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Part I

Storage: Disks and Files
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data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Operator Evaluator Optimizer

Executor Parser

Lock
Manager

Transaction
Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 8



Memory Hierarchy

CPU
(with registers)

caches

main memory

hard disks

tape library

capacity

bytes

kilo-/megabytes

gigabytes

terabytes

petabytes

latency

< 1 ns

< 10 ns

70–100 ns

3–10 ms

varies

I fast, but expensive and small, memory close to CPU
I larger, slower memory at the periphery
I We’ll try to hide latency by using the fast memory as a cache.
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Magnetic Disks

heads

arm

platter

rotation

sectorblock

track

I A stepper motor positions an array of
disk heads on the requested track.

I Platters (disks) steadily rotate.
I Disks are managed in blocks: the system

reads/writes data one block at a time.
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Access Time

This design has implications on the access time to read/write a
given block:

1. Move disk arms to desired track (seek time ts).
2. Wait for desired block to rotate under disk head (rotational

delay tr).
3. Read/write data (transfer time ttr)

→ access time: t = ts + tr + ttr
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Example: Notebook drive Hitachi Travelstar 7K200

I 4 heads, 2 disks, 512 bytes/sector, 200 GB capacity
I rotational speed: 7200 rpm
I average seek time: 10 ms
I transfer rate: ≈ 50 MB/s

� What is the access time to read an 8 KB data block?

average seek time ts = 10 ms
average rotational delay: 1

2 ·
1 s

7200/min tr = 4.17 ms
transfer time for 8 KB: 8 KB

50 MB/s ttr = 0.16 ms
access time for an 8 KB data block t = 14.33 ms
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Sequential vs. Random Access
Example: Read 1000 blocks of size 8 KB

I random access:
trnd = 1000 · 14.33 ms = 14.33 s

I sequential read:
tseq = ts + tr + 1000 · ttr + 16·1000

63 · ts,track-to-track
= 10 ms + 4.14 ms + 160 ms + 254 ms ≈ 428 ms

The Travelstar 7K200 has 63 sectors per track, with a 1 ms
track-to-track seek time; one 8 KB block occupies 16 sectors.

→ Sequential I/O is much faster than random I/O.
→ Avoid random I/O whenever possible.
→ As soon as we need at least 428 ms

14330 ms = 3 % of a file, we better
read the entire file!
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Performance Tricks

System builders play a number of tricks to improve performance.

track skewing
Align sector 0 of each track to avoid
rotational delay during sequential
scans.

request scheduling
If multiple requests have to be served, choose the one that
requires the smallest arm movement (SPTF: shortest
positioning time first).

zoning
Outer tracks are longer than the inner ones. Therefore,
divide outer tracks into more sectors than inners.
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Evolution of Hard Disk Technology

Disk latencies have only marginally improved over the last years
(≈ 10 % per year).

But:
I Throughput (i.e., transfer rates) improve by≈ 50 % per year.
I Hard disk capacity grows by≈ 50 % every year.

Therefore:
I Random access cost hurts even more as time progresses.
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Ways to Improve I/O Performance
The latency penalty is hard to avoid.

But:
I Throughput can be increased rather easily by exploiting

parallelism.
I Idea: Use multiple disks and access them in parallel.

I TPC-C: An industry benchmark for OLTP
The current number one system (a DB2 9.5 database on AIX) uses

I 10,992 disk drives (73.4 GB each, 15,000 rpm) (!)
(plus 8 internal SCSI drives with 146.8 GB each),

I connected with 68× 4 Gbit Fibre Channel adapters,
I yielding 6 mio transactions per minute.
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Disk Mirroring
I Replicate data onto multiple disks

1 2 3 4 5
6 7 8 9 · · ·

1 2 3 4 5
6 7 8 9 · · ·

1 2 3 4 5
6 7 8 9 · · ·

I I/O parallelism only for reads.
I Improved failure tolerance (can survive one disk failure).
I This is also known as RAID 1 (mirroring without parity).

