
Symbolics, Inc.:
A failure of heterogeneous engineering

Alvin Graylin
Kari Anne Hoier Kjolaas

Jonathan Loflin
Jimmie D. Walker III

2

Table of Contents

1 Introduction p. 3

2 Theoretical Framework p. 5

3 Heterogeneous Engineering p. 8

3.1 Company Goals p. 8

3.2 Research and Development p. 10

Background of the Technology p. 10

Research Culture Within Symbolics p. 17

3.3 Product Line p. 20

3.4 Target Market p. 21

3.5 Manufacturing p. 24

3.6 Sales and Marketing p. 25

3.7 Finance and Control p. 26

3.8 Human Resources p. 27

4 Timing Factors p. 29

5 Conclusion p. 32

6 Bibliography p. 34

3

1 Introduction
Thomas F. Knight, Jack Holloway and Richard Greenblatt developed the first LISP at the MIT

Artificial Intelligence Laboratory in the late 1970s. Many saw the commercial potential for the new

machine. Symbolics was formed in 1980 by 21 founders, the majority of which came from the MIT AI Lab.

Greenblatt had decided to found his own company LISP Machines Inc. and was not involved. Knight was

involved with the company form the beginning, but chose to stay at MIT to finish his PhD thesis. Holloway

was instrumental in getting the company off the ground. An excellent programmer, he helped recruit top

people to the new company and write the first Symbolics business plan. Another central figure was Russel

Noftsker. He had been the director of the AI Lab for 9 years and had previously helped co-found another

small company. Noftsker was central in raising money for the new company and later became its first CEO

and Chairman.

At first most Symbolics employees kept working at MIT. Symbolics paid their salaries, but had no

equipment for them to work on. Symbolics therefore made and agreement with Patrick Winston, the current

director of the AI Lab, to allow the employees to keep working in the lab and using lab machines. In return,

the AI Lab was given free internal use of all Symbolics software.

Symbolics managed to launch their first product, a re-engineered version of the first LISP machine

in 1981. They incorporated in 1985 and revenues grew rapidly. However, by 1987 a crisis had hit the

Symbolcs Inc. FinancialsSymbolcs Inc. Financials
('80-'86 Actual *86-89 Forecast)

-100

-50

0

50

100

150

200

80 81 82 83 84 85 86 87 88 89

Year

$M
ill

io
n

-35

-25

-15

-5

5

15

25

35

45

55

$M
ill

io
n

Revenue Income

4

company. Consolidated revenues form products for fiscal years 1986, 1987 and 1988 were $101.6 million,

$82.1 million and $55.6 million, respectively. The only area of growth was that of training and consulting.

Consolidated revenues form services in 1986, 1987 and 1988 rose, going from $12.6 million to $21.6

million and then to $25.5 million. However, this was not nearly enough to compensate for the drop in sales.

Part of this drop coincided with the end of the federally funded Star Wars program, aimed at making the

US able to shoot Russian missiles out of the sky with lasers fired from satellites. This project had led

DARPA to fund many expert systems projects, many of which used Symbolics machines.

During the years of growth Symbolics had been searching for a CEO. Over 40 candidates had

been interviewed, but none hired. Faced with the crisis, the board hired Brian Sear as COO in December of

1986. He was a former GenRad executive from the west coast, and had been connected with Symbolics as a

consultant. He proceeded to cut cost and staff and restrain spending in R&D. This made him unpopular

inside the company. Furthermore, his plan to match Sun's broad marketing strategy and unbundle hardware

and software brought him into conflict with Noftsker. Noftsker wanted to focus more on the market of

high-end machines for symbolic processing. He was close to R&D personnel, many of which he had

worked with before Symbolics. They rallied around him as an opposition to Sear. The conflict came to a

head in January of 1998, and both Sear and Noftsker were forced out of the company by the board, tired of

their arguing. A new CEO was hired, but the company never recovered and filed for bankruptcy a few

years later.

Symbolcs Inc. FinancialsSymbolcs Inc. Financials
('80-'89 Actual)

-100

-50

0

50

100

150

200

80 81 82 83 84 85 86 87 88 89

Year

$M
ill

io
n

-35

-25

-15

-5

5

15

25

35

45

55

$M
ill

io
n

Revenue Income

5

2 Theoretical Framework

It is difficult to conduct any form of analysis without a theoretical framework to provide a

structure. The first step in this analysis of Symbolics will be to outline such a framework, using ideas from

history and sociology to create a model that can be used to analyze our findings.

In his book Inventing Accuracy MacKenzie defines a technical trajectory as

"a direction of technical development that is simply natural, not created by social interest

but corresponding to the inherent possibilities of the technology"

Donald MacKenzie, Inventing Accuracy, p. 167

Throughout the following discussion he rejects this argument, claiming that technological change

is not self-sustaining. Its direction and form can not be explained in isolation from the social circumstances

under which it takes place. What in hindsight appears as a "natural" trajectory is in fact a path created by

circumstances and the efforts of proponents of the technology to manipulate these to their advantage.

In order for a technology to be successful its proponents must create interest for it in order to

obtain resources. They must create an institutional framework in which progress can be made and train

employees and the public. MacKenzie coins the concept of heterogeneous engineering in order to describe

the complete set of skills necessary to succeed in promoting a specific technology:

“People had to be engineered, too - persuaded to suspend their doubts, induced to

provide resources, trained and motivated to play their parts in a production process

unprecedented in its demands. Successfully inventing the technology, turned out to be

heterogeneous engineering, the engineering of the social as well as the physical world.”

Donald MacKenzie, Inventing Accuracy, p. 28

MacKenzie’s theoretical model is created in the context of discussing nuclear missile guidance. He

focuses on the MIT Instrumentation Lab (Draper Lab Inc.) as a key center for missile development. Charles

Draper, the head of the lab and one of the main proponents of inertial missile guidance, is MacKenzie's

prime example of successful heterogeneous engineering.

In this paper we will apply MacKenzie's theories to the subject of our study, Symbolics Inc., a

leading Cambridge software company in the 1980s. MacKenzie's theory of heterogeneous engineering

easily lends itself to a study of technology companies. As in a research lab, funding must be obtained

(initially through financing, later through sales of products and/or services), a framework/company

6

structure must be established and maintained, the employees must be trained and induced to produce top

work, customers persuaded etc.

Of course, just hiring people to execute the different aspects of heterogeneous engineering is not

enough. All must be given enough influence and resources to complete assigned tasks. Furthermore,

conflicts between different functions will inevitably arise. These must be resolved. As with Draper, much

depends on senior management. They set the agenda of the company, keeping the overall goals in mind.

They need to be successful heterogeneous engineers in order for a company to succeed.

While struggling with similar tasks, Draper and Symbolics’ leadership worked in different

environments. Draper’s goal was to attain public funds, while Symbolics was competing against other

innovators such as DEC, Sun, and IBM in a commercial marketplace. Hence, the framework we have

developed for exploring the course of heterogeneous engineering at Symbolics departs from that used in the

case of missile guidance.

The framework we have developed (see illustration below) to describe and evaluate heterogeneous

engineering in a commercial company is based on a framework expounded by Michael Porter in his book

Competitive Strategy. This model proposes that the leaders of an engineering firm need to clearly define the

goals of the firm, and must carefully align the operations of the firm with those goals. The operations of the

firm are broken down into the following units, each of which supports the firm’s common goals.

Product
Line

Human
Resources

Manufacturing

Sales

Marketing

Research and
Develepment

Finance and
Spending
Control

Target
Markets
(Users)

Goals
Definition
of how the
business

will
compete

Objectives
for growth,

market
share,
social

impact,
technical
impact

7

It is a primary function of the company leadership to insure that the goals are clear and focused, and that

each group within the company is engineered to best achieve those goals. Porter compares each group to

the spoke of a wheel. In order for the firm to compete effectively (and thus be successful) on a long-term

basis, the wheel should be in balance and should have every spoke in place.

Our model of heterogeneous engineering makes it evident that while technical superiority

(however defined) only one piece of competitive advantage. Engineering innovation requires that the

innovators engineer their environment. An innovation, particularly in a highly competitive commercial

setting, can only succeed if all the pieces of a firm are working together to promote the innovation.

