Conceptual Modeling and Query Answering

- Query:
$\{(X) \mid$ controlledBy $(X, Y)\}$

Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

1. Motivation and introduction to Description Logics
2. Tableau-based reasoning procedures

Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

Literature:

The Description Logic Handbook
edited by F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider
Cambridge University Press

Set N_{C} of concept names and disjoint set N_{R} of role names.
$\mathcal{A L C}$-concept descriptions are defined by induction:

- If $A \in N_{C}$, then A is an $\mathcal{A L C}$-concept description.
- If C, D are $\mathcal{A L C}$-concept descriptions, and $r \in N_{R}$, then the following are $\mathcal{A L C}$-concept descriptions:
- $C \sqcap D$ (conjunction)
- $C \sqcup D$ (disjunction)
- $\neg C$ (negation)
- $\forall r . C$ (value restriction)
- $\exists r . C$ (existential restriction)

$$
\begin{aligned}
& \text { Abbreviations: } \\
& -\top:=A \sqcup \neg A \text { (top) } \\
& -\perp:=A \sqcap \neg A \text { (bottom) } \\
& -C \Rightarrow D:=\neg C \sqcup D \text { (implication) }
\end{aligned}
$$

Person \sqcap Female
Person \sqcap ヨattends.Course
Person $\sqcap \forall$ attends.(Course $\sqcap \neg$ Easy)
Person $\sqcap \exists$ teaches. (Course $\sqcap \forall$ topic.DL)
Person $\sqcap \forall$ teaches. (Course $\sqcap \exists$ topic. $(\mathrm{DL} \sqcup \mathrm{NMR})$)

An interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right)$ consists of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function. ${ }^{\mathcal{I}}$:

- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_{C}$, concepts interpreted as sets
- $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $r \in N_{R}$. roles interpreted as binary relations

The interpretation function is extended to $\mathcal{A L C}$-concept descriptions as follows:

- $(C \sqcap D)^{\mathcal{I}}:=C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}}:=C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\neg C)^{\mathcal{I}}:=\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$
- $(\forall r . C)^{\mathcal{I}}:=\left\{d \in \Delta^{\mathcal{I}} \mid\right.$ for all $e \in \Delta^{\mathcal{I}}:(d, e) \in r^{\mathcal{I}}$ implies $\left.e \in C^{\mathcal{I}}\right\}$
- $(\exists r . C)^{\mathcal{I}}:=\left\{d \in \Delta^{\mathcal{I}} \mid\right.$ there is $e \in \Delta^{\mathcal{I}}:(d, e) \in r^{\mathcal{I}}$ and $\left.e \in C^{\mathcal{I}}\right\}$

(Person $\sqcap \exists$ teaches. $($ Course $\sqcap \forall$ topic.DL) $))^{\mathcal{I}}=\{\mathrm{F}\}$
$(\text { Person } \sqcap \forall \text { teaches. }(\text { Course } \sqcap \exists \text { topic. }(\mathrm{DL} \sqcup \mathrm{NMR})))^{\mathcal{I}}=\{\mathrm{F}, \mathrm{M}\}$

Relationship with First-order Logic

$\mathcal{A L C}$ can be seen as a fragment of first-order logic:

- Concept names are unary predicates, and role names are binary predicates.
- Concept descriptions C yield formulae with one free variable $\tau_{x}(C)$:
- $\tau_{x}(A):=A(x)$ for $A \in N_{C}$
- $\tau_{x}(C \sqcap D):=\tau_{x}(C) \wedge \tau_{x}(D)$
- $\tau_{x}(C \sqcup D):=\tau_{x}(C) \vee \tau_{x}(D)$
- $\tau_{x}(\neg C):=\neg \tau_{x}(C)$
- $\tau_{x}(\forall r . C):=\forall y .\left(r(x, y) \rightarrow \tau_{y}(C)\right)$
$-\tau_{x}(\exists r . C):=\exists y .\left(r(x, y) \wedge \tau_{y}(C)\right)$
C and $\tau_{x}(C)$ have the same semantics:

$$
C^{\mathcal{I}}=\left\{d \in \Delta^{\mathcal{I}} \mid \mathcal{I} \models \tau_{x}(C)[x \leftarrow d]\right\}
$$

Relationship with First-order Logic

$\mathcal{A L C}$ can be seen as a fragment of first-order logic:

- Concept names are unary predicates, and role names are binary predicates.
- Concept descriptions C yield formulae with one free variable $\tau_{x}(C)$:

These formulae belong to known decidable subclasses of first-order logic:

- two-variable fragment
- guarded fragment

$$
\begin{aligned}
\tau_{x}(\forall r .(A \sqcap \exists r . B)) & =\forall y .\left(r(x, y) \rightarrow \tau_{y}(A \sqcap \exists r . B)\right) \\
& =\forall y .(r(x, y) \rightarrow(A(y) \wedge \exists z \cdot(r(y, z) \wedge B(z))))
\end{aligned}
$$

Additional constructors

$\mathcal{A} \mathcal{L C}$ is only an example of a description logic.
DL researchers have introduced and investigated many additional constructors.

