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Time and Uncertainty

The world changes, we need to track and predict it
Examples: diabetes management, traffic monitoring

Basic idea: copy state and evidence variables for
each time step

X; - set of unobservable state variables at time t
+ e.g., BloodSugar,, StomachContents,
E, - set of evidence variables at time t
+ e.g., MeasuredBloodSugar,, PulseRate,, FoodEaten,
Assumes discrete time steps



States and Observations

Process of change is viewed as series of
snapshots, each describing the state of the world
at a particular time

Each time slice involves a set of random variables
indexed by t:

+ the set of unobservable state variables X,

+ the set of observable evidence variable E,

The observation at time tis E, = e, for some set of
values e,

The notation X,., denotes the set of variables
from X, to X,



Dynamic Bayesian Networks

« How can we model dynamic situations
with a Bayesian network?

-  Example: Is it raining today?
Xt = {Rt}
Et = {Ut}

ﬂ next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.



DBN - Representation

e Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

e Solution:

1. Assume that changes in the world state are caused by a
stationary process (unmoving process over time).

is the same for all ¢

P(U, /| Parent(U,))



DBN - Representation

Solution cont.:

2. Use Markov assumption - The current state depends on
only in a finite history of previous states.

Using the first-order Markov process:
P(Xt /XOJ_I) = P(Xt /Xt_l) Transition Model

In addition to restricting the parents of the state variable Xt, we must
restrict the parents of the evidence variable Et

P(Et /Xo:t, EO:t—l) = P(Et /Xt) Sensor Model



Stationary Process/Markov Assumption

« Markov Assumption: X, depends on some previous X;s

* First-order Markov process:
P(th)(o:t—l) = P(Xt|xt—1)
 kth order: depends on previous k time steps

* Sensor Markov assumption:
P(E¢|Xo.t; Eg:t-1) = P(E([X)

« Assume stationary process: transition model P(X.|X,_;) and
sensor model P(E,|X,) are the same for all t

* |n a stationary process, the changes in the world state are
governed by laws that do not themselves change over time



Dynamic Bayesian Network

00000

Bayesian network structure corresponding to a first-order of Markov
process with state defined by the variables Xt.

A second order of Markov process



Dynamic Bayesian Networks

. There are two possible fixes if the approximation is too
Inaccurate:

+ Increasing the order of the Markov process model. For
example, adding Rain, , as a parent of Rain,, which might
give slightly more accurate predictions.

* Increasing the set of state variables. For example, adding
Season, to allow to incorporate historical records of rainy
seasons, or adding  Temperature, , Humidity, and Pressure
to allow to use a physical model of rainy conditions.



Complete Joint Distribution

* Given:
+ Transition model: P(X,[X,_;)
+ Sensor model: P(E[X))
+ Prior probability: P(X,)

 Then we can specify complete joint
distribution:

t
P(X,,X,,.... X, E ..., E,) = P(XO)H P(X.|X.)P(E. | X))
1=1



Example

Ri-1 P(R(IR:.1)

T 0.7

F 0.3
e

R, | PWUIRY

T 0.9

F 0.2

@ntﬂ

Umbrella,,




Inference Tasks: Examples

Filtering: What is the probability that it is raining

today, Fg]uven all the umbrella observations up
through today?

Prediction: What is the probability that it will rain
the day after tomorrow, given all the umbrella
observations up through today?

Smoothing: What is the probability that it rained
yesterday, given all the umbrella observations
through today?

Most likely explanation: if the umbrella appeared
the first three days but not on the fourth, what is
the most likely weather sequence to produce these
umbrella sightings?



DBN - Basic Inference

Filtering or Monitoring:

Compute the belief state - the posterior distribution over the
current state, given all evidence to date.

P(X, /e,)

Filtering is what a rational agent needs to do in order to keep track
of the current state so that the rational decisions can be made.



DBN - Basic Inference

e Filtering cont.

Given the results of filtering up to time ¢, one can easily compute the
result for t+7 from the new evidence €,

P(Xm /el:t+1) = f(et+1,P(Xt /elzt+1)) (for some function 1)
_ P(Xm /el:t,et+1) (dividing up the evidence)
(using Bayes’ Theorem)
= aP(eHl /Xt+1,elzt)P(Xt+1 /el:t)
(by the Markov property
=aP(e,, /X, )P(X,  /e,)  ofevidence)

a is a normalizing constant used to make probabilities sum up to 1.



