
CONSTRAINT LOGIC PROGRAMMING

Ivan Bratko
Faculty of Computer and Information Sc.

University of Ljubljana
Slovenia

CONSTRAINT LOGIC PROGRAMMING

  Constraint satisfaction

  Constraint programming

  Constraint Logic Programming (CLP) =
 Constraint programming + LP

EXAMPLE OF CLP

% Converting between Centigrade and Fahrenheit

 convert(Centigrade, Fahrenheit) :-
 Centigrade is (Fahrenheit - 32)*5/9 .

EXAMPLE OF CLP, CTD.

 convert_clp(Centigrade, Fahrenheit) :-
 { Centigrade = (Fahrenheit - 32)*5/9 }.

 convert2_clp(Centigrade, Fahrenheit) :-
 { 9*Centigrade = (Fahrenheit - 32)*5 }.

CONSTRAINT SATISFACTION PROBLEM

  Given:
(1) set of variables,
(2) domains of the variables
(3) constraints that the variables have to satisfy

  Find:
An assignment of values to the variables,
so that these values satisfy all the given constraints.

  In optimisation problems, also specify optimisation
criterion

A SCHEDULING PROBLEM

  tasks a, b, c, d

  durations 2, 3, 5, 4 hours respectively
  precedence constraints

 b d
 a
 c

CORRESPONDING CONSTRAINT
SATISFACTION PROBLEM

  Variables: Ta, Tb, Tc, Td, Tf
  Domains: All variables are non-negative real numbers

  Constraints:
 0 ≤ Ta (task a cannot start before 0)
 Ta + 2 ≤ Tb (task a which takes 2 hours precedes b)
 Ta + 2 ≤ Tc (a precedes c)
 Tb + 3 ≤ Td (b precedes d)
 Tc + 5 ≤ Tf (c finished by Tf)
 Td + 4 ≤ Tf (d finished by Tf)
  Criterion: minimise Tf

SET OF SOLUTIONS

 Ta = 0
 Tb = 2
 2 ≤ Tc ≤ 4
 Td = 5
 Tf = 9

APPLICATIONS OF CLP

  scheduling
  logistics
  resource management in production,
 transportation, placement
  simulation

APPLICATIONS OF CLP

Typical applications involve assigning resources
to activities

  machines to jobs,
  people to rosters,
  crew to trains or planes,
  doctors and nurses to duties and wards

SATISFYING CONSTRAINTS

constraint networks:
 nodes ~ variables
 arcs ~ constraints

For each binary constraint p(X,Y)
there are two directed arcs (X,Y) and (Y,X)

 X Y

CONSISTENCY ALGORITHMS

  Consistency algorithms operate over constraint
networks

  They check consistency of domains of variables with
respect to constraints.

  Here we only consider binary constraints.

ARC CONSISTENCY

  arc (X,Y) is arc consistent
 if for each value of X in Dx,
 there is some value for Y in Dy
 satisfying the constraint p(X,Y).

  If (X,Y) is not arc consistent,
 then it can be made arc-consistent by deleting the values

in Dx for which there is no corresponding value in Dy

ACHIEVING ARC-CONSISTENCY

  Example
 Dx = 0..10, Dy = 0..10
 p(X,Y): X+4 ≤ Y.

  arc (X,Y) is not arc consistent
 (for X = 7, no corresponding value of Y in Dy)

  To make arc (X,Y) consistent, reduce Dx to 0..6

  To make arc (Y,X) consistent, reduce Dy to 4..10.

ARC CONSISTENCY PROPAGATION

  Domain reductions propagate throughout network,
 possibly cyclically, until either

 (1) all arcs become consistent, or
 (2) some domain becomes empty
 (constraints unsatisfiable)

  By such reductions no solutions of the constraint
problem are possibly lost.

WHEN ALL ARCS CONSISTENT

Two cases:

(1) Each domain has a single value:
 a single solution to constraint problem.

(2) All domains non-empty, and at least one domain has
multiple values:

 possibly several solutions, possibly no solution;
combinatorial search needed over reduced domains

ARC CONSISTENCY AND
GLOBAL SOLUTIONS

  Arc consistency does not guarantee that all possible
combinations of domain values are solutions to the
constraint problem.

  Possibly no combination of values from reduced
domains satisfies all the constraints.

EXAMPLE

 p(X,Y)
 X Y
 q(X,Z) r(Y,Z)
 Z

p(x1,y1). p(x2,y2).
q(x1,z1). q(x2,z2).
r(y1,z2). r(y2,z1).