Acceptance of an engineering innovation requires a strong alignment of heterogeneous practices.

It is clear that Symbolics’ technology is innovative. Symbolics set high goals for its designs and

usually delivered on those design goals (often adding additional features to the product in the process).

Symbolics was founded and staffed by some of the brightest technical academics in the country. The

technology was in many ways superior to anything that was available at the time.

While producing innovative technology, Symbolics failed in many of the other areas defined by

our model. It is the thesis of our paper that Symbolics, as a firm, did not successfully engineer its

environment for successful and lasting innovation. The fundamental failure of the organization was the lack

of heterogeneous engineering. First and foremost, the goals of the company were not well defined.

Furthermore, there was a lack of balance along the various operations of the company. The focus was

clearly on research and development. The goals of the firm were shaped by the whim of the research and

development department, and as a result many of the supporting functions of the firm were unsuccessful.

Product
Line

Human
Resources

Manufacturi
ng

Sales

Marketing

Research
and

Finance
and

Spending

Target
Markets
(Users)

Goals
Objectives
for growth
technical
impact,

leapfroggin
g

At Symbolics, Goals varied in order to support the current direction of Research and
Development. Hence, we put Research and Development at the center of the “competitive

wheel,” because every other units were essentially to support research.

8

3 Heterogeneous Engineering

In order to examine the failure of Symbolics in the context of heterogeneous engineering, one has

to consider each of the individual units of the firm and how these units interacted with each other and the

external environment. This section will discuss the different sections of the company in the context of our

model.

3.1 Company Goals

The long-term goals or vision of a company is analogous to the compass used by a navigator to

guide a ship safely to its destination through any atmospheric conditions. For any company to sustain

success in a competitive market, it must have a clear vision that is communicated to and internalized by all

the employees of the company. The vision should help the company focus its resources and attention on the

right target, while providing a consistent set of principles that would guide it in making its decision through

good and bad times.

From our research, it was clear that Symbolics did not possess the type of long-term vision that we

described above. This is not to say that the company did not have any goals at all. Unfortunately, it may

have had too many goals. Just about every person we interviewed had a different idea of what the

Symbolics' long-term vision was. To make the situation worse, the public image being presented was also

inconsistent with the internal belief held by the employees and founders. Depending who you asked (and

when), the vision for the company includes all of the following:

• Our goal is to “be the leading developer, manufacturer and marketer of advanced computer

systems that facilitate the use of artificial intelligence and other symbolic processing techniques” 1

• “We were always a workstation company… we were never an AI company”2

• Symbolics was “the preeminent AI company"3

• “The hardware was always there just to support the software”4

• “The company was founded to commercialize symbolic processing… which basically meant

Object-Oriented”5

1 Symbolics, Inc. 1985 Annual Report, p. 1
2 Russell Noftsker, CEO and chairman of the board, interview
3 Harvey P. Newquist, editor of AI Trends, interview
4 Russell Noftsker, CEO and chairman of the board, interview

9

• “The real overriding goal was to enable rapid development of highly complex software, which

could safely be assumed to be written in Lisp.”6

• “To be honest, a goal that was very influential was to have fun trying out all kinds of relatively

far-out ideas. A lot of software got written for its own sake more than to satisfy and business

need.”7

• “Other people probably had other goals, such as marketing goals”8

This is just a sampling of the different viewpoints that existed at the time about Symbolics. It was

a LISP machine company, an AI company, a software company, a general purpose workstation company, a

place to develop fun technology without business-related distractions, and at one point, a chip and add-in

board company. It was trying to be everything for everyone. As a result, the company did not have the

focus or vision needed to drive a company through troubled times. David A. Moon, a prominent software

and hardware engineer at Symbolics, poignantly asserts that “Another reason the company foundered was a

certain element of sheer incompetence, or indecision about what the company’s real goal was, of course.”9

There was one thing that it seemed everyone did agree on: Symbolics wanted to be a technology

leader. That was how they would compete. In most cases, this would have been a good place for a

corporate strategy to start, but in this case, this strategy was one of the contributors to the company’s

failure. Because there was no central goal or direction for the company to move towards, there was very

little synergy between the work of the different groups in the company. Symbolics operated like an

academic research institute, where unrelated research was happening in different groups, depending only on

the different research interests of the staff. Costs were not taken into account, and the company tried to do

every piece of the system in-house. Symbolics designed and implemented the chips, the boards, the chassis,

the peripherals, the operating system, the development tools, the email system, the networking software,

and even the end-user applications. Symbolics even ran its own manufacturing facilities. For a relatively

small company to try to accomplish all this was certainly no small feat.

Symbolics' technology driven culture resulted in the invention and application of many innovative

ideas, but without clear direction, innovation by itself led the company nowhere. With all the talented

minds in the company at the time, it's truly a pity that Symbolics failed. If it had only focused its people's

5 Russell Noftsker, CEO and chairman of the board, interview
6 David A. Moon, software engineer, email
7 David A. Moon, software engineer, email
8 David A. Moon, software engineer, email
9 David A. Moon, software engineer, email

10

efforts in a unified way and set a clear long-term direction towards a more durable market, there might have

been a way for it to survive.

3.2 Research and Development

It is impossible to discuss research and development at Symbolics without any technical

background knowledge. In this section we will discuss the LISP programming language, some of the

reasons why the LISP machines were developed and finally how the research culture at Symbolics came

out of this work and helped shape the company as a whole.

Background of the Technology

LISP ("LISt Processing language") is a programming language designed in the AI community in

the early 1950s. Specifically designed to symbolically represent objects and the relations between them it

is the oldest (and for many the only true) object oriented programming language. On the lowest level, LISP

represent all objects, even the expressions of the language itself as lists. This uniformity is one of the major

strengths of the language and makes it easily extendible. LISP lists are dynamic and can grow and shrink

without bounds during the execution of a program (this is not the case in most programming languages. In

C/C++, the dimensions of an array must be declared at the beginning of a function). This makes LISP ideal

for representing complex objects about which little is known in advance. Furthermore, since data and

programs are represented in the same manner, programs can generate other programs and execute them.

Again, this makes it possible to model more complex processes.

Lisp offers even further advantages over other programming languages. For example, Lisp is easy

to learn because the syntax is very uniform due to the elegant parenthetical structure of every Lisp

expression. The following code demonstrates this elegant parenthetical structure (and is also an example of

the ubiquitous use of recursion in Lisp programs):

; This function returns the factorial of ‘n’.
; For example, calling (factorial 4)
; will return the number 24.
(defun factorial (n)

(cond ((= n 1) 1) ; if n=1, return 1.
(t (* n (factorial (1- n)))))) ; otherwise, return

; n times the factorial
; of n-1.

The versatility of LISP comes with a price. Allowing lists to grow dynamically requires a lot of

overhead (memory needs to be allocated/deallocated during execution) making LISP require lots of space.

Furthermore, LISP keeps more of the programming environment in memory compared to other programs in

11

order to efficiently pass objects back and forth. In the 1970s machines had very limited virtual address

spaces (some IBM machines only had 512K). Each address was only half a word long. While saving space,

this made it impossible to easily upgrade to a larger address space. Running LISP on these machines was

therefore slow, since the program was forced to constantly swap objects in and out of memory.

LISP is a compiled language (although the introduction to a LISP interpreter is an important part

of 6.001, the introductory programming class at MIT). LISP could be compiled on the PDP-10 and other

time-shared systems in the 1970s, but only inefficiently. A serious impediment was that there was not

machine instruction to facilitate garbage collection. All of this made the AI community eager for a new

machine, optimized to run LISP.

Why the Need for Machines Optimized for LISP?

In Tom Knight’s thesis, he points out three primary reasons that motivated his efforts, starting in

1974, to develop the original Lisp machines at the MIT AI Lab. He asserts in his introduction that the main

difficulties are:

• Inadequate virtual address space for large user programs.

• Inadequate computing power for development if intelligent programming tools.

