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What is a Fixpoint (aka, Fixed Point) 

Given a function  
 F : D → D 

x ∈ D is a fixpoint of F     if and only if  F (x) = x 



Temporal Properties ≡ Fixpoints  
[Emerson and Clarke 80] 

Here are some interesting CTL equivalences: 

AG p = p ∧ AX AG p 
EG p = p ∧ EX EG p 

AF p = p ∨ AX AF p 
EF p = p ∨ EX EF p 

p AU q = q ∨ (p ∧ AX (p AU q)) 
p EU q = q ∨ (p ∧ EX (p EU q)) 

Note that we wrote the CTL temporal operators in terms of 
themselves and EX and AX operators 



Functionals 

•  Given a transition system T=(S, I, R), we will define 
functions from sets of states to sets of states  
– F : 2S → 2S 

•  For example, one such function is the EX operator (which 
computes the precondition of a set of states) 
– EX : 2S → 2S 

which can be defined as: 

EX(p) = { s | (s,s’) ∈ R and s’ ∈ p } 

Abuse of notation: I am using p to denote the set of states 
which satisfy the property p (i.e., the truth set of p)  



Functionals 

•  Now, we can think of all temporal operators also as 
functions from sets of states to sets of states 

•  For example: 
AX p = ¬EX(¬p) 

or if we use the set notation 
AX p = (S - EX(S - p))  

Abuse of notation: I will use the set  
and logic notations interchangeably.  
     

Logic  Set 
p ∧ q        p ∩ q  
p ∨ q       p ∪ q  
¬ p       S – p 
False  ∅  
True  S  



Lattice 

The set of states of the transition system forms a lattice: 

•  lattice    2S  
•  partial order   ⊆  
•  bottom element   ∅  
•  top element   S  
•  Least upper bound (lub)  ∪  
    (aka join) operator  
•  Greatest lower bound (glb) ∩  
    (aka meet) operator   



An Example Lattice 

{∅, {0}, {1}, {2}, {0,1},{0,2},{1,2},{0,1,2}} 
partial order: ⊆ (subset relation) 
bottom element: ∅ = ⊥      top element: {0,1,2} = T 
lub: ∪ (union)  glb: ∩ (intersection)  

{0,1,2}  =  T  (top element) 

∅  =  ⊥ (bottom element) 

{0}  

{0,1}  {1,2}  {0,2}  

{2}  {1}  

The Hasse diagram for the example 
lattice (shows the transitive reduction of 
the corresponding partial order relation) 



Temporal Properties ≡ Fixpoints 

Based on the equivalence 

EF p = p ∨ EX EF p  

we observe that EF p is a fixpoint of the following function: 

  F y = p ∨ EX y 

  F (EF p) = EF p 

In fact, EF p is the least fixpoint of F, which is written as: 

 EF p = µ y . F y  = µ y . p ∨ EX y    
    

(µ means least fixpoint) 



Temporal Properties ≡ Fixpoints 

Based on the equivalence  

EG p = p ∧ AX EG p 

we observe that EG p is a fixpoint of the following function: 

  F y = p ∧ EX y 

 F (EG p) = EG p 

In fact, EG p is the greatest fixpoint of F, which is written as: 

 EG p = ν y . F y = ν y . p ∧ EX y (ν means greatest fixpoint) 



Fixpoint Characterizations 

Fixpoint Characterization  Equivalences 

AG p = ν y . p ∧ AX y   AG p = p ∧ AX AG p 
EG p = ν y . p ∧ EX y   EG p = p ∧ EX EG p 

AF p = µ y . p ∨ AX y   AF p = p ∨ AX AF p 
EF p = µ y . p ∨ EX y   EF p = p ∨ EX EF p 

p AU q = µ y . q ∨ (p ∧ AX (y))     p AU q=q ∨ (p ∧ AX (p AU q)) 
p EU q = µ y . q ∨ (p ∧ EX (y))     p EU q = q ∨ (p ∧ EX (p EU q)) 



Least Fixpoint 

Given a monotonic function F, its least fixpoint is the greatest 
lower bound (glb) of all the reductive elements : 

  µ y . F y = ∩ { y | F y ⊆ y }  

The least fixpoint µ y . F y is the limit of the following 
sequence (assuming F is ∪-continuous): 

 ∅, F ∅, F2 ∅, F3 ∅, ... 

