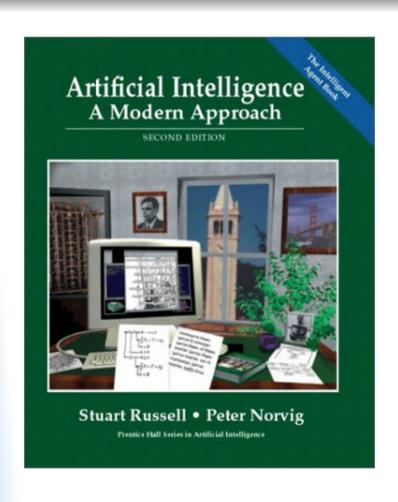
Intelligent Autonomous Agents

Agents and Rational Behavior: Uncertainty

Ralf Möller, Rainer Marrone Hamburg University of Technology

Literature

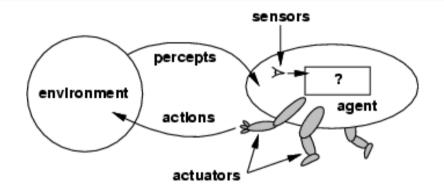


• Chapter 13

Outline

- Agents
- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule
- Bayesian Networks

Recap: Agents and environments



 The agent function maps from percept histories to actions:

$$[f. \ \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- The agent program runs on the physical architecture to produce f
- agent = architecture + program

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence, it seems that a simple standard logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:

" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

Logic:

- Assume my car does not have a flat tire
- Assume A₂₅ works unless contradicted by evidence
- Issues:
 - Which assumptions are reasonable?
 - How to handle contradiction?
 - Possible but theory of preferred models is hard.

Rules with fudge factors (belief in the rule):

- $A_{25} / \rightarrow_{0.3}$ get there on time
- Sprinkler |→ 0.99 WetGrass
- WetGrass |→ 0.7 Rain
- Issues:
 - Problem with semantics
 - Problems with combination, e.g., Sprinkler causes Rain??

Handling uncertainty (cntd.)

- Propositional Logic and Probability Theory
 - Model agent's degree of belief
 - Given the available evidence,
 - A_{25} will get me there on time with probability 0.00001
- Predicate Logic and Probability Theory
 - Can additionally talk about possibly existing objects and possible relations
 - Stay tuned for future lectures ...

Probability

Probabilistic assertions summarize effects of

- Laziness: failure to enumerate exceptions, qualifications, etc.
- Ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge, e.g.,

 $P(A_{25} \mid \text{no reported accidents}) = 0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence, e.g.,

 $P(A_{25} \mid \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A<sub>25</sub> gets me there on time | ... \rangle = 0.04
P(A<sub>90</sub> gets me there on time | ... \rangle = 0.70
P(A<sub>120</sub> gets me there on time | ... \rangle = 0.95
P(A<sub>1440</sub> gets me there on time | ... \rangle = 0.9999
```

- Which action to choose?
 Depends on my preferences for missing flight vs. time spent waiting, etc.
 - Utility theory is used to represent and infer preferences
 - Decision theory = probability theory + utility theory

Probability theory: syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
 e.g., Cavity (do I have a cavity?). Domain is <true, false>
- Discrete random variables
 e.g., Weather is one of < sunny, rainy, cloudy, snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g.,
 - Weather = sunny,
 - Cavity = false (abbreviated as ¬cavity)
 - Cavity = true (abbreviated as cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny v Cavity = false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 - E.g., if the world is described by only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

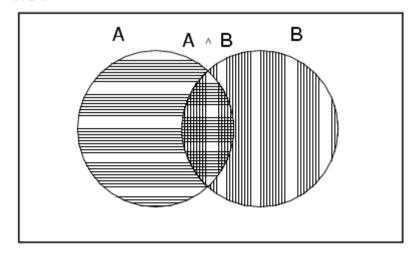
```
Cavity = false \land Toothache = false
Cavity = false \land Toothache = true
Cavity = true \land Toothache = false
Cavity = true \land Toothache = true
```

Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions A, B
 - $0 \leq P(A) \leq 1$
 - P(true) = 1 and P(false) = 0
 - $\bullet P(A \lor B) = P(A) + P(B) P(A \land B)$

True



Example world

Example: Dentist problem with four variables:

Toothache (I have a toothache)

Cavity (I have a cavity)

Catch (steel probe catches in my tooth)

Weather (sunny,rainy,cloudy,snow)



Prior probability

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence

 Probability distribution gives values for all possible assignments:

```
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
```

Full joint probability distribution

 Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

 $P(Weather, Cavity) = a 4 \times 2 \text{ matrix of values}$:

Weather =	sunny	rainy	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

- Full joint probability distribution: all random variables involved
 - **P**(Toothache, Catch, Cavity, Weather)
- Every question about a domain can be answered by the full joint distribution

Conditional probability

Conditional or posterior probabilities

