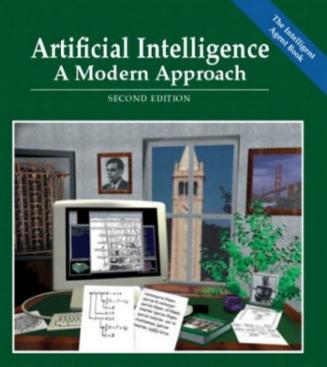
Intelligent Autonomous Agents Agents and Rational Behavior Lecture 4: Bayesian Networks

Ralf Möller, Rainer Marrone Hamburg University of Technology

Literature



Stuart Russell • Peter Norvig Prentice Hall Series in Artificial Intelligence • Chapter 14 (Section 1 and 2)

Outline

- Agents
- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule
- Bayesian Networks

Issues

- If a state is described by n propositions, then a belief space contains 2ⁿ states for boolean domains (possibly, some have probability 0)
- Modeling difficulty: many numbers must be entered in the first place
- Computational issue: memory size and time

	toothache		toothache	
	pcatch	¬pcatch	pcatch	¬pcatch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

- Toothache and Pcatch are independent given cavity (or ¬cavity), but this relation is hidden in the numbers ! [we will verify this]
- Bayesian networks explicitly represent independence among propositions to reduce the number of probabilities defining a belief state

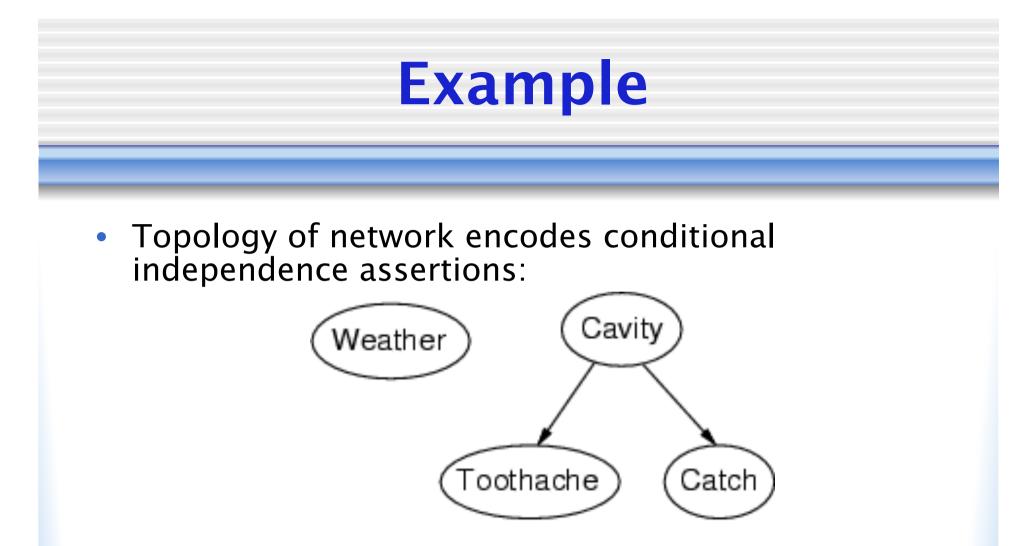
		toothache		- toothache	
		pcatch	-pcatch	pcatch	-pcatch
г (u	cavity	0.108	0.012	0.072	0.008
<u> </u>	-cavity	0.016	0.064	0.144	0.576
$P(toothache, pcatch, cavity) = \frac{P(toothache, cavity) * P(pcatch, cavity)}{P(cavity)}$					

 $0,108 = \frac{((0,108 + 0,012) * (0,108 + 0,072))}{(0,108 + 0,012 + 0,072 + 0,008)}$

$$0,108 = \frac{0,12*0,18}{0,2} = \frac{0,0216}{0,2} = 0,108$$

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link \approx "directly influences")
 - a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values



- *Weather* is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Remember: Conditional Independence

Random variable X is independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

