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The Plan 

• An example program 
• Syntax of terms 
• Some simple programs 
• Terms as data structures, unification 
• The Cut 
• Writing real programs 



What is Prolog? 

• Prolog is the most widely used language 
to have been inspired by logic 
programming research. Some features: 

• Prolog uses logical variables. These are 
not the same as variables in other 
languages. Programmers can use them as 
‘holes’ in data structures that are 
gradually filled in as computation 
proceeds. 



…More 

• Unification is a built-in term-
manipulation method that passes 
parameters, returns results, selects and 
constructs data structures. 

• Basic control flow model is backtracking. 
• Program clauses and data have the same 

form. 
• The relational form of procedures makes 

it possible to define ‘reversible’ 
procedures. 



…More 

• Clauses provide a convenient way to 
express case analysis and 
nondeterminism.  

• Sometimes it is necessary to use control 
features that are not part of ‘logic’. 

• A Prolog program can also be seen as a 
relational database containing rules as 
well as facts. 



What a program looks like 
/* At the Zoo */ 

elephant(george). 
elephant(mary). 

panda(chi_chi). 
panda(ming_ming). 

dangerous(X) :- big_teeth(X). 
dangerous(X) :- venomous(X). 

guess(X, tiger) :- stripey(X), big_teeth(X), isaCat(X). 
guess(X, koala) :- arboreal(X), sleepy(X). 
guess(X, zebra) :- stripey(X), isaHorse(X). 



Prolog is a ‘declarative’ language 

• Clauses are statements about what is true 
about a problem, instead of instructions 
how to accomplish the solution. 

• The Prolog system uses the clauses to 
work out how to accomplish the solution 
by searching through the space of 
possible solutions. 

• Not all problems have pure declarative 
specifications. Sometimes extralogical 
statements are needed.  



Example: Concatenate lists a and b 
list procedure cat(list a, list b) 
{ 
   list t = list u = copylist(a); 
   while (t.tail != nil) t = t.tail; 
   t.tail = b; 
   return u; 
} 

In an imperative language 

In a declarative language 

In a functional language 
cat(a,b) ≡ 
 if b = nil then a 
else cons(head(a), cat(tail(a),b)) 

cat([], Z, Z). 
cat([H|T], L, [H|Z]) :- cat(T, L, Z). 



Complete Syntax of Terms 
Term 

Constant Variable Compound Term 

Atom Number 
alpha17 
gross_pay 
john_smith 
dyspepsia 
+ 
=/= 
’12Q&A’ 

0 
1 
57 
1.618 
2.04e-27 
-13.6 

likes(john, mary) 
book(dickens, Z, cricket) 
f(x) 
[1, 3, g(a), 7, 9] 
-(+(15, 17), t) 
15 + 17 - t 

X 
Gross_pay 
Diagnosis 
_257 
_ 

Names an individual Stands for an individual 
unable to be named when 
 program is written 

Names an individual 
that has parts 



Compound Terms 

parents(spot, fido, rover) 

The parents of Spot are Fido and Rover. 

Functor (an atom) of arity 3. components (any terms) 

It is possible to depict the term as a tree: 
parents 

rover fido spot 



Compound Terms 

=/=(15+X, (0*a)+(2<<5)) 

Some atoms have built-in operator declarations so 
they may be written in a syntactically convenient 
form. The meaning is not affected. This example 
looks like an arithmetic expression, but might not 
be. It is just a term. 

<< 

2 

+ 

a 

* 

0 

X 

+ 

15 

=/= 

5 



More about operators 
•  Any atom may be designated an operator. The 

only purpose is for convenience; the only effect 
is how the term containing the atom is parsed. 
Operators are ‘syntactic sugar’. 

• We won’t be designating operators in this 
course, but it is as well to understand them, 
because a number of atoms have built-in 
designations as operators. 

• Operators have three properties: position, 
precedence and associativity. 

more… 



Examples of operator properties 
Position Operator Syntax Normal Syntax 
Prefix:  -2   -(2) 
Infix:   5+17   +(17,5) 
Postfix:  N!   !(N) 

Associativity: left, right, none. 
 X+Y+Z    is parsed as  (X+Y)+Z 
because addition is left-associative. 

Precedence: an integer. 
X+Y*Z   is parsed as  X+(Y*Z) 
because multiplication has higher precedence. 

