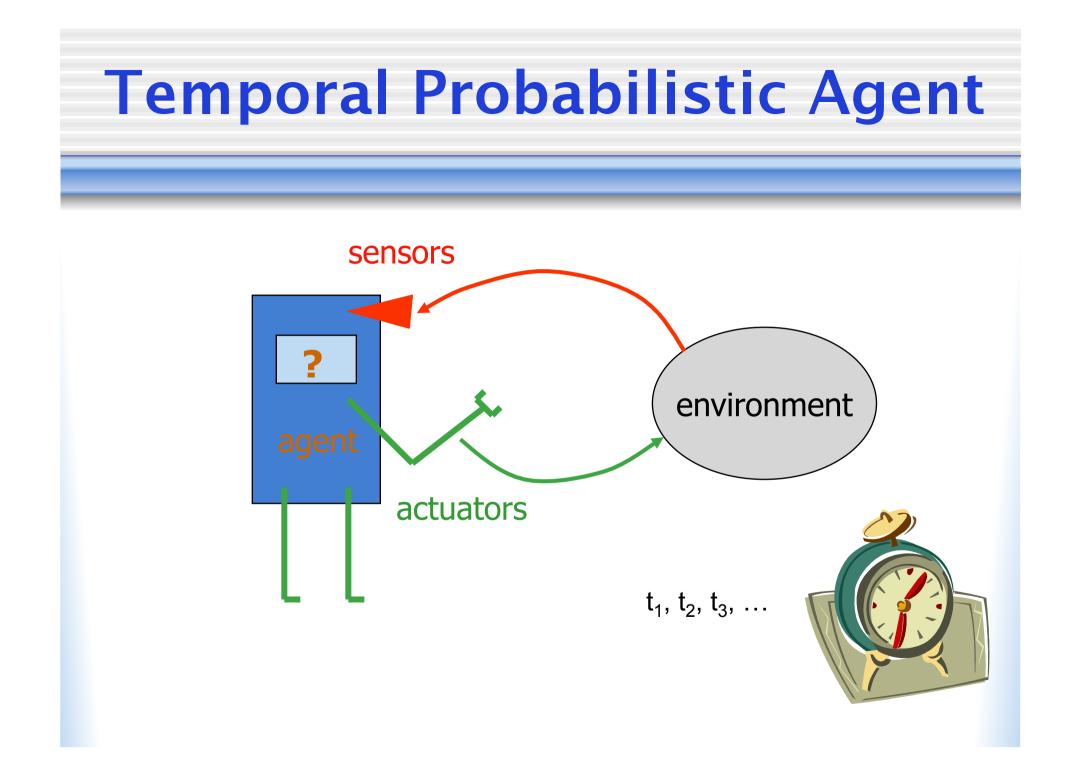
Intelligent Autonomous Agents Probabilistic Reasoning over Time (Dynamic Bayesian Networks)

Ralf Möller, Rainer Marrone Hamburg University of Technology



Probabilistic Temporal Models

- Dynamic Bayesian Networks (DBNs)
- Hidden Markov Models (HMMs)
- Kalman Filters

Time and Uncertainty

- The world changes, we need to track and predict it
- Examples: diabetes management, traffic monitoring
- Basic idea: copy state and evidence variables for each time step
- X_t set of unobservable state variables at time t
 e.g., BloodSugar, StomachContents,
- **E**_t set of evidence variables at time t
 - e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- Assumes discrete time steps

States and Observations

- Process of change is viewed as series of snapshots, each describing the state of the world at a particular time
- Each time slice involves a set of random variables indexed by t:
 - the set of unobservable state variables X_t
 - the set of observable evidence variable E_t
- The observation at time t is E_t = e_t for some set of values e_t
- The notation X_{a:b} denotes the set of variables from X_a to X_b

Dynamic Bayesian Networks

- How can we model *dynamic* situations with a Bayesian network?
- Example: *Is it raining today?*

$$X_t = \{R_t\}$$
$$E_t = \{U_t\}$$

 \Rightarrow next step: specify dependencies among the variables.

The term "dynamic" means we are modeling a dynamic system, not that the network structure changes over time.

DBN – Representation

• Problem:

- 1. Necessity to specify an unbounded number of conditional probability tables, one for each variable in each slice,
- 2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a stationary process (unmoving process over time).