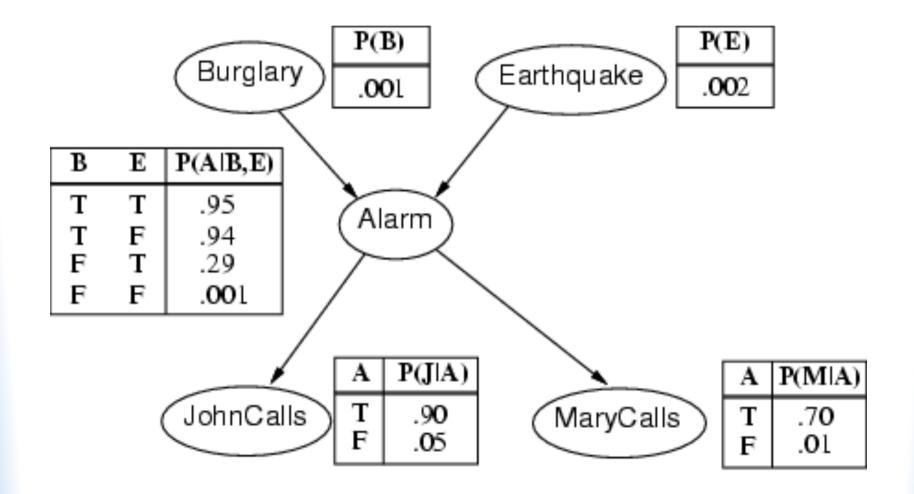
$$P(X = x_i | Y = y_j \land Z = z_m)$$

= $P(X = x_i | Y = y_k \land Z = z_m)$
= $P(X = x_i | Z = z_m).$

That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.

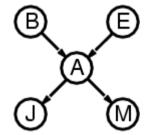
- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.



Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)

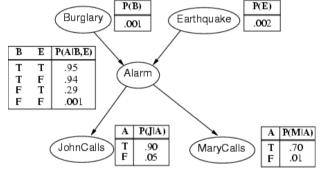


- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- i.e., grows linearly with *n*, vs. *O(2ⁿ)* for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1} P(X_i | Parents(X_i))$$



e.g., **P**(*j* ∧ *m* ∧ *a* ∧ ¬*b* ∧ ¬*e*)

= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)= 0.90×0.7×0.001×0.999×0.998≈ 0.00063

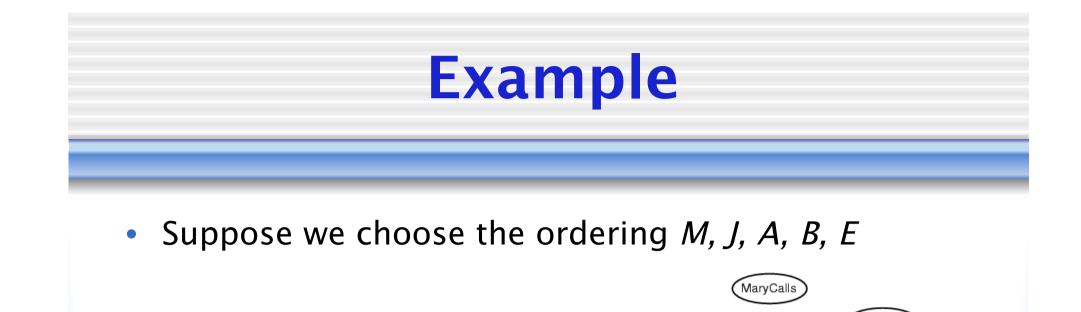
Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For *i* = 1 to *n*
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1})$

This choice of parents guarantees:

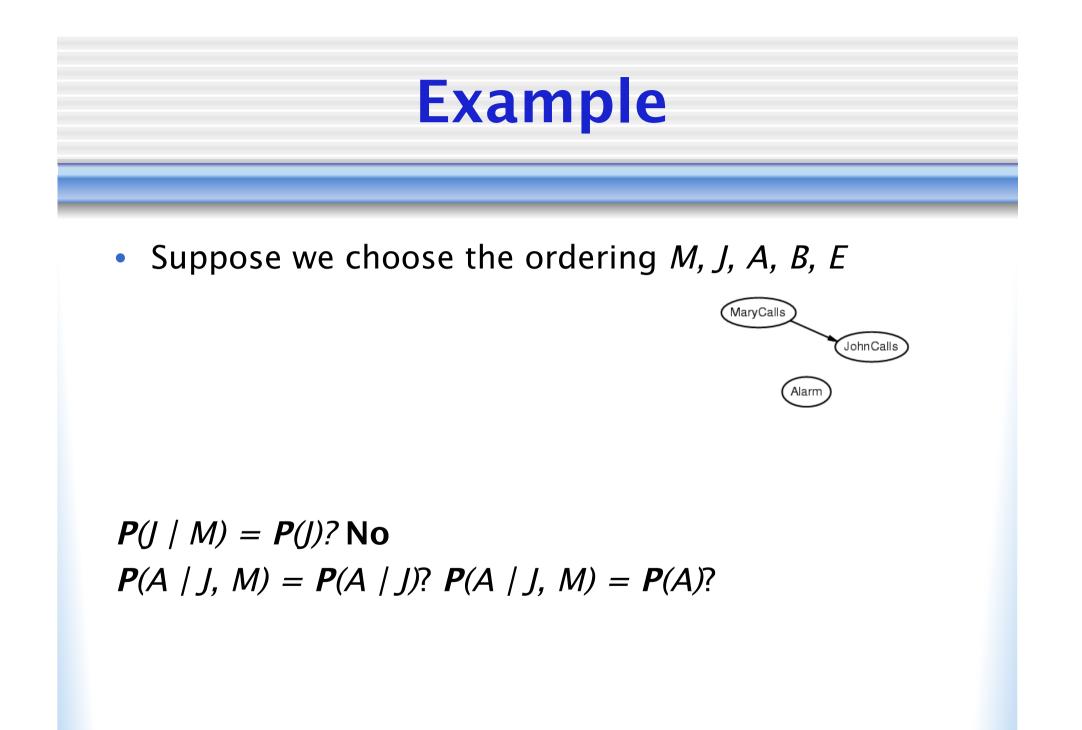
 $P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i | X_1, ..., X_{i-1})$ (chain rule)

