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Probabilistic Temporal Models


• Dynamic Bayesian Networks (DBNs)

• Hidden Markov Models (HMMs)

•  Kalman Filters




Time and Uncertainty


•  The world changes, we need to track and predict it

•  Examples: diabetes management, traffic monitoring

•  Basic idea: copy state and evidence variables for 

each time step

•  Xt – set of unobservable state variables at time t


  e.g., BloodSugart, StomachContentst

•  Et – set of evidence variables at time t


  e.g., MeasuredBloodSugart, PulseRatet, FoodEatent


•  Assumes discrete time steps




States and Observations
 


•  Process of change is viewed as series of 
snapshots, each describing the state of the world 
at a particular time


•  Each time slice involves a set of random variables 
indexed by t:


  the set of unobservable state variables Xt 

  the set of observable evidence variable Et


•  The observation at time t is Et = et for some set of 
values et


•  The notation Xa:b denotes the set of variables 
from Xa to Xb




Dynamic Bayesian Networks


•  How can we model dynamic situations 
with a Bayesian network?


•  Example: Is it raining today?
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     next step: specify dependencies among the variables. 

The term “dynamic” means we are modeling a dynamic system, not that 
the network structure changes over time. 



•  Problem:


1.  Necessity to specify an unbounded number of conditional 
probability tables, one for each variable in each slice, 

2.  Each one might involve an unbounded number of parents. 

•  Solution:


1.  Assume that changes in the world state are caused by a 
stationary process (unmoving process over time). 
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DBN - Representation




•  Solution cont.:
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2.  Use Markov assumption - The current state depends on 
only in a finite history of previous states.  

Using the first-order Markov process: 

Transition Model 

In addition to restricting the parents of the state variable  Xt, we must 
restrict the parents of the evidence variable Et 

)/(),/( 1:0:0 ttttt XEPEXEP =− Sensor Model 

DBN - Representation




Stationary Process/Markov Assumption


•  Markov Assumption: Xt depends on some previous Xis

•  First-order Markov process:  

P(Xt|X0:t-1) = P(Xt|Xt-1)

•  kth order: depends on previous k time steps

•  Sensor Markov assumption:  

P(Et|X0:t, E0:t-1) = P(Et|Xt)

•  Assume stationary process: transition model  P(Xt|Xt-1) and 

sensor model P(Et|Xt) are the same for all t

•  In a stationary process, the changes in the world state are 

governed by laws that do not themselves change over time




Dynamic Bayesian Network


2−tX 1−tX 2+tX1+tXtX

2−tX 1−tX 2+tX1+tXtX

A second order of Markov process 

Bayesian network structure corresponding to a first-order of Markov 
process with state defined by the variables Xt. 



Dynamic Bayesian Networks


•  There are two possible fixes if the approximation is too 
inaccurate:


  Increasing the order of the Markov process model. For 
example, adding             as a parent of         , which might 
give slightly more accurate predictions.


  Increasing the set of state variables. For example, adding 
               to allow to incorporate historical records of rainy 
seasons, or adding                       ,                  and Pressure                 
to allow to use a physical model of rainy conditions.


2−tRain

tSeason
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Complete Joint Distribution


• Given:

 Transition model: P(Xt|Xt-1)

 Sensor model: P(Et|Xt)

 Prior probability: P(X0)


•  Then we can specify complete joint 
distribution:
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Inference Tasks: Examples


•  Filtering:  What is the probability that it is raining 
today, given all the umbrella observations up 
through today?


•  Prediction: What is the probability that it will rain 
the day after tomorrow, given all the umbrella 
observations up through today?


•  Smoothing: What is the probability that it rained 
yesterday, given all the umbrella observations 
through today?


•  Most likely explanation: if the umbrella appeared 
the first three days but not on the fourth, what is 
the most likely weather sequence to produce these 
umbrella sightings?




DBN – Basic Inference 


•  Filtering or Monitoring: 


 


 Compute the belief state - the posterior distribution over the 

current state, given all evidence to date.
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Filtering is what a rational agent needs to do in order to keep track 
of the current state so that the rational decisions can be made. 



DBN – Basic Inference 


•  Filtering cont.
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Given the results of filtering up to time t, one can easily compute the 
result for t+1 from the new evidence         1+te

(dividing up the evidence) 

(for some function f) 

(using Bayes’ Theorem) 

(by the Markov property 
of evidence) 

α is a normalizing constant used to make probabilities sum up to 1. 



