
Automaten und Formale Sprachen

µ-calculus

Slides from: Tevfik Bultan (UC Santa Barbara)

What is a Fixpoint (aka, Fixed Point)

Given a function
 F : D → D

x ∈ D is a fixpoint of F if and only if F (x) = x

Temporal Properties ≡ Fixpoints
[Emerson and Clarke 80]

Here are some interesting CTL equivalences:

AG p = p ∧ AX AG p
EG p = p ∧ EX EG p

AF p = p ∨ AX AF p
EF p = p ∨ EX EF p

p AU q = q ∨ (p ∧ AX (p AU q))
p EU q = q ∨ (p ∧ EX (p EU q))

Note that we wrote the CTL temporal operators in terms of
themselves and EX and AX operators

Functionals

•  Given a transition system T=(S, I, R), we will define
functions from sets of states to sets of states
– F : 2S → 2S

•  For example, one such function is the EX operator (which
computes the precondition of a set of states)
– EX : 2S → 2S

which can be defined as:

EX(p) = { s | (s,s’) ∈ R and s’ ∈ p }

Abuse of notation: I am using p to denote the set of states
which satisfy the property p (i.e., the truth set of p)

Functionals

•  Now, we can think of all temporal operators also as
functions from sets of states to sets of states

•  For example:
AX p = ¬EX(¬p)

or if we use the set notation
AX p = (S - EX(S - p))

Abuse of notation: I will use the set
and logic notations interchangeably.

Logic Set
p ∧ q p ∩ q
p ∨ q p ∪ q
¬ p S – p
False ∅
True S

Lattice

The set of states of the transition system forms a lattice:

•  lattice 2S
•  partial order ⊆
•  bottom element ∅
•  top element S
•  Least upper bound (lub) ∪
 (aka join) operator
•  Greatest lower bound (glb) ∩
 (aka meet) operator

An Example Lattice

{∅, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}}
partial order: ⊆ (subset relation)
bottom element: ∅ = ⊥ top element: {0,1,2} = T
lub: ∪ (union) glb: ∩ (intersection)

{0,1,2} = T (top element)

∅ = ⊥ (bottom element)

{0}

{0,1} {1,2} {0,2}

{2} {1}

The Hasse diagram for the example
lattice (shows the transitive reduction of
the corresponding partial order relation)

Temporal Properties ≡ Fixpoints

Based on the equivalence

EF p = p ∨ EX EF p

we observe that EF p is a fixpoint of the following function:

 F y = p ∨ EX y

 F (EF p) = EF p

In fact, EF p is the least fixpoint of F, which is written as:

 EF p = µ y . F y = µ y . p ∨ EX y

(µ means least fixpoint)

Temporal Properties ≡ Fixpoints

Based on the equivalence

EG p = p ∧ AX EG p

we observe that EG p is a fixpoint of the following function:

 F y = p ∧ EX y

 F (EG p) = EG p

In fact, EG p is the greatest fixpoint of F, which is written as:

 EG p = ν y . F y = ν y . p ∧ EX y (ν means greatest fixpoint)

Fixpoint Characterizations

Fixpoint Characterization Equivalences

AG p = ν y . p ∧ AX y AG p = p ∧ AX AG p
EG p = ν y . p ∧ EX y EG p = p ∧ EX EG p

AF p = µ y . p ∨ AX y AF p = p ∨ AX AF p
EF p = µ y . p ∨ EX y EF p = p ∨ EX EF p

p AU q = µ y . q ∨ (p ∧ AX (y)) p AU q=q ∨ (p ∧ AX (p AU q))
p EU q = µ y . q ∨ (p ∧ EX (y)) p EU q = q ∨ (p ∧ EX (p EU q))

Least Fixpoint

Given a monotonic function F, its least fixpoint is the greatest
lower bound (glb) of all the reductive elements :

 µ y . F y = ∩ { y | F y ⊆ y }

The least fixpoint µ y . F y is the limit of the following
sequence (assuming F is ∪-continuous):

 ∅, F ∅, F2 ∅, F3 ∅, ...

If S is finite, then we can compute the least fixpoint using the
above sequence

EF Fixpoint Computation

EF p = µ y . p ∨ EX y is the limit of the sequence:

∅, p∨EX ∅, p∨EX(p∨EX ∅) , p∨EX(p∨EX(p∨ EX ∅)) , ...

which is equivalent to

∅, p, p ∨ EX p , p ∨ EX (p ∨ EX (p)) , ...

EF Fixpoint Computation

s2 s1 s4 s3
p

p

Start
∅

1st iteration
p∨EX ∅ = {s1,s4} ∪ EX(∅)= {s1,s4} ∪ ∅ ={s1,s4}

2nd iteration
p∨EX(p∨EX ∅) = {s1,s4} ∪ EX({s1,s4})= {s1,s4} ∪{s3}={s1,s3,s4}

3rd iteration
p∨EX(p∨EX(p∨ EX ∅)) = {s1,s4} ∪ EX({s1,s3,s4})= {s1,s4} ∪{s2,s3,s4}={s1,s2,s3,s4}

4th iteration
p∨EX(p∨EX(p∨EX(p∨ EX ∅))) = {s1,s4} ∪ EX({s1,s2,s3,s4})= {s1,s4} ∪ {s1,s2,s3,s4}
= {s1,s2,s3,s4}

EF Fixpoint Computation

Greatest Fixpoint

Given a monotonic function F, its greatest fixpoint is the least
upper bound (lub) of all the extensive elements:

 ν y. F y = ∪ { y | F y ⊆ y }

The greatest fixpoint ν y . F y is the limit of the following
sequence (assuming F is ∩-continuous):

 S, F S, F2 S, F3 S, ...

If S is finite, then we can compute the greatest fixpoint using
the above sequence

EG Fixpoint Computation

Similarly, EG p = ν y . p ∧ EX y is the limit of the sequence:

S, p∧EX S, p∧EX(p ∧ EX S) , p∧EX(p ∧ EX (p ∧ EX S)) , ...

which is equivalent to

S, p, p ∧ EX p , p ∧ EX (p ∧ EX (p)) , ...

EG Fixpoint Computation

s2 s1 s4 s3

p p

p

Start
S = {s1,s2,s3,s4}

1st iteration
p∧EX S = {s1,s3,s4}∩EX({s1,s2,s3,s4})= {s1,s3,s4}∩{s1,s2,s3,s4}={s1,s3,s4}

2nd iteration
p∧EX(p∧EX S) = {s1,s3,s4}∩EX({s1,s3,s4})= {s1,s3,s4}∩{s2,s3,s4}={s3,s4}

3rd iteration
p∧EX(p∧EX(p∧EX S)) = {s1,s3,s4}∩EX({s3,s4})= {s1,s3,s4}∩{s2,s3,s4}={s3,s4}

EG Fixpoint Computation

µ-Calculus

µ-Calculus is a temporal logic which consist of the following:

•  Atomic properties AP

•  Boolean connectives: ¬ , ∧ , ∨

•  Precondition operator: EX

•  Least and greatest fixpoint operators: µ y . F y and ν y. F y
– F must be syntactically monotone in y

• meaning that all occurrences of y in within F fall
under an even number of negations

µ-Calculus

•  µ-calculus is a powerful logic
– Any CTL* property can be expressed in µ-calculus

•  So, if you build a model checker for µ-calculus you would
handle all the temporal logics we discussed: LTL, CTL,
CTL*

•  One can write a µ-calculus model checker using the basic
ideas about fixpoint computations that we discussed
– However, there is one complication

• Nested fixpoints!