  Network arc-consistent,
 but no solution to constraint problem.

SOLUTION SEARCH IN ARC-
CONSISTENT NETWORK

Several possible strategies, e.g.:

•  choose one of the multi-valued domains and try
repeatedly its values , apply consistency algorithm
again

•  choose one of the multi-valued domains and split it into
two approximately equal size subsets; propagate arc-
consistency for each subset, etc.

SCHEDULING EXAMPLE

Constraint network:

 Tb+3 ≤ Td

 Tb Td

Ta+2 ≤ Tb Td+4 ≤ Tf

 Ta Tf

 Ta+2 ≤ Tc Tc+5 ≤ Tf
 Tc

TRACE OF CONSISTENCY ALGORITHM

Step Arc Ta Tb Tc Td Tf
Start 0..10 0..10 0..10 0..10 0..10
1 (Tb,Ta) 2..10
2 (Td,Tb) 5..10
3 (Tf,Td) 9..10
4 (Td,Tf) 5..6
5 (Tb,Td) 2..3
6 (Ta,Tb) 0..1
7 (Tc,Ta) 2..10
8 (Tc,Tf) 2..5

CONSTRAINT LOGIC PROGRAMMING

  Pure Prolog: limited constraint satisfaction language;
 all constraints are just equalities between terms

  CLP = Constraint solving + Logic Programming

  To extend Prolog to a "real" CLP languag: add other
types of constraints in addition to matching

METAINTERPRETER FOR
PROLOG WITH CONSTRAINTS

solve(Goal) :-
 solve(Goal, [], Constr). % Start with empty constr.

% solve(Goal, InputConstraints, OutputConstraints)

solve(true, Constr0, Constr0).

solve((G1, G2), Constr0, Constr) :-
 solve(G1, Constr0, Constr1),
 solve(G2, Constr1, Constr).

METAINTERPRETER CTD.

solve(G, Constr0, Constr) :-
 prolog_goal(G), % G a Prolog goal
 clause(G, Body), % A clause about G
 solve(Body, Constr0, Constr).

solve(G, Constr0, Constr) :-
 constraint_goal(G), % G a constraint
 merge_constraints(Constr0, G, Constr).

MERGE CONSTRAINTS

  Predicate merge_constraints:

 constraint-specific problem solver,
 merges old and new constraints,
 tries to satisfy or simplify them

  For example, two constraints X ≤ 3 and X ≤ 2 are
simplified into constraint X ≤ 2.

CLP(X)

  Families of CLP techniques under names of form CLP
(X), where X is a domain

  CLP(R): CLP over real numbers, constraints are
arithmetic equalities, inequalities and disequalities

  CLP(Z) (integers)
  CLP(Q) (rational numbers)
  CLP(B) (Boolean domains)
  CLP(FD) (user-defined finite domains)

CLP(R): CLP over real numbers

  In CLP(R): linear equalities and inequalities typically
handled efficiently, nonlinear constr. limited

Conventions from SICStus Prolog

 ?- use_module(library(clpr)).

 ?- { 1 + X = 5 }. % Numerical constraint
 X = 4

CLP(R) in Sicstus Prolog

  Conjunction of constraints C1, C2 and C3 is written as:
 { C1, C2, C3}

  Each constraint is of form:

  Expr1 Operator Expr2

  Operator can be:
 = for equations
 =\= for disequations
 <, =<, >, >= for inequations

CLP(R) in Sicstus Prolog

Example query to CLP(R)

 ?- { Z =< X-2, Z =< 6-X, Z+1 = 2}.

 Z = 1.0
 {X >= 3.0}
 {X =< 5.0}

TEMPERATURE CONVERSION

In Prolog:

 convert(Centigrade, Fahrenheit) :-
 Centigrade is (Fahrenheit - 32)*5/9.

?- convert(C, 95).
C = 35

?- convert(35, F).
Arithmetic error

TEMPERATURE CONVERSION, CTD.

In CLP(R) this works in both directions:

 convert(Centigrade, Fahrenheit) :-
 { Centigrade = (Fahrenheit - 32)*5/9 }.

 ?- convert(35, F).
 F = 95

 ?- convert(C, 95).
 C = 35

TEMPERATURE CONVERSION, CTD.