• Inefficient information coding of compiled instructions.

Inadequate virtual address space for large user programs

The first point is illustrated by examining the addressing scheme for the PDP-10, a computer that

would be the second best option for running Lisp programs in 1979. In order to demonstrate this idea, it is

useful to illustrate the box-and-pointer diagram familiar to any novice Lisp hacker:

The structur e of the list (3 2 1)

3 2 1

The structur e of the list (3 (2 1))

3

2 1

The above diagrams illustrate the box-and-pointer diagrams for two lists. In Lisp,
every expression (including data and the program itself) is a list. Hence, the efficiency
of list storage and list manipulation is of paramount importance.

12

Each of the rectangles above (formed by putting two boxes together) is called a “node.” A node consists of

two pointers. In a list, the left pointer points to an element of the list and the right pointer points to the next

element of the list. In the more complicated structure of the list ’(3 (2 1)), the second element of the list is

itself a recursively embedded list ’(2 1).

In a PDP-10, a node is represented as a 36-bit structure with each pointer using 18 bits. This

implies that the address space for memory can only reference 218 bits, which means 256 Kilobytes is an

upper bound for the amount of memory available to a Lisp program. This limitation is severe when one

considers writing huge expert systems that may require thousands of kilobytes of memory. According to

Knight, “Expansion of the virtual address space in current PDP-10 Lisp implementations requires use of

two words per Lisp node and drastic changes to both the interpreter and the compiler [Knight, 4].”

Inadequate computing power for development if intelligent programming tools

Knight envisions a development environment that is highly interactive with the user. For example,

Knight envisioned that when you make a change to a procedure, the computer will issue a warning citing

all the other procedures that may be affected by the change. This would facilitate development. In addition,

Symbolics machines would allow for interactive debugging (allowing a pause in the execution of a

program, allowing the programmer to make changes to the program in mid-execution, and allowing the

programmer to resume execution of the program after the changes).

The heavy interaction between the computer and the programmer would require significant

processing power. A PDP-10 could provide this power to one user but not to multiple users simultaneously

using the timesharing system. The system would not be sufficiently reactive due to the fundamental design

assumption of timesharing by the makers of the PDP-10.

Inefficient information coding of compiled instructions

The compiled code for Lisp instructions on the PDP-10 is much larger the compiled code for Lisp

instructions on the CADR machine that Knight built for his 1979 thesis. This is best illustrated by example,

as Knight did in his thesis when he shows the assembled instructions for both the PDP-10 and the CADR

when compiling this factorial program:

(defun factorial (n)
(cond ((= n 1) 1)

(t (* n (factorial (1- n))))))

13

The CADR uses 10 instructions taking 160 bits of memory. The PDP-10 uses 16 instructions taking 576

bits of memory. The compiled code is reproduced in this paper from Knight’s thesis for comparison.

Other problems running Lisp with existing platforms
Other problems with the PDP-10 included a lack of optimizations for garbage collection and for

Object-Oriented procedure calls. In addition, computers such as the PDP-10 were bulky and noisy, which

made a PDP-10 “an unwelcome office mate” according to Knight and Greenblatt [7]. This annoyance in

particular influenced the design of the network architecture of the original Lisp machine in an interesting

manner (see the section on the network architecture).

Design of the LISP Machine

The primary design criterion for the Lisp machine was to run Lisp quickly enough to allow

efficient development of AI programs. Russell Noftsker asserts that a developer would be 10 times as

productive on the Symbolics platform as he or she would be on an alternative platform. An extended list of

the design criteria, according to the Symbolics Technical Overview, includes each of the following tenets:

• Fast Lisp execution

• Dedicated personal computer and console

• Tagged architecture (run-time data-type checking and generic instructions)

• Virtual memory

• Integrated local area network

• Interactive, high-resolution, bit-mapped graphics

Conspicuously absent from this list is time-sharing, which was considered at the time to be a necessity for

any successful computing environment. Tom Knight and Richard Greenblatt did not believe in making a

time-sharing system (although the system did support an interesting alternative scheme of multiplexing

between users that will be discussed later).

This section will primarily document the features and advantages of using Lisp for development,

the inadequacies of existing computing environments (such as the PDP-10) to develop Lisp, and the

features (both in hardware and in software) that made Lisp machines ideal for Lisp development. Finally,

the product line of Symbolics, Incorporated and its evolution will be examined.

What made Lisp machines better for running Lisp from a Hardware perspective?

Lisp machines were designed from the ground up in order to run Lisp. This principle manifests in

a variety of technical details of the hardware and software design.

14

Core Instruction Set and Microcoded Extensions
From a hardware perspective, the instructions of the Lisp processor architecture are chosen

carefully to make certain functionalities easy for the compiler to implement. The core instruction set of the

Lisp processor is augmented by a microcoding capability that allows macros for commonly used Lisp

functions to run extraordinarily efficiently by downloading macros for the commonly used Lisp functions

into a cache-like structure on the processor. Together, the core instruction set and the microcoded functions

effectively implement Lisp in hardware.

One example of a functionality that uses these codes effectively is the ephemeral-object garbage

collector written by David A. Moon at Symbolics (well after the original Lisp machines were made). While

most garbage collectors cause noticeable pauses in program execution, Moon’s garbage collector was so

cleverly written (according to Russell Noftsker) that it would actually cause the system to run faster with

garbage collection than it would without garbage collection. This garbage collection scheme was facilitated

by the design of the instruction set, which included instructions that would only be used by a garbage

collector. (Interestingly, Symbolics at one time was working with Intel to build a development platform

based on the 386, which led to the inclusion of an extra instruction in the final 386 architecture to facilitate

garbage collection).

Data Tags

The Lisp machines dedicated certain bits of the architecture as data-type bits. In the original 32-bit

architecture, 4 bits of every data chunk would indicate the type of the data in the other 28 bits. This is ideal

for Lisp because Lisp does not have strong typecasting like C, Fortran, or Cobol do. In a list representation,

a pointer to data can point to any type of data (either numerical, ascii, or perhaps another list). This

eliminates the need for data type declarations in programs and also catches bugs at runtime, which

dramatically improves system reliability. Data tags represent a significant advance beyond the state of the

art.

Virtual Memory

Virtual memory addressing allows the machine to run larger programs while abstracting memory

issues from the programmer. This feature is essential to writing large programs such as expert systems.

Error Correction Codes

With error correction codes (ECC), memory or disk corruption could be detected and fixed at

runtime. This is essential for building a large, reliable program in an environment where physical matters

(such as floods or flying bullets) could affect the hardware. In addition, memory and disks were inherently

unreliable at that time and therefore ECC was highly desirable even at the cost of 4 or 8 extra bits for every

32, 36, or 40 bit word (depending on the generation of Lisp machine).

15

What made Lisp machines better for running Lisp from a Software perspective?

From a software perspective, the Lisp machines offered tremendous benefits to developers of Lisp

programs.

The User Interface was very User Friendly

The UI used mice, windows, and familiar GUI concepts for ease of use. This enhanced developer

productivity.

The entire Operating System was written in Lisp

The Operating System was written 100% in Lisp. All levels of the software were written in Lisp.

This allowed for a high level of compatibility with Lisp programs.

Garbage Collector

The garbage collector was built into the system. The ephemeral-object garbage collector was

extremely efficient due to synergies between it and the processor-level instruction set.

Great Documentation

“Outstanding documentation was a hallmark of Symbolics systems”10. Documentation existed in

electronic form (using innovative hypertext much like that of a modern web-browser) and also in printed

form. Symbolics won awards for its documentation. In addition, Symbolics’ user training programs were

considered to be quite good.

Superb Development/Debugging tools are built into the OS

 Most importantly, outstanding development tools were built into the operating system.

“Symbolics Lisp” is the dialect of Lisp that is supported on the Symbolics platform. The Symbolics Lisp

dialect offered numerous benefits over other Lisp dialects. According to the Symbolics Technical

Overview, these include:

• The Flavor system for object-oriented programming with message passing.

• Incremental debugging

• Flexible function calling and multiple-value returns.

• Multiple namespaces (packages).

