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CONSTRAINT LOGIC PROGRAMMING 

  Constraint satisfaction 

  Constraint programming  

  Constraint Logic Programming (CLP) =  
    Constraint programming + LP 



EXAMPLE OF CLP 

% Converting between Centigrade and Fahrenheit 

   convert( Centigrade, Fahrenheit)  :- 
      Centigrade is (Fahrenheit - 32)*5/9 . 



EXAMPLE OF CLP, CTD. 

 convert_clp( Centigrade, Fahrenheit)  :- 
      { Centigrade = (Fahrenheit - 32)*5/9 }. 

   convert2_clp( Centigrade, Fahrenheit)  :- 
      { 9*Centigrade = (Fahrenheit - 32)*5 }. 



CONSTRAINT SATISFACTION PROBLEM 

  Given: 
(1) set of variables, 
(2) domains of the variables  
(3) constraints that the variables have to satisfy 

  Find: 
An assignment of values to the variables,  
so that these values satisfy all the given constraints.  

  In optimisation problems, also specify optimisation 
criterion  



A  SCHEDULING  PROBLEM 

  tasks a, b, c, d 

  durations 2, 3, 5, 4 hours respectively 
  precedence constraints 

                          b       d 
                  a 
                          c 



CORRESPONDING CONSTRAINT 
SATISFACTION PROBLEM 

  Variables: Ta, Tb, Tc, Td, Tf 
  Domains: All variables are non-negative real numbers 

  Constraints: 
     0 ≤ Ta               (task a cannot start before 0) 
    Ta + 2 ≤ Tb         (task a which takes 2 hours precedes b) 
    Ta + 2 ≤ Tc         (a precedes c) 
    Tb + 3 ≤ Td         (b precedes d) 
    Tc + 5 ≤ Tf          (c finished by Tf) 
    Td + 4 ≤ Tf          (d finished by Tf)     
  Criterion: minimise Tf 



SET  OF  SOLUTIONS 

    Ta = 0 
    Tb = 2 
    2 ≤ Tc ≤ 4       
    Td = 5 
    Tf = 9 



APPLICATIONS OF CLP 

    scheduling 
    logistics 
    resource management in production,  
         transportation, placement 
    simulation 



APPLICATIONS OF CLP 

Typical applications involve assigning resources  
to activities 

     machines to jobs,  
     people to rosters,  
     crew to trains or planes,  
     doctors and nurses to duties and wards  



SATISFYING CONSTRAINTS 

constraint networks: 
  nodes ~ variables 
  arcs ~ constraints  

For each binary constraint p(X,Y)  
there are two directed arcs (X,Y) and (Y,X)  

               X                 Y 



CONSISTENCY  ALGORITHMS 

  Consistency algorithms operate over constraint 
networks  

  They check consistency of domains of variables with 
respect to constraints.  

  Here we only consider binary constraints. 



ARC  CONSISTENCY 

  arc (X,Y) is arc consistent  
    if for each value of X in Dx,  
    there is some value for Y in Dy  
    satisfying the constraint p(X,Y).  

  If (X,Y) is not arc consistent,  
    then it can be made arc-consistent by deleting the values 

in Dx for which there is no corresponding value in Dy  



ACHIEVING ARC-CONSISTENCY 

  Example 
     Dx = 0..10,  Dy = 0..10 
     p(X,Y): X+4 ≤ Y.  

  arc (X,Y) is not arc consistent  
    (for X = 7, no corresponding value of Y in Dy)  

  To make arc (X,Y) consistent, reduce Dx  to 0..6 

  To make arc (Y,X) consistent, reduce Dy to 4..10.  



ARC CONSISTENCY PROPAGATION 

  Domain reductions propagate throughout network,  
    possibly cyclically, until either 

           (1) all arcs become consistent, or  
           (2) some domain becomes empty  
                (constraints unsatisfiable) 

  By such reductions no solutions of the constraint 
problem are possibly lost. 



WHEN  ALL  ARCS  CONSISTENT 

Two cases: 

(1) Each domain has a single value:  
     a single solution to constraint problem. 

