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Finding the “Best” Query Plan

SELECT · · ·
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WHERE · · ·
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I We already saw that there may be more than one way to
answer a given query.

I Which one of the join operators should we pick? With
which parameters (block size, buffer allocation, . . . )?

I The task of finding the best execution plan is, in fact, the
holy grail of any database implementation.
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Plan Generation Process

SQL

Parser

Rewriting

Optimizer

Plan

I Parser: syntactical/semantical analysis
I Rewriting: optimizations independent of

the current database state (table sizes,
availability of indexes, etc.)

I Optimizer: optimizations that rely on a
cost model and information about the
current database state

I The resulting plan is then evaluated by
the system’s execution engine.
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Impact on Performance
Finding the right plan can dramatically impact performance.

SELECT L.L PARTKEY, L.L QUANTITY, L.L EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L ORDERKEY = O.O ORDERKEY
AND O.O CUSTKEY = C.C CUSTKEY
AND C.C NAME = ’IBM Corp.’
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I In terms of execution times, these differences can easily
mean “seconds versus days.”
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The SQL Parser
I Besides some analyses regarding the syntactical and

semantical correctness of the input query, the parser creates
an internal representation of the input query.

I This representation still resembles the original query:
I Each SELECT-FROM-WHERE clause is translated into a

query block.

SELECT proj-list
FROM R1, R2, . . ., Rn

WHERE predicate-list
GROUP BY groupby-list
HAVING having-list

→

πproj-list

σhaving-list

grpbygroupby-list

σpredicate-list

×

R1 R2 · · · Rn

query block

I Each Ri can be a base relation or another query block.
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Finding the “Best” Execution Plan
SQL

Parser

Rewriting

Optimizer

Plan

The parser output is fed into a rewrite engine
which, again, yields a tree of query blocks.
It is then the optimizer’s task to come up with
the optimal execution plan for the given query.
Essentially, the optimizer

1. enumerates all possible execution plans,
2. determines the quality (cost) of each plan, then
3. chooses the best one as the final execution plan.

Before we can do so, we need to answer the question
I What is a “good” execution plan at all?
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Cost Metrics

Database systems judge the quality of an execution plan based
on a number of cost factors, e.g.,

I the number of disk I/Os required to evaluate the plan,
I the plan’s CPU cost,
I the overall response time observable by the user as well as

the total execution time.

A cost-based optimizer tries to anticipate these costs and find
the cheapest plan before actually running it.

I All of the above factors depend on one critical piece of
information: the size of (intermediate) query results.

I Database systems, therefore, spend considerable effort into
accurate result size estimates.
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Result Size Estimation
Consider a query block corresponding to a simple SFW query Q.

πproj-list

σpredicate-list

×

R1 R2 · · · Rn

We can estimate the result size of Q based on
I the size of the input tables, |R1|, . . . , |Rn|, and
I the selectivity sel(p) of the predicate predicate-list:

|Q| ≈ |R1| · |R2| · · · |Rn| · sel(predicate-list) .
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Table Cardinalities
If not coming from another query block, the size |R| of an input
table R is available in the DBMS’s system catalogs.
E.g., IBM DB2:

db2 => SELECT TABNAME, CARD, NPAGES
db2 (cont.) => FROM SYSCAT.TABLES
db2 (cont.) => WHERE TABSCHEMA = ’TPCH’;

TABNAME CARD NPAGES
-------------- -------------------- --------------------
ORDERS 1500000 44331
CUSTOMER 150000 6747
NATION 25 2
REGION 5 1
PART 200000 7578
SUPPLIER 10000 406
PARTSUPP 800000 31679
LINEITEM 6001215 207888

8 record(s) selected.
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Estimating Selectivities

To estimate the selectivity of a predicate, we look at its structure.

column = value
sel(·) =

{
1/|I| if there is an index I on column
1/10 otherwise

column1 = column2

sel(·) =


1

max{|I1|,|I2|} if there are indexes on both cols.
1
|Ik|

if there is an index only on col. k
1/10 otherwise

p1 AND p2
sel(·) = sel(p1) · sel(p2)

p1 OR p2
sel(·) = sel(p1) + sel(p2)− sel(p1) · sel(p2)
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Improving Selectivity Estimation

The selectivity rules we saw make a fair amount of assumptions:
I uniform distribution of data values within a column,
I independence between individual predicates.

Since these assumptions aren’t generally met, systems try to
improve selectivity estimation by gathering data statistics.

