
Query Processing 7.1 Einführung in Datenbanksysteme

Einführung in Datenbanksysteme

Prof. Dr. Ralf Möller

TUHH

Anfrageverarbeitung

Query Processing 7.2 Einführung in Datenbanksysteme

Danksagung

• Diese Vorlesung basiert auf dem Kurs

Architecture and Implementation of
Database Systems
von Jens Teubner, ETH Zürich

•  Ich bedanke mich für die Bereitstellung des
Materials

SELECT C.CUST ID, C.NAME, SUM (O.TOTAL) AS REVENUE
FROM CUSTOMERS AS C, ORDERS AS O
WHERE C.ZIPCODE BETWEEN 8000 AND 8999
AND C.CUST ID = O.CUST ID

GROUP BY C.CUST ID
ORDER BY C.CUST ID, C.NAME

aggregation

selection

join

sorting

grouping

A DBMS needs to do a number of tasks
I with limited memory resources,
I over large amounts of data,
I yet as fast as possible.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 118

Query Processing

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Optimizer

Executor Parser

Operator Evaluator

Lock
Manager

Transaction
Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 119

Sorting
Sorting is a core database operation with numerous applications:

I A SQL query may explicitly request sorted output:

SELECT A, B, C FROM R ORDER BY A

I Bulk-loading a B+-tree presupposes sorted data.
I Duplicate elimination is particularly easy over sorted input:

SELECT DISTINCT A, B, C FROM R

I Some database operators rely on their input files being
already sorted (some of which meet later in this course).

How can we sort a file that exceeds the available main memory
size by far (let alone the available buffer manager space)?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 120

Two-Way Merge Sort

We start with two-way merge sort, which can sort files of
arbitrary size with only three pages of buffer space.

Two-way merge sort sorts a file with N = 2k pages in multiple
passes, each of them producing a certain number of sorted
sub-files called runs.

I Pass 0 sorts each of the 2k input pages individually and in
main memory, resulting in 2k sorted runs.

I Subsequent passes merge pairs of runs into larger runs. Pass
n produces 2k−n runs.

I Pass k leaves only one run left, the sorted overall result.

During each pass, we read every page in the file. Hence, (k + 1) ·N
page reads and (k + 1) ·N page writes are required to sort the file.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 121

Pass 0 (Input: N = 2k unsorted pages; Output: 2k sorted runs)
1. Read N pages, one page at a time
2. Sort records in main memory.
3. Write sorted pages to disk (each page results in a run).
This pass requires one page of buffer space.

Pass 1 (Input: N = 2k sorted runs; Output: 2k−1 sorted runs)
1. Open two runs r1 and r2 from Pass 0 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new two-page run to disk (page-by-page).
This pass requires three pages of buffer space....

Pass n (Input: 2k−n+1 sorted runs; Output: 2k−n sorted runs)
1. Open two runs r1 and r2 from Pass n− 1 for reading.
2. Merge records from r1 and r2, reading input page-by-page.
3. Write new 2n-page run to disk (page-by-page).
This pass requires three pages of buffer space....

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 122

Illustration / Example
6 5 4 3 4 7 8 9 5 2 1 3 8

5 6 3 4 4 7 8 9 2 5 1 3 8

3 4
5 6

4 7
8 9

1 2
3 5

8

3 4
4 5
6 7
8 9

1 2
3 5
8

1 2 3 3 4 4 5 5 6 7 8 8 9

Pass 0

Pass 1

Pass 2

Pass 3

input file

1-page runs

2-page runs

4-page runs

7-page run

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 123

Two-Way Merge Sort: I/O Behavior
I To sort a file of N pages, we need to read and write N pages

during each pass
→ 2 · N I/O operations per pass.

I The number of passes is 1︸︷︷︸
Pass 0

+ dlog2 Ne︸ ︷︷ ︸
Passes 1 . . . k

.

I Total number of I/O operations:

2 · N ·
(
1 +
⌈
log2 N

⌉)
.

� How many I/Os does it take to sort an 8 GB file?