(2) All domains non-empty, and at least one domain has 
multiple values:  

     possibly several solutions, possibly no solution; 
combinatorial search needed over reduced domains 



ARC CONSISTENCY AND  
GLOBAL SOLUTIONS 

  Arc consistency does not guarantee that all possible 
combinations of domain values are solutions to the 
constraint problem.  

  Possibly no combination of values from reduced 
domains satisfies all the constraints. 



EXAMPLE 

                         p(X,Y) 
                 X                        Y 
           q(X,Z)                    r(Y,Z) 
                              Z 

p(x1,y1).    p(x2,y2). 
q(x1,z1).    q(x2,z2). 
r(y1,z2).     r(y2,z1). 

  Network arc-consistent,  
    but no solution to constraint problem. 



SOLUTION SEARCH IN ARC-
CONSISTENT NETWORK 

Several possible strategies, e.g.: 

•  choose one of the multi-valued domains and try 
repeatedly its values , apply  consistency algorithm 
again 

•  choose one of the multi-valued domains and split it into 
two approximately equal size subsets; propagate arc-
consistency for each subset, etc. 



SCHEDULING EXAMPLE 

Constraint network: 

                             Tb+3 ≤ Td 

                   Tb                               Td 

Ta+2 ≤ Tb                                           Td+4 ≤ Tf 

                   Ta                                Tf 

        Ta+2 ≤ Tc                             Tc+5 ≤ Tf 
                                      Tc 



TRACE OF CONSISTENCY ALGORITHM 

Step Arc Ta Tb Tc Td Tf 
Start 0..10 0..10 0..10 0..10 0..10 
1 (Tb,Ta) 2..10 
2 (Td,Tb) 5..10 
3 (Tf,Td) 9..10 
4 (Td,Tf) 5..6 
5 (Tb,Td) 2..3 
6 (Ta,Tb) 0..1 
7 (Tc,Ta) 2..10 
8 (Tc,Tf) 2..5 



CONSTRAINT LOGIC PROGRAMMING 

  Pure Prolog: limited constraint satisfaction language; 
    all constraints are just equalities between terms 

  CLP  =  Constraint solving + Logic Programming 

  To extend Prolog to a "real" CLP languag: add other 
types of constraints in addition to matching 



METAINTERPRETER FOR  
PROLOG WITH CONSTRAINTS 

solve( Goal)  :- 
  solve( Goal, [ ], Constr).       % Start with empty constr. 

% solve( Goal, InputConstraints, OutputConstraints) 

solve( true, Constr0, Constr0). 

solve( (G1, G2), Constr0, Constr)  :- 
  solve( G1, Constr0, Constr1), 
  solve( G2, Constr1, Constr). 



METAINTERPRETER CTD. 

solve( G, Constr0, Constr)  :- 
  prolog_goal( G),                    % G a Prolog goal 
  clause( G, Body),                  % A clause about G 
  solve( Body, Constr0, Constr). 

solve( G, Constr0, Constr)  :- 
  constraint_goal( G),             % G a constraint 
  merge_constraints( Constr0, G, Constr). 



MERGE CONSTRAINTS 

  Predicate merge_constraints:  

          constraint-specific problem solver, 
          merges old and new constraints,  
          tries to satisfy or simplify them  

  For example, two constraints X ≤ 3 and X ≤ 2 are 
simplified into constraint X ≤ 2.  



CLP(X) 

  Families of CLP techniques under names of form CLP
(X), where X is a domain 

  CLP(R): CLP over real numbers, constraints are 
arithmetic equalities, inequalities and disequalities 

  CLP(Z)          (integers)  
  CLP(Q)         (rational numbers)  
  CLP(B)         (Boolean domains)   
  CLP(FD)       (user-defined finite domains) 



CLP(R): CLP over real numbers  

  In CLP(R): linear equalities and inequalities typically 
handled efficiently, nonlinear constr. limited 

Conventions from SICStus Prolog 

   ?-   use_module( library( clpr)). 