I These statistics are collected offline and stored in the
system catalog.
I IBM DB2: RUNSTATS ON TABLE ...

I The most popular type of statistics are histograms.
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I Example: Histograms in IBM DB2
SELECT SEQNO, COLVALUE, VALCOUNT

FROM SYSCAT.COLDIST
WHERE TABNAME = ’LINEITEM’

AND COLNAME = ’L_EXTENDEDPRICE’
AND TYPE = ’Q’;

SEQNO COLVALUE VALCOUNT
----- ----------------- --------

1 +0000000000996.01 3001
2 +0000000004513.26 315064
3 +0000000007367.60 633128
4 +0000000011861.82 948192
5 +0000000015921.28 1263256
6 +0000000019922.76 1578320
7 +0000000024103.20 1896384
8 +0000000027733.58 2211448
9 +0000000031961.80 2526512

10 +0000000035584.72 2841576
11 +0000000039772.92 3159640
12 +0000000043395.75 3474704
13 +0000000047013.98 3789768

.

.

.

SYSCAT.COLDIST also
contains information like

I the n most frequent
values (and their
frequency),

I the number of distinct
values in each histogram
bucket.

Histograms may even be
manipulated manually to
tweak the query optimizer.
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Join Optimization
I We’ve now translated the query into a graph of query blocks.

I Query blocks essentially are a multi-way Cartesian
product with a number of selection predicates on top.

I We can estimate the cost of a given execution plan.
I Use result size estimates in combination with the cost

for individual join algorithms in the previous chapter.
We are now ready to enumerate all possible execution plans, i.e.,
all possible 3-way join combinations for each query block.
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How Many Such Combinations Are There?
I A join over n + 1 relations R1, . . . , Rn+1 requires n binary joins.
I Its root-level operator joins sub-plans of k and n− k− 1 join

operators (0 ≤ k ≤ n− 1):

1

k joins
R1, . . . , Rk

n− k− 1 joins
Rk+1, . . . , Rn+1

I Let Ci be the number of possibilities to construct a binary
tree of i inner nodes (join operators):

Cn =
n−1∑
k=0

Ck · Cn−k−1 .
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Catalan Numbers

This recurrence relation is satisfied by Catalan numbers:

Cn =
n−1∑
k=0

Ck · Cn−k−1 =
(2n)!

(n + 1)!n!
,

describing the number of ordered binary trees with n + 1 leaves.

For each of these trees, we can permute the input relations
R1, . . . , Rn+1, leading to

(2n)!

(n + 1)!n!
· (n + 1)! =

(2n)!

n!

possibilities to evaluate an (n + 1)-way join.
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Search Space
The resulting search space is enormous:

number of relations n Cn−1 join trees

2 1 2
3 5 12
4 14 120
5 42 1,680
6 132 30,240
7 429 665,280
8 1,430 17,297,280
10 16,796 17,643,225,600

I And we haven’t yet even considered the use of k different
join algorithms (yielding another factor of k(n−1))!
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Dynamic Programming

The traditional approach to master this search space is the use of
dynamic programming.

Idea:
I Find the cheapest plan for an n-way join in n passes.
I In each pass k, find the best plans for all k-relation

sub-queries.
I Construct the plans in pass k from best i-relation and

(k− i)-relation sub-plans found in earlier passes (1 ≤ i < k).

Assumption:
I To find the optimal global plan, it is sufficient to only

consider the optimal plans of its sub-queries.
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Example: Four-Way Join
Pass 1 (best 1-relation plans)

Find the best access path to each of the Ri individually
(considers index scans, full table scans).

Pass 2 (best 2-relation plans)
For each pair of tables Ri and Rj, determine the best order to
join Ri and Rj (Ri 1 Rj or Rj 1 Ri?):

optPlan({Ri, Rj})← best of Ri 1 Rj and Rj 1 Ri .

→ 12 plans to consider.
Pass 3 (best 3-relation plans)

For each triple of tables Ri, Rj, and Rk, determine the best
three-table join plan, using sub-plans obtained so far:

optPlan({Ri, Rj, Rk})← best of Ri 1 optPlan({Rj, Rk}),
optPlan({Rj, Rk}) 1 Ri, Rj 1 optPlan({Ri, Rk}), . . . .

→ 24 plans to consider.
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Example (cont.)