Assuming a page size of 8 KB, the file spans ≈ 1 mio pages. After
the initial page-wise pass, we need 20 passes to merge:

2 · 1 mio ·
(
1 +
⌈
log2 1 mio

⌉)
= 2 · 1 mio · (1 + 20) = 42 mio I/Os

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 124

Sequential vs. Random Access
Example: Read 1000 blocks of size 8 KB

I random access:
trnd = 1000 · 14.33 ms = 14.33 s

I sequential read:
tseq = ts + tr + 1000 · ttr + 16·1000

63 · ts,track-to-track
= 10 ms + 4.14 ms + 160 ms + 254 ms ≈ 428 ms

The Travelstar 7K200 has 63 sectors per track, with a 1 ms
track-to-track seek time; one 8 KB block occupies 16 sectors.

→ Sequential I/O is much faster than random I/O.
→ Avoid random I/O whenever possible.
→ As soon as we need at least 428 ms

14330 ms = 3 % of a file, we better
read the entire file!

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 13

External Merge Sort

So far we “voluntarily” used only three pages of buffer space.

How could we make effective use of a significantly larger buffer
pool (of, say, B memory frames)?

There are basically two knobs we can turn:
I Reduce the number of initial runs by using the full buffer

space during the in-memory sort.
I Reduce the number of passes by merging more than 2 runs

at a time.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 125

Reducing the Number of Initial Runs

With B frames available in the buffer pool, we can read B pages at
a time during Pass 0 and sort them in memory (↗ slide 122):

Pass 0 (Input: N unsorted pages; Output:
::::::::::::::::::
dN/Be sorted runs)

1. Read N pages,
::::::::::::::::::
B pages at a time

2. Sort records in main memory.
3. Write sorted pages to disk (resulting in

::::::::::
dN/Be runs).

This pass uses
::::::::
B pages of buffer space.

The number of initial runs determines the number of passes we
need to make (↗ slide 124):
→ Total number of I/O operations: 2 · N ·

(
1 +
⌈
log2 dN/Be

⌉)
.

� How many I/Os does it now take to sort an 8 GB file?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 126

Reducing the Number of Passes

With B frames available in the buffer pool, we can merge B− 1
pages at a time (leaving one frame as a write buffer).

Pass n (Input: dN/Be
(B−1)n−1 sorted runs; Output: dN/Be

(B−1)n sorted runs)
1. Open

::::::::::::::::::::
B− 1 runs r1 . . . rB−1 from Pass n− 1 for reading.

2. Merge records from
:::::::::
r1 . . . rB−1, reading input page-by-page.

3. Write new
:::::::::::::::::
B · (B− 1)n-page run to disk (page-by-page).

This pass requires B pages of buffer space.

With B pages of buffer space, we can do a (B− 1)-way merge.
→ Total number of I/O operations: 2 · N ·

(
1 +
⌈
logB−1 dN/Be

⌉)
.

� How many I/Os does it now take to sort an 8 GB file?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 127

External Sorting: I/O Behavior

Sorting N pages with B buffer frames requires

2 · N ·
(
1 +
⌈
logB−1 dN/Be

⌉)
I/O operations.

� What is the access pattern of these I/Os?

I In Pass 0, we read chunks of size B sequentially.
I Everything else is random access.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 128

Blocked I/O
We could improve the I/O pattern by reading blocks of, say, b
pages at once during the merge phases.

I Allocate b pages for each input (instead of just one).
I Reduces per-page I/O cost by a factor of≈ b.
I The price we pay is a decreased fan-in (resulting in an

increased number of passes and more I/O operations).
I In practice, main memory sizes are typically large enough to

sort files with just one merge pass, even with blocked I/O.

� How long does it take to sort 8 GB (counting only I/O cost)?
1000 buffer pages, 8 KB each; 10 ms total disk latency

I Without blocked I/O:≈ 4 · 106 disk seeks (11.6 h) + transfer of
≈ 6 · 106 disk pages (17 min)

I With blocked I/O (32 page blocks): ≈ 6 · 32, 768 disk seeks
(33 min) + transfer of≈ 8 · 106 disk pages (22 min)

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 129

Selection Trees
Choosing the next record from B− 1 (or B/b− 1) input runs can be
quite CPU intensive (B− 2 comparisons).