       ?-  { 1 + X = 5 }.         % Numerical constraint 
    X = 4 



CLP(R) in Sicstus Prolog 

  Conjunction of constraints C1, C2 and C3 is written as: 
    { C1, C2, C3} 

  Each constraint is of form: 

      Expr1  Operator  Expr2 

  Operator can be: 
    =                    for equations 
    =\=                 for disequations 
    <, =<, >, >=   for inequations 



CLP(R) in Sicstus Prolog 

Example query to CLP(R) 

      ?-  { Z =< X-2, Z =< 6-X, Z+1 = 2}. 

   Z = 1.0 
   {X >= 3.0} 
   {X =< 5.0} 



TEMPERATURE CONVERSION 

In Prolog: 

   convert( Centigrade, Fahrenheit)  :- 
      Centigrade is (Fahrenheit - 32)*5/9. 

?- convert( C, 95). 
C = 35 

?-  convert( 35, F). 
Arithmetic error 



TEMPERATURE CONVERSION, CTD. 

In CLP(R) this works in both directions: 

   convert( Centigrade, Fahrenheit)  :- 
      { Centigrade = (Fahrenheit - 32)*5/9 }. 

   ?-  convert( 35, F). 
   F = 95 

   ?-  convert( C, 95). 
   C = 35 



TEMPERATURE CONVERSION, CTD. 

Even works with neither argument instantiated: 

   ?-  convert( C, F). 
   { F = 32.0 + 1.8*C } 



LINEAR OPTIMISATION FACILITY 

  Built-in CLP(R) predicates: 

               minimize( Expr) 
               maximize( Expr) 

  For example: 

?-  { X =< 5}, maximize(X). 
X = 5.0 
?- { X =< 5, 2 =< X}, minimize( 2*X + 3). 
X = 2.0 



LINEAR OPTIMISATION FACILITY, CTD. 

?-  {X >=2, Y >=2, Y =< X+1, 2*Y =< 8-X, Z = 2*X +3*Y}, 
maximize(Z). 

X = 4.0 
Y = 2.0 
Z = 14.0 

?- { X =< 5}, minimize( X). 
no 



LINEAR OPTIMISATION FACILITY, CTD. 

  CLP(R) predicates to find the supremum (least upper 
bound) or infimum (greatest lower bound) of an 
expression: 

   sup( Expr, MaxVal) 
   inf( Expr, MinVal) 

Expr is a linear expression in terms of linearly constrained 
variables. Variables in Expr do not get instantiated to 
the extreme points. 



SUP, INF 

?-  { 2 =< X, X =< 5}, inf( X, Min), sup( X, Max). 
Max = 5.0 
Min = 2.0 
{X >= 2.0} 
{X =< 5.0} 



OPTIMISATION FACILITIES 

?-  {X >=2, Y >=2,  
      Y =< X+1,  
      2*Y =< 8-X,  
      Z = 2*X +3*Y},  
     sup(Z,Max), inf(Z,Min), maximize(Z). 

X = 4.0 
Y = 2.0 
Z = 14.0 
Max = 14.0 
Min = 10.0  



SIMPLE SCHEDULING 

?-  { Ta + 2 =< Tb,         % a precedes b 
      Ta + 2 =< Tc,           % a precedes c 
      Tb + 3 =< Td,           % b precedes d 
      Tc + 5 =< Tf,            % c finished by finishing time Tf 
      Td + 4 =< Tf},          % d finished by Tf 
      minimize( Tf). 

Ta = 0.0, Tb = 2.0, Td = 5.0, Tf = 9.0 
{Tc =< 4.0} 
{Tc >= 2.0}  



FIBONACCI NUMBERS  
WITH CONSTRAINTS 

fib(N,F): F is the N-th Fibonacci number 

   F(0)=1, F(1)=1, F(2)=2, F(3)=3, F(4)=5, etc. 
   For N>1, F(N)=F(N-1)+F(N-2) 



FIBONACCI IN PROLOG 

 fib( N, F)  :- 
      N=0, F=1 
      ; 
      N=1, F=1 
      ; 
      N>1, 
      N1 is N-1, fib(N1,F1), 
      N2 is N-2, fib(N2,F2), 
      F is F1 + F2. 