DBN - Basic Inference

e Filtering cont.

The second term P(X,,, /e, )represents a one-step prediction of

the next step, and the first term P(e../ X,.,) updates this with the
new evidence.

Now we obtain the one-step prediction for the next step by
conditioning on the current state Xt:

P(Xt+1 /elzt+1) = aP(eHl /Xt+1)EP(Xt+1 /'xﬁel:t)P(xt /elzt)
Xt

= aP(eHl /Xt+1)E P(Xt+1 /xt )P(xf /eM)
X

(using the Markov property)



Forward Messages

fl:t+l — FOR\VARD(flzt, et+1) where fl:t. — P(thelzt)
Time and space constant (independent of 7)



DBN - Basic Inference

lllustration for two steps in the Umbrella example:
* On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is
P(R,) = EP(Rl /1) P(1,)
and updati::g it with the evidence for t=1 gives
P(R /u,)=oP(u,/ R)P(R,)
* On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

P(R, /u,) = EP(Rz/rl)P(”l/%)

and updating it with the evidence for t=2 gives
P(R, luy,u,) = aP(u,/ R,)P(R, /u,)



Example

Ri-1 P(R(IR:.1)

T 0.7

F 0.3
e

R, | PWUIRY

T 0.9

F 0.2

@ntﬂ

Umbrella,,




Example cntd.

0.500 0.627
0. 500 0.373
True 0.500 0. 18 0.&83
False 0.500 0.182 0.117

merellD merell@




DBN - Basic Inference

e Prediction:

Compute the posterior distribution over the
future state, given all evidence to date.

P(X / el:t ) for some k>0

I+k

The task of prediction can be seen simply as filtering
without the addition of new evidence.



DBN - Basic Inference

Smoothing or hindsight:

Compute the posterior distribution over the
past state, given all evidence up to the present.

P(X /e ) for some k such that 0 < k < L.
k 1:t

Hindsight provides a better estimate of the state than
was available at the time, because it incorporates
more evidence.



Smoothing

Divide evidence e into e1.;, ep. 1.4

P(Xilerr) = P(Xiler, €pt1:)
e Q‘P(Xk|61;};)P(ek+1:tIXk: el:k)
= aP(Xylerr)Plers1.:4Xk)

= ofirbri1e
Backward message computed by a backwards recursion:

P(ek+1:t|Xk) = Exk+1P(ek+1:t|XkaXk+1)P(Xk+1|Xk)

= EXHIP(ek+1:t\Xk+1)P(Xk+1|Xk)
= Yix. Pleps|xps1) Plersos| Xy 1) P(xps1] X5)

Xk+1

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(%|f])



Example contd.

0.500 0.627
0.500 0.373
True 0500 0.1!18 0.!!83 orward
False 0.500 0.1'82 0.117 e
0.883 0.!!83
0.117 0117 smoothed
0.690 1.000
0.410 1.000 backward

Umbrella |



DBN - Basic Inference

« Most likely explanation:

Compute the sequence of states that is most likely to have
generated a given sequence of observation.

argmax P(X, /e.)

Algorithms for this task are useful in many applications, including,
e.g., speech recognition.



Most-likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;,
= most likely path to some x; plus one more step

Jnax P(x1....,  X¢, Xet1]€1:641)

= P(ew1|1X¢41) max (P(Xt+1|xt) max P(x -----..Xt—l-Xt|el:t))

Xt—-1

|dentical to filtering, except f;; replaced by

myy =  Max P(x1.....x¢-1, X¢|ers).

l.e., my4(7) gives the probability of the most likely path to state 7.
Update has sum replaced by max, giving the Viterbi algorithm:

my1 = Pleq |Xt+1) H}E}X (P(Xt+1|Xt)ml:t)



The occasionally
dishonest casino

« A casino uses a fair die most of the time,
but occasionally switches to a loaded one
+ Fair die: Prob(1) = Prob(2) = ... = Prob(6) =1/6

+ Loaded die: Prob(1) = Prob(2) = ... = Prob(5) =
1/10, Prob(6) = V>

* These are the emission probabilities
« Transition probabilities
* Prob(Fair — Loaded) = 0.01

+ Prob(Loaded — Fair) = 0.2
+ Transitions between states obey a Markov

process Slide by Changui Yan



An HMM for the occasionally
dishonest casino

0.99 0.8
0.2

Slide by Changui Yan



The occasionally
dishonest casino

e Known:

*

*

e Hidden: What the casino did
* FFFFFLLLLLLLFFFF...

e Observable: The series of die tosses
+ 3415256664666153. ..