• Stream-oriented input and output.

10 Symbolics Technical Overview, http://home.brightware.com/~rwk/symbolics

16

• Modern control constructs, including a very general loop iteration facility, asynchronous non-

local exists, co-routines, and processes.

• Macros for extending the Symbolics-Lisp syntax.

• Predefined functions that support such operations as sorting, hash tables, linear equations, and

matrix operations.

• A full range of data types, including many numerical types, lists, strings, arrays, planes, and

user-defined structures.

Perhaps the two most important of these are the Flavor system and the incremental debugging facilities.

The Flavor System offers Object-oriented programming, permitting modularity in programs by

encapsulating procedures and data into objects. New flavor types can be cloned by combining existing

flavor types [Symbolics Technical Overview]. Inheritance can be bi-directional (non-hierarchical).

Noftsker points out that message passing would take about 3.5 microseconds on a 3600 series Symbolics

machine compared to 1000 microseconds on a traditional architecture.

Network Architecture
The computers of that era were large and noisy. For this reason, Knight envisioned an

environment where several Lisp machines would be networked to each other, a central file server and to the

Arpanet (which became the Internet). All of the Lisp machines would be connected to a “video switch” that

could redirect the I/O (display, mouse, and keyboard) into an office where the I/O peripherals were located.

This would allow, for example, 4 Lisp machines to be switched between 20 offices so long as no more than

4 of the office-dwellers were logged on at one time. By using the video switch, the noisy computers were

kept out of the users’ offices. A diagram of the network architecture from Knight’s thesis is reproduced in

this paper.

Weaknesses of the LISP Machines?

For non-Lisp programs such as a Fortran program, a Symbolics machine would not necessarily

have a significant performance advantage. However, the Symbolics incremental debugging environment

would still allow for easier debugging of a Fortran program. However, Russell Noftsker points out that a

well-written database would run faster on a VAX than on a Symbolics machine.

Nevertheless, although the Symbolics machines may have been comparable or even somewhat

superior to a DEC machine for non-Lisp applications, the Symbolics machines were perhaps 5 times as

expensive as a DEC.

17

Research Culture Within Symbolics

Symbolics was driven by research and development. In 1987, Symbolics spent twice the industry

average on research and development (Bottorff, 37). 11The influence of the research and development goes

far beyond financial domination, however. The research and development department set its own agenda,

set the agenda for top management, and therefore set the agenda for the entire firm. Symbolics exhibited all

the problems that one might imagine when a group of highly academic researchers come together to run a

$100 million dollar company.

There was a Lack of focus within Research and Development
The research and development department was full of strong individuals with academic

backgrounds. The senior engineers were used to the freedom to pursue own research interest they had

enjoyed in academia. When asked whether the general management had problems controlling the focus of

the research and development department, Howard Shrobe (then a Symbolics engineer and now an MIT

professor) responded, “I always felt like it was research and development that had a hard time controlling

the general management.” Regardless, more often than not research and development would have the final

say in what research and development would focus on, and in addition they seemed to set the tone for every

other department as well. David A. Moon agrees when he says, “A lot of software got written for its own

sake more than to satisfy any business need… I don't think changes in the market or customer base had

much effect [on the technology]”12. Central management was not able to harness the brilliance of

Symbolics’ research and development into any single direction. Rather, the leadership of the company

(particularly Russell Noftsker, the CEO) was himself highly academic and allowed the academics in

research and development follow their own course.

One example of the random focus of the technological employees is the use of high-resolution

montiors. Since the type of monitors Symbolics wanted to use were not available from any vendor, they

decided it would be necessary to build their own. While entry into the monitor business at most companies

would be a strategic decision made by top management (who might employ outside management

consultants to study the market and strategic implications), at Symbolics the researchers drove this decision

through. David A. Moon observes, “High-resolution monitors were nice for doing the kind of software we

wanted to do, but really secondary to the main goal. Maybe they made us waste a lot of time experimenting

with window systems!”13

It is frightening to consider that Symbolics, a small company, would decide to enter the market to

manufacture monitors even when it was secondary to “the main goal” (which was either software,

11 Mission Impossible?, Dana Bottorff, New England Business, No. 6, 1998, p. 27.
12 David A. Moon, software engineer, email
13 David A. Moon, software engineer, email

18

workstations, operating systems, expert-system compilers, general symbolic processing, or add-in boards,

depending on who you asked and what time of day). Futhermore, the decision to enter the display hardware

market led to a loss of focus of the software developers who then decided to building window systems, and

then went on to build hypertext and other nice, but non-essential, features into the system. Moon recollects

“We wasted a lot of time doing early versions of technologies (high resolution displays, laser printers,

ethernet-type networking) that were done better and cheaper a few years later by others.”

Essentially, the research and development department followed a classic “random walk.” They

would get heavily involved in a tangent to the “main goal,” develop that tangent, and in the process get lost

on further tangents. For example, display hardware is one tangent and lead to windowing systems, another

tangent. Laser printers seem equally irrelevant to the core mission of Symbolics. Furthermore, the extreme

lack of focus of the research and development is a likely reason that no two employees will offer the same

definition of Symbolics’ “main goal,” although it is common that employees will refer to the notion of the

“main goal” in the abstract (without explicitly articulating it).

Management’s lack of control over the research and development department (and therefore their

lack of control over the technology) is a primary symptom of a lack of heterogeneous engineering. Strong

central management should clearly articulate the main goals of the firm and furthermore should

communicate it clearly to researchers and developers to the extent that each technical employee can

formulate exactly what the main goal of the firm is. This process of defining and articulating goals is a

critical component of heterogeneous engineering.

A Highly Academic Notion of Technical Superiority lead to Product Difficulties

Symboics research and development department was comprised of people with academic

backgrounds. Many engineers retained a highly academic notion of technical superiority and this helped

shape the company culture. At Symbolics, technical superiority was measured in terms of clean design.

Other important goals were sacrificed in the name of clean design, including:

• Low cost

• Compatibility

• On-time delivery

The significance of these three failures will be discussed in detail in the following sections.

Clean design was always a primary goal for Symbolics’ engineers, resulting in a culture where to

goal was to get things right rather than getting things done. Clean design is often cited as the reason that

Symbolics never hesitated to expand into new fields (such as laser printing, display hardware, et cetera). It

was critical for to their engineers to produce an elegant solution, and they did not consider other vendors

products to be elegant. David A. Moon explains, “We did everything, we used no software from anyone

19

else. That means a whole operating system, file system, many network protocols, email system both client

and server, language development environments, documentation production and viewing system, color

graphics and animation, window system, presentation system (somewhat of a lost art these days), inference

engines, and a lot more.”

One interesting example of Symbolics’ preference for clean design relates to the Y2K problems

that concern economists and the Department of Defense as the new millineum approaches. “I don't

remember ever once thinking about Y2K. However, our ‘do it right and don't worry overmuch about the

cost’ software philosophy probably means that we never even considered putting in Y2K bugs.” At that

time, making computers Y2K compatible came at considerable cost due to the scarcity of RAM. “You need

to bear in mind the environment (computer industry) of the period of 1976-1984 when these things were

happening. Computers with substantial capacity were very expensive… The AI Lab ran on a time-shared

machine with… 2 megabytes of memory… The system cost something like a million dollars, back when

that was a lot of money.”

The nobilty of clean design came at the expense of producing low cost systems. Moon recalls,

“Lower cost was also a 3600 goal but it was not really achieved.” Cost was not a primary concern for

Symbolics initially. Its market was largely isolated from inexpensive competition until the mid-1980s

(when cheap Sun and DEC workstations first became feasible alternatives to Lisp machines for running

Lisp).

Compatibility also suffered as a result of clean design. Symbolics’ system designers preferred to

build their own peripherals rather than make their system compatible with other vendors’ systems.

Newquist writes:

“If the companies currently selling AI products wish to survive into the
1990s in any way, they will address the needs of DP/MIS [Data
Processing and Management Information Systems] departments. Period.”

