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Literature

•  Chapter 14 (Section 1 and 2)



Outline

•  Agents
•  Uncertainty
•  Probability
•  Syntax and Semantics
•  Inference
•  Independence and Bayes' Rule
•  Bayesian Networks



§  If a state is described by n propositions, 
then a belief space contains 2n states for 
boolean domains (possibly, some have 
probability 0) 

§ → Modeling difficulty: many numbers 
must be entered in the first place 

§ → Computational issue: memory size and 
time 

Issues



§  Toothache and Pcatch are independent given 
cavity (or ¬cavity), but this relation is hidden 
in the numbers ! [we will verify this] 
 

§  Bayesian networks explicitly represent 
independence among propositions to reduce 
the number of probabilities defining a belief 
state 

pcatch ¬pcatch pcatch ¬pcatch 

cavity 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



pcatch ¬pcatch pcatch ¬pcatch 

cavity 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



Bayesian networks

•  A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

•  Syntax:
w  a set of nodes, one per variable
w  a directed, acyclic graph (link ≈ "directly influences")
w  a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))


•  In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



Example

•  Topology of network encodes conditional 
independence assertions:







•  Weather is independent of the other variables
•  Toothache and Catch are conditionally independent 

given Cavity



Remember: Conditional 
Independence



Example

•  I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

•  Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

•  Network topology reflects "causal" knowledge:
w  A burglar can set the alarm off
w  An earthquake can set the alarm off
w  The alarm can cause Mary to call
w  The alarm can cause John to call



Example contd.



Compactness

•  A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

•  Each row requires one number p for Xi = true  
(the number for  Xi = false is just 1-p)

•  If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

•  i.e., grows linearly with n, vs. O(2n) for the full joint distribution

•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Semantics

The full joint distribution is defined as the product of the local 
conditional distributions:



P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))


e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)

= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)
= 0.90x0.7x0.001x0.999x0.998 
≈ 0.00063 






n 



Constructing Bayesian networks

•  1. Choose an ordering of variables X1, … ,Xn
•  2. For i = 1 to n

w  add Xi to the network  


w  select parents from X1, … ,Xi-1 such that
P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)


This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1)
(chain rule)

 = πi =1P (Xi | Parents(Xi))
(by construction)

n 

n 



•  Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)?


Example



•  Suppose we choose the ordering M, J, A, B, E


P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?


Example



•  Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? 
P(B | A, J, M) = P(B)?

Example



•  Suppose we choose the ordering M, J, A, B, E

P(J | M) = P(J)? No
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)?
P(E | B, A, J, M) = P(E | A, B)?

Example



•  Suppose we choose the ordering M, J, A, B, E 


P(J | M) = P(J)? No 
P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No
P(B | A, J, M) = P(B | A)? Yes
P(B | A, J, M) = P(B)? No
P(E | B, A ,J, M) = P(E | A)? No
P(E | B, A, J, M) = P(E | A, B)? Yes

Example



Example contd.

•  Deciding conditional independence is hard in noncausal directions
•  (Causal models and conditional independence seem hardwired for 

humans!)
•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed  

instead of 10.



Gaussian density

µ	




Hybrid (discrete+contionous) 
networks



Continuous child variables



Continuous child variables









Evaluation Tree



Basic Objects

•  Track objects called factors
•  Initial factors are local CPTs 
 
 


•  During elimination create new factors




Basic Operations:  
Pointwise Product

•  Pointwise Product of factors f1 and f2
w for example: f1(A,B) * f2(B,C)= f(A,B,C)
w  in general:  

 f1(X1,...,Xj,Y1,…,Yk) *f2(Y1,…,Yk,Z1,…,Zl)=  
f1(X1,...,Xj,Y1,…,Yk,Z1,…,Zl)

w has 2j+k+l entries (if all variables are binary)



Join by pointwise product



Basic Operations: Summing out

•  Summing out a variable from a 
product of factors
w Move any constant factors outside the 

summation
w Add up submatrices in pointwise product 

of remaining factors 
𝛴x  f1*  …*fk  =  f1*…*fi*𝛴x  fi+1*…*fk�
               =  f1*…*fi*  fX  
 
assuming f1, …, fi do not depend on X



Summing out

Summing out a 



What we have done



Variable ordering

•  Different selection of variables lead to 
different factors of different size.

•  Every choice yields a valid execution
w Different intermediate factors 


•  Time and space requirements depend on 
the largest factor constructed

•  Heuristic may help to decide on a good 
ordering 


•  What else can we do?????



