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What is a Fixpoint (aka, Fixed Point)

Given a function
F:D—=D

x € D is a fixpoint of ‘F if and only if F(x)=x



Temporal Properties = Fixpoints

[Emerson and Clarke 80]

Here are some interesting CTL equivalences:

AGp=pAAXAGp
EGp=pAEXEGDP

AFp=pvAXAFDp
EFp=pvEXEFDp

pAUg=qv (p AAX(pAUQ))
pEUg=qv(pArEX(pEUQ))

Note that we wrote the CTL temporal operators in terms of
themselves and EX and AX operators



Functionals

« Given a transition system T=(S, |, R), we will define
functions from sets of states to sets of states

-F:25—25

« For example, one such function is the EX operator (which
computes the precondition of a set of states)

— EX:25— 25
which can be defined as:
EX(p)={s|(s,s)ERands &p}

Abuse of notation: | am using p to denote the set of states
which satisfy the property p (i.e., the truth set of p)



Functionals

* Now, we can think of all temporal operators also as
functions from sets of states to sets of states

* For example:
AX p = -EX(-p)

or if we use the set notation
AXp=(S-EX(S-p)

Logic Set
_ _ pAq pMq
Abuse of notation: | will use the set PV (Q p U Qg
and logic notations interchangeably. -p S—p
False %)

True S



Lattice

The set of states of the transition system forms a lattice:

 lattice

« partial order

* bottom element

» top element

« Least upper bound (lub)
(aka join) operator

« Greatest lower bound (glb) N
(aka meet) operator

CuinNN



An Example Lattice

{9, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}}
partial order: C (subset relation)
bottom element: & = 1L top element: {0,1,2} =T

lub: U (union) glb: N (intersection)

{0,1,2} = T (top element)

{0,1} {0,2} {1,2}
The Hasse diagram for the example
lattice (shows the transitive reduction of
the corresponding partial order relation)
{0} {1} {2}

\\/

@ = 1 (bottom element)



Temporal Properties = Fixpoints

Based on the equivalence
EFp=pvEXEFp
we observe that EF p is a fixpoint of the following function:
Fy=pvEXy
F(EFp)=EFp

In fact, EF p is the least fixpoint of ‘F, which is written as:

means least fixpoint
EFp=uy.Fy =uy.pvExXy ™ point)



Temporal Properties = Fixpoints

Based on the equivalence
EGp=pAAXEGDP
we observe that EG p is a fixpoint of the following function:
Fy=pnrEXy
F(EGpPp)=EGp
In fact, EG p is the greatest fixpoint of ‘F, which is written as:

EGp=vy. Fy=vy.paEXy (v means greatest fixpoint)



Fixpoint Characterizations

Fixpoint Characterization Equivalences

AGp=vy.parAXy AGp=pAAXAGD
EGp=vy.paEXy EGp=paAEXEGDP
AFp=uy.pvAXy AFp=p v AXAFp
EFp=uy.pvEXy EFp=pvEXEFDp

pPAUg=uy.qv(paAX(y)) pAUg=qv (p rAX(pAU Q))
pEUgQ=uny.qv(parEX(y)) pEUqg=qv(parEX(pEUDQ))



Least Fixpoint

Given a monotonic function ‘F, its least fixpoint is the greatest
lower bound (glb) of all the reductive elements :

uy.Ffy=nN{y|FyCy}

The least fixpoint uy . ‘Fy is the limit of the following
sequence (assuming ‘Fis U-continuous):

3, FS, FPO, PO, ..

If S is finite, then we can compute the least fixpoint using the
above sequence



EF Fixpoint Computation

EFp=uy.pv EXyisthe limit of the sequence:
I, pvEX G, pvEX(pvEX &), pvEX(pvEX(pv EX &)), ...
which is equivalent to

d,p,pvEXp,pvEX(pvEX(P)), ..



EF Fixpoint Computation

< o P
S
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Start
%)

1st iteration
PpvEX & ={s1,54} U EX(D)= {s1,54} U J ={s1,s4}

2nd jteration
PpvEX(pvEX &) = {s1,s4} U EX({s1,s4})={s1,s4} U{s3}={s1,s3,s4}

3rd iteration
pvEX(pvEX(pv EX ©)) = {s1,s4} U EX({s1,s3,54})= {s1,s4} U{s2,s3,s4}={s1,52,53,54}

4 iteration
PvEX(pvEX(pvEX(pv EX &))) = {s1,s4} U EX({s1,s2,53,54})={s1,s4} U {s1,s2,53,54}
= {s1,s2,5s3,54}



EF Fixpoint Computation

EF(p) = states that canreach p = p Y EX(p) Y EX(EX(p) “ ...
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Greatest Fixpoint

Given a monotonic function ‘F, its greatest fixpoint is the least
upper bound (lub) of all the extensive elements:

vy. Fy=U{y|FyCy}

The greatest fixpoint v y . ‘Fy is the limit of the following
sequence (assuming ‘Fis N-continuous):

S, FS, 2S, P35, ...

If S is finite, then we can compute the greatest fixpoint using
the above sequence



EG Fixpoint Computation

Similarly, EGp=vy.p a EXYyis the limit of the sequence:
S, pAEX' S, pAEX(p A EX'S), pAEX(p A EX (p A EXS)), ...
which is equivalent to

S,p,pAEXp,pAEX(pAEX(P)), ..



EG Fixpoint Computation

A
D@
P

Start
S ={s1,s2,s3,s4}

1st iteration
PAEX S ={s1,s3,s4}NEX({s1,s2,53,54})= {s1,s3,54}N{s1,s2,s3,54}={s1,s3,54}

2nd jteration
PAEX(pAEX S) = {s1,s3,s4}NEX({s1,s3,54})= {s1,s3,54}N{s2,s3,54}={s3,54}

3rd iteration
PAEX(PAEX(pAEX S)) = {s1,s3,s4}NEX({s3,54})= {s1,s3,54}N{s2,53,54}={s3,54}



EG Fixpoint Computation

EG(p) = states that can avoid reaching —p = p ™ EX(p) ™ EX(EX(p)) ™ ...




u-Calculus

u-Calculus is a temporal logic which consist of the following:

Atomic properties AP

Boolean connectives: = , A , V

Precondition operator: EX

Least and greatest fixpoint operators: uy . Fyandvy. Fy
- F must be syntactically monotone in y

* meaning that all occurrences of y in within ‘J fall
under an even number of negations



u-Calculus

« u-calculus is a powerful logic
— Any CTL* property can be expressed in u-calculus

* So, if you build a model checker for u-calculus you would
handle all the temporal logics we discussed: LTL, CTL,
CTL*

* One can write a u-calculus model checker using the basic
ideas about fixpoint computations that we discussed

— However, there is one complication
* Nested fixpoints!