« What we must infer:

4
4

= The answer is a sequence
FFFFFFFLLLLLLFFF. ..

Slide by Changui Yan



Making the inference

Model assigns a probability to each explanation of the
observation:
P(326|FFL)
= P(3|F)-P(F—=F)-P(2|F)-P(F—L)-P(6]|L)
=1/6-0.99-1/6-0.01-%
Maximum Likelihood: Determine which explanation is most
likely

*

Total probability: Determine probability that observed
sequence was produced by the HMM

L 4

Slide by Changui Yan



Notation

X is the sequence of symbols emitted by model
+ Xx;is the symbol emitted at time /

A path, z, is a sequence of states
+ The j-th state in wis x;

a,, is the probability of making a transition from
state k to state r

a,. =Pr(z, =rl|=x_ =k)

e.(b) is the probability that symbol b is emitted
when in state k

e (b)=Pr(x, =b|x, =k)
Slide by Changui Yan



A “parse” of a sequence

Pr'(X,JT) = aOm H e”,- (X/) . an,-yt,-
| =

Slide By Changui Yan



The occasionally
dishonest casino

X = <X1,X2,X3> - <6'2'6>

Pr(x,7") = a,,e.(6)a.-e-(2)a.-e-(6)

7" = FFF C05x1x0.99xx099x 1
6 6 6
~0.00227
Pr(x,7®) = a,¢e (6)a, e (2)a, e, (6)

=0bx05x0.8x0.1x0.8x05
= 0.008

7 = LLL

23 _ [ FL Pr(x,7¥) = a,,e,(6)a,-e-(2)a, e, (6)a,,

=O.5x0.5x0.2x%x0.01x0.5

Slide by Changui Yan ~0.0000417



The most probable path

The most likely path =
satisfies ,* _ argmax Pr(x,)

JT

To find 7, consider all possible ways the
last symbol of x could have been emitted

Let
v (i) = Prob. of path (x,,--,7;) most likely

to emit (x,,...,x;) such that z; = k

Then . .
v, (i) = e (x.)max(v.(i - Da, )

Slide by Changui Yan



The Viterbi Algorithm

e |nitialization (i = 0)
v,(0)=1, v,(0)=0fork >0

« Recursion(i=1,..., L): For each state k
v.(i)=e (x,)max(vr (/ -1a, )

e Termination:

Pr(x,n") = mEX(Vk(L)Gko)

To find 7, use trace-back, as in dynamic
programming Slide by Changui Yan



Viterbi: Example

£ 6 2 6
Bl 1 0 0, 0)
(1/6)xmax{(1/12)x0.99, | (1/6)xmax{0.01375x0.99,
Fl o “20% (1/4)x0.2} 0.02x0.2}
T = 0.01375 = 0.00226875

(1/2)1/2) (1/10)xmax{(1/12)~0.01, (1/2)xmax{0.01375x0.01,

L| O ,\\. (1/4)x0.8) @ 0.02x0.8}

0 = &b Imaxt (- 1a.) %@G@

Slide by Changui Yan




Viterbi gets it right
more often than not

Rolls
Die
Viterbi

315116246446644245321131631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls
Die
Viterbi

651166453132651245636664631636663162326455235266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLILLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls
Die
Viterbi

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls
Die

Viterbi

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

LLLLLLLLLLLLFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Rolls
Die
Viterbi

233121625364414432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Slide by Changui Yan



Rain/Umbrella Example

state
space
paths

umbrella

most
likely
paths

Rain,

< false

< 8182
1818

my

Rain, Rain
false | false
false
5155 0361
0491 1237
pd B

Rain 4

false

miq

\/
£

Rains

false

0210

0024

.5