(RAID: Redundant Array of Inexpensive Disks)
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Disk Striping

I Distribute data over disks

1 2 3 4 5
6 7 8 9 · · ·

1 4 7 · · · 2 5 8 · · · 3 6 9 · · ·

I Full I/O parallelism.
I High failure risk (here: 3 times risk of single disk failure)!
I Also known as RAID 0 (striping without parity).
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Disk Striping with Parity
I Distribute data and parity information over disks.

1 2 3 4 5
6 7 8 9 · · ·

1 3 7 · · ·5/6 2 5 8 · · ·3/4 4 6 · · ·1/2 7/8

I High I/O parallelism.
I Fault tolerance: one disk can fail without data loss (two disks

with dual parity/RAID 6).
I Also known as RAID 5 (striping with distributed parity).
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Solid-State Disks
Solid state disks (SSDs) have emerged as an alternative to
conventional hard disks.

flash mag. disk
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Samsung 32 GB flash disk; 4096 bytes read/written randomly. Source: Koltsidas and Viglas. Flashing up the Storage Layer. VLDB 2008.

I SSDs provide very low-latency random
read access.

I Random writes, however, are significantly
slower than on traditional magnetic drives.

I Pages have to be erased before they can
be updated.

I Once pages have been erased, sequentially writing
them is almost as fast as reading.

I Adapting databases to these characteristics is a current
research topic.
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Network-Based Storage

The network is not a bottleneck any more:
I Hard disk: 50–100 MB/s
I Serial ATA: 375 MB/s (600 MB/s soon)

Ultra-640 SCSI: 640 MB/s
I 10 gigabit Ethernet: 1,250 MB/s (latency: ∼ µs)

Infiniband QDR: 12,000 MB/s (latency: ∼ µs)
I for comparison:

PC2-5300 DDR2-SDRAM (dual channel): 10.6 GB/s
PC3-12800 DDR3-SDRAM (dual channel): 25.6 GB/s

→ Why not use the network for database storage?
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Storage Area Network

I Block-based network access to storage
I Seen as logical disks (“give me block 4711 from disk 42”)
I Unlike network file systems (e.g., NFS, CIFS)

I SAN storage devices typically abstract from RAID or physical
disks and present logical drives to the DBMS

I Hardware acceleration and simplified maintainability
I Typically local networks with multiple servers and storage

resources participating
I Failure tolerance and increased flexibility
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Grid or Cloud Storage
Some big enterprises employ clusters with thousands of
commodity PCs (e.g., Google, Amazon):

I system cost↔ reliability and performance,
I use massive replication for data storage.

Spare CPU cycles and disk space can be sold as a service.

Amazon’s “Elastic Computing Cloud (EC2)”
Use Amazon’s compute cluster by the hour (∼ 10 ¢/hour).

Amazon’s “Simple Storage Systems (S3)”
“Infinite” store for objects between 1 Byte and 5 GB in size,
with a simple key 7→ value interface.

I Latency: 100 ms to 1 s (not impacted by load)
I pricing≈ disk drives (but addl. cost for access)

→ Build a database on S3? (↗ Brantner et al., SIGMOD 2008)
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Managing Space

The disk space manager
I abstracts from the gory details of the underlying storage
I provides the concept of a page (typically 4–64 KB) as a unit

of storage to the remaining system components
I maintains the mapping

page number 7→ physical location ,

where a physical location could be, e.g.,
I an OS file name and an offset within that file,
I head, sector, and track of a hard drive, or
I tape number and offset for data stored in a tape library
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Empty Pages
The disk space manager also keeps track of used/free blocks.

1. Maintain a linked list of free pages
I When a page is no longer needed, add it to the list.

2. Maintain a bitmap with one bit for each page
I Toggle bit n when page n is (de-)allocated.

� To exploit sequential access, it may be useful to allocate con-
tiguous sequences of pages. Which of the techniques 1 or 2
would you choose to support this?

This is a lot easier to do with a free page bitmap (option 2).
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Buffer Manager

6 1 4
3

7

1 2 3 4 5 6
7 8 9 10 11 · · ·

main
memory

disk

disk page
free frame

page requests The buffer manager
I mediates between external

storage and main memory,
I manages a designated main

memory area, the buffer pool
for this task.