 $P(U_t | Parent(U_t))$

is the same for all *t*

DBN – Representation

• Solution cont.:

2. Use **Markov assumption** - The current state depends on only in a finite history of previous states.

Using the first-order Markov process:

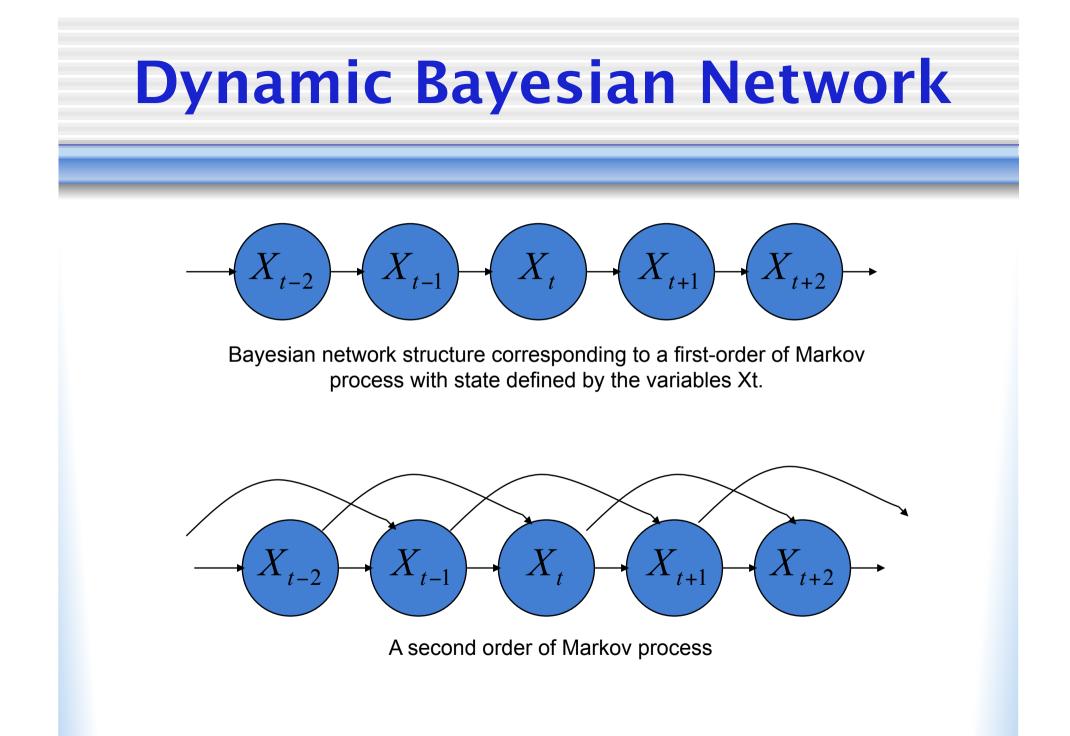
$$P(X_t / X_{0:t-1}) = P(X_t / X_{t-1})$$
 Transition Model

In addition to restricting the parents of the state variable *Xt*, we must restrict the parents of the evidence variable *Et*

$$P(E_t / X_{0:t}, E_{0:t-1}) = P(E_t / X_t)$$
 Sensor Model

Stationary Process/Markov Assumption

- Markov Assumption: X_t depends on some previous X_is
- First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$
- kth order: depends on previous k time steps
- Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$
- Assume stationary process: transition model $P(X_t|X_{t-1})$ and sensor model $P(E_t|X_t)$ are the same for all t
- In a **stationary process**, the changes in the world state are governed by laws that do not themselves change over time



Dynamic Bayesian Networks

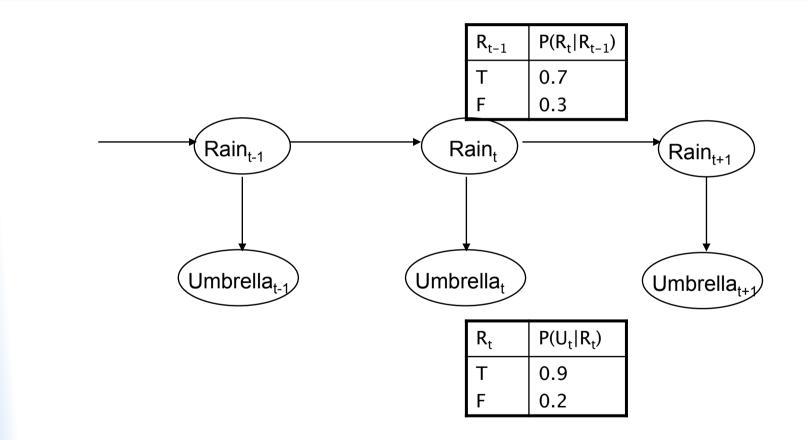
- There are two possible fixes if the approximation is too inaccurate:
 - Increasing the order of the Markov process model. For example, adding *Rain*_{t-2} as a parent of *Rain*_t, which might give slightly more accurate predictions.
 - Increasing the set of state variables. For example, adding *Season_t* to allow to incorporate historical records of rainy seasons, or adding *Temperature_t*, *Humidity_t* and *Pressure_t* to allow to use a physical model of rainy conditions.