These are all the 
same as the 
normal rules of 
arithmetic. 



The last point about Compound 
Terms… 

Constants are simply compound terms of arity 0. 

badger 
means the same as 

badger() 



Structure of Programs 

•  Programs consist of procedures. 
•  Procedures consist of clauses. 
•  Each clause is a fact or a rule. 
•  Programs are executed by posing queries. 

An example… 



Example 

elephant(george). 
elephant(mary). 
elephant(X) :- grey(X), mammal(X), hasTrunk(X). 

Procedure for elephant 

Predicate 

Clauses 

Rule 

Facts 



Example 

?- elephant(george). 

yes 

?- elephant(jane). 

no 

Queries 

Replies 



Clauses: Facts and Rules 

Head :- Body.  This is a rule. 

Head.   This is a fact. 

‘if’ 
‘provided that’ 
‘turnstile’ 

Full stop at the end. 



Body of a (rule) clause contains goals. 

likes(mary, X)   :-    human(X), honest(X). 

Head Body 

Goals 

Exercise: Identify all the parts of 
Prolog text you have seen so far. 



Interpretation of Clauses 
Clauses can be given a declarative reading or a 
procedural reading. 

H   :-   G1,   G2,   …,   Gn. 

“That H is provable follows from 
goals G1, G2, …, Gn being provable.” 

“To execute procedure H, the 
procedures called by goals G1, G2, 
…, Gn are executed first.” 

Declarative reading: 

Procedural reading: 

Form of clause: 



male(bertram). 
male(percival). 

female(lucinda). 
female(camilla). 

pair(X, Y) :- male(X), female(Y). 

?- pair(percival, X). 
?- pair(apollo, daphne). 
?- pair(camilla, X). 
?- pair(X, lucinda). 
?- pair(X, X). 
?- pair(bertram, lucinda). 
?- pair(X, daphne). 
?- pair(X, Y). 



Worksheet 2 
drinks(john, martini). 
drinks(mary, gin). 
drinks(susan, vodka). 
drinks(john, gin). 
drinks(fred, gin). 

pair(X, Y, Z) :- 
 drinks(X, Z), 
 drinks(Y, Z). 

?- pair(X, john, martini). 
?- pair(mary, susan, gin). 
?- pair(john, mary, gin). 
?- pair(john, john, gin). 
?- pair(X, Y, gin). 
?- pair(bertram, lucinda). 
?- pair(bertram, lucinda, vodka). 
?- pair(X, Y, Z). 

This definition forces X and Y to be distinct: 
pair(X, Y, Z) :- drinks(X, Z), drinks(Y, Z), X \== Y. 



Worksheet 3 

berkshire 

wiltshire 

surrey 

hampshire sussex 

kent 

How to represent this relation? 
Note that borders are symmetric. 

(a) Representing a symmetric relation. 
(b) Implementing a strange ticket condition. 



WS3 

border(sussex, kent). 
border(sussex, surrey). 
border(surrey, kent). 
border(hampshire, sussex). 
border(hampshire, surrey). 
border(hampshire, berkshire). 
border(berkshire, surrey). 
border(wiltshire, hampshire). 
border(wiltshire, berkshire). 

This relation represents 
one ‘direction’ of border: What about the other? 

(a) Say   border(kent, sussex). 
 border(sussex, kent). 

(b) Say 
 adjacent(X, Y) :- border(X, Y). 
 adjacent(X, Y) :- border(Y, X).   

(c) Say 
 border(X, Y) :- border(Y, X).   



WS3 

valid(X, Y) :- adjacent(X, Z), adjacent(Z, Y) 

Now a somewhat strange type of discount ticket. For the 
ticket to be valid, one must pass through an intermediate 
county. 

A valid ticket between a start and end county obeys the 
following rule: 



WS3 
border(sussex, kent). 
border(sussex, surrey). 
border(surrey, kent). 
border(hampshire, sussex). 
border(hampshire, surrey). 
border(hampshire, berkshire). 
border(berkshire, surrey). 
border(wiltshire, hampshire). 
border(wiltshire, berkshire). 

adjacent(X, Y) :- border(X, Y). 
adjacent(X, Y) :- border(Y, X). 