Even works with neither argument instantiated:

 ?- convert(C, F).
 { F = 32.0 + 1.8*C }

LINEAR OPTIMISATION FACILITY

  Built-in CLP(R) predicates:

 minimize(Expr)
 maximize(Expr)

  For example:

?- { X =< 5}, maximize(X).
X = 5.0
?- { X =< 5, 2 =< X}, minimize(2*X + 3).
X = 2.0

LINEAR OPTIMISATION FACILITY, CTD.

?- {X >=2, Y >=2, Y =< X+1, 2*Y =< 8-X, Z = 2*X +3*Y},
maximize(Z).

X = 4.0
Y = 2.0
Z = 14.0

?- { X =< 5}, minimize(X).
no

LINEAR OPTIMISATION FACILITY, CTD.

  CLP(R) predicates to find the supremum (least upper
bound) or infimum (greatest lower bound) of an
expression:

 sup(Expr, MaxVal)
 inf(Expr, MinVal)

Expr is a linear expression in terms of linearly constrained
variables. Variables in Expr do not get instantiated to
the extreme points.

SUP, INF

?- { 2 =< X, X =< 5}, inf(X, Min), sup(X, Max).
Max = 5.0
Min = 2.0
{X >= 2.0}
{X =< 5.0}

OPTIMISATION FACILITIES

?- {X >=2, Y >=2,
 Y =< X+1,
 2*Y =< 8-X,
 Z = 2*X +3*Y},
 sup(Z,Max), inf(Z,Min), maximize(Z).

X = 4.0
Y = 2.0
Z = 14.0
Max = 14.0
Min = 10.0

SIMPLE SCHEDULING

?- { Ta + 2 =< Tb, % a precedes b
 Ta + 2 =< Tc, % a precedes c
 Tb + 3 =< Td, % b precedes d
 Tc + 5 =< Tf, % c finished by finishing time Tf
 Td + 4 =< Tf}, % d finished by Tf
 minimize(Tf).

Ta = 0.0, Tb = 2.0, Td = 5.0, Tf = 9.0
{Tc =< 4.0}
{Tc >= 2.0}

FIBONACCI NUMBERS
WITH CONSTRAINTS

fib(N,F): F is the N-th Fibonacci number

 F(0)=1, F(1)=1, F(2)=2, F(3)=3, F(4)=5, etc.
 For N>1, F(N)=F(N-1)+F(N-2)

FIBONACCI IN PROLOG

 fib(N, F) :-
 N=0, F=1
 ;
 N=1, F=1
 ;
 N>1,
 N1 is N-1, fib(N1,F1),
 N2 is N-2, fib(N2,F2),
 F is F1 + F2.

FIBONACCI IN PROLOG

  Intended use:

?- fib(6,F).
 F=13

  A question in the opposite direction:

 ?- fib(N, 13).
 Error

  Goal N > 1 is executed with N uninstantiated

FIBONACCI IN CLP(R)

 fib(N, F) :-
 { N = 0, F = 1}
 ;
 { N = 1, F = 1}
 ;
 { N > 1, F = F1 + F2, N1 = N - 1, N2 = N - 2} ,
 fib(N1, F1),
 fib(N2, F2).

FIBONACCI IN CLP(R)

  This can be executed in the opposite direction:

 ?- fib(N, 13).
 N = 6

  However, still gets into trouble when asked an
unsatisfiable question:

 ?- fib(N, 4).

FIBONACCI IN CLP(R)
 ?- fib(N, 4).

 The program keeps trying to find two Fibonacci numbers

F1 and F2 such that F1+F2=4. It keeps generating

larger and larger solutions for F1 and F2, all the time

hoping that eventually their sum will be equal 4. It does

not realise that once their sum has exceeded 4, it will

only be increasing and so can never become equal 4.

Finally this hopeless search ends in a stack overflow.

FIBONACCI: EXTRA CONSTRAINTS

  Fix this problem by adding constraints

  Easy to see: for all N: F(N) ≥ N

  Therefore variables N1, F1, N2 and F2 must always
satisfy the constraints:

 F1 >= N1, F2 >= N2.

FIBONACCI: EXTRA CONSTRAINTS

 fib(N, F) :-

 ;
 { N > 1, F = F1+F2, N1 = N-1, N2 = N-2,
 F1 >= N1, F2 >= N2}, % Extra constraints
 fib(N1, F1),
 fib(N2, F2).