FIBONACCI IN PROLOG 

  Intended use: 

?-  fib( 6,F). 
   F=13 

  A question in the opposite direction: 

   ?-  fib( N, 13). 
   Error  

  Goal N > 1 is executed with N uninstantiated 



FIBONACCI IN CLP(R) 

 fib( N, F)  :- 
     { N = 0, F = 1} 
     ; 
     { N = 1, F = 1} 
     ; 
     { N > 1, F = F1 + F2, N1 = N - 1, N2 = N - 2} , 
     fib( N1, F1), 
     fib( N2, F2). 



FIBONACCI IN CLP(R) 

  This can be executed in the opposite direction:  

   ?-  fib( N, 13). 
   N = 6 

  However, still gets into trouble when asked an 
unsatisfiable question: 

   ?-  fib( N, 4). 



FIBONACCI IN CLP(R) 
 ?-  fib( N, 4). 

    The program keeps trying to find two Fibonacci numbers 

F1 and F2 such that F1+F2=4. It keeps generating 

larger and larger solutions for F1 and F2, all the time 

hoping that eventually their sum will be equal 4. It does 

not realise that once their sum has exceeded 4, it will 

only be increasing and so can never become equal 4. 

Finally this hopeless search ends in a stack overflow.  



FIBONACCI: EXTRA CONSTRAINTS 

  Fix this problem by adding constraints 

  Easy to see:   for all N: F(N) ≥ N 

  Therefore variables N1, F1, N2 and F2  must always 
satisfy the constraints:  

     F1 >= N1, F2 >= N2.  



FIBONACCI: EXTRA CONSTRAINTS 

 fib( N, F)  :- 
   ..... 
   ; 
   { N > 1, F = F1+F2, N1 = N-1, N2 = N-2, 
     F1 >= N1, F2 >= N2},    % Extra constraints 
   fib( N1, F1), 
   fib( N2, F2).  



FIBONACCI: EXTRA CONSTRAINTS 

 ?- fib( N, 4). 
   no 

  The recursive calls of fib expand the expression for F 
in the condition F = 4: 

    4 = F = F1 + F2 =  
    F1' + F2' + F2 =  
    F1'' + F2'' + F2' + F2  



FIBONACCI: EXTRA CONSTRAINTS 

  The recursive calls of fib expand the expression for F 
in the condition F = 4: 

    4 = F = F1 + F2 =  
    F1' + F2' + F2 =  
    F1'' + F2'' + F2' + F2  

  Additional constraints that make the above 
unsatisfiable: 

    F1’ >= N1’ > 1, F2’’ >= N2’’ > 1,  
    F2’ >= N2’ > 1, F2 >= N2 > 1 



FIBONACCI: EXTRA CONSTRAINTS 

  Each time this expression is expanded, new constraints 

are added to the previous constraints. At the time that 

the four-term sum expression is obtained, the 

constraint solver finds out that the accumulated 

constraints are a contradiction that can never be 

satisfied. 



CLP(Q): CLP OVER RATIONAL 
NUMBERS 

  Real numbers represented as quotients between 
integers 

  Example: 
?- { X = 2*Y, Y = 1-X }. 

  A CLP(Q) solver gives:   
X = 2/3, Y = 1/3 

  A CLP(R) solver gives something like:   
X = 0.666666666, Y = 0.333333333 



SCHEDULING 

Scheduling problem considered here is given by: 

  A set of tasks T1, ..., Tn 
  Durations D1, ..., Dn of the tasks 
  Precedence constraints prec( Ti, Tj) 
     Ti has to be completed before Tj can start 
  Set of m processors available for executing the tasks 
  Resource constraints:  
    which tasks may be executed by which processors 



SCHEDULING 

  Schedule assigns for each task: 
    processor + start time 

  Respect: 
  precedence constraints 
  resource constraints: 

             processor suitable for task 
             one task per processor at a time 



VARIABLES IN CONSTRAINT PROBLEM 

For each task Ti: 

       Si   start time 
       Pj   processor name  

FinTime  finishing time of schedule (to be minimised) 



SPECIFICATION OF  
A SCHEDULING PROBLEM 

By predicates: 

tasks( [Task1/Duration1, Task2/Duration2, ...]) 
    gives the list task names and their durations 

prec( Task1, Task2) 
     Task1 precedes Task2 

resource( Task, [ Proc1, Proc2, ...]) 
     Task can be done by any of processors Proc1,  ... .  