?- valid(wiltshire, sussex). 
?- valid(wiltshire, kent). 
?- valid(hampshire, hampshire). 
?- valid(X, kent). 
?- valid(sussex, X). 
?- valid(X, Y). 

valid(X, Y) :- 
 adjacent(X, Z),  
 adjacent(Z, Y) 



Worksheet 4 

a(g, h). 
a(g, d). 
a(e, d). 
a(h, f). 
a(e, f). 
a(a, e). 
a(a, b). 
a(b, f). 
a(b, c). 
a(f, c). 

arc 

a 

e d 

g h 

f 

c b 

path(X, X). 
path(X, Y) :- a(X, Z), path(Z, Y). 

Note that Prolog can 
distinguish between 
the 0-ary constant a 
(the name of a node) 
and the 2-ary 
functor a (the name 
of a relation). 

?- path(f, f). 
?- path(a, c). 
?- path(g, e). 
?- path(g, X). 
?- path(X, h). 



But what happens if… 

a(g, h). 
a(g, d). 
a(e, d). 
a(h, f). 
a(e, f). 
a(a, e). 
a(a, b). 
a(b, f). 
a(b, c). 
a(f, c). 
a(d, a). 

a 

e d 

g h 

f 

c b 

path(X, X). 
path(X, Y) :- a(X, Z), path(Z, Y). 

This program works 
only for acyclic graphs. 
The program may 
infinitely loop given a 
cyclic graph. We need 
to leave a ‘trail’ of 
visited nodes. This is 
accomplished with a 
data structure (to be 
seen later). 



Unification 
•  Two terms unify if substitutions can be made for 

any variables in the terms so that the terms are 
made identical. If no such substitution exists, 
the terms do not unify. 

•  The Unification Algorithm proceeds by recursive 
descent of the two terms. 
 Constants unify if they are identical 
  Variables unify with any term, including other 

variables 
 Compound terms unify if their functors and 

components unify. 



Examples 

The terms f(X, a(b,c)) and f(d, a(Z, c)) unify. 

Z c 

a d 

f 

b c 

a X 

f 

The terms are made equal if d is substituted for X, 
and b is substituted for Z. We also say X is 
instantiated to d and Z is instantiated to b, or X/d, 
Z/b. 



Examples 

The terms f(X, a(b,c)) and f(Z, a(Z, c)) unify. 

Z c 

a Z 

f 

b c 

a X 

f 

Note that Z co-refers within the term. 
Here, X/b, Z/b. 



Examples 

The terms f(c, a(b,c)) and f(Z, a(Z, c)) do not 
unify. 

Z c 

a Z 

f 

b c 

a c 

f 

No matter how hard you try, these two terms 
cannot be made identical by substituting terms 
for variables. 



Exercise 

Do terms g(Z, f(A, 17, B), A+B, 17) and 
g(C, f(D, D, E), C, E)  unify? 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 



Exercise 

First write in the co-referring variables. 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/C, C/Z 
Now proceed by recursive descent 
We go top-down, left-to-right, but 
the order does not matter as long as 
it is systematic and complete. 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/C, C/Z, A/D, D/A 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/C, C/Z, A/17, D/17 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/C, C/Z, A/17, D/17, B/E, E/B 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/17+B, C/17+B, A/17, D/17, B/E, E/B 



