An Automata Theoretic Approach to Branching Time Model Checking

Acknowledgements: after Arie Gurfinkel's notes

Automata and Logic

- There is an intimate connection between automata and logic
- Logic
 - a temporal logic formula φ is identified with all models that satisfy it
- Automata
 - a language of an automaton is the set of all words accepted by it
- $\bullet~$ The language of an automaton for a logical formula φ is the set of all models that satisfy φ
 - strings for linear logic
 - trees for branching logic

- 4 回 5 - 4 三 5 - 4 三 5

Automata-Theoretic Approach

- Automata-theoretic approach gives a uniform solution to both satisfiability and model-checking
- $\ensuremath{\bullet}$ For a given logical formula φ and a model K
 - φ is satisfiable iff there exists a model that satisfies φ
 - □p is satisfiable
 - $\Box(p \land \neg p)$ is not
 - ${\scriptstyle \bullet }$ model-checking is deciding if φ is satisfied by a given model
- Automata-theoretic solution
 - build an automaton A_{φ} for the formula φ
 - φ is satisfiable iff A_{φ} is non-empty
 - combine $A_{\neg \varphi}$ and K into an automaton $A_{\neg \varphi,K}$
 - $K \models \varphi$ iff $A_{\neg \varphi, K}$ is empty

Automata-Theoretic Approach

- Automata provide a clean separation between logic and algorithms
- Constructing an automaton for a formula
 - what does that mean for a model to satisfy the formula
- Solving non-emptiness problem for an automaton
 - how to decide if a given model satisfies the formula

Outline

- Automata on infinite words
 - refresher
 - acceptance conditions
 - computational tree of an automaton
 - alternation a powerful extension of nondeterminism
- Constructing an Alternating Word Automaton for LTL
- Automata on infinite trees
 - deterministic automata
 - nondeterministic automata
 - alternating automata
- Constructing an Alternating Tree Automaton for CTL

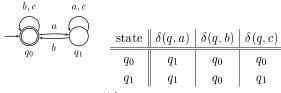
Finite-state Automata

- A finite state automaton A is a tuple $(\Sigma, Q, \delta, q_0, \mathcal{F})$, where
 - Σ is a *finite* alphabet
 - Q is a *finite* set of states
 - $\delta \subseteq Q \times \Sigma \times Q$ is a transition relation
 - $q_0 \in Q$ is a designated initial state
 - $\mathcal{F} \subseteq Q^{\omega}$ is an acceptance condition
- A D-labeled infinite string s is a function $\mathbb{N} \to D$
- A Σ -word w is a Σ -labeled infinite string
 - $\bullet \ w = a b a b a a a^{\omega}$

•
$$w(0) = a$$
, $w(1) = b$, $w(3) = a$, etc.

Finite-state Automata

- A run r of an automaton over a word w is a $N \times Q$ labeled string, where
 - a node of r labeled with (n,q) indicates that the automaton reads letter n of w while at state q



• a run on $w = aba^{\omega}$ is

 $(0, q_0), (1, q_1), (2, q_0), (3, q_1), (4, q_1), (5, q_1), \ldots$

Infinite Occurrences

- $\exists^{\omega}i \cdot Y(i)$ there exists infinitely many ith such that Y(i)
- $\bullet \ \ \, {\rm For} \ \rho \in Q^\omega$
 - $In(\rho)$ is the set of states that occur infinitely often

$$\bullet \ In(\rho) = \{q \in Q \mid \exists^{\omega}i \cdot \rho(i) = q\}$$

- Büchi condition
 - \mathcal{F} is $F \subseteq Q$
 - $\texttt{ a } In(w) \cap F \neq \emptyset$
 - weak fairness something occurs infinitely often

(人間) とうてい くうい

- Muller condition
 - \mathcal{F} is $\{F_1, \ldots, F_n\} \subseteq 2^Q$
 - $\exists i \cdot In(w) = F_i$