Harvey P. Newquist, AI Trends ’88, No. 13

Symbolics’ machines were not even compatible with other machines such as those built by IBM

that were very popular with DP/MIS departments for many years before and after Symbolics existed. Also,

Symbolics machines were slow at running databases (according to Noftsker), which is critical for

Information Technology. Therefore, it is clear that Symbolics was not addressing the needs of IT. Why did

Symbolics last so long before this mattered? This will be answered in the section focusing on the sudden

loss of sales.

20

Finally, delivery timing was a problem for Symbolics that resulted largely from the attention to

detail and to clean design. Late product launches provided fuel for venture capitalists (who were on the

Board of Directors) to cut programs that Noftsker saw as essential. For example, Symbolics was at one time

working with Intel to build a cheap delivery platform (that would be suitable to run Lisp programs, but not

suitable to develop them). This project involved writing software to run on the 386 and would have allowed

Symbolics to enter the delivery market. The project was cut by the Board in the mid-1980s due to an

overall program of cost-cutting induced by slipped deadlines.

3.3 Product Line

With such a vast array of products, Symbolics failed to market properly the one product that could

have saved the company, their software. During the critical years at Symbolics (1986-1988), many potential

customers of Symbolics were interested solely in Symbolics' software. However, customers could not buy

the software without purchasing a expensive LISP machine. At that point, most customers would rather buy

a substantially less expensive machine from another company that performed almost to par with a LISP

machine and still have enough money to buy decent software. A heterogeneous engineeer would have seen

the marketing potential of Symbolics software and saw to it that Symbolics software was sold. There is

little doubt that Symbolics had heterogeneous engineers on staff. Unfortunately, due to Symbolics step

learning curve to realizing the potential of their software, heterogenous engineers were not in charge.

Symbolics did not completely switch to selling software until 1993. By that time, Symbolics window of

opportunity had already closed and the fate of Symbolics had been set. It is quite paradoxical that a

company that considered software to be their main focus did not see the marketablility of their software

earlier.

It is virtually natural for engineers to want their products to be perfect with every feature

imaginable. That is why it is important for technical companies to have business employees to keep

engineers in check. Businees employees have a sense of how many features and how perfect the product

needs to be to satisfy the market. By know what the market wants, business employees help minimize

product release delays. When one tries to add too many features to a product, this usually causes delays in

the release date of the products. This, in turn, leads to customers going else where for their products even if

the performance is not up to par.

Part of Symbolics failure was attributed to the excessive features of Symbolics products. The

excessive features greatly increased the price of Symbolics products. Therefore, Symbolics almost forced

the market to buy from competitors at a cheaper price. However, Symbolics purpose for adding the excess

features was to make their products superior and tempt the market to buy their products. Yet, Symbolics

failed to realize that "money does not grow on trees" and that money plays an important role in what the

market buys.

21

As if increasing the prices of products with excessive features was not sufficient, Symbolics

reinforced their fate of failure by not building industry support. Symbolics built all components for the

LISP machine in-house. Therefore, they did not win much support from companies that could have profited

from the making of LISP machines. For example, a company that specialized in producing monitors had no

vested interest in Symbolics,who made their own monitor. If Symbolics had bought some of the

components necessary for building the LISP machines from other companies, perhaps Symbolics’ fall

would have been less drastic and Symbolics could possibly still be in existence. The only possible downfall

of Symbolics building industry support is that an industry profiting off the making of LISP machines,

hardware, would not like for Symbolics to focus exclusively on software. The supporting company would

lose a profit source once Symbolics converted to being a software company. Yet, since Symbolics did not

see the profit of their software, building industry support could have only helped.

3.4 Target Markets

We have chosen a wider definition of target market than the one used in Porter’s original model.

In our discussion of target market we will include end users (programmers and engineers) as well as large

institutional and corporate buyers of Symbolics’ machines.

Narrow Company Focus

If there is a single way in which Symbolics was focused, it is that their target market was Lisp

programmers who wanted high-end, expensive development machines. Symbolics maintained a focus on

this small segment for many years (until they eventually tried alternative strategies when the final

bankruptcy of the firm seemed imminent). Symbolics machines always included as many features as

possible, and at a price that was many times that of any delivery machine.

It is clear why the first Lisp machines (developed at the MIT AI Lab) were development

machines. Those machines were developed by Tom Knight, who explains that the machines were designed

and developed exclusively for use within the Lab. What is unusual is that the design focus never shifted

after the technology was commercialized. When the customers were no longer the designers, the designers

still seemed to focus on themselves as the model users. David A. Moon confirms this: “I don't think

changes in the market or customer base had much effect on the technical details.” Given this, it is

interesting to examine the effects of this mentality on the design of the Lisp Machines.

The reason they focused on development machines is partly due to the

overbearing role that research and development played in product definition. Moon

explains, “The model user was someone doing exploratory programming. At the time we

22

started there was no standard software worth anything, so being able to run standard

software from elsewhere was never a goal.” This description of “exploratory

programmers” matches exactly the people who were developing the system. They were

implicitly imagining the users to be people like themselves, people with MIT degrees or

who could program at that level. Noftsker claims that a developer using a Symbolics

machine could be 10 times as productive when coding in Lisp than that developer woul

be if developing on a DEC Vax or equivalent. However, this gain in productivity can

only be acheived after learning a whole new set of commands and menus. The steep

initial learning curve made Symbolics suitable only for developers with software

experience. Many of these were reluctant to learn a whole new skill set.

The Lisp Hackers: A Rare Breed

The Symbolics organization did not effectively convince the world that Lisp would be the

dominant programming paradigm. By 1988, the proliferation of LISP machines may have exceeded the

proliferation of LISP programmers. Newquist writes:

“With an installed worldwide base of some 7000 LISP machines, there is
even the possibility that there are actually more [LISP] machines in the
marketplace than there are experienced LISP hackers. Frightening.”

Harvey P. Newquist, AI Trends ’88, No. 48

Patrick Winston says that this is the primary reason that Symbolics was “doomed” from its conception

(interview). He cites that Symbolics ignored the delivery market for AI programs, and hence probably

would have hit a wall whether the AI industry had crashed or not.

A primary component of successful heterogeneous engineering is to convince the world that the

future is destined to be dominated by the technology. Effectively executed, this will have a profound

psychological impact and will actually create a self-fulfilling prophecy. MacKenzie asserts that “if it comes

to be believed that there is only one way to advance a technology, then that one way has at least a chance of

becoming a reality. The others do not.”14 This effect manifested itself in the advent of gas bearing, which

replaced ball-bearings in the gyros used by Draper’s guidance systems. The Air Force mandated to Draper

that the gas bearing technology was superior and the lack of funds allocated to the exploratory development

of ball-bearings insured that this would be the case.

14 Inventing Accuracy, Donald MacKenzie, p. 391.

23

The gas-bearing example demonstrates the critical role of heterogenous engineering with respect

to the users of the technology. Users of a technology must be engineered. There is significant evidence that

the Symbolics employees discounted this critical function as automatic. Robert, who quit as vice-president

of sales in March, 1988 claims that “At Symbolics, the attitude was: ‘The world will find out’ [how

superior its systems were].”15 This is a clear failure of heterogeneous engineering.

Brian Sear, the President and COO in the late 1980s, offers an additional insight into why

customers were ignored. Sear claims that Noftsker and other who helped found the company were “very

brilliant people, and they were very much enamored with leapfrog technologies. They wanted to repreat

what they done in 1983 and 1984 [when the company burst onto the commercial scene], so they tended to

downplay taking care of current customers. Russell had a philosophy that all technology was good and

would be useful at some point.”16

It turns out that technology is only useful if the environment is engineered to find it useful. Most

engineers had learned other languages such as Cobol or Fortran when they were trained and therefore

would find C to be a preferable development environment.