Complete Joint Distribution

- Given:
 - Transition model: $P(X_t|X_{t-1})$
 - Sensor model: $P(E_t|X_t)$
 - Prior probability: P(X₀)
- Then we can specify complete joint distribution:

$$P(X_0, X_1, ..., X_t, E_1, ..., E_t) = P(X_0) \prod_{i=1}^t P(X_i | X_{i-1}) P(E_i | X_i)$$

Example



Inference Tasks: Examples

- Filtering: What is the probability that it is raining today, given all the umbrella observations up through today?
- **Prediction:** What is the probability that it will rain the day after tomorrow, given all the umbrella observations up through today?
- **Smoothing:** What is the probability that it rained yesterday, given all the umbrella observations through today?
- Most likely explanation: if the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

• Filtering or Monitoring:

Compute the belief state – the posterior distribution over the *current* state, given all evidence to date.

 $P(X_t / e_{1 \cdot t})$

Filtering is what a rational agent needs to do in order to keep track of the current state so that the rational decisions can be made.

Given the results of filtering up to time *t*, one can easily compute the result for *t*+1 from the new evidence e_{t+1}

$$\begin{split} P(X_{t+1} / e_{1:t+1}) &= f(e_{t+1,} P(X_t / e_{1:t+1})) & \text{(for some function f)} \\ &= P(X_{t+1} / e_{1:t,} e_{t+1}) & \text{(dividing up the evidence)} \\ &= \alpha P(e_{t+1} / X_{t+1,} e_{1:t}) P(X_{t+1} / e_{1:t}) & \text{(using Bayes' Theorem)} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{(by the Markov property} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{of evidence)} \end{split}$$

 α is a normalizing constant used to make probabilities sum up to 1.

• Filtering cont.

The second term $P(X_{t+1}/e_{1:t})$ represents a one-step prediction of the next step, and the first term $P(e_{t+1}/X_{t+1})$ updates this with the new evidence.

Now we obtain the one-step prediction for the next step by conditioning on the current state Xt:

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t, e_{1:t}) P(x_t / e_{1:t})$$

$$= \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / X_t) P(x_t / e_{1:t})$$
(using the Markov property)

(using the Markov property)

Forward Messages

 $\mathbf{f}_{1:t+1} = \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$ where $\mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Illustration for two steps in the Umbrella example:

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

$$P(R_1) = \sum_{r_0} P(R_1 / r_0) P(r_0)$$

and updating it with the evidence for t=1 gives

$$P(R_1 / u_1) = \alpha P(u_1 / R_1) P(R_1)$$

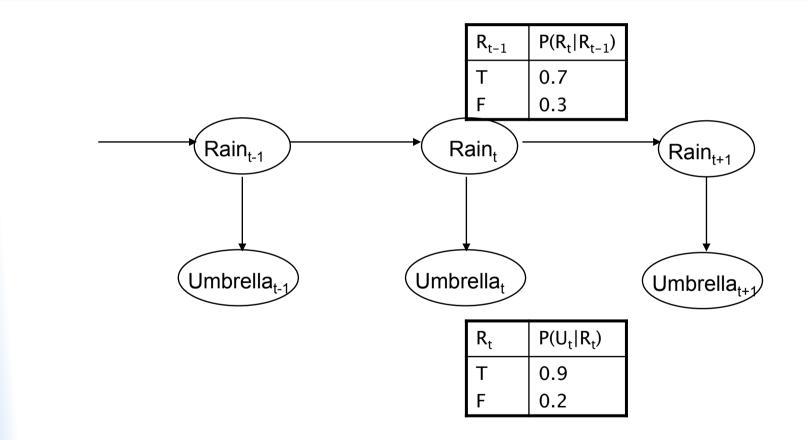
• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