Acceptance Conditions

- Rabin condition ("pairs")
 - \mathcal{F} is $\{(R_1, G_1), \dots, (R_n, G_n)\}$ with $R_i, G_i \subseteq Q$
 - $\exists i \cdot In(w) \cap R_i = \emptyset \wedge In(w) \cap G_i \neq \emptyset$
 - Rabin (\emptyset, F) is equivalent to Büchi F
- Street condition ("complemented pairs")
 - \mathcal{F} is $\{(F_1, E_1), \ldots, (F_n, E_n)\}$ with $E_i, F_i \subseteq Q$
 - $\forall i \cdot In(w) \cap F_i \neq \emptyset \Rightarrow In(w) \cap E_i \neq \emptyset$
 - strong fairness
 - if infinitely often enabled, then infinitely often executed
 - Street (Q, F) is equivalent to Büchi F

- 不同 ト イラト イラト

Acceptance Conditions

- Parity condition
 - \mathcal{F} is $F_1 \subseteq \cdots \subseteq F_n$ with $F_i \subseteq Q$
 - smallest *i* for which $In(w) \cap F_i \neq \emptyset$ is even
- co-Büchi condition
 - \mathcal{F} is $F \subseteq Q$
 - accepts w if $In(w) \cap F = \emptyset$
- Nondeterministic Büchi-, Muller-, Rabin-, and Streetautomata all recognize the same ω-languages

Example: Acceptance

• Language over $\{a, b, c\}^{\omega}$

- if a occurs infinitely often, then so does b
- Automaton with states q_a , q_b , and q_c , and δ

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	q_c
q_b	q_a	q_b	q_c
q_c	q_a	q_b	q_c

- Acceptance conditions
 - Street single pair $(\{q_a\}, \{q_b\})$
 - Muller all states F where $q_a \in F \Rightarrow q_b \in F$
 - $\{q_b\}, \{q_c\}, \{q_b, q_c\}, \{q_a, q_b\}, \{q_a, q_b, q_c\}$

Example: Acceptance

• Automaton with states q_a , q_b , and q_c , and δ

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	q_c
q_b	q_a	q_b	q_c
q_c	q_a	q_b	q_c

- Acceptance conditions
 - Rabin
 - either *b* occurs infinitely often, or both *a* and *b* have finite occurrences
 - two pairs $(\emptyset, \{q_b\}), (\{q_a, q_b\}, \{q_c\})$
 - Parity
 - $\emptyset, \{q_b\}, \{q_a, q_b\}, \{q_a, q_b, q_c\}$

Example: Acceptance

 For Büchi acceptance condition simulate Rabin pairs by nondeterminism

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_a	q_a	q_b	$\{q_c, q'\}$
q_b	q_a	q_b	$\{q_c, q'\}$
q_c	q_a	q_b	$\{q_c, q'\}$
q'			q'

- Every time *c* occurs, guess that a suffix containing only *c* is reached
- Büchi acceptance condition

•
$$F = \{q_b, q'\}$$

Computational Tree of an Automaton

- A set of all runs of an automaton *A* over a fixed word *w* is called a computational tree
- Each node in the computational tree is labeled by a history $h \in Q^*$
- A history is a list of all states visited by the automaton so far
- For a deterministic automaton, the computational tree is linear

A (20) A (20) A (20)

14 / 56

there is only one possible run!

Computational Tree: Example

• A deterministic automaton over $\{a, b\}$

	state	$\delta(q,a)$	$\delta(q,b)$
-	q_0	q_0	q_1
	q_1	q_0	q_1

• Computational tree over $(aab)^{\omega}$

 $(q_0), (q_0, q_0), (q_0, q_0, q_0), (q_0, q_0, q_0, q_1), \ldots$

Comp. Tree: Nondeterministic Case

- For a nondeterministic automaton, the computational tree contains all possible choices
- Formally, the computational tree *T* of *A* over *w* is recursively defined as
 - the root is labeled by q_0 ,
 - for a node $k \in T$ labeled with the history $x \cdot y$, where $x \in Q^*$, and $y \in Q$

イロト イポト イラト イラト

16 / 56

- if $\delta(y, w(|x \cdot y|)) = \{t_1, \dots, t_n\}$, then
- k has n successors, and
- *i*th successor is labeled with $x \cdot y \cdot t_i$

Example: nondeterministic automaton

• Nondeterministic automaton over $\{a, b\}$

state	$\delta(q,a)$	$\delta(q,b)$
q_0	$\{q_0,q_1\}$	q_0
q_1	q_1	q_2
q_2	q_2	q_2

- acceptance condition is Büchi $F = \{q_1\}$
- corresponds to $\diamond \Box a$
- Computational tree over aba^{ω}

