Automaten und Formale Sprachen

μ-calculus

Slides from: Tevfik Bultan (UC Santa Barbara)

What is a Fixpoint (aka, Fixed Point)

Given a function

$$
\mathcal{F}: \mathrm{D} \rightarrow \mathrm{D}
$$

$x \in D$ is a fixpoint of \mathcal{F}
if and only if $\quad \mathcal{F}(\mathrm{x})=\mathrm{x}$

Temporal Properties \equiv Fixpoints
[Emerson and Clarke 80]
Here are some interesting CTL equivalences:

AG $p=p \wedge A X A G p$
$E G p=p \wedge E X E G p$

AF $p=p \vee A X A F p$
$E F p=p \vee E X E F p$
$p A U q=q \vee(p \wedge A X(p A U q))$
$p E U q=q \vee(p \wedge E X(p E U q))$

Note that we wrote the CTL temporal operators in terms of themselves and EX and AX operators

Functionals

- Given a transition system $T=(S, I, R)$, we will define functions from sets of states to sets of states
$-\mathcal{F}: 2^{s} \rightarrow 2^{s}$
- For example, one such function is the EX operator (which computes the precondition of a set of states)
$-E X: 2^{S} \rightarrow 2^{s}$
which can be defined as:

$$
E X(p)=\left\{s \mid\left(s, s^{\prime}\right) \in R \text { and } s^{\prime} \in p\right\}
$$

Abuse of notation: I am using p to denote the set of states which satisfy the property p (i.e., the truth set of p)

Functionals

- Now, we can think of all temporal operators also as functions from sets of states to sets of states
- For example:

$$
A X p=\neg E X(\neg p)
$$

or if we use the set notation

$$
A X p=(S-E X(S-p))
$$

Abuse of notation: I will use the set and logic notations interchangeably.

Logic	Set
$p \wedge q$	$p \cap q$
$p \vee q$	$p \cup q$
$\neg p$	$S-p$
False	\varnothing
True	S

Lattice

The set of states of the transition system forms a lattice:

- lattice
2^{s}
- partial order
- bottom element
\subseteq
- top element S
- Least upper bound (lub) (aka join) operator
- Greatest lower bound (glb)
(aka meet) operator

An Example Lattice

$\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
partial order: \subseteq (subset relation)
bottom element: $\varnothing=\perp$ top element: $\{0,1,2\}=T$
lub: \cup (union)

$\mathrm{glb}: \cap$ (intersection)

Temporal Properties \equiv Fixpoints

Based on the equivalence

$$
E F p=p \vee E X E F p
$$

we observe that EF p is a fixpoint of the following function:

$$
\begin{aligned}
& \mathcal{F} y=p \vee E X y \\
& \mathcal{F}(E F p)=E F p
\end{aligned}
$$

In fact, EF p is the least fixpoint of \mathcal{F}, which is written as:

$$
E F p=\mu y \cdot \mathcal{F} y=\mu y \cdot p \vee E X y \quad(\mu \text { means least fixpoint })
$$

Temporal Properties \equiv Fixpoints

Based on the equivalence

$$
E G p=p \wedge A X E G p
$$

we observe that EG p is a fixpoint of the following function:

$$
\begin{aligned}
& \mathcal{F} y=p \wedge E X y \\
& \mathcal{F}(E G p)=E G p
\end{aligned}
$$

In fact, EG p is the greatest fixpoint of \mathcal{F}, which is written as:

$$
\mathrm{EG} p=v y \cdot \mathcal{F} y=v y \cdot p \wedge E X y \quad(v \text { means greatest fixpoint })
$$

Fixpoint Characterizations

Fixpoint Characterization
$A G p=v y \cdot p \wedge A X y$
$E G p=v y \cdot p \wedge E X y$
$A F p=\mu y . p \vee A X y$
$E F p=\mu y . p \vee E X y$
$p A U q=\mu y . q \vee(p \wedge A X(y)) \quad p A U q=q \vee(p \wedge A X(p A U q))$
$p E U q=\mu y . q \vee(p \wedge E X(y))$

Equivalences

AG $p=p \wedge A X A G p$
$E G p=p \wedge E X E G p$

AF $p=p \vee A X A F p$ $E F p=p \vee E X E F p$
$p E U q=q \vee(p \wedge E X(p E U q))$

Least Fixpoint

Given a monotonic function \mathcal{F}, its least fixpoint is the greatest lower bound (glb) of all the reductive elements :

$$
\mu y . \mathcal{F} y=\cap\{y \mid \mathcal{F} y \subseteq y\}
$$

The least fixpoint $\mu \mathrm{y} . \mathcal{F} \mathrm{y}$ is the limit of the following sequence (assuming \mathcal{F} is \cup-continuous):
$\varnothing, \mathcal{F} \varnothing, \mathcal{F}^{2} \varnothing, \mathcal{F}^{3} \varnothing, \ldots$
If S is finite, then we can compute the least fixpoint using the above sequence