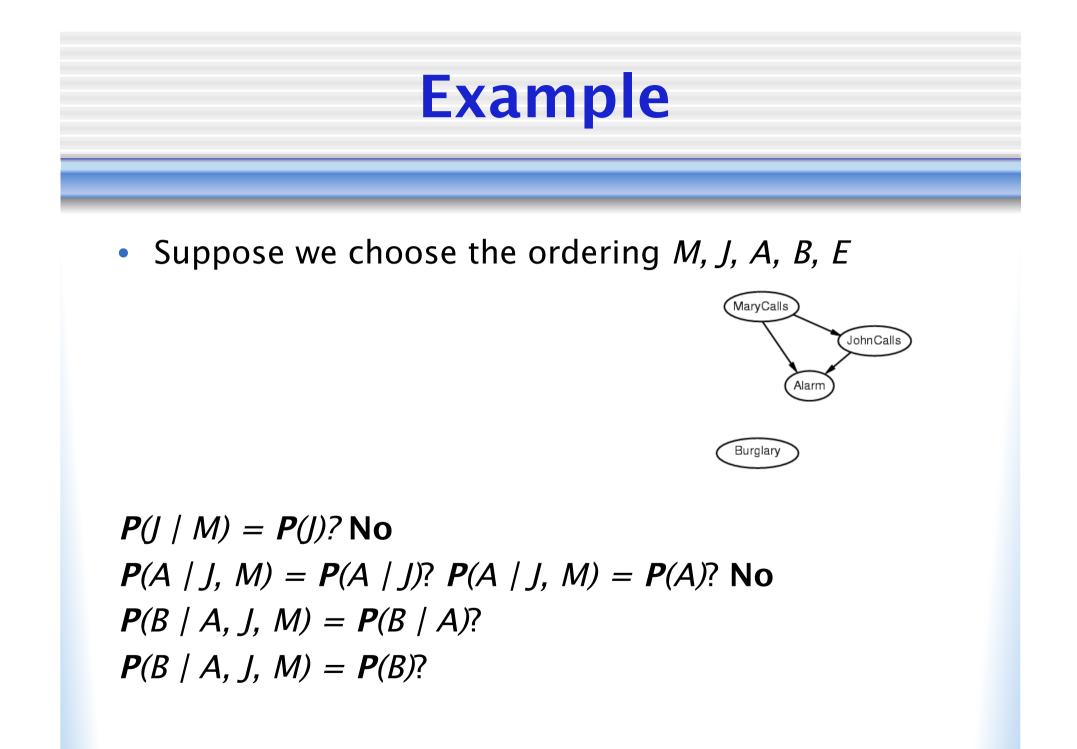
 $= \pi_{i=1} P(X_i \not| Parents(X_i))$ (by construction)



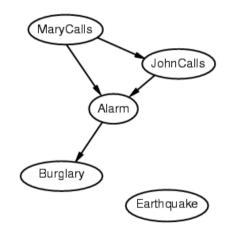
JohnCalls

P(J | M) = P(J)?



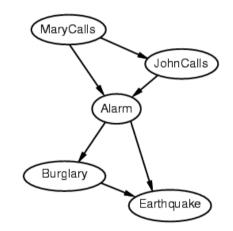


• Suppose we choose the ordering M, J, A, B, E



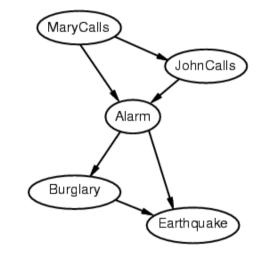
P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A, J, M) = P(E | A)? P(E | B, A, J, M) = P(E | A, B)?