FIBONACCI: EXTRA CONSTRAINTS

 ?- fib(N, 4).
 no

  The recursive calls of fib expand the expression for F
in the condition F = 4:

 4 = F = F1 + F2 =
 F1' + F2' + F2 =
 F1'' + F2'' + F2' + F2

FIBONACCI: EXTRA CONSTRAINTS

  The recursive calls of fib expand the expression for F
in the condition F = 4:

 4 = F = F1 + F2 =
 F1' + F2' + F2 =
 F1'' + F2'' + F2' + F2

  Additional constraints that make the above
unsatisfiable:

 F1’ >= N1’ > 1, F2’’ >= N2’’ > 1,
 F2’ >= N2’ > 1, F2 >= N2 > 1

FIBONACCI: EXTRA CONSTRAINTS

  Each time this expression is expanded, new constraints

are added to the previous constraints. At the time that

the four-term sum expression is obtained, the

constraint solver finds out that the accumulated

constraints are a contradiction that can never be

satisfied.

CLP(Q): CLP OVER RATIONAL
NUMBERS

  Real numbers represented as quotients between
integers

  Example:
?- { X = 2*Y, Y = 1-X }.

  A CLP(Q) solver gives:
X = 2/3, Y = 1/3

  A CLP(R) solver gives something like:
X = 0.666666666, Y = 0.333333333

SCHEDULING

Scheduling problem considered here is given by:

  A set of tasks T1, ..., Tn
  Durations D1, ..., Dn of the tasks
  Precedence constraints prec(Ti, Tj)
 Ti has to be completed before Tj can start
  Set of m processors available for executing the tasks
  Resource constraints:
 which tasks may be executed by which processors

SCHEDULING

  Schedule assigns for each task:
 processor + start time

  Respect:
  precedence constraints
  resource constraints:

 processor suitable for task
 one task per processor at a time

VARIABLES IN CONSTRAINT PROBLEM

For each task Ti:

 Si start time
 Pj processor name

FinTime finishing time of schedule (to be minimised)

SPECIFICATION OF
A SCHEDULING PROBLEM

By predicates:

tasks([Task1/Duration1, Task2/Duration2, ...])
 gives the list task names and their durations

prec(Task1, Task2)
 Task1 precedes Task2

resource(Task, [Proc1, Proc2, ...])
 Task can be done by any of processors Proc1,

SCHEDULING WITHOUT
RESOURCE CONSTRAINTS

This is an easy special case

1. Construct inequality constraints between starting times
of tasks, corresponding to precedences among the
tasks.

2. Minimise finishing time within the constructed inequality
constraints.

As all constraints are linear inequalities,
so this is linear optimisation (built-in facility in CLP(R))

FORMULATING PRECEDENCE CONSTR.

Tasks a, b
Start times: Ta, Tb
Durations: Da, Db

Constraint prec(a,b) translates into numerical inequality:

 { Sa + Da =< Sb }

All start times Si positive, all tasks finished by FinTime:

 { Si >= 0, Si + Di =< FinTime }

PREDICATE SCHEDULE

schedule(Schedule, FinTime)

 Schedule is a best schedule for problem specified by
predicates tasks and prec

 FinTime is the finishing time of this schedule.

Representation of a schedule is:

 Schedule = [Task1/Start1/Duration1,
 Task2/Start2/Duration2, ...]

SCHEDULING, UNLIMITED RES.

% Scheduling with CLP with unlimited resources

schedule(Schedule, FinTime) :-

 tasks(TasksDurs),

 precedence_constr(TasksDurs, Schedule, FinTime),

 % Construct precedence constraints

 minimize(FinTime).

SCHEDULING, UNLIMITED RES., CTD.

precedence_constr([], [], FinTime).

precedence_constr([T/D | TDs], [T/Start/D | Rest], FinTime) :-

 { Start >= 0, % Earliest start at 0

 Start + D =< FinTime}, % Must finish by FinTime

 precedence_constr(TDs, Rest, FinTime),

 prec_constr(T/Start/D, Rest).

SCHEDULING, UNLIMITED RES., CTD.
% prec_constr(TaskStartDur, OtherTasks):

% Set up precedence constr. between Task and other tasks

prec_constr(_, []).

prec_constr(T/S/D, [T1/S1/D1 | Rest]) :-

 (prec(T, T1), !, { S+D =< S1} % T precedes T1

 ;

 prec(T1, T), !, { S1+D1 =< S} % T1 precedes T

 ;

 true),

 prec_constr(T/S/D, Rest).

SCHEDULING, UNLIMITED RES., CTD.

% List of tasks to be scheduled
tasks([t1/5, t2/7, t3/10, t4/2, t5/9]).