I Use a selection tree to reduce this cost.
I E.g., “tree of losers” (↗ D. Knuth, TAoCP, vol. 3):

23

95

79

91

985

985

...

23

...

670

91

...

670

...

650

850

605

...

850

...

873

873

...

79

...

142

132

190

190

...

132

...

412

95

...

412

...

278

390

142

...

390

...

901

278

...

901

...

I This cuts the number of comparisons to log2 (B− 1).

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 130

External Sorting—Discussion

I External sorting follows the principle of divide and conquer.
I This leads to a number of independent tasks.
I These tasks can be executed in parallel (think of

multi-processor machines or distributed databases).
I External sorting makes sorting very efficient. In most

practical cases, two passes suffice to sort even huge files.
I There are a number of tweaks to tune sorting even further:

I Replacement sort: Re-load new pages while writing out
initial runs in Pass 0, thus increasing the initial run
length.

I Double buffering: Interleave page loading and input
processing in order to hide disk latency.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 131

Query Plans

RETURN
|

NLJOIN
/---/ \---\

FETCH IXSCAN
/ \ / \

RIDSCN Table: Index: Table:
| G_PRE_SIZE G_PRE_SIZE G_PRE_SIZE
SORT DOC PARENT_IDX DOC
|

IXSCAN
/ \

Index: Table:
G_PRE_SIZE G_PRE_SIZE
PROP_IDX DOC

Actual DB2 execution plan.

I External sorting is one
instance of a (physical)
database operator.

I Operators can be assembled
into a query execution plan.

I Each plan operator performs
one sub-task of a given
query. Together, the
operators of a plan evaluate
the full query.

I We’ll have a deeper look into join operators next.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 132

The Join Operator 1

The join operator 1p is actually a short-hand for a combination of
cross product× and selection σp.

R S

1p ⇔

R S

×

σp

One way to implement 1p is to follow this equivalence:
1. Enumerate all records in the cross product of R and S.
2. Then pick those that satisfy p.

More advanced algorithms try to avoid the obvious inefficiency in
Step 1 (the size of the intermediate result is |R| · |S|).

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 133

Nested Loops Join
The nested loops join is the straightforward implementation of
the σ–× combination:

Function: nljoin (R, S, p)1

foreach record r ∈ R do2
foreach record s ∈ S do3

if 〈r, s〉 satisfies p then4
append 〈r, s〉 to result5

Let NR and NS the number of pages in R and S; let pR and pS be the
number of records per page in R and S.

The total number of disk reads is then
NR + pR · NR︸ ︷︷ ︸

tuples in R

·NS .

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 134

Nested Loops Join: I/O Behavior

The good news about nljoin () is that it needs only three pages
of buffer space (two to read R and S, one to write the result).

The bad news is its enormous I/O cost:
I Assuming pR = pS = 100, NR = 1000, NS = 500, we need to

read 1000 + (5 · 107) disk pages.
I With an access time of 10 ms for each page, this join would

take 140 hours!
I Switching the role of R and S to make S (the smaller one) the

outer relation does not bring any significant advantage.

Note that reading data page-by-page (even tuple-by-tuple) means that every
I/O suffers the disk latency penalty, even though we process both relations in
sequential order.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 135

Block Nested Loops Join

Again we can save random access cost by reading R and S in
blocks of, say, bR and bS pages.

Function: block nljoin (R, S, p)1

foreach bR-sized block in R do2
foreach bS-sized block in S do3

find matches in current R- and S-blocks and4
append them to the result ;

I R is still read once, but now with only dNR/bRe disk seeks.
I S is scanned only dNR/bRe times now, and we need to perform
dNR/bRe · dNS/bSe disk seeks to do this.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 136

Choosing bR and bS
E.g., buffer pool with B = 100 frames, NR = 1000, NS = 500:

0 0

1000 1000

2000 2000

3000 3000

4000 4000

5000 5000

6000 6000

7000 7000

10 20 30 40 50 60 70 80 90

102030405060708090
block size used for reading S (bS)

block size used for reading R (bR)

di
sk

se
ek

s

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 137

In-Memory Join Performance
I Line 4 in block nljoin (R, S, p) implies an in-memory join

between the R- and S-blocks currently in memory.
I Building a hash table over the R-block can speed up this join

considerably.