Computational Tree: Acceptance

- An infinite history $h \in Q^{\omega}$ corresponds to an infinite branch β of the computational tree iff for any prefix of hthere exists a node in β labeled with it
- An automaton A accepts a word w iff
 - there exists an infinite branch β in the computational tree of *A* over *w*, such that
 - an infinite history corresponding to β is an accepting run

Alternation

- For a non-deterministic automaton A, a transition $\delta(q, a) = \{t_1, \dots, t_n\}$ can be interpreted as
 - when A is in state q and has read letter a
 - create n copies of A
 - switch *i*th copy to state t_i
 - run each copy on the rest of the word
 - a word is accepted iff it is accepted by at least one copy
- We can dualize the acceptance condition to be
 - a word is accepted iff it is accepted by *all* copies
- In this case, the computational tree is linear
 - but, each node is labeled with multiple histories

Example of a Dual Automaton

• Automaton over $\{a, b\}$

state	$\delta(q,a)$	$\delta(q,b)$
q_0	$\{q_0,q_1\}$	q_0
q_1	q_1	q_2
q_2	q_2	q_2

• just as before but $\{q_0, q_1\}$ means pick both, not pick one!

20 / 56

- acceptance condition is Büchi $F = \{q_1\}$
- Computational tree over aba^{ω} is linear

Another Example of a Dual Automaton

• Automaton over $\{a, b, c\}$

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_0	$\{q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_1,q_2\}$
q_1	q_3	q_1	q_1
q_2	q_2	q_3	q_2
q_3	q_3	q_3	q_3

- acceptance condition is Büchi $F = \{q_3\}$
- accepts $\circ((\diamond a) \land (\diamond b))$
- Computational tree over $ccabc^{\omega}$ is linear

Alternating Automata

- Alternating automata combine the two interpretations
 - the transition relation becomes $Q \times \Sigma \rightarrow 2^{2^Q}$
 - $\delta(q, a) = \{T_1, \dots, T_n\}$ is interpreted as
 - when a is read at state q, pick one of $T_i \subseteq Q$
 - create as many copies of A as $|T_i|$, and send them along the word
 - a word is accepted iff it is accepted by all the copies
- A computational tree of an alternating automaton is
 - branching
 - e each node can be labeled with multiple histories

Alternating Automata: Example

• Example alternating automaton over $\{a, b, c\}$

state	$\delta(q,a)$	$\delta(q,b)$	$\delta(q,c)$
q_0	$\{\{q_0\}, \{q_1\}\}$	q_2	$\{q_1, q_2\}$
q_1	q_1	q_3	q_1
q_2	q_3	q_2	q_2
q_3	q_3	q_3	q_3

A (1) > A (1) > A

- Büchi acceptance $\{q_3\}$
- computational tree over $acbaa^{\omega}$
- \bullet a run over $acbaa^{\omega}$
- corresponds to $a \mathcal{U} (\diamond a \land \diamond b)$

Alternating Automata: Acceptance

- A word is accepted iff there exists an infinite branch such that all of its infinite histories satisfy the acceptance condition
- Alternatively,
 - a run of an alternating word automaton is a tree
 - each branch in the computational tree is a run
 - the set of infinite histories associated with a branch forms a tree
 - a run is accepting iff all of its branches are accepting
 - a word is accepted iff there exists an accepting run

Symbolic Representation

- A transition relation $Q \times A \rightarrow 2^{2^Q}$ can be represented symbolically as a boolean formula over Q
 - $q_1 \lor q_2$ is equivalent to $\{\{q_1\}, \{q_2\}\}$
 - $q_1 \wedge q_2 \lor q_3$ is equivalent to $\{\{q_1, q_2\}, \{q_3\}\}$
- Intuition
 - $q_1 \lor q_2$ means
 - split into two copies
 - one switches to q_1 , the other to q_2
 - accept iff at least one copy accepts
 - $(q_1 \lor q_2) \land q_3$
 - split into 3 copies
 - 1st switches to q₁, 2nd to q₂, and 3rd to q₃
 - accept if both the 3rd copy and either one of 1st or 2nd accept

Why Do We Need This?

