Automaten und Formale Sprachen

 $\mu$ -calculus

Slides from: Tevfik Bultan (UC Santa Barbara)

What is a Fixpoint (aka, Fixed Point)

Given a function

 $\mathcal{F}: \mathsf{D} \to \mathsf{D}$ 

 $x \in D$  is a fixpoint of  $\mathcal{F}$  if and only if  $\mathcal{F}(x) = x$ 

Temporal Properties = Fixpoints [Emerson and Clarke 80]

Here are some interesting CTL equivalences:

AG  $p = p \land AX AG p$ EG  $p = p \land EX EG p$ 

 $AF p = p \lor AX AF p$  $EF p = p \lor EX EF p$ 

 $p AU q = q \lor (p \land AX (p AU q))$  $p EU q = q \lor (p \land EX (p EU q))$ 

Note that we wrote the CTL temporal operators in terms of themselves and EX and AX operators

# Functionals

 Given a transition system T=(S, I, R), we will define functions from sets of states to sets of states

 $-\mathcal{F}\colon 2^{\mathbb{S}} \to 2^{\mathbb{S}}$ 

• For example, one such function is the EX operator (which computes the precondition of a set of states)

 $- EX : 2^{S} \rightarrow 2^{S}$ 

which can be defined as:

 $\mathsf{EX}(\mathsf{p}) = \{ \mathsf{s} \mid (\mathsf{s},\mathsf{s}') \in \mathsf{R} \text{ and } \mathsf{s}' \in \mathsf{p} \}$ 

Abuse of notation: I am using p to denote the set of states which satisfy the property p (i.e., the truth set of p)

### Functionals

- Now, we can think of all temporal operators also as functions from sets of states to sets of states
- For example:

 $AX p = \neg EX(\neg p)$ 

or if we use the set notation AX p = (S - EX(S - p))

Abuse of notation: I will use the set and logic notations interchangeably.

| Logic | Set        |
|-------|------------|
| p ∧ q | $p \cap q$ |
| рvq   | $p \cup q$ |
| ¬р    | S – p      |
| False | Ø          |
| True  | S          |

### Lattice

The set of states of the transition system forms a lattice:

- lattice 2<sup>S</sup>
  partial order ⊆
  bottom element Ø
  top element S
  Least upper bound (lub) U
  (aka join) operator
- Greatest lower bound (glb) ∩
   (aka meet) operator

### An Example Lattice

 $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$ partial order:  $\subseteq$  (subset relation) bottom element:  $\emptyset = \bot$  top element:  $\{0,1,2\} = T$ lub:  $\cup$  (union) glb:  $\cap$  (intersection)



The Hasse diagram for the example lattice (shows the transitive reduction of the corresponding partial order relation) Temporal Properties = Fixpoints

Based on the equivalence

 $EF p = p \vee EX EF p$ 

we observe that EF p is a fixpoint of the following function:

 $\mathcal{F} y = p \vee EX y$ 

 $\mathcal{F}(\mathsf{EF} \mathsf{p}) = \mathsf{EF} \mathsf{p}$ 

In fact, EF p is the least fixpoint of  $\mathcal{F}$ , which is written as:

EF p =  $\mu$  y .  $\mathcal{F}$  y =  $\mu$  y . p v EX y ( $\mu$  means least fixpoint)

Temporal Properties = Fixpoints

Based on the equivalence

EG  $p = p \land AX EG p$ 

we observe that EG p is a fixpoint of the following function:

 $\mathcal{F} y = p \land EX y$ 

 $\mathcal{F}(EG p) = EG p$ 

In fact, EG p is the greatest fixpoint of  $\mathcal{F}$ , which is written as:

EG p = v y .  $\mathcal{F}$  y = v y . p  $\wedge$  EX y (v means greatest fixpoint)

# **Fixpoint Characterizations**

| Fixpoint Characterization        | Equivalences                   |
|----------------------------------|--------------------------------|
| AG $p = v y \cdot p \wedge AX y$ | AG $p = p \land AX AG p$       |
| EG $p = v y \cdot p \wedge EX y$ | EG $p = p \land EX EG p$       |
| AF p = μ y . p v AX y            | AF $p = p \lor AX AF p$        |
| EF p = μ y . p v EX y            | EF $p = p \lor EX EF p$        |
| p AU q = μ y . q v (p ^ AX (y))  | p AU q=q v (p ^ AX (p AU q))   |
| p EU q = μ y . q v (p ^ EX (y))  | p EU q = q v (p ^ EX (p EU q)) |

Least Fixpoint

Given a monotonic function  $\mathcal{F}$ , its least fixpoint is the greatest lower bound (glb) of all the reductive elements :

