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Literature


•  Chapter 14 (Section 1 and 2)
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•  Inference

•  Independence and Bayes' Rule

•  Bayesian Networks




§  If a state is described by n propositions, 
then a belief space contains 2n states for 
boolean domains (possibly, some have 
probability 0) 

§ → Modeling difficulty: many numbers 
must be entered in the first place 

§ → Computational issue: memory size and 
time 

Issues




§  Toothache and Pcatch are independent given 
cavity (or ¬cavity), but this relation is hidden 
in the numbers ! [we will verify this] 
 

§  Bayesian networks explicitly represent 
independence among propositions to reduce 
the number of probabilities defining a belief 
state 

pcatch ¬pcatch pcatch ¬pcatch 

cavity
 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



pcatch ¬pcatch pcatch ¬pcatch 

cavity
 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

toothache ¬toothache 



Bayesian networks


•  A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions


•  Syntax:

w  a set of nodes, one per variable

w  a directed, acyclic graph (link ≈ "directly influences")

w  a conditional distribution for each node given its parents:


P (Xi | Parents (Xi))




•  In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values




Example


•  Topology of network encodes conditional 
independence assertions:














•  Weather is independent of the other variables

•  Toothache and Catch are conditionally independent 

given Cavity




Remember: Conditional 
Independence




Example


•  I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?


•  Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls


•  Network topology reflects "causal" knowledge:

w  A burglar can set the alarm off

w  An earthquake can set the alarm off

w  The alarm can cause Mary to call

w  The alarm can cause John to call




Example contd.




Compactness


•  A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values


•  Each row requires one number p for Xi = true  
(the number for  Xi = false is just 1-p)


•  If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers


•  i.e., grows linearly with n, vs. O(2n) for the full joint distribution


•  For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)




Semantics


The full joint distribution is defined as the product of the local 
conditional distributions:






P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))




e.g., P(j ∧ m ∧ a ∧ ¬b ∧ ¬e)




= P (j | a) P (m | a) P (a | ¬b, ¬e) P (¬b) P (¬e)


= 0.90x0.7x0.001x0.999x0.998 
≈ 0.00063 










n 



Constructing Bayesian networks


•  1. Choose an ordering of variables X1, … ,Xn

•  2. For i = 1 to n


w  add Xi to the network  



w  select parents from X1, … ,Xi-1 such that


P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)




This choice of parents guarantees:



P (X1, … ,Xn) 
= πi =1 P (Xi | X1, … , Xi-1)

(chain rule)




 
= πi =1P (Xi | Parents(Xi))

(by construction)


n 

n 



•  Suppose we choose the ordering M, J, A, B, E


P(J | M) = P(J)?




Example




•  Suppose we choose the ordering M, J, A, B, E




P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?




Example




•  Suppose we choose the ordering M, J, A, B, E


P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? 

P(B | A, J, M) = P(B)?


Example




•  Suppose we choose the ordering M, J, A, B, E


P(J | M) = P(J)? No

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)?

P(E | B, A, J, M) = P(E | A, B)?


Example




•  Suppose we choose the ordering M, J, A, B, E 



P(J | M) = P(J)? No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No

P(B | A, J, M) = P(B | A)? Yes

P(B | A, J, M) = P(B)? No

P(E | B, A ,J, M) = P(E | A)? No

P(E | B, A, J, M) = P(E | A, B)? Yes


Example




Example contd.


•  Deciding conditional independence is hard in noncausal directions

•  (Causal models and conditional independence seem hardwired for 

humans!)

•  Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed  

instead of 10.




Gaussian density


µ	





Hybrid (discrete+contionous) 
networks




Continuous child variables




Continuous child variables










Evaluation Tree




Basic Objects


•  Track objects called factors

•  Initial factors are local CPTs 
 
 



•  During elimination create new factors






Basic Operations:  
Pointwise Product


•  Pointwise Product of factors f1 and f2

w for example: f1(A,B) * f2(B,C)= f(A,B,C)

w  in general:  

 f1(X1,...,Xj,Y1,…,Yk) *f2(Y1,…,Yk,Z1,…,Zl)=  

f1(X1,...,Xj,Y1,…,Yk,Z1,…,Zl)


w has 2j+k+l entries (if all variables are binary)




Join by pointwise product




Basic Operations: Summing out


•  Summing out a variable from a 
product of factors

w Move any constant factors outside the 

summation

w Add up submatrices in pointwise product 

of remaining factors 
𝛴x  f1*  …*fk  =  f1*…*fi*𝛴x  fi+1*…*fk�

 
              =  f1*…*fi*  fX  
 
assuming f1, …, fi do not depend on X




Summing out


Summing out a 



What we have done




Variable ordering


•  Different selection of variables lead to 
different factors of different size.


•  Every choice yields a valid execution

w Different intermediate factors 



•  Time and space requirements depend on 
the largest factor constructed


•  Heuristic may help to decide on a good 
ordering 



•  What else can we do?????