$$P(R_2 / u_1) = \sum_{r_1} P(R_2 / r_1) P(r_1 / u_1)$$

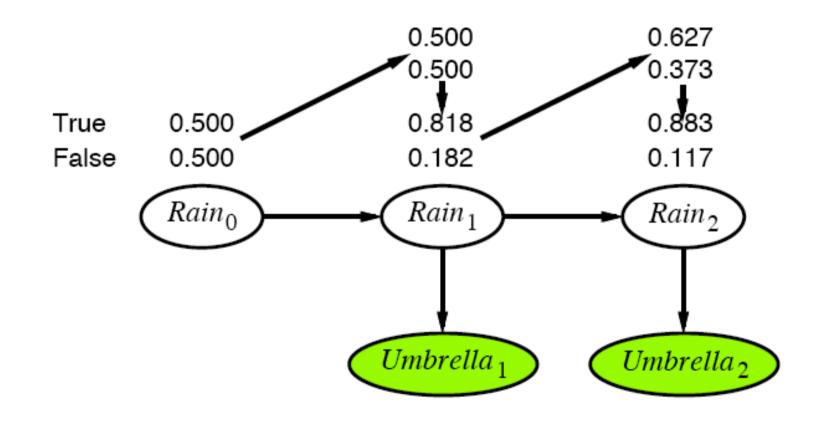
and updating it with the evidence for t=2 gives

$$P(R_2 / u_1, u_2) = \alpha P(u_2 / R_2) P(R_2 / u_1)$$

Example



Example cntd.



• Prediction:

Compute the posterior distribution over the *future* state, given all evidence to date.

$$P(X_{t+k} \, / \, e_{1:t}) \qquad {}^{\text{for some } k>0}$$

The task of prediction can be seen simply as filtering without the addition of new evidence.

• Smoothing or hindsight:

Compute the posterior distribution over the *past* state, given all evidence up to the present.

$$P(X_k / e_{1:t})$$

for some k such that $0 \le k < t$.

Hindsight provides a better estimate of the state than was available at the time, because it incorporates more evidence.

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

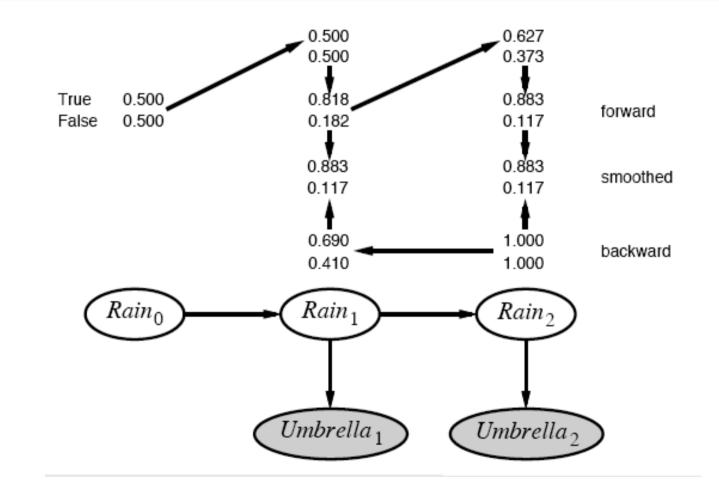
Backward message computed by a backwards recursion:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$
= $\sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Example contd.



• Most likely explanation:

Compute the sequence of states that is most likely to have generated a given sequence of observation.

$$\arg \max_{x_{1:t}} P(X_{1:t} / e_{1:t})$$

Algorithms for this task are useful in many applications, including, e.g., speech recognition.

Most-likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1} = most likely path to some \mathbf{x}_t plus one more step $\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1, \dots, \mathbf{x}_t, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$ = $\mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}, \mathbf{x}_t | \mathbf{e}_{1:t}) \right)$

Identical to filtering, except $f_{1:t}$ replaced by

 $\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t | \mathbf{e}_{1:t}),$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state *i*. Update has sum replaced by max, giving the Viterbi algorithm:

 $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{X}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t} \right)$

