Intelligent Autonomous

Agents

Agents and Rational Behavior
Lecture 4: Bayesian Networks

Ralf Moller, Rainer Marrone
Hamburg University of Technology

Literature

Artificial Intelligence "<&,
A Modern Approach

) EDI

 Chapter 14 (Section 1 and 2)

Stuart Russell * Peter Norvig

Al Settes in Artbicial Totelligence

Outline

Independence and Bayes' Rule
Bayesian Networks

Issues

= If a state is described by n propositions,
then a belief space contains 2" states for
boolean domains (possibly, some have
probability 0)

= — Modeling difficulty: many numbers
must be entered in the first place

= — Computational issue: memory size and
time

toothache -toothache

pcatch |-pcatch |pcatch |-pcatch
cavity |0.108 0.012 0.072 |0.008
~cavity |0.016 0.064 |0.144 0.576

= Toothache and Pcatch are independent given
cavity (or -cavity), but this relation is hidden
in the numbers | [we will verify this]

= Bayesian networks explicitly represent
independence among propositions to reduce
the number of probabilities defining a belief

state

— toothache ~toothache
— pcatch |-pcatch |pcatch |-pcatch
8 cavity |0.108 0.012 0.072 |0.008
ocavity 10016 |0064 |0144 |0576

P(toothache, pcatch,cavity) =

0,108 =

0,108 =

Pltoothache, cavity) * P(pcatch, cavity)

P(cavity)

((0,108 + 0,012) = (0,108 + 0,072))

0,12%0,18 _ 0,0216

= =0,108

0,2 0,2

(0,108 + 0,012 + 0,072 + 0,008)

Bayesian networks

« A simple, graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

e Syntax:
+ a set of nodes, one per variable
+ a directed, acyclic graph (link = "directly influences")
+ a conditional distribution for each node given its parents:
P (X; | Parents (X))

* In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over X; for each combination
of parent values

Example

* Topology of network encodes conditional
independence assertions:

Toothache @

 Weather is independent of the other variables

 Toothache and Catch are conditionally independent
given Cavity

Remember: Conditional
Independence

Random variable X is independent of random variable Y

given random variable Z if, for all x; € dom(X),
yj € dom(Y'), yx € dom(Y') and z,, € dom(Z),

PX=x|Y =y NZ = 2z,)
= PX=x|Y=wNZ=2z,)
= P(X =x|Z = zp).

That is, knowledge of Y's value doesn't affect your belief in
the value of X, given a value of Z.

Example

I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal” knowledge:
A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause Mary to call

The alarm can cause John to call

® 6 o o

Example contd.

P(B)

P(AIB,E)

MM ~| =

m =T =~ | =]

95

.94
29

001

KE)
Earthquake 002
A |P(MIA)
F| Ol

Compactness

A CPT for Boolean X; with k Boolean parents has 2k rows for the

combinations of parent values /@)

Each row requires one number p for X; = true ﬁ
(the number for X; = falseis just 1-p) @ @

If each variable has no more than k parents, the complete network
requires O(n - 2¥) numbers

i.e., grows linearly with n, vs. O(27) for the full joint distribution

For burglarynet, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 2°-1 = 31)

Semantics

The full joint distribution is defined as the product of the local
conditional distributions:

P(B)
.00L

PE)

P(AIB,E)

.95
94
.29
.001

Mm-S
m=m-|=

P(X,X)=TT._, P (X Parents(X))

PJIA) A |P(MIA)

F| 0 F| Ol

e.g., Pfrmaan-ba-e

=P@(/a)P(m/|a)P(a]-b, -e)P(-b)P(-e)

= 0.90x0.7x0.001x0.999x0.998
~ 0.00063

Constructing Bayesian networks

e 1. Choose an ordering of variables X, ... , X,
e 2.Fori=1ton
+ add X; to the network

+ select parents from X;, ... ,X._; such that
P (X; | Parents(X))) = P (X; | X;, ... Xi_;)

This choice of parents guarantees:

P(X.Z’ fas ’XI'I) - ﬂln=1 P(XI /X.Z’ cea gy Xl—l)
(chain rule)

= 17, _;P (X; f Parents(X)))
(by construction)

Example

* Suppose we choose the ordering M, J, A, B, E

Py | M) = P(Q)?

Example

* Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
PA[J, M)=PA[J?PA]J M =PA?

Example

* Suppose we choose the ordering M, J, A, B, E

P(J | M) = P()?No

PA[J, M)=PA/J)? PA]/J M =PA)No
PB|A J, M) =PB/|A?

PB | A, J, M) = P(B)?

Example

* Suppose we choose the ordering M, J, A, B, E

Py | M) = P(J)? No

PA[J, M) =PA/[J?PA][J M =PARNo
PB | A, J, M) =P@B|AR? Yes

P(B | A, J, M) = P(B? No

P(E|B, A.J, M) =PE]|AR?

