval(Chair u (= emailAddress . . .),LUBM )}

Two different strategies were used: (i) Strategy 1: all instances of the concept Chair are
retrieved first; (ii) Strategy 2: all instances of the concept Chair u (= emailAddress . . .) are
retrieved first.

The query set was evaluated with 4 different settings: (i) standard (S1), (ii) static index-
based instance retrieval switched on (S12), (iii) dynamic index-based instance retrieval
switched on (S13), (iv) sets-of-individuals-at-a-time switched off and static index-based in-
stance retrieval switched on (S7+S12). The runtimes of the query set – 4 settings and each
under the 2 strategies – are shown in Table 7. The columns list (from left to right) the selected
strategy, selected optimization settings, time for Abox consistency test, time for Abox real-
ization, time to compute the instances of Chair, time to compute the instances of the concept
conjunction, total benchmark time.
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Table 7 Runtimes (in secs) of LUBM (1 university) instance retrieval (2 strategies).

Strategy Setting Consistency Realization Chair Anon Total

1 S1 17.9 – 12.0 585 649
2 S1 18.0 – 1.38 601 611
1 S12 18.1 15.2 0.001 4.02 66
2 S12 18.1 15.0 0.001 3.97 65
1 S13 10.0 – 6.66 4.42 61
2 S13 15.6 – 1.75 554 605
1 S7+S12 18.3 129 0.001 1.07 174
2 S7+S12 18.1 131 0.001 1.04 175

S1 = standard, S7 = sets-of-inds-at-a-time off,
S12 = static index-based instance retrieval on,
S13 = dynamic index-based instance retrieval on.
Anon stands for Chair u (= emailAddress . . .)

Table 8 Characteristics of the Wordnet 1.7.1 knowledge base.

Tbox
Logic CN R Axioms Abox Logic Inds Ind. Ass. Role Ass.

L− 84 609 40 85 664 ELR+(D−) 269 684 548 578 304 362

(CN = no. of concept names, R = no. of roles)

Table 7 reveals that the query with the concept conjunction is expensive in the standard
setting (which does not keep an index or cache about previous query results) and the query
execution order has only a minor impact. Both strategies give a speed-up of 2 orders of mag-
nitude with setting S12 for the concept conjunction query. In this case, the time for Abox
realization paid off well. The runtimes are insensitive to the query execution orders. The
next setting (S13) clearly demonstrates that dynamic index-based retrieval is advantageous
to the standard setting provided the proper execution order of the queries (based on query
concept subsumption) has been chosen. One might conclude that static index-based retrieval
is always preferable to the dynamic one but in case of larger KBs the initial overhead for in-
dex building might increase significantly. The last setting (S7+S12) reveals the efficiency of
the sets-of-individuals-at-a-time technique (see Section 5.7.2) in contrast to linear instance
retrieval. Due to S7 the overhead to setup the static index increased by almost 1 order of
magnitude.

7.3 Evaluation of Very Large Knowledge Bases

The previous section evaluated the presented optimization techniques for instance retrieval
mostly on the basis of Abox realization. In this section the evaluation of instance retrieval
is continued with very large knowledge bases. The first very large KB is Wordnet, which is
evaluated with Abox realization only due to lack of a sufficient number of specific bench-
mark queries. The other two very large KBs are LUBM and UOBM. They are evaluated us-
ing the execution of grounded conjunctive queries, which were designed by the developers
of these KBs. Both KBs are tested for Abox size scalability using the standard optimiza-
tion setting. Furthermore, they are also evaluated against the 17 settings from the previous
section.
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Fig. 5 Runtimes for Wordnet Abox realization using the 17 opt. settings.

7.3.1 Wordnet

The Wordnet OWL-DL KB consists of three files with a total size of 102MB. Its character-
istics are shown in Table 8. The L− Tbox consists of 84K concept names and 85K axioms
defining a given taxonomy. The Abox logic is ELR+(D−) and indicates the use of tran-
sitive roles and OWL-DL datatype properties. The Tbox load time is 130 seconds, and its
classification time is 90.44 seconds. By analogy to the previous section we evaluated Abox
realization using the 17 settings. The results are displayed in Figure 5. The runtimes for
most settings are in the range for 8 000 seconds and do not vary much. Setting S5 (ind.
pseudo model merging off) timed out after 30 000 seconds. This result is in line with the
lessons learnt from testing large KBs. S10 (datatype simplification off) is the other excep-
tion with a runtime increased by a factor of 2.5. This clearly demonstrates the advantage of
the datatype property optimization technique. S15-S17 show a speedup of roughly 10% due
to the reduced overhead of the disabled techniques.