• Suppose we choose the ordering M, J, A, B, E



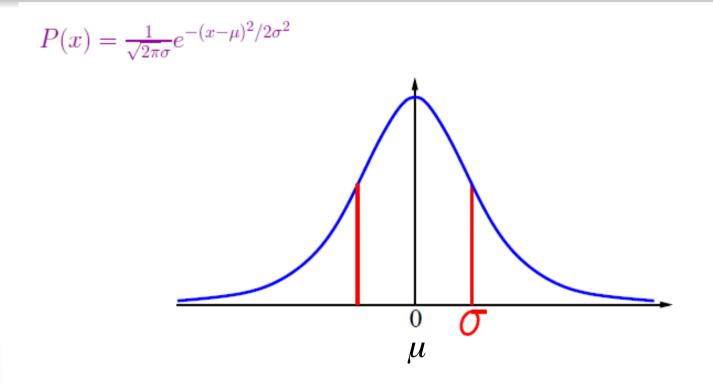
P(J | M) = P(J)? No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No P(B | A, J, M) = P(B | A)? Yes P(B | A, J, M) = P(B)? No P(E | B, A, J, M) = P(E | A)? No P(E | B, A, J, M) = P(E | A, B)? Yes

Example contd.



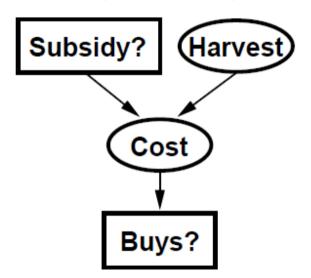
- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed instead of 10.

Gaussian density



Hybrid (discrete+contionous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)



Option 1: discretization—possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)

2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

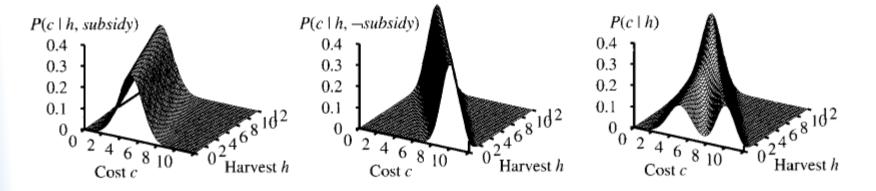
$$P(Cost = c | Harvest = h, Subsidy? = true)$$

= $N(a_th + b_t, \sigma_t)(c)$
= $\frac{1}{\sigma_t \sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{c - (a_th + b_t)}{\sigma_t}\right)^2\right)$

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works OK if the **likely** range of *Harvest* is narrow

Continuous child variables



All-continuous network with LG distributions

 \Rightarrow full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Inference tasks

Simple queries: compute posterior marginal $P(X_i | E = e)$ e.g., P(NoGas | Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $\mathbf{P}(X_i, X_j | \mathbf{E} = \mathbf{e}) = \mathbf{P}(X_i | \mathbf{E} = \mathbf{e})\mathbf{P}(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

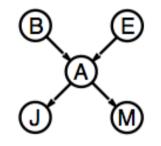
Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network: $\mathbf{P}(B|j,m)$ $= \mathbf{P}(B,j,m)/P(j,m)$ $= \alpha \mathbf{P}(B,j,m)$ $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$



Rewrite full joint entries using product of CPT entries:
$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) \\ &= \alpha \mathbf{P}(B) \ \Sigma_e \ P(e) \ \Sigma_a \ \mathbf{P}(a|B,e) P(j|a) P(m|a) \end{split}$$