Disk pages are brought into
memory as needed and loaded into
memory frames.
A replacement policy decides which
page to evict when the buffer is full.
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Interface to the Buffer Manager
Higher-level code requests (pins) pages from the buffer manager
and releases (unpins) pages after use.

pin (pageno)
Request page number pageno from the buffer manager, load
it into memory if necessary. Returns a reference to the frame
containing pageno.

unpin (pageno, dirty)
Release page number pageno, making it a candidate for
eviction. Must set dirty = true if page was modified.

� Why do we need the dirty bit?

Only modified pages need to be written back to disk upon eviction.
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Implementation of pin ()

Function: pin(pageno)1

if buffer pool already contains pageno then2
pinCount (pageno)← pinCount (pageno) + 1 ;3
return address of frame holding pageno ;4

else5
select a victim frame v using the replacement policy ;6
if dirty (v) then7

write v to disk ;8

read page pageno from disk into frame v ;9
pinCount (pageno)← 1 ;10
dirty (pageno)← false ;11
return address of frame v ;12
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Implementation of unpin ()

Function: unpin(pageno, dirty)1

pinCount (pageno)← pinCount (pageno)− 1 ;2
if dirty then3

dirty (pageno)← dirty ;4

� Why don’t we write pages back to disk during unpin ()?

Well, we could . . .
+ transaction recovery a lot simpler (e.g., System R “shadow pages”)
– higher I/O cost (every update implies a write to disk)
– bad response time for writing transaction

This discussion is also known as force (or write-through) vs. write-
back. Actual systems typically implement write-back.
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Replacement Policies

The effectiveness of the buffer manager’s caching functionality
can depend on the replacement policy it uses, e.g.,

Least Recently Used (LRU)
Evict the page whose latest unpin () is longest ago.

LRU-k
Like LRU, but considers k-latest unpin (), not just latest.

Most Recently Used (MRU)
Evict the page that has been unpinned most recently.

Random
Pick a victim randomly.

� What could be the rationales behind each of these strategies?
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Buffer Management in Reality
Prefetching

Buffer managers try to anticipate page requests to overlap
CPU and I/O operations.

I Speculative prefetching: Assume sequential scan and
automatically read ahead.

I Prefetch lists: Some database algorithms can instruct
the buffer manager with a list of pages to prefetch.

Page fixing/hating
Higher-level code may request to fix a page if it may be
useful in the near future (e.g., index pages).
Likewise, an operator that hates a page won’t access it any
time soon (e.g., table pages in a sequential scan).

Partitioned buffer pools
E.g., separate pools for indexes and tables.
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Databases vs. Operating Systems

Hmm. . . Didn’t we just re-invent the operating system?

Yes,
I disk space management and buffer management very much

look like file management and virtual memory in OSs.
But,

I a DBMS may be much more aware of the access patterns of
certain operators (→ prefetching, page fixing/hating),

I concurrency control often calls for a defined order of write
operations,

I technical reasons may make OS tools unsuitable for a
database (e.g., file size limitation, platform independence).
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Databases vs. Operating Systems
In fact, databases and operating systems sometimes interfere.

I Operating system and buffer manager
effectively buffer the same data twice.

I Things get really bad if parts of the
DBMS buffer get swapped out to disk by
OS VM manager.

I Therefore, databases try to turn off OS
functionality as much as possible.
→ Raw disk access instead of OS files. disk

OS buffer

DBMS buffer

(Similar story: DBMS TX management vs. journaling file systems.)
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Database Files

page 0 page 1 page 2 page 3

page 4 page 5 page 6 page 7

file 0

file 1

free

free

I So far we have talked about pages. Their management is
oblivious with respect to their actual content.

I On the conceptual level, a DBMS manages tables of tuples
and indexes (among others).

I Such tables are implemented as files of records:
I A file consists of one or more pages.
I Each page contains one or more records.
I Each record corresponds to one tuple.
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Heap Files
The most important type of files in a database is the heap file. It
stores records in no particular order (in line with, e.g., SQL).