Function: block nljoin’ (R, S, p)1

foreach bR-sized block in R do2
build an in-memory hash table H for the current R-block ;3
foreach bS-sized block in S do4

foreach record s in current S-block do5
probe H and append matching 〈r, s〉 tuples to result ;6

I Note that this optimization only helps equi-joins.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 138

Index Nested Loops Join
The index nested loops join takes advantage of an index on the
inner relation (swap outer↔ inner if necessary):

Function: index nljoin (R, S, p)1

foreach record r ∈ R do2
probe index using r and append all matching3
tuples to result ;

I The index must be compatible with the join condition p.
I Hash indices, e.g., only support equality predicates.
I Remember the discussion about composite keys in

B+-trees (↗ slide 73).
I Such predicates are also called sargable (SARG: search

argument↗ Selinger et al., SIGMOD 1979)

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 139

I/O Behavior

For each record in R, we use the index to find matching S-tuples.
While searching for matching S-tuples, we incur the following
I/O costs for each tuple in R:

1. Access the index to find its first matching entry: Nidx I/Os.
2. Scan the index to retrieve all n matching rids. The I/O cost

for this is typically negligible.
3. Fetch the n matching S-tuples from their data pages.

I For an unclustered index, this requires n I/Os.
I For a clustered index, this only requires dn/pSe I/Os.

Note that (due to 2 and 3), the cost of an index nested loops join
becomes dependent on the size of the join result.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 140

Index Access Cost
If the index is a B+-tree index:

I A single index access requires the inspection of h pages.9

I If we repeatedly probe the index, however, most of these are
cached by the buffer manager.

I The effective value for Nidx is around 1–3 I/Os.

If the index is a hash index:
I Caching doesn’t help us here (no locality in accesses to hash

table).
I A typical value for Nidx is 1.2 I/Os (due to overflow pages).

Overall, the use of an index (over, e.g., a block nested loops join)
pays off if the join picks out only few tuples from a big table.

9h: B+-tree height
Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 141

Sort-Merge Join
Join computation becomes particularly simple if both inputs are
sorted with respect to the join attribute(s).

I The merge join essentially merges both input tables, much
like we did for sorting.

I Contrast to sorting, however, we need to be careful
whenever a tuple has multiple matches in the other relation:

A B
"foo" 1
"foo" 2
"bar" 2
"baz" 2
"baf" 4

1
B=C

C D
1 false
2 true
2 false
3 true

I Merge join is typically used for equi-joins only.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 142

Function: merge join (R, S,α = β) // α, β: join columns in R, S1

r← position of first tuple in R ; // r, s, s′: cursors over R, S, S2
s← position of first tuple in S ;3
while r 6= eof and s 6= eof do // eof: end of file marker4

while r.α < s.β do5
advance r ;6

while r.α > s.β do7
advance s ;8

s′ ← s ; // Remember current position in S9
while r.α = s′.β do // All R-tuples with same α value10

s← s′ ; // Rewind s to s′11
while r.α = s.β do // All S-tuples with same β value12

append 〈r, s〉 to result ;13
advance s ;14

advance r ;15

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 143

I/O Behavior
I If both inputs are already sorted and there are no

exceptionally long sequences of identical key values, the I/O
cost of a merge join is NR + NS (which is optimal).

I By using blocked I/O, these I/O operations can be done
almost entirely as sequential reads.

I Sometimes, it pays off to explicitly sort a (unsorted) relation
first, then apply merge join. This is particularly the case if a
sorted output is beneficial later in the execution plan.

I The final sort pass can also be combined with merge join,
avoiding one round-trip to disk and back.