7.3.2 LUBM

The LUBM benchmark has the big advantage of being scalable. LUBM was tested with 5-50
university, each with all departments. This results for 50 universities in 1082K individuals,
3355K individual assertions, and 3298K role assertions. Two different Tboxes were used in
order to investigate the influence of the GCI absorption technique (see also the discussion
in Section 7.1.2). An overview about the characteristics and sizes of the LUBM benchmarks
is given in Table 9. The Tbox logic of LUBM-lite is ELH, its Abox logic is ELHR+(D−).
The Tbox logic of LUBM is ALCH, its Abox logic is SH(D−).

Each benchmark was evaluated with 14 grounded conjunctive queries designed by the
authors of LUBM. The benchmark log recorded the runtime for the following phases: (i)
loading the input files; (ii) data structure setup for the KB. These runtimes are identical
for both Tbox variants. The other recorded runtimes are (see the second to fifth columns
in Figures 6 and 7): (iii) time for the initial Abox consistency test that precedes the first
query execution and initializes appropriate data structures and indexes; (iv) nRQL Abox
index generation time; (v) time to execute all 14 queries; (vi) total time consumed by the
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Table 9 LUBM/LUBM-lite Abox characteristics (time in seconds).

U Individuals Ind. Assertions Role Assertions Load Prep

5 102 368 315 139 309 393 90 60
10 207 426 641 822 630 753 196 153
20 437 555 1 356 017 1 332 029 472 456
30 645 954 2 001 556 1 967 308 726 946
40 864 222 2 676 802 2 630 656 990 1 417
50 1 082 818 3 355 749 3 298 813 1 296 1 758

U = no. of universities, Load = load time, Prep = KB preparation time.

U C I Q T

5 67 39 228 478
10 128 153 363 982
20 391 307 857 2 460
30 600 487 1 274 4 003
40 798 669 1 642 5 487
50 1 055 859 2 100 7 000
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U = no. of universities, C = time for initial Abox consistency test,
I = nRQL Abox index generation time, Q = nRQL query execution time,
T = total benchmark time.

Fig. 6 LUBM-lite query runtimes (in seconds).

benchmark. The right part of Figures 6 and 7 shows a graph displaying curves for the run-
time of the Abox consistency test (dashed line), query execution (dotted line), and the total
benchmark time (solid line).

The graph for LUBM-lite in Figure 6 gives evidence of RACER’s excellent scalability
for this benchmark type. The total runtime is even dominated by the load and preparation
time while Abox consistency and query execution apparently exhibit a straight line with a
much smaller gradient than that of the total runtime.

The gradients of the apparently straight lines shown in the graph in Figure 7 are similar
for query execution but steeper for the Abox consistency test and the total runtime. The more
complex Tbox causes no penalty for query execution. On the contrary, the query execution is
even faster by roughly 30%. The Abox consistency test requires now more than 50% of the
total runtime and dominates the benchmark results. This can be explained by the treatment
of disjunctions in axioms that were added by the GCI absorption.

We also conducted a second study with LUBM (using both Tbox variants) and a selected
Abox size of 10 universities. The 14 queries were executed using the 17 settings from the
previous section. The Figures 8 and 9 show in the left part the recorded runtimes and in the
right part a bar chart illustrating the results (using dark grey for consistency, middle grey for
queries, light grey for total runtime). Please note the use of the logarithmic scale in the bar
charts.
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U C I Q T

5 118 38 208 510
10 412 81 351 1 183
20 1 542 158 746 3 359
30 3 422 255 934 6 259
40 5 058 326 1 156 8 915
50 7 579 427 1 512 12 541
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U = no. of universities, C = time for initial Abox consistency test,
I = nRQL Abox generation time, Q = nRQL query execution time,
T = total benchmark time.

Fig. 7 LUBM query runtimes (in seconds).

S C Q T

1 135 387 1 039
2 132 371 1 003
3 133 1 326 1 962
4 133 1 340 1 979
5 132 TO TO
6 135 381 1 026
7 136 379 1 033
8 135 385 1 034
9 131 377 1 007

10 391 410 1 247
11 184 339 1 002
12 135 890 1 541
13 125 348 955
14 136 386 1 035
15 127 360 971
16 126 1 331 1 941
17 125 1 322 1 927
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TO = timeout (after 10 000 seconds),
S = selected optimization setting, C = time for initial Abox consistency test,
Q = nRQL query execution time, T = total benchmark time.

