Description Logics

Franz Baader Theoretical Computer Science TU Dresden Germany

- 1. Motivation and introduction to Description Logics
- 2. Tableau-based reasoning procedures

Reasoning procedures

- The procedure should be a decision procedure for the problem:
 - soundness: positive answers are correct
 - completeness: negative answers are correct
 - termination: always gives an answer in finite time
- The procedure should be as efficient as possible: preferably optimal w.r.t. the (worst-case) complexity of the problem
- The procedure should be practical: easy to implement and optimize, and behave well in applications

It is sufficient to design a decision procedure for consistency of an ABox without a TBox:

- TBoxes can be eliminated by expanding concept descriptions
- satisfiability, subsumption, and the instance problem can be reduced to consistency

The tableau-based consistency algorithm tries to generate a finite model for the input ABox A_0 :

- applies tableau rules to extend the ABox one rule per constructor
- checks for obvious contradictions
- an ABox that is complete (no rule applies) and open (no obvious contradictions) describes a model

© Franz Baalder

example continued

Is the following ABox inconsistent?

 $\{ (\exists attends.Smart \sqcap \exists attends.Studious \sqcap \forall attends.(\neg Smart \sqcup \neg Studious))(a) \}$

complete and open ABox yields a model for the input ABox

and thus a counterexample to the subsumption relationship

© Franz Baader

more formal description

An ALC-ABox A_0 Input:

Output: "yes" if A_0 is consistent "no" otherwise

> negation only in front of concept names

Preprocessing:

transform all concept descriptions in A_0 into negation normal form (NNF) by applying the following rules:

$$\neg (C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg \neg C \rightsquigarrow C$$

$$\neg (\exists r.C) \rightsquigarrow \forall r. \neg C$$

$$\neg (\forall r.C) \rightsquigarrow \exists r. \neg C$$

The NNF can be computed in polynomial time, and it does not change the semantics of the concept.

more formal description

Data structure:

in NNF

finite set of ABoxes rather than a single ABox: start with $\{\mathcal{A}_0\}$

Application of tableau rules:

the rules take one ABox from the set and replace it by finitely many new ABoxes

Termination:

if no more rules apply to any ABox in the set

complete ABox: no rule applies to it

Answer:

"yes" if the set contains an open ABox, i.e., an ABox not containing an obvious contradiction of the form

Dresden

A(a) and $\neg A(a)$ for some individual name a

"no" if all ABoxes in the set are closed (i.e., not open)

Tableau rules

one for every constructor (except for negation)

The ⊓-rule

Condition: \mathcal{A} contains $(C \sqcap D)(a)$, but not both C(a) and D(a)Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a), D(a)\}$

The ⊔-rule

Condition: \mathcal{A} contains $(C \sqcup D)(a)$, but neither C(a) nor D(a)Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a)\}$ and $\mathcal{A}'' := \mathcal{A} \cup \{D(a)\}$

The ∃-rule

Condition: \mathcal{A} contains $(\exists r.C)(a)$, but there is no c with $\{r(a,c), C(c)\} \subseteq \mathcal{A}$ Action: $\mathcal{A}' := \mathcal{A} \cup \{r(a,b), C(b)\}$ where b is a new individual name

The ∀-rule

Dresden

Condition: \mathcal{A} contains $(\forall r.C)(a)$ and r(a, b), but not C(b)Action: $\mathcal{A}' := \mathcal{A} \cup \{C(b)\}$

© Franz Baader

Local correctness

rules preserve consisteny

The ∃-rule

Condition: \mathcal{A} contains $(\exists r.C)(a)$, but there is no c with $\{r(a,c), C(c)\} \subseteq \mathcal{A}$ Action: $\mathcal{A}' := \mathcal{A} \cup \{r(a,b), C(b)\}$ where b is a new individual name

To show: \mathcal{A} has a model iff \mathcal{A}' has a model

 \Rightarrow Let \mathcal{I} be a model of \mathcal{A} .

Since $(\exists r.C)(a) \in \mathcal{A}$, there is a $d \in \Delta^{\mathcal{I}}$ such that $(a^{\mathcal{I}}, d) \in r^{\mathcal{I}}$ and $d \in C^{\mathcal{I}}$.

Let \mathcal{I}' be the interpretation that coinicides with \mathcal{I} , with the exception that $b^{\mathcal{I}'} = d$.

Since b does not occur in $\mathcal{A}, \mathcal{I}'$ is a model of \mathcal{A} .

By definition of $b^{\mathcal{I}'}$, it is also a model of $\{r(a, b), C(b)\}$.