EF Fixpoint Computation

$E F p=\mu y . p v E X y$ is the limit of the sequence:
$\varnothing, p \vee E X \varnothing, p v E X(p \vee E X \varnothing), \operatorname{pvEX}(p v E X(p \vee E X \varnothing)), \ldots$
which is equivalent to
$\varnothing, p, p \vee E X p, p \vee E X(p \vee E X(p)), \ldots$

EF Fixpoint Computation

Start
\varnothing
$1^{\text {st }}$ iteration
$p v E X \varnothing=\{s 1, s 4\} \cup E X(\varnothing)=\{s 1, s 4\} \cup \varnothing=\{s 1, s 4\}$
$2^{\text {nd }}$ iteration
$p v E X(p v E X \varnothing)=\{s 1, s 4\} \cup E X(\{s 1, s 4\})=\{s 1, s 4\} \cup\{s 3\}=\{s 1, s 3, s 4\}$
$3^{\text {rd }}$ iteration
$p v E X(p \vee E X(p \vee E X \varnothing))=\{s 1, s 4\} \cup E X(\{s 1, s 3, s 4\})=\{s 1, s 4\} \cup\{s 2, s 3, s 4\}=\{s 1, s 2, s 3, s 4\}$
$4^{\text {th }}$ iteration
$\operatorname{pvEX}(p v E X(p \vee E X(p v E X \varnothing)))=\{s 1, s 4\} \cup E X(\{s 1, s 2, s 3, s 4\})=\{s 1, s 4\} \cup\{s 1, s 2, s 3, s 4\}$
$=\{\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4\}$

EF Fixpoint Computation

$\operatorname{EF}(p) \equiv$ states that can reach $p \equiv p \cup \operatorname{EX}(p) \cup \operatorname{EX}(\operatorname{EX}(p)) \cup \ldots$

Greatest Fixpoint

Given a monotonic function \mathcal{F}, its greatest fixpoint is the least upper bound (lub) of all the extensive elements:

$$
v \mathrm{y} . \mathcal{F} y=\cup\{y \mid \mathcal{F} y \subseteq y\}
$$

The greatest fixpoint $v \mathrm{y} . \mathcal{F} \mathrm{y}$ is the limit of the following sequence (assuming \mathcal{F} is \cap-continuous):
$\mathrm{S}, \mathcal{F} \mathrm{S}, \mathcal{F}^{2} \mathrm{~S}, \mathcal{F}^{3} \mathrm{~S}, \ldots$

If S is finite, then we can compute the greatest fixpoint using the above sequence

EG Fixpoint Computation

Similarly, $E G p=v y . p \wedge E X y$ is the limit of the sequence:
$S, p \wedge E X S, p \wedge E X(p \wedge E X S), p \wedge E X(p \wedge E X(p \wedge E X S)), \ldots$
which is equivalent to
$S, p, p \wedge E X p, p \wedge E X(p \wedge E X(p)), \ldots$

EG Fixpoint Computation

Start
$\mathrm{S}=\{\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4\}$
$1^{\text {st }}$ iteration
$p \wedge E X S=\{s 1, s 3, s 4\} \cap E X(\{s 1, s 2, s 3, s 4\})=\{s 1, s 3, s 4\} \cap\{s 1, s 2, s 3, s 4\}=\{s 1, s 3, s 4\}$
$2^{\text {nd }}$ iteration
$p \wedge E X(p \wedge E X S)=\{s 1, s 3, s 4\} \cap E X(\{s 1, s 3, s 4\})=\{s 1, s 3, s 4\} \cap\{s 2, s 3, s 4\}=\{s 3, s 4\}$
$3^{\text {rd }}$ iteration
$p \wedge E X(p \wedge E X(p \wedge E X S))=\{s 1, s 3, s 4\} \cap E X(\{s 3, s 4\})=\{s 1, s 3, s 4\} \cap\{s 2, s 3, s 4\}=\{s 3, s 4\}$

EG Fixpoint Computation

μ-Calculus

μ-Calculus is a temporal logic which consist of the following:

- Atomic properties AP
- Boolean connectives: ᄀ , ^, ,
- Precondition operator: EX
- Least and greatest fixpoint operators: $\mu \mathrm{y} . \mathcal{F}$ y and v y. \mathcal{F} y
$-\mathcal{F}$ must be syntactically monotone in y
- meaning that all occurrences of y in within \mathcal{F} fall under an even number of negations

μ-Calculus

- μ-calculus is a powerful logic
- Any CTL* property can be expressed in μ-calculus
- So, if you build a model checker for μ-calculus you would handle all the temporal logics we discussed: LTL, CTL, CTL*
- One can write a μ-calculus model checker using the basic ideas about fixpoint computations that we discussed
- However, there is one complication
- Nested fixpoints!