Irrelevant variables



Markov Blanket

•  Markov blanket: Parents + children + children’s parents
•  Node is conditionally independent of all other nodes in 

network, given its Markov Blanket



Moral Graph

•  The moral graph is an undirected graph that is 
obtained as follows:
w  connect all parents of all nodes
w  make all directed links undirected

•  Note:
w  the moral graph connects each node to all nodes of its 

Markov blanket
§  it is already connected to parents and children
§  now it is also connected to the parents of its children



Irrelevant variables continued:

•  m-separation:
w  A is m-separated from B by C iff it is separated by C in the 

moral graph
•  Example:

w  J is m-separated from E by A 
 
 
 
 


•  Example: 

Theorem 2: Y is irrelevant if it is m-separated from X by E 



Approximate Inference  
In Bayesian Network

•  Monte Carlo algorithm
w  Widely used to estimate quantities that are difficult to calculate 

exactly
w  Randomized sampling algorithm
w  Accuracy depends on the number of samples
w  Two families

§  Direct sampling
§  Markov chain sampling



Inference by stochastic 
simulation



Example in simple case

Cloudy 

WetGrass 

Sprinkler Rain 

S  R  P(W) 

______________ 

t  t  .99 

t  f  .90 

f  t  .90 

f  f  .00 

P(C)=.5 

C  P(R) 

________ 

t  .80 

f  .20 

C  P(S) 

_______
_ 

t  .10 

f  .50 

[Cloudy, Sprinkler, Rain, WetGrass] 

[true,         ,       ,       ] 

[true, false,       ,       ] 

[true, false, true,       ] 

[true, false, true, true] 

Sampling 

N = 1000 
N(Rain=true) = N([ _ , _ , true, _ ]) = 511 
P(Rain=true) = 0.511 

Estimating 



Sampling from empty network

•  Generating samples from a network that has no 
evidence associated with it (empty network)

•  Basic idea
w  sample a value for each variable in topological order
w  using the specified conditional probabilities



Properties



What if evidence is given?

•  Sampling as defined above would 
generate cases that cannot be used



•  Used to compute conditional 
probabilities

•  Procedure
w Generating sample from prior distribution 

specified by the Bayesian Network
w Rejecting all that do not match the 

evidence
w Estimating probability

Rejection Sampling



Rejection Sampling



•  Let us assume we want to estimate P(Rain|Sprinkler = true) 
with 100 samples

•  100 samples
w  73 samples => Sprinkler = false
w  27 samples => Sprinkler = true

§  8 samples => Rain = true
§  19 samples =>  Rain = false

•  P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)

•  Problem
w  It rejects too many samples

Rejection Sampling Example



Analysis of rejection sampling



Likelihood Weighting

•  Goal
w Avoiding inefficiency of rejection 

sampling

•  Idea
w Generating only events consistent with 

evidence
w Each event is weighted by likelihood that 

the event accords to the evidence



•  P(Rain|Sprinkler=true,  
            WetGrass = true)?

•  Sampling
w  The weight is set to 1.0
w  Sample from P(Cloudy) = (0.5,0.5) => true
w  Sprinkler is an evidence variable with value  true 

w ç w * P(Sprinkler=true | Cloudy = true) = 0.1
w  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true
w  WetGrass is an evidence variable with value true

w çw * P(WetGrass=true |Sprinkler=true, Rain = true) = 
0.099

w  [true, true, true, true] with weight 0.099
•  Estimating

w  Accumulating weights to either Rain=true or Rain=false
w  Normalize

Likelyhood Weighting 
Example



•  P(Rain|Cloudy=true,  
            WetGrass = true)?

•  Sampling
w  Cloudy is an evidence  

 w ç w * P(Cloudy = true) = 0.5
w  Sprinkler no evidence 

Sample from P(Sprinkler| Cloudy=true)=(0.1, 0.9) false
w  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true
w  WetGrass is an evidence variable with value true

w çw * P(WetGrass=true |Sprinkler=false, Rain = true) = 
0.45

w  [true, false, true, true] with weight 0.45

Likelyhood Weighting 
Example



Likelihood analysis



Likelihood weighting



•  Let’s think of the network as being in a particular 
current state specifying a value for every variable

•  MCMC generates each event by making a random 
change to the preceding event

•  The next state is generated by randomly sampling a 
value for one of the nonevidence variables Xi, 
conditioned on the current values of the variables 
in the MarkovBlanket of Xi

•  Likelihood Weighting only takes into account the 
evidences of the parents.

Markov Chain Monte Carlo





•  Query P(Rain|Sprinkler = true, WetGrass = true)
•  Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]

•  The following steps are executed repeatedly:
w  Cloudy is sampled,  given the current values of its MarkovBlanket 

variables
So, we sample from P(Cloudy|Sprinkler= true, Rain=false)
Suppose the result is Cloudy = false.

w  Now current state is [false, true, false, true] and counts are updated
w  Rain is sampled, given the current values of its MarkovBlanket 

variables
So, we sample from P(Rain|Cloudy=false,Sprinkler=true, 
WetGrass=true)
Suppose the result is Rain = true.

w  Then current state is [false, true, true, true]
•  After all the iterations, let’s say the process visited 20 states where rain 

is true and 60 states where rain is false then the answer of the query is 
NORMALIZE((20,60))=(0.25,0.75)

Markov Chain Monte  
Carlo Example



MCMC

Z 



Summary

•  Bayesian networks provide a natural representation 
for (causally induced) conditional independence

•  Topology + CPTs = compact representation of joint 
distribution

•  Generally easy for domain experts to construct
•  Exact inference by variable elimination

w  polytime on polytrees, NP-hard on general graphs
w  space can be exponential as well

•  Approximate inference based on sampling and 
counting help to overcome complexity of exact 
inference