SCHEDULING WITHOUT  
RESOURCE CONSTRAINTS 

This is an easy special case 

1. Construct inequality constraints between starting times 
of tasks, corresponding to precedences among the 
tasks. 

2. Minimise finishing time within the constructed inequality 
constraints.  

As all constraints are linear inequalities,  
so this is linear optimisation (built-in facility in CLP(R) ) 



FORMULATING PRECEDENCE CONSTR. 

Tasks a, b 
Start times: Ta, Tb 
Durations: Da, Db 

Constraint prec(a,b) translates into numerical inequality: 

     { Sa + Da =< Sb } 

All start times Si positive, all tasks finished by  FinTime: 

    { Si >= 0, Si + Di =< FinTime } 



PREDICATE SCHEDULE 

schedule( Schedule, FinTime) 

       Schedule is a best schedule for problem specified by  
predicates tasks and prec  

       FinTime is the finishing time of this schedule.  

Representation of a schedule is: 

    Schedule = [ Task1/Start1/Duration1,    
                           Task2/Start2/Duration2,  ... ] 



SCHEDULING, UNLIMITED RES. 

% Scheduling with CLP with unlimited resources 

schedule( Schedule, FinTime)  :- 

  tasks( TasksDurs), 

  precedence_constr( TasksDurs, Schedule, FinTime),  

             % Construct precedence constraints 

  minimize( FinTime). 



SCHEDULING, UNLIMITED RES., CTD. 

precedence_constr( [ ], [ ], FinTime). 

precedence_constr( [T/D | TDs], [T/Start/D | Rest], FinTime)  :- 

  { Start >= 0,                                        % Earliest start at 0 

    Start + D =< FinTime},                     % Must finish by FinTime 

  precedence_constr( TDs, Rest, FinTime),       

  prec_constr( T/Start/D, Rest). 



SCHEDULING, UNLIMITED RES., CTD. 
% prec_constr( TaskStartDur, OtherTasks): 

%     Set up precedence constr. between Task and other tasks 

prec_constr( _, [ ]). 

prec_constr(  T/S/D,  [T1/S1/D1 | Rest])  :- 

  (  prec( T, T1), !, { S+D =< S1}             % T precedes T1 

     ; 

     prec( T1, T), !, { S1+D1 =< S}           % T1 precedes T 

     ; 

     true ), 

  prec_constr( T/S/D, Rest). 



SCHEDULING, UNLIMITED RES., CTD. 

% List of tasks to be scheduled 
tasks( [ t1/5, t2/7, t3/10, t4/2, t5/9]). 

% Precedence constraints 
prec( t1, t2).   prec( t1, t4).   prec( t2, t3).   prec( t4, t5). 

?-  schedule( Schedule, FinTime). 
FinTime = 22, 
Schedule = [t1/0/5,t2/5/7,t3/12/10,t4/S4/2,t5/S5/9], 
{S5 =< 13}   {S4 >= 5}   {S4–S5 =< -2} 



SCHEDULING WITH  
RESOURCE CONSTRAINTS 

  Schedule also has to assign processors to tasks: 

       Schedule = [ Task1/Proc1/Start1/Dur1,         
                                   Task2/Proc2/Start2/Dur2, ...] 

  Handling precedence constraints: similar as before 

  Handling resource constraints: requires combinatorial 
search among possible assignments 



ASSIGNING PROCESSORS 

  To search among possible assignments: 
        keep track of best finishing time so far 

  Whenever assigning a suitable processor to a task,  
       add constraint: 

                 { FinTime < BestFinTimeSoFar } 

  This is branch-and-bound principle 



% Scheduling with limited resources 

schedule( BestSchedule, BestTime)  :- 
  tasks( TasksDurs), 
  precedence_constr( TasksDurs, Schedule, FinTime),    
               % Set up precedence inequalities 
  initialise_bound,               % Initialise bound on finishing time 
  assign_processors( Schedule, FinTime),      % Assign proc. to tasks 
  minimize( FinTime), 
  update_bound( Schedule, FinTime),                    
  fail                                              % Backtrack to find more schedules 
  ; 
  bestsofar( BestSchedule, BestTime).             % Final best 