Star Wars was an Indirect Target Market for Lisp Machines

Russell Noftsker points out that many of the Symbolics machines were purchased by researchers

funded (directly or by contract) through the Star Wars program, overseen by DARPA. Noftsker now points

out that the notion of shooting missiles out of the sky with laser beams from space is inconcievable with the

technology available in the 1980s, or in the 1990s for that matter. Regardless, development of expert

systems was a key component of the Star Wars program, and Symbolics benefitted because those expert

systems could be best developed on a Symbolics system. To some extent, Symbolics’ success and failure

followed the trajectory defined by Star Wars funding. We found no evidence that this is due to the type of

heterogeneous engineering Charles Draper engaged in during the development of missile guidance when he

essentially engineered the military decision makers to support his system. Rather, Star Wars funding was

largely responsible for supplying a relatively forgiving target market to Symbolics in the early years (before

it was a public company).

The forgiving nature of this market is perhaps one explanation why the company could be so

successful with so little focus during its early years. Symbolics’ management perhaps realized that the Star

Wars funding would dry up, but did not engineer the company for tougher times. The dominance of the

research and development department was never checked, even when the company faced a much tougher

15 Symbolics: The Soul of a New Regime, Keith H. Hammonds, Business Week, June 13, 1988
16 Mission Impossible, Dana Bottorff, New England Business, 6 1989, p. 27.

24

marketplace in the late 1980s. Moon observes, “the age of 80% gross margins in the computer industry was

vanishing, and so was the age when selling 3000 machines a year was a big success.”

3.5 Manufacturing

A key aspect of heterogeneous engineering for any products based company has to be its ability to

manufacture a product to the specified quality at a reasonable cost and deliver it on-time to customers. As

Symbolics was generally viewed as a LISP machines company, one would assume that the manufacturing

and manufactureability of the product would be an important issue for them. From our research, we found

this was not the case. Here is yet another portion of the wheel that was not adequately addressed by the

company.

We see this in several aspects of their organizational structure and processes. From the beginning

of the company, the manufacturing facility was located in California, all the while, the research, design and

management center was in Massachusetts. Although this is common practice in large manufacturing

companies where there are cost, tax or distribution issues mandate multiple manufacturing facilities away

from the headquarters, it is very unusual for a start-up with minimal sales and personnel to immediately

locate their manufacturing capabilities and personnel across the country. This separation can lead to

multiple communication, organizational, cost and even production problems that would have wide scale

implications on the success of the company.

Apparently, the justification for separating the facilities was that the manufacturing manager at the time

was a resident of California and the president of the company had a home there also. This just does not

seem to us like a rational business justification for the separation that existed. In fact, this became a major

issue for the major investors of the company as well. Certain board members from their investment

partners were urging the move of the manufacturing to combine operations, but the management team was

highly against that proposal. This issue even became a major source of conflict between the company

management and the investors. It was also a reason for difficulty in finding new investors during a later

round of fund raising.

Beyond the added cost and complexity associated with separating manufacturing from the rest of

the company, we also found that the design of the products were not coordinated well with the needs of

manufacturing. The majority of the architects, designers and engineers for Symbolics’ machines were from

a software background. There’s no doubt that these were brilliant people with some very innovative ideas,

but Symbolics failed to hire people with industry hardware design experience that knew the issues with

taking a product from concept to commercialization. Symbolics did some efforts to reduce cost and

25

increase integration with new board and chip technologies, but the lack of expertise in productization was

clear. Designers with little industry experience will tend to added features or set specification that would

drive up costs significantly, reduce reliability and cause delays unnecessarily for things that would only

bring minimal returns. It is very different to create prototypes that “pretty much” worked under ideal

conditions compared to designing a product that would be robust under adverse operating conditions and

could be mass produced at a reasonable price. The lack of attention to this area was one of the reasons

why they were not able to lower prices and became uncompetitive with companies like Sun and Apollo

when their low cost workstations came to market. The inattention to manufacturing also resulted in

multiple product delays that cause the company to miss market windows of opportunity when the other

workstation companies where just getting off the ground. Paying attention to this aspect may not have save

the company, but it certainly would have gave them a better chance to fight against the threats that arose

during the troubled years of the company.

3.6 Sales and Marketing

We have chosen to discuss the areas of sales and marketing jointly. The main reason for this is

that they were viewed as one function by Symbolics managers. Both were viewed as inconveniences,

necessary in order to financially support development.

Sales and marketing played a small role at Symbolics. They were not consulted during the

development process, but brought in only when a product was being manufactured. Their job was to take

the product and transform it into revenue to support the development of new products. Little, if any,

attention was paid to the importance of sales and marketing as a link to the customers. These divisions

were the part of the company closest in contact with users, and they had better insight into the concerns and

requirements of Symbolics buyers than the Research and Development department. However, by not

taking the concerns of sales and marketing into account when planning new development proposals,

Symbolics isolated itself from its customers.

There were several reasons for Symbolics reluctance to take sales’ and marketing’s concern into

account when developing products. One was the academic notion of technical superiority held by most of

the research staff (see the earlier section on R&D). Clean design was viewed as vital to a “successful”

product, and any other criteria conflicting with this goal was easily discounted.

The founders of Symbolics were the original users of LISP machines. Their first product, the

CONS, had in fact been developed at MIT in order for the users to be able to do their research. As the

product line developed, the Symbolics developers continued to use Symbolics products exclusively. Many

Symbolics developers saw themselves as Symbolics users. This made it easy to overlook the need for input

26

from customers. A sense of having the same needs as the customers, and thus a always knowing what the

customer wanted, made it hard for Symbolics developers and managers to see the value of information in

given by sales and marketing.

3.7 Finance and Control

The financial success of the a company is based not only on bringing in money, both in the form

of revenue and investment, but also on controlling the costs associated with company operations and

production of products. From the earlier sections, we see that Symbolics did a poor job of managing both

sides of this equation. In this section, we will concentrate mainly on managing the cost aspect of this

equation.

When a company is small, there is less of a need to install financial control processes for its

operations, since the team is small and the problem is manageable. In fact, when Symbolics was starting

out and didn’t have a lot of funding, it did a great job in boot strapping the company with very little

resources. Unfortunately, when Symbolics became a relatively successful company with over 1000

employees, it still did not institute the financial management processes or controls that is required in

running a company of its size. With spending in the tens of millions a year, it is crucial that management is

aware of how much the company is spending and how its allocated. It is also important to create controls

within the system to make sure that the spending is aligned with the corporate goals and the business

environment at the time.

Once funds were available, Symbolics was spending money like a lottery winner with new found

riches. They moved into lavish offices, bought expensive furniture, provided company cars, offer

extravagant perks, and paid higher than industry salaries. Symbolics was not alone in this type of behavior.

From what we saw, all the AI companies of the time acted in the same way. This may have been a reason

why that all seemed to end up failing a few years later.

Although the amount of spending was a major issue for the company, the larger problem may have

been the allocating of the spending. As we mentioned earlier, the allocation of spending needs to be

directly aligned with the business goals of the company. Since Symbolics was such a technology focused

company, even in times of financial difficulty, it focused its spending on R&D, and reduced costs on the

marketing and sales aspect of the business. And since there were no clear goals in the company, the cost

cutting that was done on the technology side was on things that looked to have been strategically critical to

the long-term success of the company. When finances got really bad, the investors started to come in and

27

force cost cutting measures that may have contributed to the ultimate downfall of the company. The

investors forced Symbolics to delay or cut projects relating to an integrated VLSI chip which would have

allowed the company to compete in the lower cost workstation market. They also forced Symbolics to

eliminate software projects with Intel to provide LISP deployment platforms on x86 systems. There were

some real conflicts and inconsistencies in the management thinking and the investors beliefs that arose

during the course of the companies life that were forced to manifest itself as a result of poor financial

management and control.

If there were proper financial control processes in place in the company, they would likely have

prioritized their activities much better to avoid getting in financial crunches, and when it them, would know

exactly which non-priority projects or personnel to reduce. We believe that part of the reason for the lack

of focus on the financial aspects of the business is due to the academic background of the employees and

the management. They came from an environment where one requests for funding, gets it and spends it as

he chooses with little or no regard for long-term consequences of the spending. In the business

environment, a company can not do that an survive.