 $= \text{ trivial since } \mathcal{A} \subseteq \mathcal{A}'.$

Local correctness

rules preserve consisteny

The ⊔-rule

Condition: \mathcal{A} contains $(C \sqcup D)(a)$, but neither C(a) nor D(a)Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a)\}$ and $\mathcal{A}'' := \mathcal{A} \cup \{D(a)\}$

To show: \mathcal{A} has a model iff \mathcal{A}' has a model or \mathcal{A}'' has a model

 $\Rightarrow \text{ Let } \mathcal{I} \text{ be a model of } \mathcal{A}.$ Since $(C \sqcup D)(a) \in \mathcal{A}$, we have $a^{\mathcal{I}} \in (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}.$ If $a^{\mathcal{I}} \in C^{\mathcal{I}}$, then \mathcal{I} is a model of $\mathcal{A}'.$ If $a^{\mathcal{I}} \in D^{\mathcal{I}}$, then \mathcal{I} is a model of $\mathcal{A}''.$

 $\Leftarrow \quad \text{trivial since } \mathcal{A} \subseteq \mathcal{A}' \text{ and } \mathcal{A} \subseteq \mathcal{A}''.$

Termination

is an easy consequence of the following facts:

The label $\mathcal{L}(a)$ of an individual name consists of the concepts in concept assertions for a.

- 1. rule application is monotonic: every application of a rule extends the label of an individual, and does not remove anything;
- 2. concepts in labels are subdescriptions of concepts occurring in the input ABox \mathcal{A}_0 ;
- \implies finite number of rule applications per individual
 - 3. the number of new individuals that are *r*-successors of an individual is bounded by the number of existential restrictions in A_0 ;
 - 4. the length of successor chains of new individuals is bounded by the maximal size of the concepts in A_0 :
 - if x is a new individual, then it has a unique predecessor y
 - the maximal size of concepts in $\mathcal{L}(x)$ is strictly smaller than in $\mathcal{L}(y)$

Dresden

Soundness

Let \mathcal{A} be a complete and open ABox.

The canonical interpretation $\mathcal{I}_{\mathcal{A}}$ induced by \mathcal{A} is defined as follows:

- $\Delta^{\mathcal{I}_{\mathcal{A}}} := \{x \mid x \text{ is an individual name occurring in } \mathcal{A}\}$
- $x^{\mathcal{I}_{\mathcal{A}}} := x$ for all indidual names occurring in \mathcal{A}
- $A^{\mathcal{I}_{\mathcal{A}}} := \{x \mid A(x) \in \mathcal{A}\}$ for all $A \in N_C$
- $r^{\mathcal{I}_{\mathcal{A}}} := \{(x, y) \mid r(x, y) \in \mathcal{A}\}$ for all $r \in N_R$

Claim

 $\mathcal{I}_{\mathcal{A}}$ is a model of \mathcal{A} .

Soundness

 $\mathcal{I}_{\mathcal{A}}$ is a model of \mathcal{A} .

- if $r(x,y) \in \mathcal{A}$, then $(x^{\mathcal{I}_{\mathcal{A}}}, y^{\mathcal{I}_{\mathcal{A}}}) = (x,y) \in r^{\mathcal{I}_{\mathcal{A}}}$ by definition of $r^{\mathcal{I}_{\mathcal{A}}}$
- for $C(x) \in \mathcal{A}$, we show $x^{\mathcal{I}_{\mathcal{A}}} = x \in C^{\mathcal{I}_{\mathcal{A}}}$ by induction on the size of C:
 - C = A for $A \in N_C$: trivial by definition of $A^{\mathcal{I}_A}$
 - $C = \neg A$ for $A \in N_C$:

since \mathcal{A} is open, $A(x) \not\in \mathcal{A}$, and thus $x \notin A^{\mathcal{I}_{\mathcal{A}}}$ by definition of $A^{\mathcal{I}_{\mathcal{A}}}$

 $- C = C_1 \sqcap C_2:$

since \mathcal{A} is complete, $(C_1 \sqcap C_2)(x) \in \mathcal{A}$ implies that $C_1(x) \in \mathcal{A}$ and $C_2(x) \in \mathcal{A}$;

by induction, this yields $x \in C_1^{\mathcal{I}_A}$ and $x \in C_2^{\mathcal{I}_A}$, and thus $x \in (C_1 \sqcap C_2)^{\mathcal{I}_A}$

- Dresden
- the other constructors can be treated similarly

is a decision procedure for consistency

- 1. Started with a finite ABox A_0 in NNF the algorithm always terminates with a finite set of complete ABoxes A_1, \ldots, A_n
- 2. Local correctness: A_0 consistent iff one of A_1, \ldots, A_n consistent
- 3. Answer "no": none of A_1, \ldots, A_n open A_1, \ldots, A_n inconsistent A_0 inconsistent
- 4. Answer "yes": one of A_1, \ldots, A_n open one of A_1, \ldots, A_n consistent A_0 consistent

Number restrictions: $(\geq n r.C)$, $(\leq n r.C)$ with semantics

$$\begin{split} (\geq n \, r.C)^{\mathcal{I}} &:= \{ d \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{e \mid (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}) \geq n \} \\ (\leq n \, r.C)^{\mathcal{I}} &:= \{ d \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{e \mid (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}) \leq n \} \end{split}$$

Negation normal form:

$$\neg(\geq n+1\,r.C) \quad \rightsquigarrow \quad (\leq n\,r.C)$$
$$\neg(\geq 0\,r.C) \quad \rightsquigarrow \quad \bot$$
$$\neg(\leq n\,r.C) \quad \rightsquigarrow \quad (\geq n+1\,r.C)$$