% assign_processors( Schedule, FinTime): 

%   Assign processors to tasks in Schedule 

assign_processors( [ ], FinTime). 

assign_processors( [T/P/S/D | Rest], FinTime)  :- 

  assign_processors( Rest, FinTime), 

  resource( T, Processors),                 % Suitable processors for task T 

  member( P, Processors),                  % Choose one of processors 

  resource_constr( T/P/S/D, Rest),      % Impose resource constraints 

  bestsofar( _, BestTimeSoFar), 

  { FinTime < BestTimeSoFar }.          % New schedule better all previous 



% resource_constr( ScheduledTask, TaskList): 
%   ensure no resource conflict between ScheduledTask and 

TaskList 

resource_constr( _, [ ]). 

resource_constr( Task, [Task1 | Rest])  :- 
  no_conflict( Task, Task1), 
  resource_constr( Task, Rest). 



NO CONFLICT BETWEEN  
PROCESSOR ASSIGNMENTS 

no_conflict( T/P/S/D, T1/P1/S1/D1)  :- 

  P \== P1, !                % Different processors 

  ; 

  prec( T, T1), !           % Already constrained 

  ; 

  prec( T1, T), !           % Already constrained 

  ; 

  {  S+D =< S1             % Same processor, no time overlap 

     ; 

     S1+D1 =< S }. 



COMPLEXITY 

  This process is combinatorially complex - exponential 
number of possible assignments of processors to tasks 

  Bounding a partial schedule by BestTimeSoFar leads 
to abandoning sets of bad schedules before they are 
completely built 

  Savings in computation time depend on how good the 
upper bound is  

  The tighter upper bound, the sooner bad schedules are 
recognised and abandoned  

  The sooner some good schedule is found, the sooner a 
tight upper bound is applied  



SIMULATION WITH CONSTRAINTS  

  Elegant when system consists of components and 
connections among components  

  Example: electric circuits 



ELECTRIC CIRCUITS IN CLP 

% resistor( T1, T2, R): 
%  R=resistance; T1, T2 its terminals 
%   T1 = (I1, V1),   T2 = (I2, V2) 

resistor( (V1, I1), (V2, I2), R)  :- 
  { I1 = -I2, V1-V2 = I1*R }. 

V1 V2 

I1 I2 



ELECTRIC CIRCUITS IN CLP 

% diode( T1, T2): T1, T2 terminals of a diode 
%   Diode open in direction from T1 to T2 

diode( (V1,I1), (V2,I2) )  :- 
  { I1 + I2 = 0}, 
  { I1 > 0, V1 = V2 
    ; 
    I1 = 0, V1 =< V2}. 

battery( (V1,I1), (V2,I2), Voltage)  :- 
  { I1 + I2 = 0, Voltage = V1 - V2 }. 

I1 I2 

V1 V2 



CONNECTIONS 

                     V1   I1   I2   V2  

                         I3              
                              V3 

Constraints: 
V1 = V2 = V3  
I1 + I2 + I3 = 0 



ELECTRIC CIRCUITS IN CLP 

% conn( [T1,T2,...]): Terminals T1, T2, ... connected 
%  Therefore all el. potentials equal, sum of currents = 0 

conn( Terminals)  :- 
  conn( Terminals, 0). 

conn( [ (V,I) ], Sum)  :- 
  { Sum + I = 0 }. 

conn( [ (V1,I1), (V2,I2) | Rest], Sum)  :- 
  { V1 = V2, Sum1 = Sum + I1}, 
  conn( [ (V2, I2) | Rest ], Sum1). 



WHEATSTONE CIRCUIT 

U 

T11 T21 

T22 
T41 

T42 T32 

R1 

R3 

R2 

R4 

R5 



WHEATSTONE CIRCUIT 

 circuit_wheat( U, T11, T21, T31, T41, T51, T52)  :- 
      T2 = ( 0, _),                    % Terminal T2 at potential 0 
      battery( T1, T2, U), 
      resistor( T11, T12, 5),          % R1 = 5 
      resistor( T21, T22, 10),         % R2 = 10 
      resistor( T31, T32, 15),         % R3 = 15 
      resistor( T41, T42, 10),         % R4 = 10 
      resistor( T51, T52, 50),         % R5 = 50 
      conn( [T1, T11,T21]), 
      conn( [T12, T31, T51]), 
      conn( [T22, T41, T52]), 
      conn( [T2, T32, T42]). 