3.8 Human Resources

In his book Soul of a New Machine Tracy Kidder describes Tom West looking at the boards of a

new DEC computer. West believed that the bureaucratic organization of DEC was reflected in the board. It

is important to realize that Kidder's theory supports MacKenzie's argument that natural trajectories for

technology does not exist. Kidder argues that the background of a developer will significantly influence the

technology he creates. This is mutually exclusive with technological development corresponding to the

inherent possibilities of the technology. Kidder verifies that social factors will play a role in technical

innovation.

Like in the case of DEC, the organizational structure and people working at Symbolics were

reflected in their products. There are a few salient high-level observations gained from the technical details

of the machines:

• The machines were for high-end development

• The machines were optimized for Lisp

• The machines were well-documented and “open”

• The machines included every possible feature

• The design was clean

• The machines (especially the network architecture) were designed to be quiet

Each of these design characteristics can be linked to traits of the technical people in the firm.

28

Symbolics from the beginning focused on the market of high-end development machines. These

were what they designed best. Developers themselves, they knew the design requirements intimately, and

using their own tools led to new ideas on how to improve them. Furthermore, development machines are

more demanding to design than delivery machines. Symbolics focused on the problem that its developers

found most challenging, and therefore interesting. Furthermore, through improving their products they also

improved their own working environment. One can argue that from the first machine created at the AI Lab,

Symbolics developers were never quite weaned off a belief that since they were users of the technology

they were also good guides to what the customers needed.

LISP has always been most adamantly supported by academics, particularly academics in the

Artificial Intelligence field. (LISP was also a natural choice if one assumes that the target market was

always within the AI field, although this assumption is challenged by Noftsker, a founder and CEO).

David A. Moon’s assertion that "highly complex software… could safely be assumed to be written in

LISP" was not gernerally true given that little, if any, commercial database development was done in LISP.

However, for a research and development department with close links to the AI research community, LISP

might have seemed mroe prevalent than was actually the case in the rest of the industry. The Symbolics

programmers were trained in LISP and they were part of a subculture where LISP was dominating. This

gave them a very different world view than for instance IBM developers, who at that time focused on

complex business applications not written in LISP.

The Symbolics documentation was outstanding, another characteristic common to academics. The

online hypertext documents and printed manuals developed by Symbolics engineers won several awards,

and former Symbolics employees still treasure them. An academic is completely dependent on

documenting his work. Only through publication can he/she receive credit and acknowledgment. The

extensive documentation of Symbolics products, well beyond the standards of the computer industry,

shows sign of this academic mind set. Only though documenting their products can these be fully

appreciated.

The Lisp machine operating system was open for many years. By "open," we mean that one could

view the source code for the operating system, change the code, and recompile it. Symbolics’ OS was open

for many years until it became clear that Texas Instruments was reverse-engineering the code.17 In general,

commercial software companies do not distribute source code for their products. This is strongly indicative

of the background of the technologists in the firm. Sharing and distributing knowledge are fundamental

ideas in the academic community. The ideal of a large free and commonly maintained body of source code

is part of the academic computer culture.

17 Russell Noftsker, CEO and chairman, interview

29

The feature creep evident in the design of the Symbolics machines is also a result of the academic

backgrounds of the designers. All of the Symbolics founders were researchers or had spent much time in a

research setting. The first machine was in fact the subject of Thomas F. Knight's master's thesis. Many of

their first products had several new and revolutionary components such as special software, high quality

monitors, and mice (which were manufactured especially for Symbolics because they were not yet in

common use). All these new innovations drove up the price of the computers and made several models late

for shipping. Symbolics seemed unable to focus on one or two improvements to each machine. It is also not

clear that the customers considered the innovations worth the increased price. Symbolics developed new

technology for the sake of innovation, because they believed it to be useful or because the problem was an

interesting one.

The designers adhered to a philosophy to “do it right and don't worry overmuch about the cost”18

obeying a principle that is natural given their background. The designs of Symbolics machines are

amazingly clean. Everything, from application software to the operating system were written in LISP. Even

the microcode contained LISP instructions. There were no major hacks and shortcuts. The overall design

was consistent and well layed out, using Symbolics own specially designed dialect of LISP. The price they

paid for this elegance was compatibility. The beautifully written software needed specific hardware in order

to run. This isolated Symbolics from software vendors and made their products harder to sell.

The machines (especially the network architecture) were designed to be quiet. The prototype of

their first product, the LISP machine, was a machine designed to satisfy the designers’ needs. Symbolics

was a company founded by programmers and run by programmers. This went further than offering the

programmer the necessary address space (see technical discussion). The LISP machine was specifically

designed to keep the noise disk drive and LISP processor out of the programmer's office. Only the monitor

and keyboard was kept in the programmers workspace, communicating with the other components via

Ethernet. This was a design radically different form the Xerox ALTO and other contemporary machines.

Only a programmer spending hours in front of a computer every day would have prioritized noise reduction

in the design process.

4 Timing Factors

Despite the sudden change in Symbolics fortunes, many of the fundamental problems of

heterogeneous engineering at Symbolics, such as a failure to set and communicate clear goals and to

engineer developers to use their machines, existed since the founding of the company and in some cases

before the founding of the company.

18 David A. Moon, software engineer, email

30

Why was the success of Symbolics so dramatic and why was the decline so sudden given that the

core problems with the company existed from the beginnining?

• Symbolics saturated the Lisp machine market (and did not engineer growth in the overall

segment).

• SDI (or "Star Wars") funding kept Symbolics above water by provided indirect funding.

• Most importantly, Sun Workstations came to be a viable alternative to Symbolics Workstations.

By 1988, the proliferation of LISP machines may have exceeded the proliferation of LISP

programmers. Because Symbolics always focused on high-end Lisp development machines, Symbolics’

success was bounded above by the number of high-end Lisp programmers. Francis Feeney, assistant

general counsel at Symbolics, notes “When we were growing so quickly here internally, I don’t think

anybody stopped and said, ‘Well, wait a minute, once we saturate that fixed marketI is there going to be a

[broader] market for our system?’”19 Symbolics’ management put on their blinders and ignored this

important issue. They clearly did not engineer a broader need for their systems. Within eight years of the

founding of the company, Symbolics had begun to see the effects of selling a Lisp machine to everyone

who had $100,000 to pay for one.

One of the reasons that Symbolics was so successful before 1986 is that the expert-systems market

was subsidized by funding for the Strategic Defense Initiative. SDI funding did not go directly to

Symbolics. However, SDI funds did go to many of SymbolicsU customers who were developing expert-

systems. The demand for Lisp machines in the early 1980s was largely fueled by this phenomenon.

Symbolics was the first Lisp machine manufacturer to market and they always beat TI, Xerox, and LMI

within the Lisp machine segment. Furthermore, in the early 1980s, no Unix workstations were considered

viable alternatives as platforms for developing Lisp systems.

The market created by funding from SDI was quite forgiving. The government was interested in

creating complex Lisp programs and Symbolics machines were the leading alternative at that time.

Officials who allocated funds for SDI did not demand cost-effective results from their research funds and

hence the expert-systems companies boomed during this period.

Another reason that Lisp machines were in high demand (despite a general lack of results) is due

to a "natural teajectory" phenomenon. AI, and especially expert systems, were seen as the future of

computing. This is due to hype generated by Feigenbaum, a Stanford University professor. Tom Knight

claims that Artificial Intelligence was oversold primarily because Feigenbaum fueled outrageous hype that

19 Misadventures in AI: What Went Wrong at Symbolics, Andrea Cohen, Electronic Business, September 1,
1988, p. 86.

31

computers would be able, for example, to replace medical ddoctors within 10 years. Adidtional hype was

generated by the Japanese governmentUs sponsoring of the "Fifth Generation" project. This project,

essentially a massive effort by the Japanese to develop machines that think, sparked a nationalistic chord in

America. SDI funding in some ways was a means to hedge the possible ramifications of the "superior" AI

technology of Japan.

The rapid growth of the expert-systems market essentially could mask the problems within

Symbolics. Competing in a market with few competitors that is doubling every year is easy. For a few

years, Symbolics major barrier to revenues was producing the machines. Even while growing

exponentially, Symbolics was plagued by operations problems and could not deliver machines to every

customer that wanted them. Due to huge demand, almost no amount of mistakes could prevent Symbolics

from succeeding in the early 1980s.