% Precedence constraints
prec(t1, t2). prec(t1, t4). prec(t2, t3). prec(t4, t5).

?- schedule(Schedule, FinTime).
FinTime = 22,
Schedule = [t1/0/5,t2/5/7,t3/12/10,t4/S4/2,t5/S5/9],
{S5 =< 13} {S4 >= 5} {S4–S5 =< -2}

SCHEDULING WITH
RESOURCE CONSTRAINTS

  Schedule also has to assign processors to tasks:

 Schedule = [Task1/Proc1/Start1/Dur1,
 Task2/Proc2/Start2/Dur2, ...]

  Handling precedence constraints: similar as before

  Handling resource constraints: requires combinatorial
search among possible assignments

ASSIGNING PROCESSORS

  To search among possible assignments:
 keep track of best finishing time so far

  Whenever assigning a suitable processor to a task,
 add constraint:

 { FinTime < BestFinTimeSoFar }

  This is branch-and-bound principle

% Scheduling with limited resources

schedule(BestSchedule, BestTime) :-
 tasks(TasksDurs),
 precedence_constr(TasksDurs, Schedule, FinTime),
 % Set up precedence inequalities
 initialise_bound, % Initialise bound on finishing time
 assign_processors(Schedule, FinTime), % Assign proc. to tasks
 minimize(FinTime),
 update_bound(Schedule, FinTime),
 fail % Backtrack to find more schedules
 ;
 bestsofar(BestSchedule, BestTime). % Final best

% assign_processors(Schedule, FinTime):

% Assign processors to tasks in Schedule

assign_processors([], FinTime).

assign_processors([T/P/S/D | Rest], FinTime) :-

 assign_processors(Rest, FinTime),

 resource(T, Processors), % Suitable processors for task T

 member(P, Processors), % Choose one of processors

 resource_constr(T/P/S/D, Rest), % Impose resource constraints

 bestsofar(_, BestTimeSoFar),

 { FinTime < BestTimeSoFar }. % New schedule better all previous

% resource_constr(ScheduledTask, TaskList):
% ensure no resource conflict between ScheduledTask and

TaskList

resource_constr(_, []).

resource_constr(Task, [Task1 | Rest]) :-
 no_conflict(Task, Task1),
 resource_constr(Task, Rest).

NO CONFLICT BETWEEN
PROCESSOR ASSIGNMENTS

no_conflict(T/P/S/D, T1/P1/S1/D1) :-

 P \== P1, ! % Different processors

 ;

 prec(T, T1), ! % Already constrained

 ;

 prec(T1, T), ! % Already constrained

 ;

 { S+D =< S1 % Same processor, no time overlap

 ;

 S1+D1 =< S }.

COMPLEXITY

  This process is combinatorially complex - exponential
number of possible assignments of processors to tasks

  Bounding a partial schedule by BestTimeSoFar leads
to abandoning sets of bad schedules before they are
completely built

  Savings in computation time depend on how good the
upper bound is

  The tighter upper bound, the sooner bad schedules are
recognised and abandoned

  The sooner some good schedule is found, the sooner a
tight upper bound is applied

SIMULATION WITH CONSTRAINTS

  Elegant when system consists of components and
connections among components

  Example: electric circuits

ELECTRIC CIRCUITS IN CLP

% resistor(T1, T2, R):
% R=resistance; T1, T2 its terminals
% T1 = (I1, V1), T2 = (I2, V2)

resistor((V1, I1), (V2, I2), R) :-
 { I1 = -I2, V1-V2 = I1*R }.

V1 V2

I1 I2

ELECTRIC CIRCUITS IN CLP

% diode(T1, T2): T1, T2 terminals of a diode
% Diode open in direction from T1 to T2

diode((V1,I1), (V2,I2)) :-
 { I1 + I2 = 0},
 { I1 > 0, V1 = V2
 ;
 I1 = 0, V1 =< V2}.

battery((V1,I1), (V2,I2), Voltage) :-
 { I1 + I2 = 0, Voltage = V1 - V2 }.

I1 I2

V1 V2

CONNECTIONS

 V1 I1 I2 V2

 I3
 V3

Constraints:
V1 = V2 = V3
I1 + I2 + I3 = 0

ELECTRIC CIRCUITS IN CLP

% conn([T1,T2,...]): Terminals T1, T2, ... connected
% Therefore all el. potentials equal, sum of currents = 0

conn(Terminals) :-
 conn(Terminals, 0).

conn([(V,I)], Sum) :-
 { Sum + I = 0 }.

conn([(V1,I1), (V2,I2) | Rest], Sum) :-
 { V1 = V2, Sum1 = Sum + I1},
 conn([(V2, I2) | Rest], Sum1).

