
Prolog Programming 

slides written by

Dr W.F. Clocksin

The Plan

• An example program
• Syntax of terms
• Some simple programs
• Terms as data structures, unification
• The Cut
• Writing real programs

What is Prolog?

• Prolog is the most widely used language
to have been inspired by logic
programming research. Some features:

• Prolog uses logical variables. These are
not the same as variables in other
languages. Programmers can use them as
‘holes’ in data structures that are
gradually filled in as computation
proceeds.

…More

• Unification is a built-in term-
manipulation method that passes
parameters, returns results, selects and
constructs data structures.

• Basic control flow model is backtracking.
• Program clauses and data have the same

form.
• The relational form of procedures makes

it possible to define ‘reversible’
procedures.

…More

• Clauses provide a convenient way to
express case analysis and
nondeterminism.

• Sometimes it is necessary to use control
features that are not part of ‘logic’.

• A Prolog program can also be seen as a
relational database containing rules as
well as facts.

What a program looks like
/* At the Zoo */

elephant(george).
elephant(mary).

panda(chi_chi).
panda(ming_ming).

dangerous(X) :- big_teeth(X).
dangerous(X) :- venomous(X).

guess(X, tiger) :- stripey(X), big_teeth(X), isaCat(X).
guess(X, koala) :- arboreal(X), sleepy(X).
guess(X, zebra) :- stripey(X), isaHorse(X).

Prolog is a ‘declarative’ language

• Clauses are statements about what is true
about a problem, instead of instructions
how to accomplish the solution.

• The Prolog system uses the clauses to
work out how to accomplish the solution
by searching through the space of
possible solutions.

• Not all problems have pure declarative
specifications. Sometimes extralogical
statements are needed.

Example: Concatenate lists a and b
list procedure cat(list a, list b)
{
 list t = list u = copylist(a);
 while (t.tail != nil) t = t.tail;
 t.tail = b;
 return u;
}

In an imperative language

In a declarative language

In a functional language
cat(a,b) ≡
 if b = nil then a
else cons(head(a), cat(tail(a),b))

cat([], Z, Z).
cat([H|T], L, [H|Z]) :- cat(T, L, Z).

Complete Syntax of Terms
Term

Constant Variable Compound Term

Atom Number
alpha17
gross_pay
john_smith
dyspepsia
+
=/=
’12Q&A’

0
1
57
1.618
2.04e-27
-13.6

likes(john, mary)
book(dickens, Z, cricket)
f(x)
[1, 3, g(a), 7, 9]
-(+(15, 17), t)
15 + 17 - t

X
Gross_pay
Diagnosis
_257
_

Names an individual Stands for an individual
unable to be named when
 program is written

Names an individual
that has parts

Compound Terms

parents(spot, fido, rover)

The parents of Spot are Fido and Rover.

Functor (an atom) of arity 3. components (any terms)

It is possible to depict the term as a tree:
parents

rover fido spot

Compound Terms

=/=(15+X, (0*a)+(2<<5))

Some atoms have built-in operator declarations so
they may be written in a syntactically convenient
form. The meaning is not affected. This example
looks like an arithmetic expression, but might not
be. It is just a term.

<<

2

+

a

*

0

X

+

15

=/=

5

More about operators
•  Any atom may be designated an operator. The

only purpose is for convenience; the only effect
is how the term containing the atom is parsed.
Operators are ‘syntactic sugar’.

• We won’t be designating operators in this
course, but it is as well to understand them,
because a number of atoms have built-in
designations as operators.

• Operators have three properties: position,
precedence and associativity.

more…

Examples of operator properties
Position Operator Syntax Normal Syntax
Prefix: -2 -(2)
Infix: 5+17 +(17,5)
Postfix: N! !(N)

Associativity: left, right, none.
 X+Y+Z is parsed as (X+Y)+Z
because addition is left-associative.

Precedence: an integer.
X+Y*Z is parsed as X+(Y*Z)
because multiplication has higher precedence.

These are all the
same as the
normal rules of
arithmetic.

The last point about Compound
Terms…

Constants are simply compound terms of arity 0.

badger
means the same as

badger()

Structure of Programs

•  Programs consist of procedures.
•  Procedures consist of clauses.
•  Each clause is a fact or a rule.
•  Programs are executed by posing queries.

An example…

Example

elephant(george).
elephant(mary).
elephant(X) :- grey(X), mammal(X), hasTrunk(X).

Procedure for elephant

Predicate

Clauses

Rule

Facts

Example

?- elephant(george).

yes

?- elephant(jane).

no

Queries

Replies

Clauses: Facts and Rules

Head :- Body. This is a rule.

Head. This is a fact.

‘if’
‘provided that’
‘turnstile’

Full stop at the end.

Body of a (rule) clause contains goals.

likes(mary, X) :- human(X), honest(X).