DBN – Basic Inference 


•  Filtering cont.
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)/( :11 tt eXP +The second term                   represents a one-step prediction of 
the next step, and the first term                   updates this with the 
new evidence. 

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt: 
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(using the Markov property) 



Forward Messages




DBN – Basic Inference 
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Illustration for two steps in the Umbrella example:   

•  On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is 

 and updating it with the evidence for t=1 gives 
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•  On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is 

 and updating it with the evidence for t=2 gives 
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Example cntd.




DBN – Basic Inference 


•  Prediction: 


 



 Compute the posterior distribution over the 
future state, given all evidence to date.


)/( :1 tkt eXP +
for some k>0 

The task of prediction can be seen simply as filtering 
without the addition of new evidence. 



DBN – Basic Inference 


•  Smoothing or hindsight: 


 



 Compute the posterior distribution over the 
past state, given all evidence up to the present.


)/( :1 tk eXP for some k such that 0 ≤ k < t. 

Hindsight provides a better estimate of the state than 
was available at the time, because it incorporates 
more evidence. 



Smoothing




Example contd.




DBN – Basic Inference 


•  Most likely explanation: 


 


 Compute the sequence of states that is most likely to have 

generated a given sequence of observation.
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Algorithms for this task are useful in many applications, including, 
e.g., speech recognition. 



Most-likely explanation




The occasionally  
dishonest casino


•  A casino uses a fair die most of the time, 
but occasionally switches to a loaded one

 Fair die: Prob(1) = Prob(2) = . . . = Prob(6) = 1/6

 Loaded die: Prob(1) = Prob(2) = . . . = Prob(5) = 

1/10, Prob(6) = ½

 These are the emission probabilities


•  Transition probabilities

 Prob(Fair → Loaded) = 0.01

 Prob(Loaded → Fair) = 0.2

 Transitions between states obey a Markov 

process 
 Slide by Changui Yan 



An HMM for the occasionally 
dishonest casino


Slide by Changui Yan 



The occasionally  
dishonest casino


•  Known:

 The structure of the model

 The transition probabilities


•  Hidden:  What the casino did

 FFFFFLLLLLLLFFFF... 

•  Observable:  The series of die tosses

 3415256664666153... 


•  What we must infer:

 When was a fair die used?

 When was a loaded one used?


 The answer is a sequence  
FFFFFFFLLLLLLFFF... 

Slide by Changui Yan 



Making the inference


•  Model assigns a probability to each explanation of the 
observation:  

 P(326|FFL)  

 = P(3|F)·P(F→F)·P(2|F)·P(F→L)·P(6|L)  

 = 1/6 · 0.99 · 1/6 · 0.01 · ½


•  Maximum Likelihood:  Determine which explanation is most 
likely 

  Find the path most likely to have produced the observed 

sequence

•  Total probability:  Determine probability that observed 

sequence was produced by the HMM

  Consider all paths that could have produced the observed 

sequence


Slide by Changui Yan 



Notation


•  x is the sequence of symbols emitted by model

  xi is the symbol emitted at time i


•  A path, π, is a  sequence of states

  The i-th state in π is πi


•  akr is the probability of making a transition from 
state k to state r:  

•  ek(b) is the probability that symbol b is emitted 
when in state k


Slide by Changui Yan 



A “parse” of a sequence
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The occasionally  
dishonest casino


Slide by Changui Yan 



The most probable path


The most likely path π* 
satisfies 

To find π*, consider all possible ways the 
last symbol of x could have been emitted 

Let 

Then 

Slide by Changui Yan 



The Viterbi Algorithm


•  Initialization
 (i = 0)  

•  Recursion (i = 1, . . . , L): For each state k  

•  Termination:


To find π*, use trace-back, as in dynamic 
programming Slide by Changui Yan 



Viterbi: Example
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(1/6)×(1/2) 
   = 1/12 

0 

(1/2)×(1/2) 
   = 1/4 

(1/6)×max{(1/12)×0.99, 
      (1/4)×0.2} 
   = 0.01375 

(1/10)×max{(1/12)×0.01, 
       (1/4)×0.8} 
    = 0.02 

B
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0 0 

(1/6)×max{0.01375×0.99, 
      0.02×0.2} 
   = 0.00226875 

(1/2)×max{0.01375×0.01, 
      0.02×0.8} 
   = 0.08 

Slide by Changui Yan 



Viterbi gets it right  
more often than not


Slide by Changui Yan 



Rain/Umbrella Example