- Complementation is easy
 - let φ be a boolean formula over X
 - a dual φ_c of φ is obtained by switching ∧ with ∨
 a dual of (a ∧ b) ∨ c is (a ∨ b) ∧ c
 - a complement of $A = (\Sigma, Q, \delta, q_0, \mathcal{F})$ is
 - $A_c = (\Sigma, Q, \delta_c, q_0, \mathcal{F}_c)$, where
 - δ_c is the dual of δ , $\mathcal{F}_c = Q^{\omega} \setminus \mathcal{F}$
- There is an easy translation from temporal logic (LTL) to alternating Büchi word automaton

From LTL to Automata

- For an LTL formula φ
 - ${\ensuremath{\, \rm e}}$ closure of $\varphi,\, cl(\varphi),$ is the set of all subformulas of φ
- An alternating automaton A_{φ} that accepts all 2^{AP} labeled words that satisfy φ is built as follows

•
$$A_{\varphi} = (2^{AP}, cl(\varphi), \delta, \varphi, F)$$

• $\delta(q,\sigma)$ is defined as follows

A D N A B N A B N

F = {□ψ | □ψ ∈ cl(φ)} is a Büchi acceptance condition
 F := F \union { true }

Examples

$\bullet \ a \ \mathcal{U} \ b$

state	$\delta(q,\{a,b\})$	$\delta(q,\{a\})$	$\delta(q,\{b\})$	$\delta(q, \emptyset)$
a	true	true	false	false
b	true	\mathbf{false}	\mathbf{true}	false
$a \mathcal{U} b$	\mathbf{true}	$a \mathcal{U} b$	\mathbf{true}	false

• no accepting states

Examples

$\bullet \ a \ \mathcal{U} \diamond b$

state	$\delta(q, \{a, b\})$	$\delta(q,\{a\})$	$\delta(q,\{b\})$	$\delta(q, \emptyset)$
a	true	true	false	false
b	true	false	\mathbf{true}	false
$\diamond b$	true	$\diamond b$	\mathbf{true}	$\diamond b$
$a \ \mathcal{U} \diamond b$	true	$(\diamond b) \lor (a \ \mathcal{U} \diamond b)$	\mathbf{true}	$\diamond b$

29 / 56

no accepting states

Examples

• $\Box a$ <u>state</u> $\{a\}$ \emptyset <u>a</u> **true** false $\Box a$ $\Box a$ false • acceptance condition { $\Box a$ } • $(\Box a) \land (\Box b)$

state	$\delta(q,\{a,b\})$	$\delta(q,\{a\})$	$\delta(q,\{b\})$	$\delta(q, \emptyset)$
a	true	true	false	false
b	true	false	\mathbf{true}	false
$\Box a$	$\Box a$	$\Box a$	false	false
$\Box b$	$\Box b$	false	$\Box b$	false
$(\Box a) \land (\Box b)$	$(\Box a) \land (\Box b)$	false	false	false -

Automata over Infinite Trees

(日) (图) (문) (문) (문)

31 / 56

Outline

- Automata on infinite trees
 - deterministic automata
 - nondeterministic automata
 - alternating automata
- Constructing an Alternating Tree Automaton for CTL

イロト イポト イヨト イヨト

32 / 56

Trees

- A tree is a tuple (V_t, V_l, E, r) , where
 - V_t and V_l is the set of tree and leaf nodes, respectively
 - $(V_t \cup V_l, E)$ is a directed acyclic graph
 - $E \subseteq V_t \times (V_t \cup V_l)$ is the set of edges
 - $r \in V_t$ is the root node, $\forall x \in V_t \cdot (x, r) \notin E$
- A tree is the set of paths from the root to the leaves
 - assume nodes at each level are enumerated
 - ${\scriptstyle \bullet }$ each path is an element of ${\mathbb N}^*$
 - ϵ is the root node
 - $\bullet \ 0 \cdot 1 \cdot 0$ means: go to child 0, then 1, then 0

- 4 回 5 - 4 三 5 - 4 三 5

Trees

- A tree τ is a subset of \mathbb{N}^* such that
 - τ is prefix closed
 - $\epsilon \in \tau$
 - $\bullet \ \forall x \in \mathbb{N}^* \cdot \forall y \in \mathbb{N} \cdot (x \cdot y) \in \tau \Rightarrow x \in \tau$
 - τ is child closed
 - $\bullet \ \forall x \in \mathbb{N}^* \cdot \forall y \in \mathbb{N} \cdot (x \cdot y) \in \tau \Rightarrow \forall z \leq y \cdot (x \cdot z) \in \tau$
 - each node $x \in \tau$ is described by the unique path from the root to x
- A degree d(x) of a node x is the number of successors of x