Head Body

Goals

Exercise: Identify all the parts of
Prolog text you have seen so far.

Interpretation of Clauses
Clauses can be given a declarative reading or a
procedural reading.

H :- G1, G2, …, Gn.

“That H is provable follows from
goals G1, G2, …, Gn being provable.”

“To execute procedure H, the
procedures called by goals G1, G2,
…, Gn are executed first.”

Declarative reading:

Procedural reading:

Form of clause:

male(bertram).
male(percival).

female(lucinda).
female(camilla).

pair(X, Y) :- male(X), female(Y).

?- pair(percival, X).
?- pair(apollo, daphne).
?- pair(camilla, X).
?- pair(X, lucinda).
?- pair(X, X).
?- pair(bertram, lucinda).
?- pair(X, daphne).
?- pair(X, Y).

Worksheet 2
drinks(john, martini).
drinks(mary, gin).
drinks(susan, vodka).
drinks(john, gin).
drinks(fred, gin).

pair(X, Y, Z) :-
 drinks(X, Z),
 drinks(Y, Z).

?- pair(X, john, martini).
?- pair(mary, susan, gin).
?- pair(john, mary, gin).
?- pair(john, john, gin).
?- pair(X, Y, gin).
?- pair(bertram, lucinda).
?- pair(bertram, lucinda, vodka).
?- pair(X, Y, Z).

This definition forces X and Y to be distinct:
pair(X, Y, Z) :- drinks(X, Z), drinks(Y, Z), X \== Y.

Worksheet 3

berkshire

wiltshire

surrey

hampshire sussex

kent

How to represent this relation?
Note that borders are symmetric.

(a) Representing a symmetric relation.
(b) Implementing a strange ticket condition.

WS3

border(sussex, kent).
border(sussex, surrey).
border(surrey, kent).
border(hampshire, sussex).
border(hampshire, surrey).
border(hampshire, berkshire).
border(berkshire, surrey).
border(wiltshire, hampshire).
border(wiltshire, berkshire).

This relation represents
one ‘direction’ of border: What about the other?

(a) Say border(kent, sussex).
 border(sussex, kent).

(b) Say
 adjacent(X, Y) :- border(X, Y).
 adjacent(X, Y) :- border(Y, X).

(c) Say
 border(X, Y) :- border(Y, X).

WS3

valid(X, Y) :- adjacent(X, Z), adjacent(Z, Y)

Now a somewhat strange type of discount ticket. For the
ticket to be valid, one must pass through an intermediate
county.

A valid ticket between a start and end county obeys the
following rule:

WS3
border(sussex, kent).
border(sussex, surrey).
border(surrey, kent).
border(hampshire, sussex).
border(hampshire, surrey).
border(hampshire, berkshire).
border(berkshire, surrey).
border(wiltshire, hampshire).
border(wiltshire, berkshire).

adjacent(X, Y) :- border(X, Y).
adjacent(X, Y) :- border(Y, X).

?- valid(wiltshire, sussex).
?- valid(wiltshire, kent).
?- valid(hampshire, hampshire).
?- valid(X, kent).
?- valid(sussex, X).
?- valid(X, Y).

valid(X, Y) :-
 adjacent(X, Z),
 adjacent(Z, Y)

Worksheet 4

a(g, h).
a(g, d).
a(e, d).
a(h, f).
a(e, f).
a(a, e).
a(a, b).
a(b, f).
a(b, c).
a(f, c).

arc

a

e d

g h

f

c b

path(X, X).
path(X, Y) :- a(X, Z), path(Z, Y).

Note that Prolog can
distinguish between
the 0-ary constant a
(the name of a node)
and the 2-ary
functor a (the name
of a relation).

?- path(f, f).
?- path(a, c).
?- path(g, e).
?- path(g, X).
?- path(X, h).

But what happens if…

a(g, h).
a(g, d).
a(e, d).
a(h, f).
a(e, f).
a(a, e).
a(a, b).
a(b, f).
a(b, c).
a(f, c).
a(d, a).

a

e d

g h

f

c b

path(X, X).
path(X, Y) :- a(X, Z), path(Z, Y).

This program works
only for acyclic graphs.
The program may
infinitely loop given a
cyclic graph. We need
to leave a ‘trail’ of
visited nodes. This is
accomplished with a
data structure (to be
seen later).

Unification
•  Two terms unify if substitutions can be made for

any variables in the terms so that the terms are
made identical. If no such substitution exists,
the terms do not unify.

•  The Unification Algorithm proceeds by recursive
descent of the two terms.
 Constants unify if they are identical
  Variables unify with any term, including other

variables
 Compound terms unify if their functors and

components unify.

Examples

The terms f(X, a(b,c)) and f(d, a(Z, c)) unify.