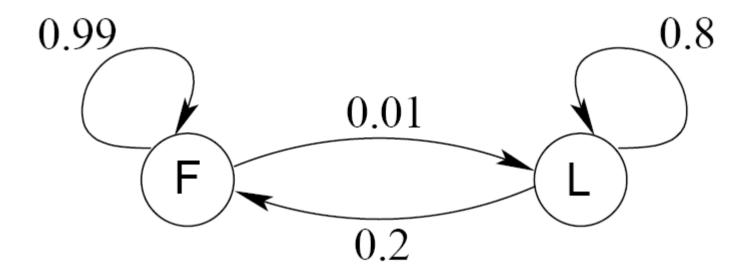
The occasionally dishonest casino

• A casino uses a fair die most of the time, but occasionally switches to a loaded one

Fair die: Prob(1) = Prob(2) = . . . = Prob(6) = 1/6

- Loaded die: Prob(1) = Prob(2) = . . . = Prob(5) = 1/10, Prob(6) = 1/2
- These are the *emission* probabilities
- Transition probabilities
 - Prob(Fair \rightarrow Loaded) = 0.01
 - Prob(Loaded \rightarrow Fair) = 0.2
 - Transitions between states obey a Markov process
 Slide by Changui Yan

An HMM for the occasionally dishonest casino



The occasionally dishonest casino

- Known:
 - The structure of the model
 - The transition probabilities
- Hidden: What the casino did
 - FFFFFLLLLLLFFFF...
- Observable: The series of die tosses
 - 3415256664666153...
- What we must infer:
 - When was a fair die used?
 - When was a loaded one used?
 - The answer is a sequence FFFFFFLLLLLFFF...

Making the inference

- Model assigns a probability to each explanation of the observation:
 - P(326|FFL)
 - $= P(3|F) \cdot P(F \rightarrow F) \cdot P(2|F) \cdot P(F \rightarrow L) \cdot P(6|L)$
 - $= 1/6 \cdot 0.99 \cdot 1/6 \cdot 0.01 \cdot \frac{1}{2}$
- Maximum Likelihood: Determine which explanation is most likely
 - Find the path *most likely* to have produced the observed sequence
- Total probability: Determine probability that observed sequence was produced by the HMM
 - Consider all paths that could have produced the observed sequence

Notation

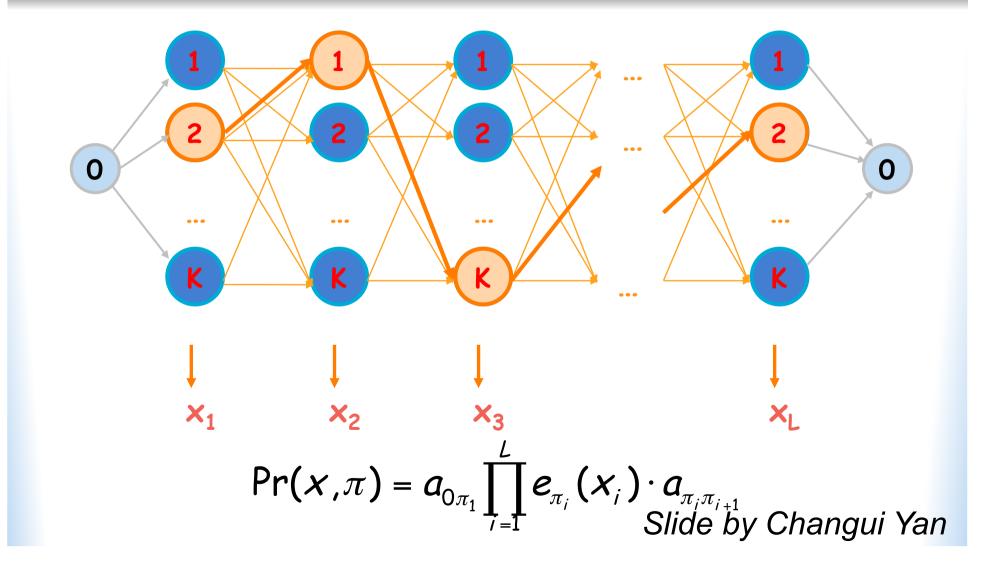
- *x* is the sequence of symbols emitted by model
 - *x_i* is the symbol emitted at time *i*
- A *path*, π , is a sequence of states
 - The *i*-th state in π is π_i
- *a_{kr}* is the probability of making a transition from state *k* to state *r*.