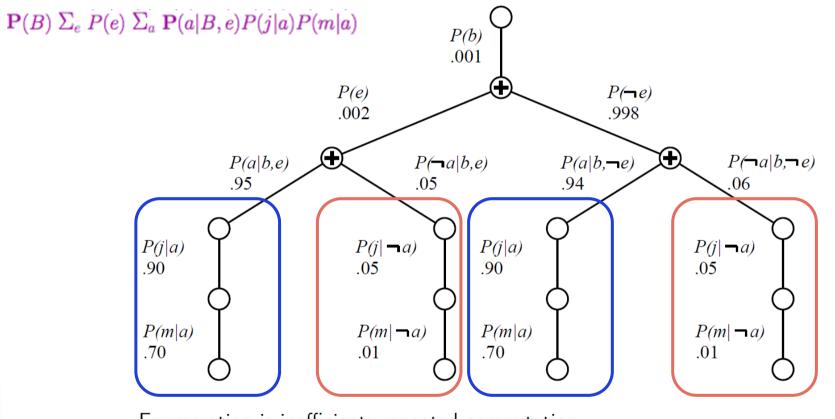
Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function ENUMERATION-Ask(X, e, bn) returns a distribution over X
   inputs: X_i, the query variable
              e, observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
         \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(\text{VARS}[bn], \mathbf{e})
   return NORMALIZE(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{FIRST}(vars)
   if Y has value y in e
         then return P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e)
         else return \Sigma_y P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{REST}(vars), e_y)
              where \mathbf{e}_{y} is e extended with Y = y
```

Chapter 14.4-5 5

Evaluation Tree

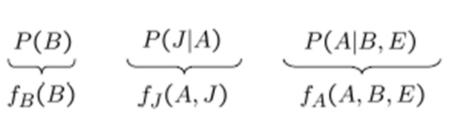


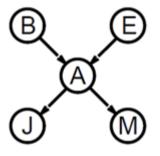
Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Basic Objects

$\mathbf{P}(B) \Sigma_e P(e) \Sigma_a \mathbf{P}(a|B,e) P(j|a) P(m|a)$

- Track objects called factors
- Initial factors are local CPTs





During elimination create new factors

Basic Operations: Pointwise Product

- Pointwise Product of factors **f**₁ and **f**₂
 - for example: $\mathbf{f}_{1}(A,B) * \mathbf{f}_{2}(B,C) = \mathbf{f}(A,B,C)$
 - in general:

$$\mathbf{f}_{1}(X_{1},...,X_{j},Y_{1},...,Y_{k}) * \mathbf{f}_{2}(Y_{1},...,Y_{k},Z_{1},...,Z_{l}) = \mathbf{f}_{1}(X_{1},...,X_{j},Y_{1},...,Y_{k},Z_{1},...,Z_{l})$$

has 2^{j+k+l} entries (if all variables are binary)

Join by pointwise product

Α	$f_{JM}(A)$		Α	fj
Т	.9 * .7	=	Т	
F	.05 * .01		F	

Α	$f_J(A)$	Α	$f_M(A)$
Т	.9	Т	.7
F	.05	F	.01

=

$\mathbf{P}(B) \Sigma_e P(e) \Sigma_a \mathbf{P}(a|B,e) P(j|a) P(m|a)$

Α	В	Е	$f_{AJM}(A, B, E)$
Т	Т	Т	.95 * .63
Т	Т	F	.94 * .63
Т	F	Т	.29 * .63
Т	F	F	.001 * .63
F	Т	Т	.05 * .0005
F	Т	F	.06 * .0005
F	F	Т	.71 * .0005
F	F	F	.999 * .0005

 $f_{AJM}(A, B, E)$ Т T .95.94F T .29т .001F Т \mathbf{F} т .05 \mathbf{F} F .06.71 F т F F F .999

Α	$f_{JM}(A)$
Т	.63
F	.0005

Basic Operations: Summing out

- Summing out a variable from a product of factors
 - Move any constant factors outside the summation
 - Add up submatrices in pointwise product of remaining factors $\Sigma_x f_1^* ...^* f_k = f_1^* ...^* f_i^* \Sigma_x f_{i+1}^* ...^* f_k$ $= f_1^* ...^* f_i^* f_{\overline{x}}$

assuming $\mathbf{f}_1, \dots, \mathbf{f}_i$ do not depend on X

Summing out

$\mathbf{P}(B) \Sigma_e P(e) \Sigma_a \mathbf{P}(a|B,e) P(j|a) P(m|a)$

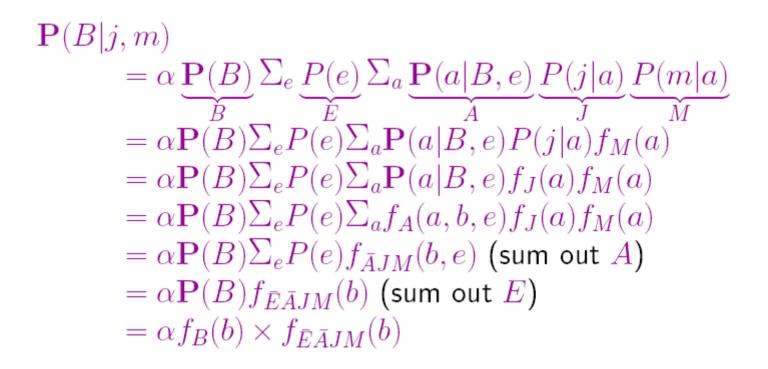
Α	В	E	$f_{AJM}(A, B, E)$
Т	Т	Т	.95 * .63
Т	Т	F	.94 * .63
Т	F	Т	.29 * .63
Т	F	F	.001 * .63
F	Т	Т	.05 * .0005
F	Т	F	.06 * .0005
F	F	Т	.71 * .0005
F	F	F	.999 * .0005

Summing	out	a	

	>
	\neg

В	Е	$f_{\bar{A}JM}(B,E)$
Т	Т	.95 * .63 + .05 * .0005 = .5985
Т	F	.94 * .63 + .06 * .0005 = .5922