Z c

a d

f

b c

a X

f

The terms are made equal if d is substituted for X,
and b is substituted for Z. We also say X is
instantiated to d and Z is instantiated to b, or X/d,
Z/b.

Examples

The terms f(X, a(b,c)) and f(Z, a(Z, c)) unify.

Z c

a Z

f

b c

a X

f

Note that Z co-refers within the term.
Here, X/b, Z/b.

Examples

The terms f(c, a(b,c)) and f(Z, a(Z, c)) do not
unify.

Z c

a Z

f

b c

a c

f

No matter how hard you try, these two terms
cannot be made identical by substituting terms
for variables.

Exercise

Do terms g(Z, f(A, 17, B), A+B, 17) and
g(C, f(D, D, E), C, E) unify?

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Exercise

First write in the co-referring variables.

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/C, C/Z
Now proceed by recursive descent
We go top-down, left-to-right, but
the order does not matter as long as
it is systematic and complete.

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/C, C/Z, A/D, D/A

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/C, C/Z, A/17, D/17

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/C, C/Z, A/17, D/17, B/E, E/B

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/17+B, C/17+B, A/17, D/17, B/E, E/B

Exercise

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Z/17+17, C/17+17, A/17, D/17, B/17, E/17

Exercise – Alternative Method

Z/C

A B

+ f

g

Z 17

A B 17

C f

g

C E

D E D

Exercise – Alternative Method

Z/C

A B

+ f

g

C 17

A B 17

C f

g

C E

D E D

Exercise – Alternative Method

A/D, Z/C

A B

+ f

g

C 17

A B 17

C f

g

C E

D E D

Exercise – Alternative Method

D/17, A/D, Z/C

D B

+ f

g

C 17

D B 17

C f

g

C E

D E D

Exercise – Alternative Method

D/17, A/17, Z/C

17 B

+ f

g

C 17

17 B 17

C f

g

C E

17 E 17

Exercise – Alternative Method

B/E, D/17, A/17, Z/C

17 B

+ f

g

C 17

17 B 17

C f

g

C E

17 E 17

Exercise – Alternative Method

B/E, D/17, A/17, Z/C

17 E

+ f

g

C 17

17 E 17

C f

g

C E

17 E 17

Exercise – Alternative Method

C/17+E, B/E, D/17, A/17, Z/C

17 E

+ f

g

C 17

17 E 17

C f

g

C E

17 E 17

Exercise – Alternative Method

C/17+E, B/E, D/17, A/17, Z/17+E

17 E

+ f

g

+
17

17 E 17

+ f

g

+ E

17 E 17

17 E
17 E

E 17

Exercise – Alternative Method

E/17, C/17+E, B/E, D/17, A/17, Z/C

17 E

+ f

g

+
17

17 E 17

+ f

g

+ E

17 E 17

17 E
17 E

E 17

Exercise – Alternative Method

E/17, C/17+17, B/17, D/17, A/17, Z/C

17 17

+ f

g

+
17

17 17 17

+ f

g

+ 17

17 17 17

17 17
17 17

17 17

Lists

• Lists are the same as other languages
(such as ML) in that a list of terms of any
length is composed of list cells that are
‘consed’ together.

• The list of length 0 is called nil, written [].
• The list of length n is .(head,tail), where

tail is a list of length n-1.
• So a list cell is a functor ‘.’ of arity 2. Its

first component is the head, and the
second component is the tail.

Examples of lists

nil
.(a, nil)
.(a, .(b, nil)
.(a, .(b, .(c, .(d, .(e. nil)))))
.(a,b) (note this is a pair, not a proper list)
.(a, X) (this might be a list, or might not!)
.(a, .(b, nil)), .(c, nil))

They can be written as trees

a nil a
b nil

a
b

c
d

e nil

a b a X

a
b nil

a nil

Prolog Syntax for Lists

Nil is written [].
The list consisting of n elements t1, t2, …,tn
is written [t1, t2, …,tn].
.(X,Y) is written [X|Y]
[X|[]] is written [X]
The term .(a, .(b, .(c,Y))) is written [a,b,c|Y].
If Y is instantiated to [], then the term is a
list, and can be written [a,b,c|[]] or simply
[a,b,c].

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

 a [b, c]
[a]
[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
 a []
[]
[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[] (not a list, so doesn’t have head and tail. nil is a constant)

[[the, cat], sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[the, cat] [sat]
[[the, cardinal], [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

Identify the heads and tails of these lists (if
any):

[a, b, c]
[a]
[]
[[the, cat], sat]
[the, cardinal] [pulled, [off]], [each, [plum,
coloured], shoe]

Exercises

For each pair of terms, determine whether
they unify, and if so, to which terms are the
variables instantiated?