Exercise 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 

Z/17+17, C/17+17, A/17, D/17, B/17, E/17 



Exercise – Alternative Method 

Z/C 

A B 

+ f 

g 

Z 17 

A B 17 

C f 

g 

C E 

D E D 



Exercise – Alternative Method 

Z/C 

A B 

+ f 

g 

C 17 

A B 17 

C f 

g 

C E 

D E D 



Exercise – Alternative Method 

A/D, Z/C 

A B 

+ f 

g 

C 17 

A B 17 

C f 

g 

C E 

D E D 



Exercise – Alternative Method 

D/17, A/D, Z/C 

D B 

+ f 

g 

C 17 

D B 17 

C f 

g 

C E 

D E D 



Exercise – Alternative Method 

D/17, A/17, Z/C 

17 B 

+ f 

g 

C 17 

17 B 17 

C f 

g 

C E 

17 E 17 



Exercise – Alternative Method 

B/E, D/17, A/17, Z/C 

17 B 

+ f 

g 

C 17 

17 B 17 

C f 

g 

C E 

17 E 17 



Exercise – Alternative Method 

B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

C 17 

17 E 17 

C f 

g 

C E 

17 E 17 



Exercise – Alternative Method 

C/17+E, B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

C 17 

17 E 17 

C f 

g 

C E 

17 E 17 



Exercise – Alternative Method 

C/17+E, B/E, D/17, A/17, Z/17+E 

17 E 

+ f 

g 

+ 
17 

17 E 17 

+ f 

g 

+ E 

17 E 17 

17 E 
17 E 

E 17 



Exercise – Alternative Method 

E/17, C/17+E, B/E, D/17, A/17, Z/C 

17 E 

+ f 

g 

+ 
17 

17 E 17 

+ f 

g 

+ E 

17 E 17 

17 E 
17 E 

E 17 



Exercise – Alternative Method 

E/17, C/17+17, B/17, D/17, A/17, Z/C 

17 17 

+ f 

g 

+ 
17 

17 17 17 

+ f 

g 

+ 17 

17 17 17 

17 17 
17 17 

17 17 



Lists 

• Lists are the same as other languages 
(such as ML) in that a list of terms of any 
length is composed of list cells that are 
‘consed’ together. 

• The list of length 0 is called nil, written []. 
• The list of length n is .(head,tail), where 

tail is a list of length n-1. 
• So a list cell is a functor ‘.’ of arity 2. Its 

first component is the head, and the 
second component is the tail. 



Examples of lists 

nil 
.(a, nil) 
.(a, .(b, nil) 
.(a, .(b, .(c, .(d, .(e. nil))))) 
.(a,b)  (note this is a pair, not a proper list) 
.(a, X) (this might be a list, or might not!) 
.(a, .(b, nil)), .(c, nil)) 



They can be written as trees 

a nil a 
b nil 

a 
b 

c 
d 

e nil 

a b a X 

a 
b nil 

a nil 



Prolog Syntax for Lists 

Nil is written []. 
The list consisting of n elements t1, t2, …,tn 
is written [t1, t2, …,tn]. 
.(X,Y) is written [X|Y] 
[X|[]] is written [X] 
The term .(a, .(b, .(c,Y))) is written [a,b,c|Y]. 
If Y is instantiated to [], then the term is a 
list, and can be written [a,b,c|[]] or simply 
[a,b,c]. 



Exercises 

Identify the heads and tails of these lists (if 
any): 

[a, b, c] 
[a] 
[] 
[[the, cat], sat] 
[[the, cardinal], [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

Identify the heads and tails of these lists (if 
any): 

 a [b, c] 
[a] 
[] 
[[the, cat], sat] 
[[the, cardinal], [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

Identify the heads and tails of these lists (if 
any): 

[a, b, c] 
 a [] 
[] 
[[the, cat], sat] 
[[the, cardinal], [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

Identify the heads and tails of these lists (if 
any): 

[a, b, c] 
[a] 
[] (not a list, so doesn’t have head and tail. nil is a constant) 

[[the, cat], sat] 
[[the, cardinal], [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

Identify the heads and tails of these lists (if 
any): 

[a, b, c] 
[a] 
[] 
[the, cat]     [sat] 
[[the, cardinal], [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

Identify the heads and tails of these lists (if 
any): 

[a, b, c] 
[a] 
[] 
[[the, cat], sat] 
[the, cardinal]  [pulled, [off]], [each, [plum, 
coloured], shoe] 



Exercises 

For each pair of terms, determine whether 
they unify, and if so, to which terms are the 
variables instantiated? 

[X, Y, Z]  [john, likes, fish] 
[cat]   [X|Y] 
[X,Y|Z]  [mary, likes, wine] (picture on next slide) 

[[the,Y]|Z]  [[X,answer], [is, here]] 
[X, Y, X]  [a, Z, Z] 
[[X], [Y], [X]] [[a], [X], [X]] 



Remember 

A variable may be instantiated to any term. 

X 

Y Z 
mary 

likes 
wine [] 

[mary, likes, wine]  [X,Y|Z] 



Fun with Lists (Worksheet 5) 

/* member(Term, List) */ 
member(X, [X|T]). 
member(X, [H|T]) :- member(X, T). 

Examples: 
?- member(john, [paul, john]). 
?- member(X, [paul, john]). 
?- member(joe, [marx, darwin, freud]). 
?- member(foo, X). 



Exercises 

Here is a mystery predicate. What does it 
do? 

mystery(X, A, B) :- member(X, A), member(X, B). 