P(E|B, A J,M) =PE|A B?

Example

* Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No

PA[J, M) =PA/J?PA]/J M=PA? No
PB /A J,M)=PB[A? Yes

PB | A, J, M) = P(B)? No

PE|B, A,J, M) =P(E[A)?No

PE|B A J,M)=PE|A, B? Yes

Example contd.

Burgla

Earthquake

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for
humans!)

Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
instead of 10.

Gaussian density

0 O

Hybrid (discrete+contionous)
networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? | (HarvesD
<
‘ Buys? \

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete++continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost =c|Harvest = h, Subsidy? =true)
= N(a;h + by, 04)(c)
1 l(c— (ath—i—bt))Q)

- of 27re;1;p (_5 oy

Mean C'ost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

Continuous child variables

P(c | h, subsidy) g

P(c | h, —subsidy)

0.4 0.4
0.3 0.3
0.2 0.2
0.1 - 12 0.1 - 0
46 8 « 46] 2
Cost ¢ Harvest A Cost ¢ Harvest

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values

Inference tasks

e —

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts= false)

Conjunctive queries: P(X;, X;|E=e) = P(X;|E=¢)P(X;|X;, E=e¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

Chapter 14.4-5

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(BJj,m) &

= P(B, j,m)/P(j,m) .\}:&/CE)
= aP(B, j,m)

:C!Ee Za P(B;eaaajam) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= a X, 2, P(B)P(e)P(a|B, e)P(j|a)P(m|a)

= aP(B) Y. P(e) 2, P(a|B,e)P(j|la)P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

Chapter 14.4-5

Enumeration algorithm

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) « a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) — ENUMERATE-ALL(VARS[bn], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y« FIRST(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars),e)
else return £, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with ¥ = y

Chapter 14.4-5

Evaluation Tree

P(B) . P(e) ¥, P(a|B, e)P(j|a)P(m|a)

P(b)

Ple)
002

Pre)

P(alb,e) P@Aalbe) P(alb,—e) P@Aalbme)

95 .05 94 .06
AN o)
P(jla) P(j|=a) P(jla) ()/\ P(j|ma)
.90 .05 .90 .05

O O O O

P(m|a) Pm|=a) P(m|a) P(m|=a)
.70 .01 .70 .01
_ ©) U oL ©°) U 9

Enumeration is inefficient: repeated computation
e.g., computes (j|a)P(m|a) for each value of e

Basic Objects

P(B) X, P(e) £, P(a| B, €)P(j|a) P(m|a)

 Track objects called factors /®
e |nitial factors are local CPTs @,}3\@
P(B) P(J|A) P(A|B,E)
_Y_J - ~ J - —~)
fe(B) fi(AD) fa(A,B,E)

* During elimination create new factors

Basic Operations:
Pointwise Product

 Pointwise Product of factors f; and f,
+ for example: f;(A,B) * f,(B,C)= f(A,B,C)

*in general:
fl(Xl,...,Xj,Yl,...,Yk) f,(Y1,..,Y 0, Zq,..0, L) =
Fi(X1yeee X, Y1, YioZ 1y s Z)

* has 2/*k*/entries (if all variables are binary)

Join by pointwise product

A fJ.\!(-‘i) Al fi(A) A f.uEAJ - . : .- :
:: ag:;)l - : (;)5 : 0'1 P(B) 2(1 P(G) Ea P(alBae)P(Jla)P(mla)

A|B|E| fasm(A.B.E) AIB|E]| fasm(A.B. E)

T|T|T 05 * 63 TIT]|T 95

T|T|F 04 * 63 T|IT|F 94

TIF|T 20 * 63 T|F|T 29 Al fom(A)
TIF|F 001 * .63 = T|IF|F 001 T .63
F|T|T 05 * .0005 FIT)|T 05 F | .0005
F|T|F 06 * 0005 FIT|F 06

F|F|T 71 * 0005 FIF|T Tl

F|F|F 999 * 0005 F|F|F 009

Basic Operations: Summing out

« Summing out a variable from a
product of factors

* Move any constant factors outside the
summation

* Add up submatrices in pointwise product
of remaining factors
DS P S L 0 M UL
= f % ¥*

assuming f,, ..., f.do not depend on X

Summing out

P(B) X, P(e) £, P(a|B,€)P(j|a) P(m]a)

AIBE| fam(A B.E) _

T|T[T] 9%*6 | Summingouta [B[E Fasm (B.E)

$;‘ }; gg: -gg T[T .95% .63+ .05*.0005 = .5985
29 % . T|F| .94~ .63+ .06 *.0005 = .5022

T|F|F| .001%.63 — F|T| 29763+ .71*.0005—.1830

FIT|T| .05%.0005 F [F | .00l * .63 +.999 * .0005 — .001129

F{T[F]| .06*.0005

F{F [T] .70 %.0005

FIF [F | .009%.0005

What we have done

P(B‘]* 772»)
= aP(B) Zeﬂ(ﬂz P(a|B e) P(jla) P(m|a)l
B E J M
e) 2P (a \B,e) (7a)fr(a)
2P (alB,e)fi(a) fula)
6’% afA(a b,e)fi(a)fula)
(b

cPe)far(b,e) (sum out A)

£asu(b) (sum out E)
= afp(b) X fpan(b)

T
Q
VTV
Svjvs eI v vy

Variable ordering

Different selection of variables lead to
different factors of different size.