If S is finite, then we can compute the least fixpoint using the 
above sequence 



EF Fixpoint Computation 

EF p = µ y . p ∨ EX y is the limit of the sequence: 

∅, p∨EX ∅, p∨EX(p∨EX ∅) , p∨EX(p∨EX(p∨ EX ∅)) , ... 

which is equivalent to 

∅, p, p ∨ EX p , p ∨ EX (p ∨ EX (p) ) , ... 



EF Fixpoint Computation 

s2 s1 s4 s3 
p 

p 

Start 
∅ 

1st iteration 
p∨EX ∅ = {s1,s4} ∪ EX(∅)= {s1,s4} ∪ ∅ ={s1,s4}  

2nd iteration 
p∨EX(p∨EX ∅) = {s1,s4} ∪ EX({s1,s4})= {s1,s4} ∪{s3}={s1,s3,s4} 

3rd iteration 
p∨EX(p∨EX(p∨ EX ∅)) = {s1,s4} ∪ EX({s1,s3,s4})= {s1,s4} ∪{s2,s3,s4}={s1,s2,s3,s4} 

4th iteration 
p∨EX(p∨EX(p∨EX(p∨ EX ∅))) = {s1,s4} ∪ EX({s1,s2,s3,s4})= {s1,s4} ∪ {s1,s2,s3,s4} 
= {s1,s2,s3,s4} 



EF Fixpoint Computation 



Greatest Fixpoint 

Given a monotonic function F, its greatest fixpoint is the least 
upper bound (lub) of all the extensive elements: 

   ν y. F y = ∪ { y | F y ⊆ y }   

The greatest fixpoint ν y . F y is the limit of the following 
sequence (assuming F is ∩-continuous): 

 S, F S, F2 S, F3 S, ... 

If S is finite, then we can compute the greatest fixpoint using 
the above sequence 



EG Fixpoint Computation 

Similarly, EG p = ν y . p ∧ EX y is the limit of the sequence: 

S, p∧EX S, p∧EX(p ∧ EX S) , p∧EX(p ∧ EX (p ∧ EX S)) , ... 

which is equivalent to 

S, p, p ∧ EX p , p ∧ EX (p ∧ EX (p) ) , ... 



EG Fixpoint Computation 

s2 s1 s4 s3 

p p 

p 

Start 
S = {s1,s2,s3,s4} 

1st iteration 
p∧EX S = {s1,s3,s4}∩EX({s1,s2,s3,s4})= {s1,s3,s4}∩{s1,s2,s3,s4}={s1,s3,s4}  

2nd iteration 
p∧EX(p∧EX S) = {s1,s3,s4}∩EX({s1,s3,s4})= {s1,s3,s4}∩{s2,s3,s4}={s3,s4} 

3rd iteration 
p∧EX(p∧EX(p∧EX S)) = {s1,s3,s4}∩EX({s3,s4})= {s1,s3,s4}∩{s2,s3,s4}={s3,s4} 



EG Fixpoint Computation 



µ-Calculus 

µ-Calculus is a temporal logic which consist of the following: 

•  Atomic properties AP 

•  Boolean connectives: ¬ , ∧ , ∨  

•  Precondition operator: EX 

•  Least and greatest fixpoint operators: µ y . F y and ν y. F y 
– F must be syntactically monotone in y  

• meaning that all occurrences of y in within F fall 
under an even number of negations 



µ-Calculus 

•  µ-calculus is a powerful logic 
– Any CTL* property can be expressed in µ-calculus 

•  So, if you build a model checker for µ-calculus you would 
handle all the temporal logics we discussed: LTL, CTL, 
CTL* 

•  One can write a µ-calculus model checker using the basic 
ideas about fixpoint computations that we discussed 
– However, there is one complication 

• Nested fixpoints! 