 $\mu \mathsf{ y} \, . \, \mathcal{F} \mathsf{ y} = \cap \{ \mathsf{ y} \mid \mathcal{F} \mathsf{ y} \subseteq \mathsf{ y} \}$ 

The least fixpoint  $\mu$  y .  $\mathcal F$  y is the limit of the following sequence (assuming  $\mathcal F$  is  $\cup\text{-continuous})$ :

 $\varnothing, \mathcal{F} \varnothing, \mathcal{F}^2 \varnothing, \mathcal{F}^3 \varnothing, \dots$ 

If S is finite, then we can compute the least fixpoint using the above sequence

**EF** Fixpoint Computation

EF  $p = \mu y \cdot p \vee EX y$  is the limit of the sequence:

 $\emptyset$ , pvEX $\emptyset$ , pvEX(pvEX $\emptyset$ ), pvEX(pvEX(pvEX $\emptyset$ )), ...

which is equivalent to

Ø, p, p v EX p , p v EX (p v EX (p) ) , ...

### **EF Fixpoint Computation**



```
Start
```

Ø

1<sup>st</sup> iteration  $p \lor EX \varnothing = \{s1, s4\} \cup EX(\varnothing) = \{s1, s4\} \cup \varnothing = \{s1, s4\}$ 

 $2^{nd}$  iteration pvEX(pvEX  $\emptyset$ ) = {s1,s4}  $\cup$  EX({s1,s4})= {s1,s4}  $\cup$ {s3}={s1,s3,s4}

3<sup>rd</sup> iteration pvEX(pvEX(pv EX ∅)) = {s1,s4} ∪ EX({s1,s3,s4})= {s1,s4} ∪{s2,s3,s4}={s1,s2,s3,s4}

4<sup>th</sup> iteration pvEX(pvEX(pvEX(pv EX  $\emptyset$ ))) = {s1,s4}  $\cup$  EX({s1,s2,s3,s4})= {s1,s4}  $\cup$  {s1,s2,s3,s4} = {s1,s2,s3,s4}

#### **EF Fixpoint Computation**



**Greatest Fixpoint** 

Given a monotonic function  $\mathcal{F}$ , its greatest fixpoint is the least upper bound (lub) of all the extensive elements:

$$v y. \mathcal{F} y = \bigcup \{ y \mid \mathcal{F} y \subseteq y \}$$

The greatest fixpoint v y .  $\mathcal{F}$  y is the limit of the following sequence (assuming  $\mathcal{F}$  is  $\cap$ -continuous):

S,  $\mathcal{F}$ S,  $\mathcal{F}^2$ S,  $\mathcal{F}^3$ S, ...

If S is finite, then we can compute the greatest fixpoint using the above sequence

**EG** Fixpoint Computation

Similarly, EG  $p = v y \cdot p \wedge EX y$  is the limit of the sequence:

S,  $p \land EX S$ ,  $p \land EX(p \land EX S)$ ,  $p \land EX(p \land EX S)$ , ...

which is equivalent to

S, p,  $p \land EX p$ ,  $p \land EX (p \land EX (p))$ , ...

## **EG** Fixpoint Computation



Start S = {s1,s2,s3,s4}

1<sup>st</sup> iteration p∧EX S = {s1,s3,s4}∩EX({s1,s2,s3,s4})= {s1,s3,s4}∩{s1,s2,s3,s4}={s1,s3,s4}

 $2^{nd}$  iteration  $p \in X(p \in X S) = \{s1, s3, s4\} \cap EX(\{s1, s3, s4\}) = \{s1, s3, s4\} \cap \{s2, s3, s4\} = \{s3, s4\}$ 

 $3^{rd}$  iteration p^EX(p^EX(p^EX S)) = {s1,s3,s4} $\cap$ EX({s3,s4}) = {s1,s3,s4} $\cap$ {s2,s3,s4}={s3,s4}

#### **EG** Fixpoint Computation



# $\mu$ -Calculus

 $\mu$ -Calculus is a temporal logic which consist of the following:

- Atomic properties AP
- Boolean connectives:  $\neg$  ,  $\land$  ,  $\lor$
- Precondition operator: EX
- Least and greatest fixpoint operators:  $\mu$  y .  $\mathcal{F}$  y and v y.  $\mathcal{F}$  y  $-\mathcal{F}$  must be syntactically monotone in y
  - meaning that all occurrences of y in within  $\mathcal F$  fall under an even number of negations

# μ-Calculus

- μ-calculus is a powerful logic
  - Any CTL\* property can be expressed in  $\mu$ -calculus
- So, if you build a model checker for μ-calculus you would handle all the temporal logics we discussed: LTL, CTL, CTL\*
- One can write a  $\mu$ -calculus model checker using the basic ideas about fixpoint computations that we discussed
  - However, there is one complication
    - Nested fixpoints!