Extension of algorithm:

- new rules: \geq -rule and \leq -rule
- new assertions: inequality assertions of the form $x \neq y$ with obvious semantics $x^{\mathcal{I}} \neq y^{\mathcal{I}}$

inequality assertions viewed as symmetric

new obvious contradictions

© Franz Baader

the tableau rules

$The \geq -rule$

Condition:	\mathcal{A} contains $(\geq n r.C)(a)$, but there are no c_1, \ldots, c_n with
	$\{r(a,c_1), C(c_1), \dots, r(a,c_n), C(c_n)\} \cup \{c_i \neq c_j \mid 1 \le i, j \le n\} \subseteq \mathcal{A}$
Action:	$\mathcal{A}' := \mathcal{A} \cup \{r(a, b_1), C(c_1), \dots, r(a, b_n), C(b_n)\} \cup \{b_i \neq b_j \mid 1 \le i, j \le n\}$ where b_i b_i are new individual names
	where o_1, \ldots, o_n are new individual names

The \leq -rule

Condition:	\mathcal{A} contains $(\leq n r.C)(a)$, and there are b_1, \ldots, b_{n+1} w	vith
	$\{r(a,b_1), C(b_1), \ldots, r(a,b_{n+1}), C(b_{n+1})\} \subseteq \mathcal{A},$	
	but $\{b_i \neq b_j \mid 1 \leq i, j \leq n+1\} \not\subseteq \mathcal{A}$	
Action:	for all $i < j$ with $b_i \neq b_j \notin \mathcal{A}$	
	$\mathcal{A}_{i,j} := \mathcal{A}[b_i \leftarrow b_j]$	b_i replaced by b_j

- $\mathcal{A} \text{ contains } (\leq n \, r. C)(a)$, and there are b_1, \ldots, b_{n+1} with $\{r(a, b_1), C(b_1), \ldots, r(a, b_{n+1}), C(b_{n+1})\} \subseteq \mathcal{A}$ and $\{b_i \neq b_j \mid 1 \leq i, j \leq n+1\} \subseteq \mathcal{A}$
- \mathcal{A} contains $a \neq a$ for some individual name a

does this yield a decision procedure?

To show that the algorithm obtained this way is a decision procedure for ABox consistency, we must show

1.	local correctness: rules preserve consistency	easy to show
2.	completeness: a closed ABox does not have a model	trivial
3.	soundness: a complete and open ABox has a model	wrong!

4. termination: there is no infinite chain of rule applications

wrong!

In the presence of the choose-rule, soundness can easily be shown.

Dresden

Solution:

use a strategy that applies generating rules (\geq -rule, \exists -rule) with lower priority.

$C \sqsubseteq D$ with semantics $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

A finite set of GCIs can be encoded into one GCI of the form $\top \sqsubseteq C$:

 $\{C_1 \sqsubseteq D_1, \dots, C_n \sqsubseteq D_n\} \longrightarrow \{\top \sqsubseteq (\neg C_1 \sqcup D_1) \sqcap \dots \sqcap (\neg C_n \sqcup D_n)\}$

Consider a GCI $\top \sqsubseteq C$ where C is in NNF.

The GCI-rule for $\top \sqsubseteq C$

Condition: A contains the individual name a, but not C(a)

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a)\}$

Adding GCIs

does this yield a decision procedure?

- · local correctness, completeness, and soundness are easy to show
- termination does not hold:

Test consistency of $\{P(a)\}$ w.r.t. the GCI $\top \sqsubseteq \exists r.P$

Solution: blocking

- y is blocked by x iff $\mathcal{L}(y) \subseteq \mathcal{L}(x)$
- to avoid cyclic blocking we fix an enumeration of the individual names, and add to the blocking condition that y comes after x in the enumeration

generating rules are not applied to blocked individuals

Adding GCIs

does this yield a decision procedure?

- · local correctness, completeness, and termination are now easy to show
- soundness must be reconsidered:
 - because of blocking, an ABox can be complete although a generating rule applies
 - requires modification in the definition of the canonical interpretation:

the r-successors of a blocked individual are the r-successors of the least individual (in the enumeration) blocking it

consistency of $\{(\forall r.Q)(a), P(a)\}$ w.r.t. the GCI $\top \sqsubseteq \exists r.P$

Assumptions (1)

- Open World Assumption
 - Given Abox A = { R(i , j), C(j) }
 - Is i an instance of \forall R.C
- No, cannot be proven for A:
 - UNSAT(A \cup { ($\exists R. \neg C$)(i) }) does not hold
 - Applying the tableau rules yields an open Abox
- Could be proved if we added $(\leq 1 \text{ r. T})(i)$ to A

Assumptions (2)

- Unique name assumption
 - Different individual names denote different domain objects
 - Usually NOT adopted in DL and firstorder settings in general
- Domain closure assumption
 - The set of individuals is finite
 - NOT adopted in general
 - Reduces first-order to propositional case