```
e.g., P(cavity | toothache) = 0.8
or: <0.8>
i.e., given that toothache is all I know
```

- (Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., *cavity* is also given, then we have $P(cavity \mid toothache, cavity) = 1$
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability (in terms of uncond. prob.): $P(a \mid b) = P(a \land b) / P(b)$ if P(b) > 0
- Product rule gives an alternative formulation (\land is commutative): $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
- A general version holds for whole distributions, e.g.,
 P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)
 View as a set of 4 × 2 equations, not matrix mult.
 (1,1) P(Weather=sunny | Cavity=true) P(Cavity=true)
 (1,2) P(Weather=sunny | Cavity=false) P(Cavity=false),
- Chain rule is derived by successive application of product rule:

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{1}, \, \dots, & \mathbf{X}_{n}) & = \mathbf{P}(\mathbf{X}_{1}, \dots, & \mathbf{X}_{n-1}) \; \mathbf{P}(\mathbf{X}_{n} \mid \mathbf{X}_{1}, \dots, & \mathbf{X}_{n-1}) \\ & = \mathbf{P}(\mathbf{X}_{1}, \dots, & \mathbf{X}_{n-2}) \; \mathbf{P}(\mathbf{X}_{n-1} \mid \mathbf{X}_{1}, \dots, & \mathbf{X}_{n-2}) \; \mathbf{P}(\mathbf{X}_{n} \mid \mathbf{X}_{1}, \dots, & \mathbf{X}_{n-1}) \\ & = \dots \\ & = \prod_{i=1}^{n} \mathbf{P}(\mathbf{X}_{i} \mid \mathbf{X}_{1}, \, \dots \, , & \mathbf{X}_{i-1}) \end{aligned}$$

Inference by enumeration

• Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ , sum the atomic events where it is true: $P(\varphi) = \sum_{\omega:\omega \neq \varphi} P(\omega)$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega} \not\models_{\phi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
- Unconditional or marginal probability of toothache
- Process is called marginalization or summing out

Marginalization and conditioning

- Let Y, Z be sequences of random variables s.th. Y \cup Z denotes all random variables describing the world
- Marginalization
 - $P(Y) = \sum_{z \text{ in } Z} P(Y, z)$
- Conditioning
 - $P(Y) = \sum_{z \text{ in } Z} P(Y|z) P(z)$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true: $P(\varphi) = \sum_{\omega:\omega \models \varphi} P(\omega)$

• P(cavity \lor *toothache*) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28

 $(P(cavity \lor toothache) = P(cavity) + P(toothache) - P(cavity \land toothache))$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$= 0.016 + 0.064$$

$$0.108 + 0.012 + 0.016 + 0.064$$

$$= 0.4$$

Normalization

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• Denominator P(z) (or P(toothache) in the example before) can be viewed as a normalization constant α

```
P(Cavity \mid toothache) = α P(Cavity, toothache)
= α [P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]
= α [<0.108,0.016> + <0.012,0.064>]
= α <0.12,0.08> = <0.6,0.4>
```

General idea: compute distribution on query variable by fixing evidence variables (Toothache) and summing over hidden variables (Catch)

Inference by enumeration, contd.

Typically, we are interested in the posterior joint distribution of the query variables **Y** given specific values **e** for the evidence variables **E**

Let the hidden variables be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$ then the required summation of joint entries is done by summing out the hidden variables:

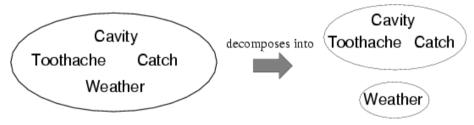
$$P(Y \mid E = e) = \alpha P(Y, E = e) = \alpha \Sigma_h P(Y, E = e, H = h)$$

- The terms in the summation are joint entries because **Y**, **E** and **H** together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity and n denotes the number of random variables
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

A and B are independent iff

$$P(A/B) = P(A)$$
 or $P(B/A) = P(B)$ or $P(A, B) = P(A) P(B)$



P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather)

- 32 entries reduced to 12;
- for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- P(Toothache, Cavity, Catch) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) $P(catch \mid toothache, cavity) = P(catch \mid cavity)$
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity.

```
P(Catch \mid Toothache, Cavity) = P(Catch \mid Cavity)
```

Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
```

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Conditional independence contd.

Write out full joint distribution using chain rule:

```
P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers
```

 In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Bayes' Rule

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

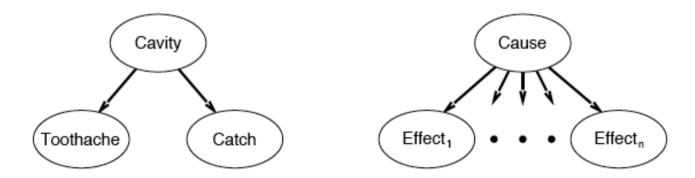
Bayes' Rule (2)

 $P(Cavity|toothache \land catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- = $\alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)$

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$$



Total number of parameters is linear in n