� What is the worst-case behavior of merge join?
If both join attributes are constants and carry the same value (i.e.,
the result is the Cartesian product), merge join degenerates into
a nested loops join.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 144

Hash Join
I Sorting effectively brought related tuples into spacial

proximity, which we exploited in the merge join algorithm.
I We can achieve a similar effect with hashing, too.
I Partition R and S into partitions R1, . . . , Rn and S1, . . . , Sn

using the same hash function (applied to the join attributes).

Relation R

Relation S

h

h

Partition 1 (R1 and S1)

Partition 2 (R2 and S2)

Partition 3 (R3 and S3)
...

Partition n (Rn and Sn)

I Observe that Ri 1 Sj = ∅ for all i 6= j.
Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 145

Hash Join

I By partitioning the data, we reduced the problem of joining
to smaller sub-relations Ri and Si.

I Matching tuples are guaranteed to end up together in the
same partition.

I We only need to compute Ri 1 Si (for all i).
I By choosing n properly (i.e., the hash function h), partitions

become small enough to implement the Ri 1 Si as
in-memory joins.

I The in-memory join is typically accelerated using a hash
table, too. We already did this for the block nested loops join
(↗ slide 138).
� Use a different hash function h′ for the in-memory join.
�Why?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 146

Hash Join Algorithm

Function: hash join (R, S,α = β)1

foreach record r ∈ R do2
append r to partition Rh(r.α)3

foreach record s ∈ S do4
append s to partition Sh(s.β)5

foreach partition i ∈ 1, . . . ,n do6
build hash table H for Ri, using hash function h′;7
foreach block in Si do8

foreach record s in current Si-block do9
probe H and append matching tuples to result ;10

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 147

Hash Join—Buffer Requirements

I We’ve assumed that we can create the necessary n
partitions in one pass (note that we want NRi < (B− 1)).

I This works out if R consists of at most≈ (B− 1)2 pages.

� Why (B− 1)2? Why≈?

I We can write out at most B− 1 runs in one pass; each of
them should be at most B− 1 pages in size.

I Hashing doesn’t guarantee us an even distribution. Since
the actual size of each run varies, R must actually be smaller
than (B− 1)2.

I Larger input tables require multiple passes for partitioning.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 148

Hash Join vs. Sort-Merge Join
Provided sufficient buffer space (B &

√
N), hash join and

sort-merge join both require 3 (NR + NS) I/Os.10

I For sort-merge join, both relations need to be smaller than
B(B− 1) (assuming we need to sort before the join), i.e.,

NR < B(B− 1) and NS < B(B− 1) .

I In case of hash join, only the inner relation needs to be
partitioned into (B− 1)-sized chunks, i.e.,

min(NR,NS) . (B− 1)2 .

I The cost for hash join could considerably increase if
partitions aren’t uniformly sized.

10Read/write both relations to partition/sort; read both relations to join.
Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 149

Implementing Grouping and Duplicate Elimination

I Challenge is to find identical tuples in a file.
I This task has obvious similarities to a self-join based on all

of the file’s columns.
→ Could use a hash join-like algorithm or sorting to

implement duplicate elimination or grouping.
I See exercises for further details.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 150

Other Database Operators

Projection π
I Text book-style processing of π implies

(a) discarding unwanted fields and
(b) eliminating duplicates.

I Implementing (a) amounts to a straightforward file scan.
We have mentioned implementations for (b) a moment ago.

I Typically, systems try to avoid (b) whenever possible. In SQL,
duplicate elimination has to be asked for explicitly.

Selection σ
I A straightforward approach to σ is a file scan.
I Alternatively, we can exploit sortedness or take advantage of

an available index.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 151

Orchestrating Operator Evaluation
So far we have assumed that all database operators consume
and produce files (i.e., on-disk items):

· · ·

· · ·
1

file1

π

file2

σ

file3

· · ·

filen

π

I Obviously, this causes a lot of I/O.
I In addition, we suffer from long response times:

I An operator cannot start computing its result before all
its input files are fully generated (“materialized”).