[X, Y, Z] [john, likes, fish]
[cat] [X|Y]
[X,Y|Z] [mary, likes, wine] (picture on next slide)

[[the,Y]|Z] [[X,answer], [is, here]]
[X, Y, X] [a, Z, Z]
[[X], [Y], [X]] [[a], [X], [X]]

Remember

A variable may be instantiated to any term.

X

Y Z
mary

likes
wine []

[mary, likes, wine] [X,Y|Z]

Fun with Lists (Worksheet 5)

/* member(Term, List) */
member(X, [X|T]).
member(X, [H|T]) :- member(X, T).

Examples:
?- member(john, [paul, john]).
?- member(X, [paul, john]).
?- member(joe, [marx, darwin, freud]).
?- member(foo, X).

Exercises

Here is a mystery predicate. What does it
do?

mystery(X, A, B) :- member(X, A), member(X, B).

?- mystery(a, [b, c, a], [p, a, l]).
?- mystery(b, [b, l, u, e], [y, e, l, l, o, w]).
?- mystery(X, [r, a, p, i, d], [a, c, t, i, o, n]).
?- mystery(X, [w, a, l, n, u, t], [c, h, e, r, r, y]).

A Brief Diversion into  
Anonymous Variables

/* member(Term, List) */

member(X, [X|T]).

member(X, [H|T]) :- member(X, T).

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

 Notice T isn’t ‘used’

 Notice H isn’t ‘used’

A Brief Diversion into Arithmetic

The built-in predicate ‘is’ takes two
arguments. It interprets its second as an
arithmetic expression, and unifies it with
the first. Also, ‘is’ is an infix operator.
 ?- X is 2 + 2 * 2.
 X = 6
 ?- 10 is (2 * 0) + 2 << 4.
 no
 ?- 32 is (2 * 0) + 2 << 4.
 yes

is

But ‘is’ cannot solve equations, so the
expression must be ‘ground’ (contain no
free variables.

?- Y is 2 * X.
no

?- X is 15, Y is 2 * X.
X = 15, Y= 30.

Worksheet 6: Length of a List

 /* length(List, Length) */

Naïve method:
 length([], 0).
 length([H|T], N) :- length(T, NT), N is NT + 1.

Worksheet 6

 /* length(List, Length) */

Tail-recursive method:
 length(L, N) :- acc(L, 0, N).

 /* acc(List, Before, After) */

 acc([], A, A).
 acc([H|T], A, N) :- A1 is A + 1, acc(T, A1, N).

Exercises

?- length([apple, pear], N).
?- length([alpha], 2).
?- length(L, 3).

Modify length to give a procedure sum such that
sum(L,N) succeeds if L is a list of integers and
N is their sum.

Worksheet 7: Inner Product

A list of n integers can be used to represent
an n-vector (a point in n-dimensional
space). Given two vectors a and b, the inner
product (dot product) of a and b is defined

As you might expect, there are naïve and
tail-recursive ways to compute this.

Worksheet 7

The naïve method:

inner([], [], 0).
inner([A|As],[B|Bs],N) :-
 inner(As, Bs, Ns), N is Ns + (A * B).

Worksheet 7

Tail-recursive method:

inner(A, B, N) :- dotaux(A, B, 0, N).

dotaux([], [], V, V).
dotaux([A|As],[B|Bs],N,Z) :-
 N1 is N + (A * B),
 dotaux(As, Bs, N1, Z).

Worksheet 8: Maximum of a List

Tail-recursive method has a base case and
two recursive cases:

/* max(List, Accumulator, Result) */

max([], A, A).
max([H|T], A, M) :- H > A, max(T, H, M).
max([H|T], A, M) :- H =< A, max(T, A, M).

How to initialise the accumulator?

Worksheet 8

maximum(L, M) :- max(L, -10000, M).
 Magic numbers are a bad idea.

maximum(L, M) :- max(L, minint, M)
Need to change definitions of arithmetic.

maximum([H|T], M) :- max(T, H, M).
And know that ?- maximum([],X) fails.

Worksheet 9

a(g, h).
a(d, a).
a(g, d).
a(e, d).
a(h, f).
a(e, f).
a(a, e).
a(a, b).
a(b, f).
a(b, c).
a(f, c).

arc

a

e d

g h

f

c b

Here we have
added a new arc
from d to a.
If you use the
program from WS
4, some goals will
cause an infinite
loop.

Keep a ‘trail’ of nodes visited so far. Visit only
‘legal’ nodes, not already on the trail.
Represent the trail as an accumulator, an
extra argument of path.

Worksheet 9

path(X, X, T).
path(X, Y, T) :-
 a(X, Z), legal(Z, T), path(Z, Y, [Z|T]).

legal(Z, []).
legal(Z, [H|T]) :- Z \== H, legal(Z, T).

Notice that legal is like the negation of
member.