Fig. 8 LUBM-lite (10 universities) query runtimes (in seconds).

The obtained results for LUBM-lite (see Figure 8) demonstrate that the Abox consis-
tency test is mostly unaffected. Its runtime tripled for setting S10 (datatype simplification
switched off) and increased by 30% for S11 (re-use of role assertion switched off). The
execution of the queries timed out for S5 (individual pseudo model merging switched off),
although Abox realization has not been performed. This emphasizes the importance of this
technique also for query-based instance retrieval. The query runtime tripled for S3-S4 and
S16-S17, which switch precompletion off. It indicates the effectiveness of the precompletion
technique. The other notable slowdown occurred for S12 (factor of 2), which switches on
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S C Q T

1 433 345 1 210
2 431 353 1 216
3 429 1 691 2 556
4 430 1 704 2 598
5 427 TO TO
6 435 357 1 229
7 427 360 1 216
8 434 359 1 224
9 431 343 1 205

10 769 337 1 537
11 504 356 1 284
12 432 744 1 610
13 408 315 1 138
14 433 348 1 214
15 406 349 1 168
16 408 1 736 2 556
17 410 1 730 2 556
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TO = timeout (after 10 000 seconds),
S = selected optimization setting, C = time for initial Abox consistency test,
Q = nRQL query execution time, T = total benchmark time.

Fig. 9 LUBM (10 universities) query runtimes (in seconds).

the static index-based instance retrieval. It is obvious that the overhead to build and maintain
the index is too high and does not pay off for the execution of the queries.

The runtimes for the Abox consistency test for LUBM (see Figure 9) have tripled com-
pared to LUBM-lite as expected due to the added disjunctions in the transformed axioms.
The recorded runtimes are rather uniform. Setting S10 shows an almost doubled runtime and
S11 a slight increase. The efficiency of these techniques is compensated by the increased
overhead for dealing with disjunctions. Query execution timed out again for S5. Setting
S3-S4 and S16-S17, which switch off precompletion, are now a factor 4-5 slower than the
standard setting. By analogy to LUBM-lite S12 demonstrates an increased overhead (factor
of 2).

7.3.3 UOBM

The third and last very large KB discussed in this section is the UOBM-lite benchmark. It
is also scalable and was tested with 1-5 universities, each with all departments. The char-
acteristics of the KB and the benchmarks are shown in Figure 10. The Tbox of UOBM-lite
consists of 51 concept names, 49 role names, and 101 axioms, and its logic is ALCf (deter-
mined after GCI absorption). The Abox adds datatype properties and its logic isALCf(D−).
The size of the benchmark for 5 universities is 138K individuals, 509K individual assertions,
and 563K role assertions.

Each benchmark was evaluated with 15 grounded conjunctive queries designed by the
authors of UOBM. The benchmark has the same structure as for LUBM. The runtimes
given in Figure 10 show that RACER’s Abox consistency performance scales well for up
to 3 universities. The runtime increased by a factor of 2 for 4 universities and a factor of 7
for 5 universities. This degradation of performance is caused by inefficiencies in managing
internal data structures and is subject to further investigations.
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U Inds Ind. Ass. Role Ass. L P Cons I Q T

1 43 642 116 092 129 695 35 16 100 15 446 608
2 66 900 200 018 222 492 61 35 353 13 1 571 2 041
3 85 055 272 663 302 425 84 59 482 28 3 272 3 920
4 109 919 378 956 419 364 115 111 1 096 31 13 791 15 132
5 138 452 509 902 563 699 160 197 7 670 40 TO TO

TO = timeout (after 30 000 seconds),
U = no. of universities, L = load time, P = KB preparation time,
Cons = time for initial Abox consistency test, I = query index generation time,
Q = nRQL query execution time, T = total benchmark time.
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Fig. 10 UOBM-lite benchmark characteristics and runtimes (time in seconds).