$$a_{kr} = \Pr(\pi_i = r \mid \pi_{i-1} = k)$$

e_k(b) is the probability that symbol *b* is emitted when in state *k*

$$e_k(b) = \Pr(x_i = b \mid \pi_i = k)$$

A "parse" of a sequence



The occasionally dishonest casino

$$x = \langle x_1, x_2, x_3 \rangle = \langle 6, 2, 6 \rangle$$

$$r(x, \pi^{(1)}) = a_{0F}e_F(6)a_{FF}e_F(2)a_{FF}e_F(6)$$

$$= 0.5 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \times 0.99 \times \frac{1}{6}$$

$$\approx 0.00227$$

$$\pi^{(2)} = LLL$$

$$Pr(x, \pi^{(2)}) = a_{0L}e_L(6)a_{LL}e_L(2)a_{LL}e_L(6)$$

$$= 0.5 \times 0.5 \times 0.8 \times 0.1 \times 0.8 \times 0.5$$

$$= 0.008$$

$$\pi^{(3)} = LFL$$

$$Pr(x, \pi^{(3)}) = a_{0L}e_L(6)a_{LF}e_F(2)a_{FL}e_L(6)a_{L0}$$

$$= 0.5 \times 0.5 \times 0.2 \times \frac{1}{6} \times 0.01 \times 0.5$$

≈ 0.0000417

The most probable path

The most likely path π^* satisfies $\pi^* = \operatorname{argmax} \Pr(x, \pi)$ To find π^* , consider all possible ways the last symbol of x could have been emitted Let $v_k(i) = \text{Prob. of path} \langle \pi_1, \cdots, \pi_i \rangle \text{ most likely}$ to emit $\langle x_1, \dots, x_i \rangle$ such that $\pi_i = k$ Then $\mathbf{v}_k(i) = \mathbf{e}_k(\mathbf{x}_i) \max(\mathbf{v}_r(i-1)\mathbf{a}_{rk})$ Slide by Changui Yan

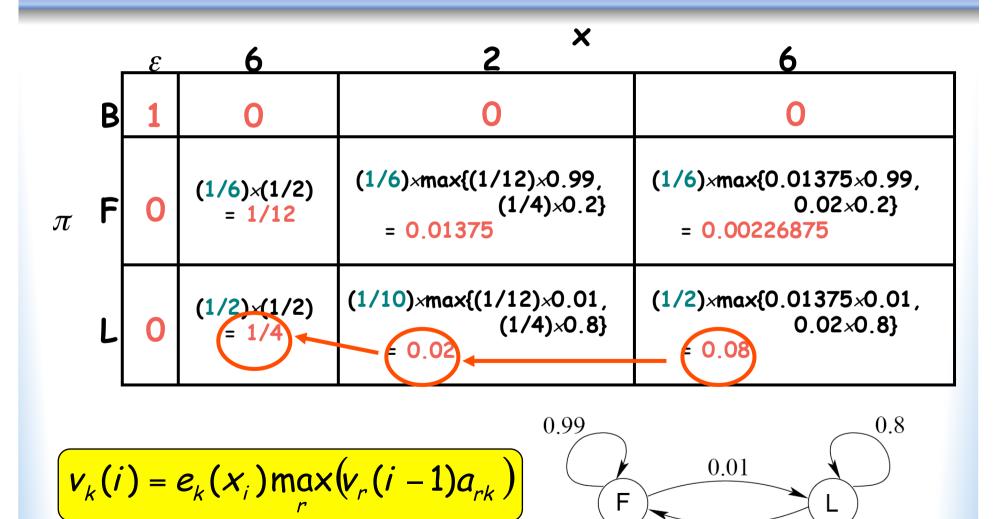
The Viterbi Algorithm

- Initialization (i = 0) $v_0(0) = 1$, $v_k(0) = 0$ for k > 0
- Recursion (i = 1, ..., L): For each state k $v_k(i) = e_k(x_i) \max_r(v_r(i-1)a_{rk})$
- Termination:

$$\Pr(\boldsymbol{x},\boldsymbol{\pi}^*) = \max_{\boldsymbol{k}} (\boldsymbol{v}_{\boldsymbol{k}}(\boldsymbol{L})\boldsymbol{a}_{\boldsymbol{k}\boldsymbol{0}})$$

To find π^* , use trace-back, as in dynamicprogrammingSlide by Changui Yan

Viterbi: Example



Slide by Changui Yan

0.2

Viterbi gets it right more often than not

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	6511664531326512456366646316366631623264552352666666625151631
Die	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rain/Umbrella Example