- 4 回 5 - 4 三 5 - 4 三 5

34 / 56

 $\bullet \ \forall y < d(x) \cdot (x \cdot y) \in \tau \land (x \cdot d(x)) \not\in \tau$

Trees

- A tree τ is *n*-ary iff
 - $\hfill \ensuremath{\mathbf{\bullet}}$ every non-leaf node has degree d(x)
 - $\bullet \ \forall x \in \tau \cdot d(x) = n \lor d(x) = 0$
- $\bullet \ \mbox{A}$ tree is leafless if degree of every node >0
- A D labeled tree is a tuple (τ, L) , where
 - τ is a tree
 - $L: \mathbb{N}^* \to D$ is a labeling function
- A string is 1-ary tree
- An infinite string is a leafless 1-ary tree
- \bullet A finite word is a $\Sigma\text{-labeled 1-ary tree}$
- An infinite word is a Σ -labeled 1-ary leafless tree

Tree Automata

- A tree automaton is a tuple $A = (\Sigma, Q, q_0, \delta, \mathcal{F})$, where
 - Σ is a finite alphabet
 - Q is a finite set of states
 - $q_0 \in Q$ is the initial state
 - δ is the transition relation
 - different depending on the type of the automaton
 - $\mathcal{F} \subseteq Q^{\omega}$ is the acceptance condition
 - can be Büchi, Rabin, Street, Parity, etc.
- For a deterministic *n*-ary tree automaton

 $\delta: Q \times \Sigma \to Q^n$, where $\delta(q, a) = (w_0, \dots, w_{n-1})$ means

- if A is in state q, and reads node labeled with a, then
 - A splits into n copies
 - copy i is switched to state w_i , and
 - is sent to the *i*th successor of the tree node

- deterministic automaton accepting all binary
 {a, b}-labeled trees that have a b along every branch
- \bullet corresponds to AFb

イロト イポト イヨト イヨト

• acceptance is Büchi $\{q_1\}$

Run and Acceptance

- A run of a deterministic tree automaton on a Σ -labeled *n*-ary tree (T, V) is a $\mathbb{N}^* \times Q$ -labeled tree (T, V_r) , where
 - $V_r(x) = (x, q)$ indicates that the automaton read letter V(x) while in state q

•
$$V_r(\epsilon) = (\epsilon, q_0)$$

• if
$$V_r(x) = (x, q)$$
 and $\delta(q, V(x)) = (w_0, \dots, w_{n-1})$, then
• $\forall y < n \cdot (x \cdot y) \in T$, and
• $V_r(x \cdot y) = (x \cdot y, w_y)$

A D N A D N A D N A D N

38 / 56

 A run is accepting iff all of its branches satisfy the acceptance condition

Computational Tree of a Tree Automaton

- A computational tree of A on a tree (T, V) is a tree of all runs of A on (T, V)
 - computational tree of a deterministic tree automaton is linear
- Each node of the computational tree is labeled by a set of histories
- A history is a string $(\mathbb{N} \times Q)^*$ describing a run of an automaton over a single branch of the input tree
- A branch β of a computational tree is accepting iff all infinite histories associated with it are accepting
- A tree is accepted iff exists an accepting branch of the computational tree

Non-Deterministic Tree Automata

- For a non-deterministic tree automaton $\delta: Q \times \Sigma \to 2^{Q^n}$, where $\delta(q, a) = \{W_0, \dots, W_k\}$ means
 - if A is in state q, and reads a node labeled with a
 - pick $W_i \in \delta(q, a)$ and proceed as a deterministic automaton
- A run of a non-deterministic automaton is defined as for the deterministic case
- A computational tree of a non-deterministic tree automaton is branching
 - a tree is accepted iff there exists an accepting branch of the computational tree
 - or equivalently, iff there exists an accepting run

- non-deterministic binary tree automaton that accepts an $\{a, b\}$ -labeled tree if at least one branch contains an a
- corresponds to EFa