Example

Number restrictions: $(\geq n r . C),(\leq n r . C)$ with semantics

$$
\begin{aligned}
& (\geq n r . C)^{\mathcal{I}}:=\left\{d \in \Delta^{\mathcal{I}} \mid \operatorname{card}\left(\left\{e \mid(d, e) \in r^{\mathcal{I}} \wedge e \in C^{\mathcal{I}}\right\}\right) \geq n\right\} \\
& (\leq n r . C)^{\mathcal{I}}:=\left\{d \in \Delta^{\mathcal{I}} \mid \operatorname{card}\left(\left\{e \mid(d, e) \in r^{\mathcal{I}} \wedge e \in C^{\mathcal{I}}\right\}\right) \leq n\right\}
\end{aligned}
$$

Persons that attend at most 3 courses, of which at least 2 have the topic DL:

$$
\text { Person } \sqcap(\leq 3 \text { attends.Course }) \sqcap(\geq 2 \text { attends.(Course } \sqcap \exists \text { topic.DL }))
$$

Additional constructors

In addition to concept constructors, one can also introduce role constructors.

Example

Inverse roles: if r is a role, then r^{-1} denotes its inverse

$$
\left(r^{-1}\right)^{\mathcal{I}}:=\left\{(e, d) \mid(d, e) \in r^{\mathcal{I}}\right\}
$$

Inverse roles can be used like role names in value and existential restrictions.

Teacher of a boring course:

$$
\text { Person } \sqcap \exists \text { teaches.(Course } \sqcap \forall \text { attends }^{-1} \text {.(Bored } \sqcup \text { Sleeping)) }
$$

A concept defintion is of the form $A \equiv C$ where

- A is a concept name;
- C is a concept description.

A TBox is a finite set of concept definitions that

- does not contain multiple definitions;

- does not contain cyclic definitions.

Defined concept occurs on left-hand side of a definition
Primitive concept does not occur on left-hand side of a definition

An interpretation \mathcal{I} is a model of a TBox \mathcal{T} if it satisfies all its concept definitions:

$$
A^{\mathcal{I}}=C^{\mathcal{I}} \text { for all } A \equiv C \in \mathcal{T}
$$

$$
\begin{aligned}
\text { Woman } & \equiv \text { Person } \sqcap \text { Female } \\
\text { Man } & \equiv \text { Person } \sqcap \neg \text { Female } \\
\text { Course } & \equiv \exists \text { topic. } \top \\
\text { Lecturer } & \equiv \text { Person } \sqcap \exists \text { teaches.Course } \\
\text { Student } & \equiv \text { Person } \sqcap \exists \text { attends.Course } \\
\text { BusyLecturer } & \equiv \text { Lecturer } \sqcap(\geq 3 \text { teaches.Course }) \\
\text { BadLecturer } & \left.\equiv \text { Lecturer } \sqcap \forall \text { teaches. }\left(\text { tattends }^{-1} . \text {.(Bored } \sqcup \text { Sleeping }\right)\right)
\end{aligned}
$$

Modern DL systems allow their users to state more general constraints for the interpretation of concepts.

A general concept inclusion axiom (GCI) is of the form $C \sqsubseteq D$ where C, D may be complex concept descriptions.
$\stackrel{\text { general TBox }}{ }$
An interpretation \mathcal{I} is a model of a set of GCIs \mathcal{T} if it satisfies all its concept inclusions:

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { for all } C \sqsubseteq D \in \mathcal{T}
$$

$$
\begin{aligned}
& \text { Course } \sqcap \forall \text { attends }^{-1} \text {.Sleeping } \sqsubseteq \text { Boring } \\
& \text { Lecturer } \sqcap \text { Student } \sqsubseteq \perp
\end{aligned}
$$

Simple reasoning example

© Enrico Franconi

Simple reasoning example

implies
LatinLover $=\emptyset$
Italian \subseteq Lazy $\quad-\quad$ Italian \equiv Lazy
© Enrico Franconi

Reasoning by cases

© Enrico Franconi

Reasoning by cases

implies
ItalianProf \subseteq LatinLover
© Enrico Franconi

Infinite worlds: the democratic company

© Enrico Franconi

Infinite worlds: the democratic company

implies
"the classes Employee and Supervisor contain an infinite number of instances".
If the domain is finite:
Therefore, the schema is inconsistent.