In contrast to LUBM the UOBM benchmark does not make (and does not allow to
impose) the unique name assumption. The query execution time also scales well for up
to 3 universities. However, for 4 universities it increased by a factor 4 and timed out for
5 universities after 30 000 seconds. The graph in the lower part of Figure 10 displays the
curves for the Abox consistency test (dark gray line), query execution (light gray line), and
the total benchmark time (medium gray line). The non-linear trend can be easily noticed. It
is interesting to remark that 99.86% of the query runtime is spent for 3 of the 15 queries. This
performance asks for a refinement of existing or the design of new optimization techniques.

For these reasons the second study conducted with UOBM was restricted to a size of
3 universities. We tested the 15 queries using the 17 settings. The results are displayed in
Figure 11 where the left bar chart uses a linear and the right one a logarithmic scale (us-
ing dark grey for consistency, middle grey for queries, light grey for total runtime). Setting
S12, which switches static index-based instance retrieval on, timed out after 30 000 seconds.
This result clearly demonstrates that in the case of these 15 queries Abox realization is not
worth the effort. S5 switches individual pseudo model merging off and caused an increase
of runtime by a factor of 5. Again, this gives evidence for the effectiveness of this technique
for instance retrieval without realization. By analogy to LUBM one can notice a slight in-
crease for S3-S4 and S16-S17, which switch off the precompletion, and S10, which disables
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Fig. 11 UOBM-lite (3 universities) query runtimes (in seconds, timeout after 30 000 seconds).

datatype property simplification. S11 doubled the runtime due to the disabled re-use of role
assertions.

8 Conclusion and Future Work

In this article we demonstrated optimization techniques that make Abox inferences based
on tableau-based DL systems suitable for many non-naive applications. We motivated the
techniques described in this article with the semantic web scenario and its web ontology
language OWL. In this context, reasoning over individuals (e.g., instance retrieval) cannot
be easily reduced to database lookups. The examples we gave here do not cover the full ex-
pressivity of OWL-DL. Nevertheless, they already demonstrate the need for more advanced
optimization techniques.

With a set of 10 selected large application KBs, which contain large Aboxes, we could
demonstrate that the described and implemented optimization techniques are effective for
these types of KBs. However, keeping the balance between creating data structures for faster
query answering and relying on memory-conserving algorithms remains still a challenge and
is subject to ongoing research. For instance, the index-based instance retrieval techniques
can increase memory demand significantly, and often the overhead to maintain these data
structures can easily dominate the runtime.

Concerning the 10 large KBs one could see that various optimization settings have pos-
itive or negative impacts on the runtime. This even depends on the usage profile and the
requested inference services. It turned out that the standard setting seems to be a good com-
promise between overhead for indexing and potential speedup. The automatic selection of
an optimal optimization setting for submitted KBs is an ongoing research topic and will be
investigated in future research.

We take Wordnet, LUBM and UOBM as representatives for very large and mostly deter-
ministic data descriptions (encoded as Aboxes) that can be found in practical applications.
The investigations reveal that description logic systems can be optimized to also be able to
deal with large bulks of assertional knowledge quite effectively. LUBM indicates that per-
formance scales well with an increasing number of assertions given the expressivity of the
language used in the ontology meets certain requirements. Our work is based on a tableau
calculus which has shown to be reliable if expressivity is increased for some parts (see the
results for full LUBM and UOBM). The linear shape of the curves for LUBM suggests that
the proposed technology ensures that performance scales if high expressivity is not required.
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LUBM is in a sense too inexpressive but the benchmark allows us to study the Abox scal-
ability problem. Note that optimizations, for instance, for qualified number restrictions are
not known for other approaches to query answering. The results for UOBM indicate that
scalability could not be fully achieved in all cases. This is also a topic for future research.

Note that we argue that the optimization techniques investigated in this paper are ad-
vantageous not only for RACER but also for other tableau-based systems. Future work will
investigate more optimizations for large Aboxes and more expressive Tboxes.

Concerning binary instance retrieval it is an open issue whether specific heuristics for
grouping individuals into partitions can be provided. This is ongoing work. For investigat-
ing dependency-based instance retrieval, in this work, a dependency-tracking infrastructure
w.r.t. all completions has been developed (see Section 5.6). In future work these techniques
will also be used for providing explanations for instance retrieval and for other reasoning
problems.
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30. V. Haarslev and R. Möller. An empirical evaluation of optimization strategies for ABox reasoning in
expressive description logics. In P. Lambrix et al., editor, Proceedings of the International Workshop on
Description Logics (DL’99), July 30 - August 1, 1999, Linköping, Sweden, pages 115–119, June 1999.
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