イロト イポト イヨト イヨト

41 / 56

• acceptance is Büchi $\{q_1\}$

Symbolic Transition Relation

- For deterministic and non-deterministic tree automata transition relation can be described by a boolean formula over $\mathbb{N}\times Q$
- For deterministic binary tree automaton
 - $\delta(q,a) = (w_0, w_1)$ becomes
 - $\delta(q, a) = (0, w_0) \wedge (1, w_1)$
- For a non-deterministic binary tree automaton a choice is encoded by a disjunction
 - $\delta(q, a) = \{(w_0, w_1), (w_2, w_3)\}$ becomes
 - $\delta(q, a) = ((0, w_0) \land (1, w_1)) \lor ((0, w_2) \land (1, w_3))$
 - note that both conjunction and disjunction are used

Alternating Tree Automata

- For a set X, let $\mathcal{B}(X)$ denote the set of all positive boolean formulas over X
- A set $Y \subseteq X$ satisfies a formula $\theta \in \mathcal{B}(X)$ if treating atoms in Y as true, and in $X \setminus Y$ as false, makes θ true

•
$$X = \{a, b, c\}$$

- $\{a, b\}$ satisfies $a \land b \lor c$, and
- does not satisfy $a \wedge b \wedge c$
- An alternating n-ary tree automaton is a tree automaton with transition relation $\delta(q, a) \in \mathcal{B}(\{0, \dots, n-1\} \times Q)$

A D N A D N A D N A D N

• $(0,q_1) \lor (0,q_2) \land (1,q_1)$

- Alternating automaton that accepts all binary {a, b}-labeled trees where b occurs as a child of every node at the second level
- Corresponds to AXEXb

	$\delta(q,a)$	$\delta(q,b)$
q_0	$\begin{array}{c} (0,q_1) \wedge (1,q_1) \\ (0,q_2) \vee (1,q_2) \\ (0,q_4) \wedge (1,q_4) \\ (0,q_3) \wedge (1,q_3) \\ (0,q_4) \wedge (1,q_4) \end{array}$	$(0,q_1)\wedge(1,q_1)$
q_1	$(0,q_2) \lor (1,q_2)$	$(0,q_2)\vee(1,q_2)$
q_2	$(0,q_4) \land (1,q_4)$	$(0,q_3)\wedge(1,q_3)$
q_3	$(0,q_3) \land (1,q_3)$	$(0,q_3)\wedge(1,q_3)$
q_4	$(0,q_4) \land (1,q_4)$	$(0,q_4)\wedge(1,q_4)$

• acceptance is Büchi $\{q_3\}$

Alternating Automata

- A run of an alternating n-ary tree automaton A over a Σ -labeled tree (T, V) is a $\mathbb{N}^* \times Q$ labeled tree (T_r, V_r)
 - $V_r(\epsilon) = (\epsilon, q_0)$
 - if $V_r(x) = (y, q)$ and $\delta(q, a) = \theta$, then there exists a possibly empty set $Y = \{(c_0, w_0), \dots, (c_k, w_k)\}$ such that
 - Y satisfies θ , and
 - for all $0 \le i \le k$, $x \cdot i \in T_r$, and $V_r(x \cdot i) = (y \cdot c_i, w_i)$

- 不同 とうき とうきょ

• A tree (T, V) is accepted by A iff there exists an accepting run of A over (T, V)

ATA Computational Tree

- As before, we can build a computational tree of A over a $\Sigma\text{-labeled tree }(T,V)$
- Nodes in the computational tree are labeled with histories

A tree is accepted by the automaton iff there exists an accepting infinite branch in the computational tree

• Automaton over binary $\{a\}$ -labeled tree

state	$\delta(q,a)$	
q_0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
q_1	$(0, q_1) \land (0, q_2) \land (1, q_2)$	
q_2	$(0,q_2)$	

computational tree is branching

Extending to Arbitrary Trees

- We only considered trees with a fixed branching degree
- Let $\mathcal{D} \subseteq \mathbb{N}$
 - ${\ensuremath{\, \rm e}}$ a ${\ensuremath{\mathcal D}}$ -tree is a tree such that a branching degree of every node is in ${\ensuremath{\mathcal D}}$

• $\forall x \cdot d(x) \in \mathcal{D}$

• A \mathcal{D} -tree automaton has transition relation

$$\mathcal{D}: Q \times \Sigma \times \mathcal{D} \to \mathcal{B}(\mathbb{N} \times Q)$$