F	Т	.29 * .63 + .71 * .0005 = .1830
F	F	.001 * .63 + .999 * .0005 = .001129

What we have done



Variable ordering

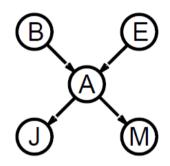
- Different selection of variables lead to different factors of different size.
- Every choice yields a valid execution
 Different intermediate factors
- Time and space requirements depend on the largest factor constructed
- Heuristic may help to decide on a good ordering
- What else can we do?????

Irrelevant variables

Consider the query P(JohnCalls|Burglary=true)

 $P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b, e) P(J|a) \sum_{m} P(m|a)$

Sum over m is identically 1; M is **irrelevant** to the query

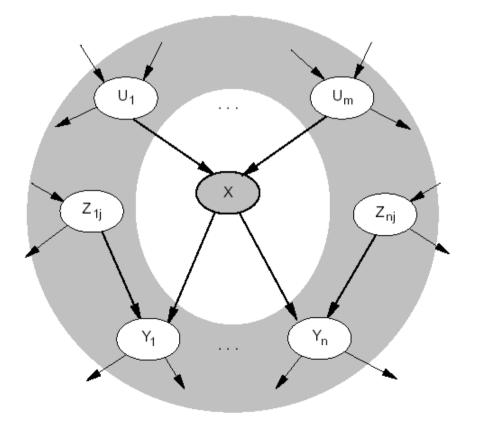


Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

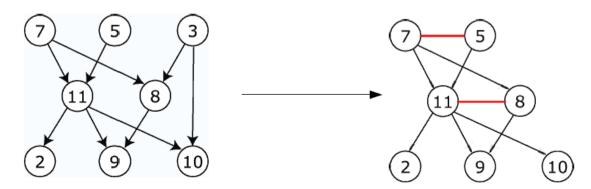
Markov Blanket

- Markov blanket: Parents + children + children's parents
- Node is conditionally independent of all other nodes in network, given its Markov Blanket



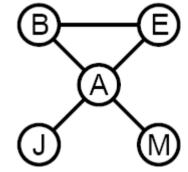
Moral Graph

- The moral graph is an undirected graph that is obtained as follows:
 - connect all parents of all nodes
 - make all directed links undirected
- Note:
 - the moral graph connects each node to all nodes of its Markov blanket
 - it is already connected to parents and children
 - now it is also connected to the parents of its children



Irrelevant variables continued:

- m-separation:
 - A is m-separated from B by C iff it is separated by C in the moral graph
- Example:
 - J is m-separated from E by A



Theorem 2: Y is irrelevant if it is m-separated from X by E

• Example:

For P(JohnCalls|Alarm = true), both Burglary and Earthquake are irrelevant

Approximate Inference In Bayesian Network

- Monte Carlo algorithm
 - Widely used to estimate quantities that are difficult to calculate exactly
 - Randomized sampling algorithm
 - Accuracy depends on the number of samples
 - Two families
 - Direct sampling
 - Markov chain sampling

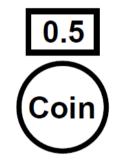
Inference by stochastic simulation

Basic idea:

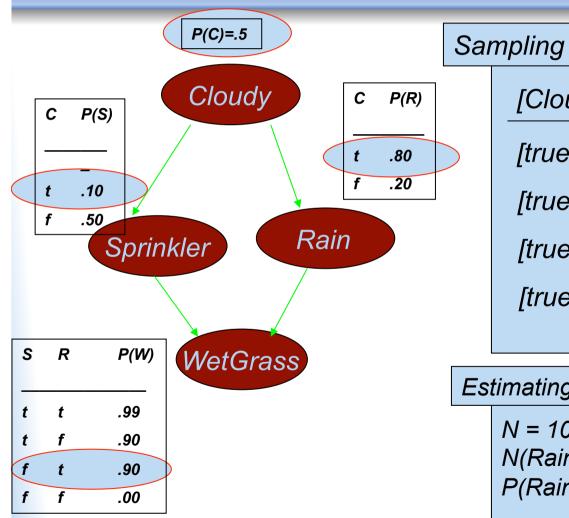
- 1) Draw N samples from a sampling distribution S
- 2) Compute an approximate posterior probability \hat{P}
- 3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior



Example in simple case



[Cloudy, Sprinkler, Rain, WetGrass]

[true, , ,]

[true, false, ,]

[true, false, true,]

[true, false, true, true]

Estimating

N = 1000*N*(*Rain=true*) = *N*([_ , _ , *true*, _]) = 511 P(Rain=true) = 0.511

Sampling from empty network

- Generating samples from a network that has no evidence associated with it (*empty* network)
- Basic idea
 - sample a value for each variable in topological order
 - using the specified conditional probabilities