Bijection: how many numbers

Bijection: how many numbers

implies
"the classes 'Natural Number' and 'Even Number' contain the same number of instances".

Bijection: how many numbers

implies
"the classes 'Natural Number' and 'Even Number' contain the same number of instances".

If the domain is finite: Natural Number \equiv Even Number

An assertion is of the form

$$
C(a) \text { (concept assertion) or } \quad r(a, b) \text { (role assertion) }
$$

where C is a concept description, r is a role, and a, b are individual names from a set N_{I} of such names.

> An ABox is a finite set of assertions.

An interpretation \mathcal{I} is a model of an $\operatorname{ABox} \mathcal{A}$ if it satisfies all its assertions:

$$
\begin{array}{ll}
a^{\mathcal{I}} \in C^{\mathcal{I}} & \text { for all } C(a) \in \mathcal{A} \\
\left(a^{\mathcal{I}}, b^{\mathcal{I}}\right) \in r^{\mathcal{I}} & \text { for all } r(a, b) \in \mathcal{A}
\end{array}
$$

\mathcal{I} assigns elements of $\Delta^{\mathcal{I}}$ to individual names

$$
\begin{array}{ll}
\text { Lecturer(FRANZ), } & \text { teaches(FRANZ, C1), } \\
\text { Course(C1), } & \text { topic(C1,T1), } \\
\text { DL(T1) } &
\end{array}
$$