 $\bullet \ \delta$ is defined separately for each branching degree

• $\delta(q, a, k)$ can only contain terms from $\{0, k - 1\} \times Q$

 \bullet A size of a $\mathcal D\text{-tree}$ automaton $\mathcal A_{\mathcal D}$ is

•
$$||A_{\mathcal{D}}|| = |\mathcal{D}| + |Q| + |F| + ||\delta||$$

•
$$||\delta|| = \sum_{q,a,k} |\delta(q,a,k)|$$
 where $\delta(q,a,k) \neq$ false

Model: Kripke Structure

- As usual, our models are Kripke structures $K = (AP, S, s_0, R, L)$
 - AP is the set of atomic propositions
 - S is a finite set of states
 - $s_0 \in S$ an initial state
 - $R \subseteq S \times S$ the transition relation
 - $L: S \to 2^{AP}$ is the labeling function
- A Kripke structure induces a S-labeled tree (T_K, V_K)
 - $V_K: \mathbb{N}^* \to S$ labels each node with a state • $V_K(\epsilon) = s_0$
 - $T_K \subseteq \mathbb{N}^*$ is a tree such that
 - for $y \in T_K$ with $R(V_K(y)) = (w_0, \dots, w_m)$ we have
 - $\forall 0 \leq i \leq m \cdot (y \cdot i) \in T_K \text{ and } V_K(y \cdot i) = w_i$

Computation Tree

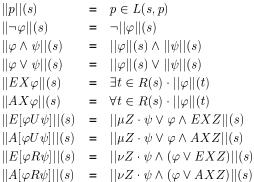
 A Kripke structure can be seen as a computation tree over its atomic propositions

マヨン イヨン イヨン

- For a Kripke structure K
 - (T_K, V_K) is its tree unrolling
 - $(T_K, L \circ V_K)$ is its computation tree

Temporal Logic: CTL

- Computation Tree Logic is interpreted over a computation tree of a Kripke structure
- Definition



From CTL to ATA

- For a CTL formula φ we construct an alternating D-tree automaton A_{D,φ} that accepts all D-trees that are models of φ
- $A_{\mathcal{D},\varphi} = (2^{AP}, cl(\varphi), \varphi, \delta, F)$
 - the alphabet is all subsets of AP
 - $\hfill \ensuremath{\mathbb{Q}}$ states correspond to sub-formulas of φ
 - initial state is φ
 - acceptance condition is Büchi and consists of all AR and ER sub-formulas
 - δ is the transition relation
- Intuitively, $A_{D,\varphi}$ accepts a tree from a state q iff the tree is the model of the formula associated with q

From CTL to ATA

• $\psi = AFAGp$

• in negation normal form: $A[\mathbf{true} \ U \ (A[\mathbf{false} \ R \ p])]$

• alphabet $2^{\{p\}}$

state	$\delta(q,\{p\},k)$	$\delta(q, \emptyset, k)$
ψ	$\bigwedge_{c=0}^{k-1} (c, A[\mathbf{false} \ R \ p]) \lor \bigwedge_{c=0}^{k-1} (c, \psi)$	$\bigwedge_{c=0}^{k-1}(c,\psi)$
A[false $R p]$	$\bigwedge_{c=0}^{k-1} (c, A[\mathbf{false} \ R \ p])$	false

• acceptance condition is Büchi $\{A[false R p]\}$

• $\psi = A[(\neg AXp) \ U \ b]$

• in negation normal form: $A[(EX \neg p) \ U \ q]$

• alphabet $2^{\{p,b\}}$

_	state	$\delta(q,\{p,b\},k)$	$\delta(q,\{p\},k)$	$\delta(q,\{b\},k)$	$\delta(q, \emptyset, k)$
-	ψ	true	$\bigvee_{c=0}^{k-1} (c, \neg p) \land \bigwedge_{c=0}^{k-1} (c, \psi)$	true	$\bigvee_{c=0}^{k-1} (c, \neg p) \land \bigwedge_{c=0}^{k-1} (c, \psi)$
	$\neg p$	false	false	true	true

< □ > < □ > < 壹 > < 壹 > < 壹 > < 亘 > ○ Q (~ 56 / 56