```
function PRIOR-SAMPLE(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1, \ldots, X_n)

\mathbf{x} \leftarrow an event with n elements

for i = 1 to n do

x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))

given the values of Parents(X_i) in \mathbf{x}

return \mathbf{x}
```

Properties

Probability that PRIORSAMPLE generates a particular event $S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i)) = P(x_1 \dots x_n)$ i.e., the true prior probability

E.g., $S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1 \dots x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent Shorthand: $\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

What if evidence is given?

 Sampling as defined above would generate cases that cannot be used

Rejection Sampling

- Used to compute conditional probabilities
- Procedure
 - Generating sample from prior distribution specified by the Bayesian Network
 - Rejecting all that do not match the evidence
 - Estimating probability

Rejection Sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)local variables: N, a vector of counts over X, initially zero

for j = 1 to N do $\mathbf{x} \leftarrow PRIOR-SAMPLE(bn)$ if \mathbf{x} is consistent with \mathbf{e} then $\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x} return NORMALIZE($\mathbf{N}[X]$)

Rejection Sampling Example

- Let us assume we want to estimate P(Rain|Sprinkler = true) with 100 samples
- 100 samples
 - 73 samples => Sprinkler = false
 - 27 samples => Sprinkler = true
 - 8 samples => Rain = true
 - 19 samples => Rain = false
- P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)
- Problem
 - It rejects too many samples

Analysis of rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X, \mathbf{e})$ (algorithm defn.) $= \mathbf{N}_{PS}(X, \mathbf{e}) / N_{PS}(\mathbf{e})$ (normalized by $N_{PS}(\mathbf{e})$) $\approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e})$ (property of PRIORSAMPLE) $= \mathbf{P}(X|\mathbf{e})$ (defn. of conditional probability)

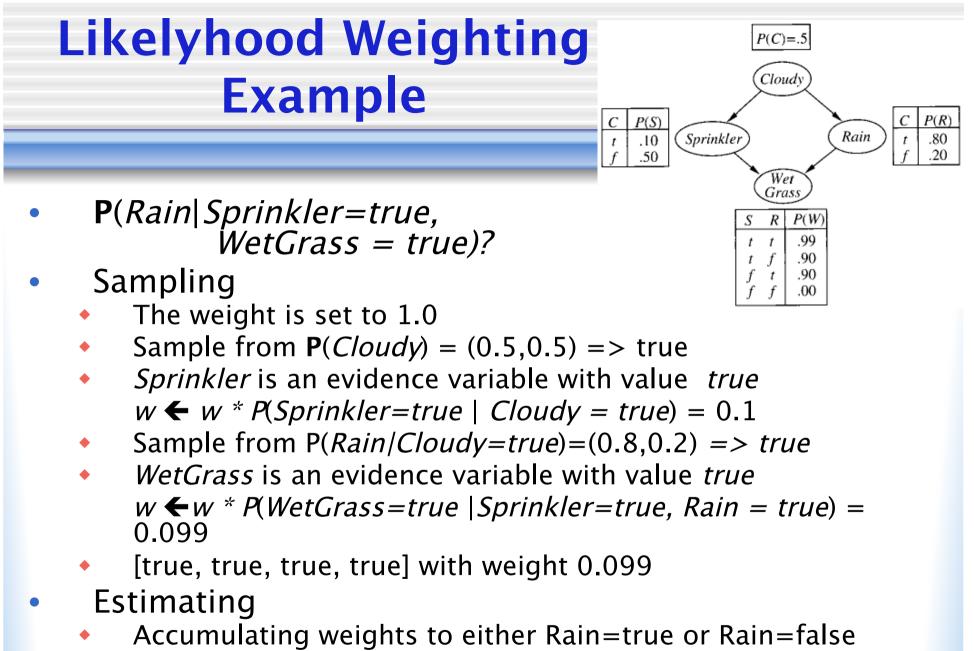
Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

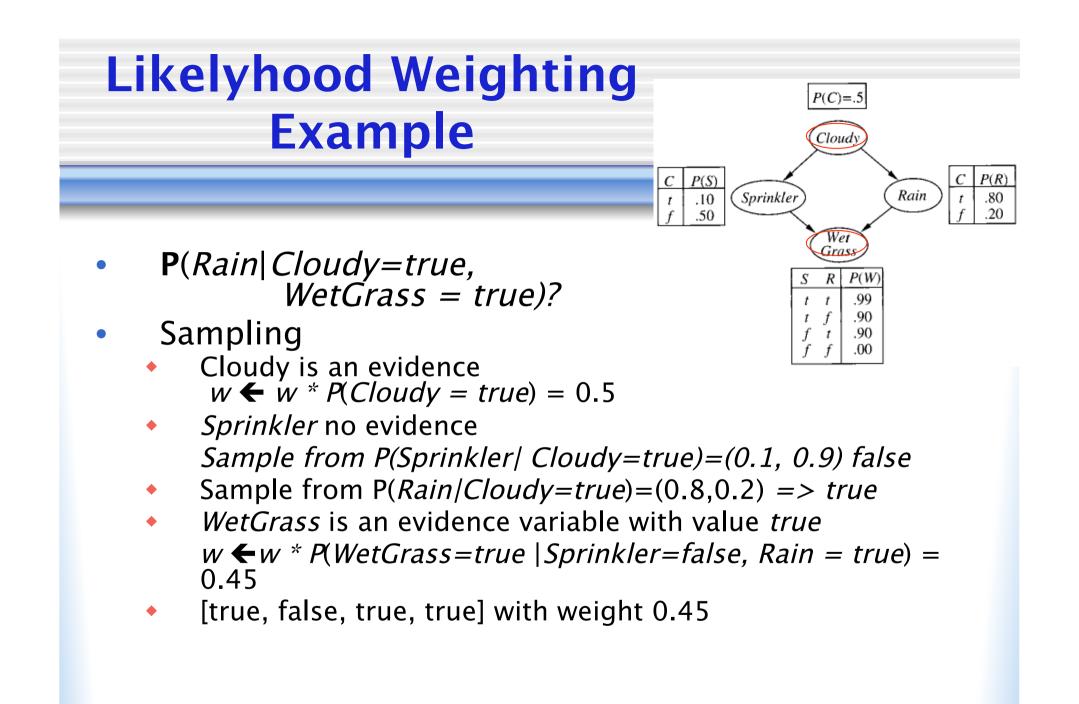
 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood Weighting

- Goal
 - Avoiding inefficiency of rejection sampling
- Idea
 - Generating only events consistent with evidence
 - Each event is weighted by likelihood that the event accords to the evidence



Normalize

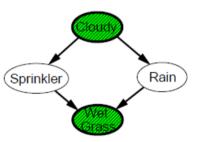


Likelihood analysis

Sampling probability for WEIGHTEDSAMPLE is $S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$ Note: pays attention to evidence in **ancestors** only \Rightarrow somewhere "in between" prior and posterior distribution Weight for a given sample \mathbf{z}, \mathbf{e} is $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$ Weighted sampling probability is $S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$ $= \prod_{i=1}^{l} P(z_i | parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i | parents(E_i))$

 $= P(\mathbf{z}, \mathbf{e})$ (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight



Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)local variables: W, a vector of weighted counts over X, initially zero