Reasoning

makes implicitly represented knowledge explicit, provided as service by the DL system, e.g.:

```
polynomial
Subsumption: Is \(C\) a subconcept of \(D\) ? \(C \sqsubseteq \mathcal{T}^{D}\) iff \(C^{\mathcal{I}} \subseteq D^{\mathcal{I}}\) for all models \(\mathcal{I}\) of the TBox \(\mathcal{T}\).
Satisfiability: Is the concept \(C\) non-contradictory?
\(C\) is satisfiable w.r.t. \(\mathcal{T}\) iff \(C^{\mathcal{I}} \neq \emptyset\) for some model \(\mathcal{I}\) of \(\mathcal{T}\).
Consistency: Is the \(\mathrm{ABox} \mathcal{A}\) non-contradictory?
\(\mathcal{A}\) is consistent w.r.t. \(\mathcal{T}\) iff it has a model that is also a model of \(\mathcal{T}\).
Instantiation: Is \(e\) an instance of \(C\) ?
\(\mathcal{A} \models \mathcal{T} C(e)\) iff \(e^{\mathcal{I}} \in C^{\mathcal{I}}\) for all models \(\mathcal{I}\) of \(\mathcal{T}\) and \(\mathcal{A}\).


\section*{Reductions}

\section*{between inference problems}

Subsumption to satisfiability:
\[
C \sqsubseteq \mathcal{T} D \text { iff } C \sqcap \neg D \text { is unsatisfiable w.r.t. } \mathcal{T}
\]

Satisfiability to subsumption:
\[
C \text { is satisfiable w.r.t. } \mathcal{T} \text { iff } \operatorname{not} C \sqsubseteq \mathcal{T} \perp
\]

Satisfiability to consistency: \(C\) is satisfiable w.r.t. \(\mathcal{T}\) iff \(\{C(a)\}\) is consistent w.r.t. \(\mathcal{T}\)

Instance to consistency:
\(a\) is an instance of \(C\) w.r.t. \(\mathcal{T}\) and \(\mathcal{A}\) iff \(\mathcal{A} \cup\{\neg C(a)\}\) is inconsistent w.r.t. \(\mathcal{T}\)

Consistency to instance :
\(\mathcal{A}\) is consistent w.r.t. \(\mathcal{T}\) iff \(a\) is not an instance of \(\perp\) w.r.t. \(\mathcal{T}\) and \(\mathcal{A}\)

\section*{Reduction} getting rid of the TBox

Expansion of concepts:
For a given TBox \(\mathcal{T}\) and concept description \(C\), the expansion \(C^{\mathcal{T}}\) of \(C\) w.r.t. \(\mathcal{T}\) is obtained from \(C\) by
- replacing defined concepts by their definitions
- until no more defined concepts occur.
\[
\mathcal{T} \begin{aligned}
\text { Woman } & \equiv \text { Person } \sqcap \text { Female } \\
\text { Course } & \equiv \exists \text { topic. } \top \\
\text { Lecturer } & \equiv \text { Person } \sqcap \exists \text { teaches.Course }
\end{aligned}
\]

Woman \(\sqcap\) Lecturer expands to
\[
\text { Person } \sqcap \text { Female } \sqcap \text { Person } \sqcap \exists \text { teaches.( } \exists \text { topic. } \top)
\]

\section*{Reduction} getting rid of the TBox

Since TBoxes are acyclic, expansion always terminates, but the expanded concept may be exponential in the size of \(\mathcal{T}\).
\[
\begin{aligned}
A_{0} & \equiv \forall r \cdot A_{1} \sqcap \forall s \cdot A_{1} \\
A_{1} & \equiv \forall r \cdot A_{2} \sqcap \forall s \cdot A_{2} \\
& \vdots \\
A_{n-1} & \equiv \forall r \cdot A_{n} \sqcap \forall s \cdot A_{n}
\end{aligned}
\]

The size of \(\mathcal{T}\) is linear in \(n\), but the expansion \(A_{0}^{\mathcal{T}}\) contains \(A_{n} 2^{n}\) times.

Reductions:
- \(C\) is satisfiable w.r.t. \(\mathcal{T}\) iff \(C^{\mathcal{T}}\) is satisfiable w.r.t. the empty TBox \(\emptyset\).
- \(C \sqsubseteq_{\mathcal{T}} D\) iff \(C^{\mathcal{T}} \sqsubseteq_{\emptyset} D^{\mathcal{T}}\).
- Consistency and the instance problem can be treated similarly. all concept names occurring in the TBox.
\[
\begin{aligned}
\text { Man } & \equiv \text { Person } \sqcap \neg \text { Female } \\
\text { Woman } & \equiv \text { Person } \sqcap \text { Female } \\
\text { MaleLecturer } & \equiv \text { Man } \sqcap \exists \text { teaches.Course } \\
\text { FemaleLecturer } & \equiv \text { Woman } \sqcap \exists \text { teaches.Course } \\
\text { Lecturer } & \equiv \text { FemaleLecturer } \sqcup \text { MaleLecturer } \\
\text { BusyLecturer } & \equiv \text { Lecturer } \sqcap(\geq 3 \text { teaches.Course })
\end{aligned}
\]


\section*{Realization}

Computing the most specific concept names in the TBox to which an ABox individual belongs.
\[
\begin{aligned}
\text { Man } & \equiv \text { Person } \sqcap \neg \text { Female } \\
\text { Woman } & \equiv \text { Person } \sqcap \text { Female } \\
\text { MaleLecturer } & \equiv \text { Man } \sqcap \exists \text { teaches.Course } \\
\text { FemaleLecturer } & \equiv \text { Woman } \sqcap \exists \text { teaches.Course } \\
\text { Lecturer } & \equiv \text { FemaleLecturer } \sqcup \text { MaleLecturer } \\
\text { BusyLecturer } & \equiv \text { Lecturer } \sqcap(\geq 3 \text { teaches.Course })
\end{aligned}
\]
\[
\begin{aligned}
& \text { Man(FRANZ), teaches(FRANZ, C1), } \\
& \text { Course(C1) }
\end{aligned}
\]

FRANZ is an instance of Man, Lecturer, MaleLecturer. most specific

\section*{Task}
- Solve the following puzzle:
- There are three chairs on a stage
- On the left chair sits a woman
- On the right chair sits a man
- Assuming that any person sits on the middle chair, does a man sit next to a woman on the stage?

Use description logics to model the scenario and then
Racer to solve the puzzle!

\section*{Task}


\section*{Task}
```

(equivalent Person (or Male Female))
(disjoint Male Female)
(instance a Female)
(instance c Male)
(instance b Person)
(related a b nextto)
(related b a nextto)
(related b c nextto)
(related c b nextto)
(instance s Stage)
(related a s onstage)
(related b s onstage)
(related c s onstage)

```
(concept-instances (and Stage (some (inv onstage) (and Male (some nextto Female)))))

\section*{Task}

- It works, because all models agree
- Please note that we cannot retrieve "the" man sitting next to a woman.```