Pass 4 (best 4-relation plan)
For each set of four tables Ri, Rj, Rk, and Rl, determine the
best four-table join plan, using sub-plans obtained so far:

optPlan({Ri, Rj, Rk, Rl})← best of Ri 1 optPlan({Rj, Rk, Rl}),
optPlan({Rj, Rk, Rl}) 1 Ri, Rj 1 optPlan({Ri, Rk, Rl}), . . . ,
optPlan({Ri, Rj}) 1 optPlan({Rk, Rl}), . . . .

→ 14 plans to consider.

I Overall, we looked at only 50 (sub-)plans (instead of the
possible 120 four-way join plans;↗ slide 175).

I All decisions required the evaluation of simple sub-plans
only (no need to re-evaluate the interior of optPlan(·)).
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Dynamic Programming Algorithm
Function: find join tree dp (q(R1, . . . , Rn))1

for i = 1 to n do2
optPlan({Ri})← access plans (Ri) ;3
prune plans (optPlan({Ri})) ;4

for i = 2 to n do5
foreach S ⊆ {R1, . . . , Rn} such that |S| = i do6

optPlan(S)← ∅ ;7
foreach O ⊂ S do8

optPlan(S)← optPlan(S)∪9
possible joins (optPlan(O), optPlan(S \ O));10

prune plans (optPlan(S)) ;11

return optPlan({R1, . . . , Rn}) ;12

I possible joins (R, S) enumerates the possible joins
between R and S (nested loops join, merge join, etc.).

I prune plans (set) discards all but the best plan from set.
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Dynamic Programming—Discussion

I find join tree dp () draws its advantage from filtering
plan candidates early in the process.

I In our example on slide 177, pruning in Pass 2 reduced
the search space by a factor of 2, and another factor of 6
in Pass 3.

I Some heuristics can be used to prune even more plans:
I Try to avoid Cartesian products.
I Produce left-deep plans only (see next slides).

I Such heuristics can be used as a handle to balance plan
quality and optimizer runtime.
I DB2 UDB: SET CURRENT QUERY OPTIMIZATION = n
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Left/Right-Deep vs. Bushy Join Trees
The algorithm on slide 179 explores all possible shapes a join tree
could take:

1

1

1

· · · · · ·
· · ·
· · ·

left-deep

1

1

· · · · · ·
1

· · · · · ·
bushy

(everything else)

1

· · · 1

· · · 1

· · · · · ·
right-deep

Actual systems often prefer left-deep join trees.11

I The inner relation is always a base relation.
I Allows the use of index nested loops join.
I Easier to implement in a pipelined fashion.
11The seminal System R prototype, e.g., considered only left-deep plans.
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Join Order Makes a Difference
I XPath evaluation over relationally encoded XML data12

I n-way self-join with a range predicate.
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12↗ Grust et al. Accelerating XPath Evaluation in Any RDBMS. TODS 2004.
http://www.pathfinder-xquery.org/
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Join Order Makes a Difference
Contrast the execution plans for a 8- and a 9-step path.

left-deep join tree bushy join tree

I DB2’s optimizer essentially gave up in the face of 9+ joins.
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Joining Many Relations

Dynamic programming still has exponential resource
requirements:

I time complexity: O(3n)

I space complexity: O(2n)

This may still be to expensive
I for joins involving many relations (∼ 10–20 and more),
I for simple queries over well-indexed data (where the right

plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.
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Greedy Join Enumeration
Function: find join tree greedy (q(R1, . . . , Rn))1

worklist← ∅ ;2
for i = 1 to n do3

worklist← worklist ∪ best access plan (Ri) ;4

for i = n downto 2 do5
// worklist = {P1, . . . , Pi}
find Pj, Pk ∈ worklist and 1... such that cost(Pj 1... Pk) is minimal ;6
worklist← worklist \

{
Pj, Pk

}
∪
{(

Pj 1... Pk
)}

;7

// worklist = {P1}
return single plan left in worklist ;8

I In each iteration, choose the cheapest join that can be made
over the remaining sub-plans.

I Observe that find join tree greedy () operates similar to
finding the optimum binary tree for Huffman coding.
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Discussion

Greedy join enumeration:
I The greedy algorithm hasO(n3) time complexity.

I The loop hasO(n) iterations.
I Each iteration looks at all remaining pairs of plans in

worklist. AnO(n2) task.

Other join enumeration techniques:
I Randomized algorithms: randomly rewrite the join tree one

rewrite at a time; use hill-climbing or simulated annealing
strategy to find optimal plan.