QUERY TO SIMULATOR 

  Given the battery voltage 10 V, what are the electrical 
potentials and the current at the "middle" resistor R5? 

       ?- circuit_wheat(10, _, _, _, _, T51, T52). 

       T51 = ( 7.3404..., 0.04255...) 
       T52 = ( 5.2127..., -0.04255...) 

  So the potentials at the terminals of R5 are 7.340 V and 
5.123 V respectively, and the current is 0.04255 A. 



CLP over finite domains: CLP(FD) 

  In Sicstus: Domains of variables are sets of integers  

  Constraints: 
      X in Set 
               where Set can be: 
      {Integer1, Integer2, ...} 

     Term1..Term2                set between Term1 and Term2  
     Set1 \/ Set2                union of Set1 and Set2 
     Set1 /\ Set2                intersection of Set1 and Set2 
     \ Set1                      complement of Set1 



ARITHMETIC CONSTRAINTS 

Arithmetic constraints have the form: 
     Exp1 Relation Exp2 
Exp1, Exp2 are arithmetic expressions 

Relation can be: 
     #=       equal 
     #\=      not equal 
     #<       less than 
     #>       greater than 
     #=<      less or equal 
     etc 



EXAMPLE 

?-  X in 1..5, Y in 0..4, 
    X #< Y, Z #= X+Y+1. 

X in 1..3 
Y in 2..4 
Z in 3..7 



indmain 

?-  X in 1..3, indomain(X). 

X = 1; 
X = 2; 
X = 3 



domain, all_different 

domain( L, Min, Max) 
     all the variables in list L have domains Min..Max. 

all_different( L) 
     all the variables in L must have different values. 



labeling 

 labeling( Options, L) 

       generates concrete possible values of the variables in 
list L.  

       Options is a list of options regarding the order in which 
the variables in L are "labelled".  

       If Options = [] then by default the variables are labelled 
from left to right  



CRPTARITHMETIC PUZZLE 

% Cryptarithmetic puzzle DONALD+GERALD=ROBERT in CLP(FD) 

solve( [D,O,N,A,L,D], [G,E,R,A,L,D], [R,O,B,E,R,T])  :- 
  Vars = [D,O,N,A,L,G,E,R,B,T],              % All variables in the puzzle 
  domain( Vars, 0, 9),                              % They are all decimal digits 
  all_different( Vars),                               % They are all different 
  100000*D + 10000*O + 1000*N + 100*A + 10*L + D  + 
  100000*G + 10000*E + 1000*R + 100*A + 10*L + D  #= 
  100000*R + 10000*O + 1000*B + 100*E + 10*R + T, 
  labeling( [ ], Vars). 



EIGHT QUEENS 

% 8 queens in CLP(FD) 

solution( Ys)  :-                % Ys is list of Y-coordinates of queens 

  Ys = [ _,_,_,_,_,_,_,_ ],     % There are 8 queens 

  domain( Ys, 1, 8),          % All the coordinates have domains 1..8 

  all_different( Ys),          % All different to avoid horizontal attacks 

  safe( Ys),                       % Constrain to prevent diagonal attacks 

  labeling( [ ], Ys).            % Find concrete values for Ys 



QUEENS, CTD. 
safe( [ ]). 
safe( [Y | Ys])  :- 
  no_attack( Y, Ys, 1),    % 1 = horizontal distance between queen Y and Ys 
  safe( Ys). 

% no_attack( Y, Ys, D): %   queen at Y doesn't attack any queen at Ys;  
%   D is column distance between first queen and other queens 

no_attack( Y, [ ], _). 

no_attack( Y1, [Y2 | Ys], D)  :- 
  D #\= Y1-Y2, 
  D #\= Y2-Y1, 
  D1 is D+1, 
  no_attack( Y1, Ys, D1). 


