
Temporal Logic 
The main ideas

Ralf Möller
Hamburg University of Technology

Acknowledgements

•  Slides by Eric Madelaine, INRIA

Reasoning about Executions

•  We would like to reason about execution trees
  tree node = snapshot of the program’s state

•  Reasoning consists of two layers
  defining predicates on the program states (control points,

variable values)
  expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
 | AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
 | AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]	

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier
temporal operator

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions

 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
 | AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
 | AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]	

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds

Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p

Computation Tree Logic

EG p p

p

p

p

Computation Tree Logic

AF p

p

p p p

p

p

Computation Tree Logic

EF p

p

Computation Tree Logic

AX p

p

p p

p

p p

p

p

p

Computation Tree Logic

EX p

p

p

p

p p p

Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p

Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q

Example CTL Specifications

•  For any state, a request (for some resource) will
eventually be acknowledged

AG(requested -> AF acknowledged)

  From any state, it is possible to get to a restart state
AG(EF restart)

  An upwards travelling elevator at the second floor
does not changes its direction when it has
passengers waiting to go to the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

CTL Notes

•  Invented by E. Clarke and E. A. Emerson
(early 1980’s)

•  Specification language for Symbolic
Model Verifier (SMV) model-checker

•  SMV is a symbolic model-checker instead
of an explicit-state model-checker

•  Symbolic model-checking uses Binary
Decision Diagrams (BDDs) to represent
boolean functions (both transition system
and specification

Linear Temporal Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of linear traces instead of branching trees

Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ U Γ …Φ until Γ

Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	

Φ Φ

Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Φ	
 Γ	
 Φ	
 Γ	

Φ ::= P …primitive propositions
 | !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
 | []Φ | <>Φ | Φ U Φ | X Φ …temporal operators

Syntax

LTL Notes

•  Invented by Prior (1960’s), and first use to reason
about concurrent systems by A. Pnueli, Z. Manna,
etc.

•  LTL model-checkers are usually explicit-state
checkers due to connection between LTL and
automata theory

•  Most popular LTL-based checker is Spin  
(G. Holzman)

Comparing LTL and CTL

CTL LTL

CTL*

  CTL is not strictly more expressive than LTL (and vice
versa)

  CTL* invented by Emerson and Halpern in 1986 to
unify CTL and LTL