?- mystery(a, [b, c, a], [p, a, l]). 
?- mystery(b, [b, l, u, e], [y, e, l, l, o, w]). 
?- mystery(X, [r, a, p, i, d], [a, c, t, i, o, n]). 
?- mystery(X, [w, a, l, n, u, t], [c, h, e, r, r, y]). 



A Brief Diversion into  
Anonymous Variables 

/* member(Term, List) */ 

member(X, [X|T]).   

member(X, [H|T]) :- member(X, T). 

member(X, [X|_]). 
member(X, [_|T]) :- member(X, T). 

 Notice T isn’t ‘used’ 

 Notice H isn’t ‘used’ 



A Brief Diversion into Arithmetic 

The built-in predicate ‘is’ takes two 
arguments. It interprets its second as an 
arithmetic expression, and unifies it with 
the first. Also, ‘is’ is an infix operator. 
 ?- X is 2 + 2 * 2. 
 X = 6 
 ?- 10 is (2 * 0) + 2 << 4. 
 no 
 ?- 32 is (2 * 0) + 2 << 4. 
 yes 



is 

But ‘is’ cannot solve equations, so the 
expression must be ‘ground’ (contain no 
free variables. 

?- Y is 2 * X. 
no 

?- X is 15, Y is 2 * X. 
X = 15, Y= 30. 



Worksheet 6: Length of a List 

 /* length(List, Length) */ 

Naïve method: 
 length([], 0). 
 length([H|T], N) :- length(T, NT), N is NT + 1. 



Worksheet 6 

 /* length(List, Length) */ 

Tail-recursive method: 
 length(L, N) :- acc(L, 0, N). 

 /* acc(List, Before, After) */ 

 acc([], A, A). 
 acc([H|T], A, N) :- A1 is A + 1, acc(T, A1, N). 



Exercises 

?- length([apple, pear], N). 
?- length([alpha], 2). 
?- length(L, 3). 

Modify length to give a procedure sum such that 
sum(L,N) succeeds if L is a list of integers and 
N is their sum. 



Worksheet 7: Inner Product 

A list of n integers can be used to represent 
an n-vector (a point in n-dimensional 
space). Given two vectors a and b, the inner 
product (dot product) of a and b is defined  

As you might expect, there are naïve and 
tail-recursive ways to compute this. 



Worksheet 7 

The naïve method: 

inner([], [], 0). 
inner([A|As],[B|Bs],N) :- 
 inner(As, Bs, Ns), N is Ns + (A * B). 



Worksheet 7 

Tail-recursive method: 

inner(A, B, N) :- dotaux(A, B, 0, N). 

dotaux([], [], V, V). 
dotaux([A|As],[B|Bs],N,Z) :- 
 N1 is N + (A * B), 
 dotaux(As, Bs, N1, Z). 



Worksheet 8: Maximum of a List 

Tail-recursive method has a base case and 
two recursive cases: 

/*  max(List, Accumulator, Result) */ 

max([], A, A). 
max([H|T], A, M) :- H > A, max(T, H, M). 
max([H|T], A, M) :- H =< A, max(T, A, M). 

How to initialise the accumulator? 



Worksheet 8 

maximum(L, M) :- max(L, -10000, M). 
 Magic numbers are a bad idea. 

maximum(L, M) :- max(L, minint, M) 
Need to change definitions of arithmetic. 

maximum([H|T], M) :- max(T, H, M). 
And know that   ?- maximum([],X)   fails. 



Worksheet 9 

a(g, h). 
a(d, a). 
a(g, d). 
a(e, d). 
a(h, f). 
a(e, f). 
a(a, e). 
a(a, b). 
a(b, f). 
a(b, c). 
a(f, c). 

arc 

a 

e d 

g h 

f 

c b 

Here we have 
added a new arc 
from d to a. 
If you use the 
program from WS 
4, some goals will 
cause an infinite 
loop. 

Keep a ‘trail’ of nodes visited so far. Visit only 
‘legal’ nodes, not already on the trail. 
Represent the trail as an accumulator, an 
extra argument of path. 



Worksheet 9 

path(X, X, T). 
path(X, Y, T) :- 
 a(X, Z), legal(Z, T), path(Z, Y, [Z|T]). 

legal(Z, []). 
legal(Z, [H|T]) :- Z \== H, legal(Z, T). 

Notice that legal is like the negation of 
member. 