```
for j = 1 to N do

\mathbf{x}, w \leftarrow \text{WEIGHTED-SAMPLE}(bn)

\mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x}

return NORMALIZE(\mathbf{W}[X])
```

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

```
\mathbf{x} \leftarrow \text{an event with } n \text{ elements; } w \leftarrow 1
for i = 1 to n do
if X_i has a value x_i in e
then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
return \mathbf{x}, w
```

Markov Chain Monte Carlo

- Let's think of the network as being in a particular current state specifying a value for every variable
- MCMC generates each event by making a random change to the preceding event
- The next state is generated by randomly sampling a value for one of the nonevidence variables X_i, conditioned on the current values of the variables in the MarkovBlanket of X_i
- Likelihood Weighting only takes into account the evidences of the parents.

With Sprinkler = true, WetGrass = true, there are four states:



Wander about for a while, average what you see

Markov Chain Monte Carlo *Example*

- Query P(Rain|Sprinkler = true, WetGrass = true)
- Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]
- The following steps are executed repeatedly:
 - Cloudy is sampled, given the current values of its MarkovBlanket variables

P(C)=.5

Cloudy

Wet Grass

R = P(W)

.99 .90 .90 $C \mid P(R)$

.80

20

Rain

C P(S)

.10

.50

Sprinkler

So, we sample from *P*(*Cloudy*/*Sprinkler= true, Rain=false*) Suppose the result is Cloudy = false.

- Now current state is [false, true, false, true] and counts are updated
- Rain is sampled, given the current values of its MarkovBlanket variables

So, we sample from *P*(*Rain*/*Cloudy=false*,*Sprinkler=true*, *WetGrass=true*)

Suppose the result is Rain = true.

- Then current state is [false, true, true, true]
- After all the iterations, let's say the process visited 20 states where rain is true and 60 states where rain is false then the answer of the query is NORMALIZE((20,60))=(0.25,0.75)

MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
x, the current state of the network, initially copied from e
initialize x with random values for the variables in Z
for j = 1 to N do
for each Z_i in Z do
sample the value of Z_i in x from P(Z_i|mb(Z_i))
given the values of MB(Z_i) in x
N[x] \leftarrow N[x] + 1 where x is the value of X in x
return NORMALIZE(N[X])
```

Can also choose a variable to sample at random each time

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct
- Exact inference by variable elimination
 - polytime on polytrees, NP-hard on general graphs
 - space can be exponential as well
- Approximate inference based on sampling and counting help to overcome complexity of exact inference