I Genetic algorithms: explore plan space by combining plans
(“creating offspring”) and altering some plans randomly
(“mutations”).
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Physical Plan Properties

Consider the query

SELECT O.O ORDERKEY, L.L EXTENDEDPRICE
FROM ORDERS O, LINEITEM L
WHERE O.O ORDERKEY = L.L ORDERKEY

where table ORDERS is indexed with a clustered index OK IDX on
column O ORDERKEY.

Possible table access plans are:

ORDERS I full table scan: estimated I/Os: NORDERS

I index scan: estimated I/Os: NOK IDX + NORDERS.
LINEITEM I full table scan: estimated I/Os: NLINEITEM.
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Since the full table scan is the cheapest access method for both
tables, our join algorithms will select them as the best 1-relation
plans in Pass 1.13

To join the two scan outputs, we now have the choices
I nested loops join,
I hash join, or
I sort both inputs, then use merge join.

Hash join or sort-merge join are probably the preferable
candidates here, incurring a cost of≈ 2(NORDERS + NLINEITEM).

→ overall cost: NORDERS + NLINEITEM + 2(NORDERS + NLINEITEM).

13Dynamic programming and the greedy algorithm happen to do the same
in this example.
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A Better Plan

It is easy to see, however, that there is a better way to evaluate
the query:

1. Use an index scan to access ORDERS. This guarantees that
the scan output is already in O ORDERKEY order.

2. Then only sort LINEITEM and
3. join using merge join.

→ overall cost: (NOK IDX + NORDERS)︸ ︷︷ ︸
1.

+ 2 · NLINEITEM︸ ︷︷ ︸
2./3.

.

Although more expensive as a standalone table access plan, the
use of the index pays off in the overall plan.
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Interesting Orders

I The advantage of the index-based access to ORDERS is that it
provides beneficial physical properties.

I Optimizers, therefore, keep track of such properties by
annotating candidate plans.

I System R introduced the concept of interesting orders,
determined by

I ORDER BY or GROUP BY clauses in the input query, or
I join attributes of subsequent joins (; merge join).

I In prune plans (), retain
I the cheapest “unordered” plan and
I the cheapest plan for each interesting order.
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Query Rewriting

Join optimization essentially takes a set of relations and a set of
join predicates to find the best join order.

By rewriting query graphs beforehand, we can improve the
effectiveness of this procedure.

The query rewriter applies (heuristic) rules, without looking into
the actual database state (no information about cardinalities,
indexes, etc.). In particular, it

I rewrites predicates and
I unnests queries.
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Predicate Simplification
Example: rewrite

SELECT *
FROM LINEITEM L
WHERE L.L TAX * 100 < 5

into

SELECT *
FROM LINEITEM L
WHERE L.L TAX < 0.05

I Predicate simplification may enable the use of indexes and
simplify the detection of opportunities for join algorithms.
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Additional Join Predicates
Implicit join predicates as in

SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c

can be turned into explicit ones:

SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
AND

::::
A.a

::
=

:::::
C.c

This enables plans like
(A 1 C) 1 B .

((A 1 C) would have been a Cartesian product before.)
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Nested Queries
SQL provides a number of ways to write nested queries.

I Uncorrelated sub-query:

SELECT *
FROM ORDERS O
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY

FROM CUSTOMER
WHERE C_NAME = ’IBM Corp.’)

I Correlated sub-query:

SELECT *
FROM ORDERS O
WHERE O.O_CUSTKEY IN

(SELECT C.C_CUSTKEY
FROM CUSTOMER C
WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
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Query Unnesting

I Taking query nesting literally might be expensive.
I An uncorrelated query, e.g., need not be re-evaluated for

every tuple in the outer query.
I Oftentimes, sub-queries are only used as a syntactical way

to express a join (or a semi-join).
I The query rewriter tries to detect such situations and make

the join explicit.
I This way, the sub-query can become part of the regular join

order optimization.

↗Won Kim. On Optimizing an SQL-like Nested Query. ACM TODS, vol. 7,
no. 3, September 1982.
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Summary

Query Parser
Translates input query into (SFW-like) query blocks.

Rewriter
Logical (database state-independent) optimizations;
predicate simplification; query unnesting.

(Join) Optimization
Find “best” query execution plan based on a cost model
(considering I/O cost, CPU cost, . . . ); data statistics
(histograms); dynamic programming, greedy join
enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art. . .
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