By the late 1980s, it was clear that the Fifth Generation project was no closer to developing strong

AI than the Americans were. This bubble based on the hype generated by Feigenbaum and the Japanese

project ultimately burst, causing a general decline in the expert systems market and a drop in funding by the

government.

Perhaps most harmful to Symbolics was the introduction of Sun workstations as viable alternatives

for Lisp development machines. The hard-coded, apparently immutable culture to “do it right and don't

worry overmuch about the cost”20 forced Symbolics to sacrifice not only low cost but also compatibility

and on-time delievery. These problems primarily stemmed from the highly academic culture at Symbolics.

Ignoring cost, on-time delivery, and compatibility left room for Sun to add significant value in the

Lisp machine marketplace. These are the three strongest reasons that Sun could leverage its general-

purpose workstations into Symbolics’ segment.

It is important to note exactly what the costs of the various machines were. The difference in cost

could be measured not in percent, but in hundreds of percent. While two machines may be considered

competitive if one is 20% more than another, charging 200%-500% extra for the Symbolics machine made

the product uncompetive. Newquist stressed this:

“Given the cost of individual LISP workstations, it was inevitable that
users would look for alternate sources to deliver and develop their AI
applications. General-purpose workstation vendors such as Sun
Microsystems and Apollo computers have been quick to fill this bill.”

Harvey P. Newquist, AI Trends ’88, No. 48

20 David A. Moon, software engineer, email

32

The cost of a Symbolics 3600-series system in 1988 ranged from $36,000 for a low-end system to

$125,000 for a high-end system21. The Sun-X computer started at only $14,000 and could run LISP well

enough for development. In addition this machine could be used for many other applications.

A primary component of addressing needs of IT departments is compatibility. IT departments are

based on legacy systems and they will not scrap the current system until it is absolutely mandatory.

Symbolics sacrificed compatibility for clean design and therefore lost favor within the IT community. For

many years, Symbolics could sell incompatible machines to expert-systems researchers, but incompatibilty

was not an option when selling to IT customers.

Finally, late delivery plagued Symbolics. Late delivery is yet another symptom of Symbolics’

academic culture. The 3600 series was about one year late, and the I-Machines (40-bit) were about 2-years

late. Furthermore, Symbolics could not manufacture machines adequately during the years of high growth.

Business customers cannot tolerate late delivery of machines. Furthermore, when the release SymbolicsU

major new product was two years late, they had given an irreparably large window of opportunity to their

competition.

What allowed Symbolics to sidestep the competitive problems with Sun during the growth years?

Primarily, Sun machines were not adequate to do the job of Sun machines until the mid-1980s. Other Lisp

machine vendors were no more competitive than Symbolics. LMI was also run by academics. Texas

Instruments was primarily in the business to reverse-engineer SymbolicsU machines (which released

source code for many years), and Xerox did not consider the Lisp machine market to be its focus. SunUs

cheap and adequate Lisp development platform, based on a general-purpose Unix machine, ultimately

forced every Lisp machine vendor out of the market.

5 Conclusion

In this paper we have introduced a model of heterogeneous engineering well suited for commercial

companies. Analyzing Symbolics in the context of this model, one can clearly see why the company failed.

Symbolics failed to set clear goals, and this made it difficult for the different divisions of the company to

work together. Furthermore, the academic culture of the company let it to focus almost excusively on

research ond development. This led to lack of resources in the other divisions of the company.

Furthermore, little attention and care was given non-research functins. As a consequenceof this, the

company did not see problems in other divisions, and collapsed when problems in these made it unable to

pay for its research.

33

Symbolics is a classic example of a company failing at heterogeneous engineering. Focusing

exclusively on the technical aspects of engineering led to great technical innovation. However, Symbolics

did not successfully engineer its environment, custormers, competitors and the market. This made the

company unable to achieve long term success.

21 Harvey P. Newquist, AI Trends ’88, No. 51

Product
Line

Human
Resources

Manufacturing

Sales

Marketing

Research and
Develepment

Finance and
Spending
Control

Target
Markets
(Users)

Goals

Definition of
how the

business will
compete

Objectives
for growth,

market
share, social

impact,
technical
impact

Product
Line

Human
Resources

Manufacturing

Sales

Marketing

Research and
Develepment

Finance and
Spending
Control

Target
Markets
(Users)

Goals
Objectives for

growth
technical
impact,

leapfrogging
technology

At Symbolics, Goals varied in order to support the
current direction of Research and Development.

34

6 Bibliography

• Bailey, Douglas M. Symbolics Coming up With New Line, Analysts Believe
Artificial-Intelligence Firm Will Broaden Its Market Base, The Boston Globe,
July 29, 1986.

• Bottorff, Dana. Mission Impossible?, New England Business, No. 6, 1988.
• Carton, Barbara. Symbolics Names new Chairman, CEO, The Boston Globe, May

24, 1988.
• Cohen, Andrea. Misadventures in AI: What Went Wrong at Symbolics, Electronic

Business, September 1, 1988.
• Goldstein, Mark L. Russell Noftsker: A Scientist Lost in the World of Marketing,

Industry Week, November 16, 1987.
• Hammonds, Keith H. Symbolics: The Soul of a New Regime, Business Week, June

13, 1988.
• Kidder, Tracy. The Soul of a New Machine, Avon Books, New York, New York,

1981.
• Knight, Thomas F., Senoir Research Scientist, MIT’s AI Laboratory. Interview.
• Knight, Thomas F. Implementation of a List Processing Machine. MIT EECS

Master Thesis, January, 1979.
• MacKenzie, Donald. Inventing Accuracy, The MIT Press, Cambridge,

Massachusetts, 1990.
• McCain, Nina. Computers Seen Replacing MDs, Lawyers, The Boston Globe,

November 1, 1984.
• Moon, David A. Software engineer and founder, Symbolics. Email December 2,

1998.
• Moon, David A. Software engineer and founder, Symbolics. Email December 3,

1998.
• Newquist, Harvey P. Editor of AI Trends. Interview.
• Newquist, Harvey P. AI Trends ’85: A comprehensive Annual Report of the AI

Industry, DM Data, 1985.
• Newquist, Harvey P. AI Trends ’86: A comprehensive Annual Report of the AI

Industry, DM Data, 1986.
• Newquist, Harvey P. AI Trends ’87: A comprehensive Annual Report of the AI

Industry, DM Data, 1987.
• Newquist, Harvey P. AI Trends ’88: A comprehensive Annual Report of the AI

Industry, DM Data, 1988.
• Newquist, Harvey P. The Brain Makers, Sams, 1994.
• Noftsker, Russell. CEO, chairman of the board and founder, Symbolics.

Interview.
• Pitta, Julie. Where Lisp Slipped, Forbes, October 16, 1989.
• Rosenberg, Ronald. AI Alley’s Longest Winter. The Boston Globe, December 18,

1988.

35

• Rosenberg, Ronald. Artificial Intelligence Industry Observer Gives Its Days of
Glory and Official Record. The Boston Globe, June 15, 1994.

• Rosenberg, Ronald. A Simpler Kind of Computer Talk, The Boston Globe,
October 6, 1980.

• Rosenberg, Ronald. Making Computers User-Friendly When Cobol and Basic
Aren’t Enough, The Boston Globe, September 8, 1981.

• Rosenberg, Ronald. Symbolics Scores an AI Victory, The Boston Globe, August
6, 1985.

• Rosenberg, Ronald. Tough Times for Pioneers in Artificial Intelligence, The
Boston Globe, September 16, 1986.

• Shrobe, Howard. Assoc. Director of MIT’s AI Laboratory. Interview.
• Symbolics Online Museum. Http://home.brightware.com/~rwk/symbolics/
• Symbolics Technical Overview. Http://www.lavielle.com/~joswig/symbolic-

computing.html
• Vannah, Thomas. Driving Symbolics to market, New England Business, No. 3,

1989.
• Winston, Patrick. Former director of MIT’s AI Laboratory. Interview.