I Effectively, all operators are executed in sequence.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 152

Pipelined Evaluation

I Alternatively, each operator could pass its result directly on
to the next operator (without persisting it to disk first).

I Don’t wait until entire file is created, but propagate output
immediately.

I Start computing results as early as possible, i.e., as soon as
enough input data is available to start producing output.

I This idea is referred to as pipelining.
I The granularity in which data is passed may influence

performance:
I Smaller chunks reduce the response time of the system.
I Larger chunks may improve the effectiveness of

(instruction) caches.
I Actual systems typically operate tuple at a time.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 153

Unix: Pipelines of Processes
Unix uses a similar mechanism to communicate between
processes (“operators”):

find . -size +1000k | xargs file \
| grep -i XML | cut -d: -f1

Execution of this pipe is driven by the rightmost operand:
I To produce a line of output, cut only needs to see the next

line of its input: grep is requested to produce this input.
I To produce a line of output, grep needs to request as many

input lines from the xargs process until it receives a line
containing the string "XML".

I . . .
I Each line produced by the find process is passed through

the pipe until it reaches the cut process and eventually is
echoed to the terminal.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 154

The Volcano Iterator Model
I The calling interface used in database execution runtimes is

very similar to the one used in Unix process pipelines.
I In databases, this interface is referred to as open-next-close

interface or Volcano iterator model.
I Each operator implements the functions

open () Initialize the operator’s internal states.
next () Produce and return the next result tuple.
close () Clean up all allocated resources (typically after

all tuples have been processed).
I All state is kept inside each operator.

↗ Goetz Graefe. Volcano—An Extensibel and Parallel Query Evaluation
System. Trans. Knowl. Data Eng. vol. 6, no. 1, February 1994.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 155

Example: Selection (σ)
I Input operator R, predicate p.

Function: open ()1

R.open () ;2

Function: close ()1

R.close () ;2

Function: next ()1

while ((r← R.next ()) 6= eof) do2
if p(r) then3

return r ;4

return eof ;5

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 156

� How would you implement a Volcano-style nested loops join?

Function: open ()1

R.open () ;2
S.open () ;3
r← R.next () ;4

Function: close ()1

R.close () ;2
S.close () ;3

Function: next ()1

while (r 6= eof) do2
while ((s← S.next ()) 6= eof) do3

if p(r, s) then4
return 〈r, s〉 ;5

S.close () ;6
S.open () ;7
s← S.next () ;8

return eof ;9

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 157

rm
Callout
R <- R.next()

Blocking Operators
I Pipelining reduces memory requirements and response time

since each chunk of input is propagated to the output
immediately.

I Some operators cannot be implemented in such a way.

� Which ones?
I (external) sorting (this is also true for Unix sort)
I hash join
I grouping and duplicate elimination over unsorted input

I Such operators are said to be blocking.
I Blocking operators consume their entire input before they

can produce any output.
I The data is typically buffered (“materialized”) on disk.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 158

Techniques We Saw In This Chapter
Divide and Conquer

Many database algorithms derive their power from
chopping a large input problem into smaller, manageable
pieces, e.g.,

I run generation and merging in external sorting,
I partitioning according to a hash function (hash join).

Blocked I/O
Reading and writing chunks of pages at a time can
significantly reduce the degree of random disk access.
→ This “trick” was applicable to most operators we saw.

Pipelined Processing
The Volcano iterator model can save memory and reduce
response time by avoiding the full materialization of
intermediate results if possible.

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 159

	07-Query-Processing.pdf
	05-query-processing.pdf
	Query Processing
	Sorting
	Two-Way Merge Sort
	External Merge Sort

	Query Plans and Operators
	The Join Operator
	Nested Loops Join
	Block Nested Loops Join
	Index Nested Loops Join
	Sort-Merge Join
	Hash Join
	Grouping and Duplicate Elimination
	Other Database Operators

	Pipelined Operator Execution
	Unix: Pipelines of Processes
	The Volcano Iterator Model
	Blocking Operators

	Techniques We Saw In This Chapter