Every choice yields a valid execution
Different intermediate factors

Time and space requirements depend on
the largest factor constructed

Heuristic may help to decide on a good
ordering

Irrelevant variables

Consider the query P(JohnCalls|Burglary = true) ®
P(J|b) = aP(b) ¥ P(e) X Plalb,e)P(J]a) X P(m|a) ﬁ
Sum over m is identically 1; A is irrelevant to the query @ @

Thm 1: YV is irrelevant unless Y € Ancestors({ X } UE)

Here, X = .JohnCalls, E={Burglary}, and
Ancestors({ X} UE) = { Alarm, Earthquake}
so MaryCualls is irrelevant

Markov Blanket

« Markov blanket: Parents + children + children’s parents

 Node is conditionally independent of all other nodes in
network, given its Markov Blanket

Moral Graph

 The moral graph is an undirected graph that is

obtained as follows:
+ connect all parents of all nodes
+ make all directed links undirected

 Note:

+ the moral graph connects each node to all nodes of its

Markov blanket

= jt is already connected to parents and children
= now it is also connected to the parents of its children

e

3

®

()
AT

Dyl
OBNO

Irrelevant variables continued:

e m-separation:
+ Ais m-separated from B by C iff it is separated by C in the
moral graph

 Example: Q'G

* J is m-separated from E by A Q

Y O

Theorem 2: Yis irrelevant if it is m-separated from X by E

* Example:
For P(JohnCalls|Alarm =true), both
Burglary and Earthquake are irrelevant

Approximate Inference
In Bayesian Network

 Monte Carlo algorithm

+ Widely used to estimate quantities that are difficult to calculate
exactly

+ Randomized sampling algorithm
+ Accuracy depends on the number of samples
+ Two families

= Direct sampling

= Markov chain sampling

Inference by stochastic
simulation

Basic idea:
1) Draw N samples from a sampling distribution 5"

2) Compute an approximate posterior probability P

3) Show this converges to the true probability I
Outline: @

— Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

Example in simple case

C P(S)

—
Lo P

(P(C) ='5> Sampling

L

(|t 80 >

e

f .20

[Cloudy, Sprinkler, Rain, WetGrass]

[true, , ,]
[true, false, ,]
[true, false, true,]

[true, false, true, true]

o D
Estimating
t t .99
- 90 N = 1000
. o0 N(Rain=true) = N([_, _, true, _]) =511
f

P(Rain=true) = 0.511

Sampling from empty network

* Generating samples from a network that has no
evidence associated with it (empty network)
* Basic idea

+ sample a value for each variable in topological order
+ using the specified conditional probabilities

function PRIOR-SAMPLE(On) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X4...., X))

X < an event with n elements
for: = 1 tondo
r; < a random sample from P (X, | parents(X;))
given the values of Parents(X;) in x
return x

Properties

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II[_ P(a;|parents(X;)) = P(xy...x,)
I.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x0.8x09=0.324 = P(t, f, t,1)
Let Npg(aq...x,) be the number of samples generated for event x4, ... 7,

Then we have

A

j\lim Plxy,....x,) = A}im Nps(xy,....2,)/N
— Spg(il?l, Ce ,;’I?n)
= P(zy...1p)

That is, estimates| derived from PRIORSAMPLE are consistent

Shorthand: P(xy.....x,) ~ P(xy .. .1,

What if evidence is given?

» Sampling as defined above would
generate cases that cannot be used

Rejection Sampling

* Used to compute conditional
probabilities

e Procedure

* Generating sample from prior distribution
specified by the Bayesian Network

* Rejecting all that do not match the
evidence

+ Estimating probability

Rejection Sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of ’(X|e)
local variables: N, a vector of counts over .\, initially zero

for j=1to Ndo
X «— PRIOR-SAMPLE(bn)
if x is consistent with e then
N[1] < N[z]+1 where = is the value of X in x
return NORMALIZE(N[A])

Rejection Sampling Example

Let us assume we want to estimate P(Rain|Sprinkler = true)
with 100 samples

100 samples
+ 73 samples => Sprinkler = false
+ 27 samples => Sprinkler = true
= 8 samples => Rain = true
= 19 samples => Rain = false