WHEATSTONE CIRCUIT

U

T11 T21

T22
T41

T42 T32

R1

R3

R2

R4

R5

WHEATSTONE CIRCUIT

 circuit_wheat(U, T11, T21, T31, T41, T51, T52) :-
 T2 = (0, _), % Terminal T2 at potential 0
 battery(T1, T2, U),
 resistor(T11, T12, 5), % R1 = 5
 resistor(T21, T22, 10), % R2 = 10
 resistor(T31, T32, 15), % R3 = 15
 resistor(T41, T42, 10), % R4 = 10
 resistor(T51, T52, 50), % R5 = 50
 conn([T1, T11,T21]),
 conn([T12, T31, T51]),
 conn([T22, T41, T52]),
 conn([T2, T32, T42]).

QUERY TO SIMULATOR

  Given the battery voltage 10 V, what are the electrical
potentials and the current at the "middle" resistor R5?

 ?- circuit_wheat(10, _, _, _, _, T51, T52).

 T51 = (7.3404..., 0.04255...)
 T52 = (5.2127..., -0.04255...)

  So the potentials at the terminals of R5 are 7.340 V and
5.123 V respectively, and the current is 0.04255 A.

CLP over finite domains: CLP(FD)

  In Sicstus: Domains of variables are sets of integers

  Constraints:
 X in Set
 where Set can be:
 {Integer1, Integer2, ...}

 Term1..Term2 set between Term1 and Term2
 Set1 \/ Set2 union of Set1 and Set2
 Set1 /\ Set2 intersection of Set1 and Set2
 \ Set1 complement of Set1

ARITHMETIC CONSTRAINTS

Arithmetic constraints have the form:
 Exp1 Relation Exp2
Exp1, Exp2 are arithmetic expressions

Relation can be:
 #= equal
 #\= not equal
 #< less than
 #> greater than
 #=< less or equal
 etc

EXAMPLE

?- X in 1..5, Y in 0..4,
 X #< Y, Z #= X+Y+1.

X in 1..3
Y in 2..4
Z in 3..7

indmain

?- X in 1..3, indomain(X).

X = 1;
X = 2;
X = 3

domain, all_different

domain(L, Min, Max)
 all the variables in list L have domains Min..Max.

all_different(L)
 all the variables in L must have different values.

labeling

 labeling(Options, L)

 generates concrete possible values of the variables in
list L.

 Options is a list of options regarding the order in which
the variables in L are "labelled".

 If Options = [] then by default the variables are labelled
from left to right

CRPTARITHMETIC PUZZLE

% Cryptarithmetic puzzle DONALD+GERALD=ROBERT in CLP(FD)

solve([D,O,N,A,L,D], [G,E,R,A,L,D], [R,O,B,E,R,T]) :-
 Vars = [D,O,N,A,L,G,E,R,B,T], % All variables in the puzzle
 domain(Vars, 0, 9), % They are all decimal digits
 all_different(Vars), % They are all different
 100000*D + 10000*O + 1000*N + 100*A + 10*L + D +
 100000*G + 10000*E + 1000*R + 100*A + 10*L + D #=
 100000*R + 10000*O + 1000*B + 100*E + 10*R + T,
 labeling([], Vars).

EIGHT QUEENS

% 8 queens in CLP(FD)

solution(Ys) :- % Ys is list of Y-coordinates of queens

 Ys = [_,_,_,_,_,_,_,_], % There are 8 queens

 domain(Ys, 1, 8), % All the coordinates have domains 1..8

 all_different(Ys), % All different to avoid horizontal attacks

 safe(Ys), % Constrain to prevent diagonal attacks

 labeling([], Ys). % Find concrete values for Ys

QUEENS, CTD.
safe([]).
safe([Y | Ys]) :-
 no_attack(Y, Ys, 1), % 1 = horizontal distance between queen Y and Ys
 safe(Ys).

% no_attack(Y, Ys, D): % queen at Y doesn't attack any queen at Ys;
% D is column distance between first queen and other queens

no_attack(Y, [], _).

no_attack(Y1, [Y2 | Ys], D) :-
 D #\= Y1-Y2,
 D #\= Y2-Y1,
 D1 is D+1,
 no_attack(Y1, Ys, D1).