Linked list of pages

header
page

data
page

data
page · · · data

page

data
page

data
page · · · data

page

pages w/
free space

full pages

+ easy to implement
– most pages will end up in free page list
– might have to search many pages to place a (large) record
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Heap Files

Directory of pages

data
page

data
page

data
page

· · ·

I use as space map with information about free page
I granularity as trade-off space↔ accuracy

(range from open/closed bit to exact information)
+ free space search more efficient
– small memory overhead to host directory
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Free Space Management
Which page to pick for the insertion of a new record?

Append Only
Always insert into last page. Otherwise, create a new page.

Best Fit
Reduces fragmentation, but requires searching the entire
space map for each insert.

First Fit
Search from beginning, take first page with enough space.
(→ These pages quickly fill up, and we waste a lot of search
effort in first pages afterwards.)

Next Fit
Maintain cursor and continue searching where search
stopped last time.
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Free Space Witnesses

We can accelerate the search by remembering witnesses:
I Classify pages into buckets, e.g., “75 %–100 % full”,

“50 %–75 % full”, “25 %–50 % full”, and “0 %–25 % full”.
I For each bucket, remember some witness pages.
I Do a regular best/first/next fit search only if no witness is

recorded for the specific bucket.
I Populate witness information, e.g., as a side effect when

searching for a best/first/next fit page.
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Inside a Page

ID NAME SEX
4711 John M
1723 Marc M
6381 Betty F

I record identifier (rid):
〈pageno, slotno〉

I record position (within page):
slotno× bytes per slot

I Tuple deletion?
I record id shouldn’t change
→ slot directory (bitmap)

4 7 1 1 J o h n M 1 7 2 3 M
a r c M 6 3 8 1 B e t t y

F

Header3

no. of records
in this page

1 0 1

slot
directory
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Inside a Page—Variable-Sized Fields

I Variable-sized fields moved to
end of each record.

I Placeholder points to
location.

I �Why?
I Slot directory points to start of

each record.
I Records can move on page.

I E.g., if field size changes.
I Create “forward address” if

record won’t fit on page.
I � Future updates?

4 7 1 1 M J o h n ⊥ 1 7 2 3 M M
a r c ⊥ 6 3 8 1 F B e t t y ⊥ 1 7 2
3 M T i m o t h y ⊥

• •
•

•

Header3

no. of records
in this page

•••

•

forward

slot
directory
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Alternative Page Layouts
We have just populated data pages in a row-wise fashion:

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

a1 b1 c1
c1 d1 a2

b2 c2 d2
d2 a3 b3

c3 d3

page 0

a4 b4 c4
c4 d4

page 1

We could as well do that column-wise:

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

a1 a2 a3
a3 a4

page 0

b1 b2 b3
b3 b4

page 1

· · ·
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Alternative Page Layouts

These two approaches are also known as NSM (n-ary storage
model) and DSM (decomposition storage model).1

I Tuning knob for certain workload types (e.g., OLAP)
I Different behavior with respect to compression.

A hybrid approach is the PAX (Partition
Attributes Accross) layout:

I Divide each page into minipages.
I Group attributes into them.

↗ Ailamaki et al. Weaving Relations for Cache
Performance. VLDB 2001.

mini-
page 0

mini-
page 1

mini-
page 2

mini-
page 3

page 0

1Recently, the terms row-store and column-store have become popular, too.
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Recap

Magnetic Disks
Random access orders of magnitude slower than sequential.

Disk Space Manager
Abstracts from hardware details and maps
page number 7→ physical location.

Buffer Manager
Page caching in main memory; pin ()/unpin () interface;
replacement policy crucial for effectiveness.

File Organization
Stable record identifiers (rids); maintenance with fixed-sized
records and variable-sized fields; NSM vs. DSM.
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	Storage.pdf
	Storage: Disks and Files
	Magnetic Disks
	Sequential vs. Random Access

	I/O Parallelism
	Disk Mirroring---RAID 1
	Disk Striping---RAID 0
	Disk Striping with Parity---RAID 5

	Alternative Storage Techniques
	Solid-State Disks
	Network-Based Storage

	Managing Space
	Free Space Management

	Buffer Manager
	Pinning and Unpinning
	Replacement Policies

	Databases vs. Operating Systems
	Files and Records
	Heap Files
	Inside a Page (Fixed-Length Records)
	Inside a Page (Variable-Length Records)
	Alternative Page Layouts

	Recap