P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)

Problem
+ |t rejects too many samples

Analysis of rejection sampling

P(Xle) = aNpg(X, e) (algorithm defn.)
= Npg(X,e)/Npg(e) (normalized by Npg(e))
~P(X,e)/Ple) (property of PRIORSAMPLE)
= P(Xle) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

Likelihood Weighting

e Goal

* Avoiding inefficiency of rejection
sampling

e |dea

* Generating only events consistent with
evidence

* Each event is weighted by likelihood that
the event accords to the evidence

Likelyhood Weighting
Example D

C | P(S)
Tl G
1 .50

P(Rain|Sprinkler=true,
WetGrass = true)7
Samplmg
The weight is set to 1.0
+ Sample from P(Cloudy) = (0.5,0.5) => true
* Sprinkler is an evidence variable with value true
w €& w * PASprinkler=true | Cloudy = true) = 0.1
* Sample from P(Rain/Cloudy=true)=(0.8,0.2) => true
* WetGrass is an evidence variable with value true

8/ 0(5 gv * P(WetGrass=true |Sprinkler=true, Rain = true) =

¢ [true, true, true, true] with weight 0.099
Estimating

+ Accumulating weights to either Rain=true or Rain=false
+ Normalize

e o~ o |2
- =
O
o

P(R)

-

80

20

Likelyhood Weighting
Example

C | P(S) C | P(R)

r| .10 tr | .80

7| .50 120

P(Rain|Cloudy=true,
WetGrass = true)7
Sampling
¢+ Cloudy is an evidence
w € w * ACloudy = true) = 0.5
¢+ Sprinkler no evidence
Sample from P(Sprinkler| Cloudy=true)=(0.1, 0.9) false
+ Sample from P(Rain/Cloudy=true)=(0.8,0.2) => true
+ WetGrass is an evidence variable with value true

8/ 4(-5 w * AWetGrass=true |Sprinkler=false, Rain = true) =

* [true, false, true, true] with weight 0.45

Likelihood analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = HéZIP(:i parents(Z;))

Note: pays attention to evidence in ancestors only

— somewhere “in between” prior and
posterior distribution (Sprinkier) (Rain)

Weight for a given sample z. e is

w(z,e) = H;n:1P(€-"i|])(l‘”€"’7'f5(Ei))

Weighted sampling probability is
Sws(z,e)w(z,e)
= Hé _P(z|parents(Z;)) 1I'_P(e;|parents(E;))
= P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight

Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

X, w <« WEIGHTED-SAMPLE(bn)

W x|« W]|z| + w where z is the value of X in x
return NORMALIZE(W/[X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X < an event with n elements; w+« 1
for :=1ton do
if X; has a value z; in e
then w— w x P(X,= ;| parents(X;))
else ;< a random sample from P(X; | parents(X;))
return x, w

Markov Chain Monte Carlo

Let’s think of the network as being in a particular
current state specifying a value for every variable

MCMC generates each event by making a random
change to the preceding event

The next state is generated by randomly sampling a
value for one of the nonevidence variables X,
conditioned on the current values of the variables

in the MarkovBlanket of X.

Likelihood Weighting only takes into account the
evidences of the parents.

With Sprinkler =true, WetGrass =true, there are four states:

—

I (G
G

=D
<

Wander about for a while, average what you see

-

R o

Markov Chain Monte

" | P(R

Carlo Example AE] S

.80
20

. f
e Query P(Rain|Sprinkler = true, WetGrass = true) F 7 oo
« Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]

* The following steps are executed repeatedly:

+ Cloudy is sampled, given the current values of its MarkovBlanket
variables

So, we sample from P(Cloudy/Sprinkler= true, Rain=false)
Suppose the result is Cloudy = false.

+ Now current state is [false, true, false, true] and counts are updated

+ Rain is sampled, given the current values of its MarkovBlanket
variables

So, we sample from P(Rain/Cloudy=false,Sprinkler=true,
WetGrass=true)

Suppose the result is Rain = true.
* Then current state is [false, true, true, true]

« After all the iterations, let’s say the process visited 20 states where rain

is true and 60 states where rain is false then the answer of the query is
NORMALIZE((20,60))=(0.25,0.75)

MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N|.X], a vector of counts over X, initially zero
7., the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in
for j=1to Ndo
for each Z; in Z do
sample the value of Z; in x from P(Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] < N|z| 4+ 1 where z is the value of X in x
return NORMALIZE(IN[X])

Can also choose a variable to sample at random each time

Summary

Bayesian networks provide a natural representation
for (causally induced) conditional independence
Topology + CPTs = compact representation of joint
distribution

Generally easy for domain experts to construct

Exact inference by variable elimination
polytime on polytrees, NP-hard on general graphs
space can be exponential as well
Approximate inference based on sampling and
counting help to overcome complexity of exact
inference