Irrelevant variables




Markov Blanket


•  Markov blanket: Parents + children + children’s parents

•  Node is conditionally independent of all other nodes in 

network, given its Markov Blanket




Moral Graph


•  The moral graph is an undirected graph that is 
obtained as follows:

w  connect all parents of all nodes

w  make all directed links undirected


•  Note:

w  the moral graph connects each node to all nodes of its 

Markov blanket

§  it is already connected to parents and children

§  now it is also connected to the parents of its children




Irrelevant variables continued:


•  m-separation:

w  A is m-separated from B by C iff it is separated by C in the 

moral graph

•  Example:


w  J is m-separated from E by A 
 
 
 
 



•  Example: 


Theorem 2: Y is irrelevant if it is m-separated from X by E 



Approximate Inference  
In Bayesian Network


•  Monte Carlo algorithm

w  Widely used to estimate quantities that are difficult to calculate 

exactly

w  Randomized sampling algorithm

w  Accuracy depends on the number of samples

w  Two families


§  Direct sampling

§  Markov chain sampling




Inference by stochastic 
simulation




Example in simple case


Cloudy 

WetGrass 

Sprinkler Rain 

S  R  P(W) 

______________ 

t  t  .99 

t  f  .90 

f  t  .90 

f  f  .00 

P(C)=.5 

C  P(R) 

________ 

t  .80 

f  .20 

C  P(S) 

_______
_ 

t  .10 

f  .50 

[Cloudy, Sprinkler, Rain, WetGrass] 

[true,         ,       ,       ] 

[true, false,       ,       ] 

[true, false, true,       ] 

[true, false, true, true] 

Sampling 

N = 1000 
N(Rain=true) = N([ _ , _ , true, _ ]) = 511 
P(Rain=true) = 0.511 

Estimating 



Sampling from empty network


•  Generating samples from a network that has no 
evidence associated with it (empty network)


•  Basic idea

w  sample a value for each variable in topological order

w  using the specified conditional probabilities




Properties




What if evidence is given?


•  Sampling as defined above would 
generate cases that cannot be used




•  Used to compute conditional 
probabilities


•  Procedure

w Generating sample from prior distribution 

specified by the Bayesian Network

w Rejecting all that do not match the 

evidence

w Estimating probability


Rejection Sampling




Rejection Sampling




•  Let us assume we want to estimate P(Rain|Sprinkler = true) 
with 100 samples


•  100 samples

w  73 samples => Sprinkler = false

w  27 samples => Sprinkler = true


§  8 samples => Rain = true

§  19 samples =>  Rain = false


•  P(Rain|Sprinkler = true) = NORMALIZE((8,19)) = (0.296,0.704)


•  Problem

w  It rejects too many samples


Rejection Sampling Example




Analysis of rejection sampling




Likelihood Weighting


•  Goal

w Avoiding inefficiency of rejection 

sampling


•  Idea

w Generating only events consistent with 

evidence

w Each event is weighted by likelihood that 

the event accords to the evidence




•  P(Rain|Sprinkler=true,  
            WetGrass = true)?


•  Sampling

w  The weight is set to 1.0

w  Sample from P(Cloudy) = (0.5,0.5) => true

w  Sprinkler is an evidence variable with value  true 



w ç w * P(Sprinkler=true | Cloudy = true) = 0.1

w  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true

w  WetGrass is an evidence variable with value true



w çw * P(WetGrass=true |Sprinkler=true, Rain = true) = 
0.099


w  [true, true, true, true] with weight 0.099

•  Estimating


w  Accumulating weights to either Rain=true or Rain=false

w  Normalize


Likelyhood Weighting 
Example




•  P(Rain|Cloudy=true,  
            WetGrass = true)?


•  Sampling

w  Cloudy is an evidence  

 w ç w * P(Cloudy = true) = 0.5

w  Sprinkler no evidence 



Sample from P(Sprinkler| Cloudy=true)=(0.1, 0.9) false

w  Sample from P(Rain|Cloudy=true)=(0.8,0.2) => true

w  WetGrass is an evidence variable with value true



w çw * P(WetGrass=true |Sprinkler=false, Rain = true) = 
0.45


w  [true, false, true, true] with weight 0.45


Likelyhood Weighting 
Example




Likelihood analysis




Likelihood weighting




•  Let’s think of the network as being in a particular 
current state specifying a value for every variable


•  MCMC generates each event by making a random 
change to the preceding event


•  The next state is generated by randomly sampling a 
value for one of the nonevidence variables Xi, 
conditioned on the current values of the variables 
in the MarkovBlanket of Xi


•  Likelihood Weighting only takes into account the 
evidences of the parents.


Markov Chain Monte Carlo






•  Query P(Rain|Sprinkler = true, WetGrass = true)

•  Initial state is [true, true, false, true] [Cloudy,Sprinkler,Rain,WetGrass]


•  The following steps are executed repeatedly:

w  Cloudy is sampled,  given the current values of its MarkovBlanket 

variables


So, we sample from P(Cloudy|Sprinkler= true, Rain=false)


Suppose the result is Cloudy = false.


w  Now current state is [false, true, false, true] and counts are updated

w  Rain is sampled, given the current values of its MarkovBlanket 

variables


So, we sample from P(Rain|Cloudy=false,Sprinkler=true, 
WetGrass=true)


Suppose the result is Rain = true.


w  Then current state is [false, true, true, true]

•  After all the iterations, let’s say the process visited 20 states where rain 

is true and 60 states where rain is false then the answer of the query is 
NORMALIZE((20,60))=(0.25,0.75)


Markov Chain Monte  
Carlo Example




MCMC


Z 



Summary


•  Bayesian networks provide a natural representation 
for (causally induced) conditional independence


•  Topology + CPTs = compact representation of joint 
distribution


•  Generally easy for domain experts to construct

•  Exact inference by variable elimination


w  polytime on polytrees, NP-hard on general graphs

w  space can be exponential as well


•  Approximate inference based on sampling and 
counting help to overcome complexity of exact 
inference



