Intelligent Autonomous
Agents

Probabilistic Reasoning over Time
(Hidden Markov Models, Kalman Filters)

Ralf Méller
Hamburg University of Technology

Literature

Artificial Intelligence "<&,
A Modern Approach

COND EDITK

 Chapter 15

Stuart Russell * Peter Norvig

Al Settes in Artbicial Totelligence

Dynamic Bayesian Networks

 In addition to basic reasoning tasks, N
methods are needed for /earning the transition
and sensor models from observation.

 Learning can be done by inference, where
inference provides an estimate of what
transitions actually occurred and of what states
generated the sensor readings. These
estimates can be used to update the models.

« The updated models provide new estimates,
and the process iterates to convergence.

Dynamic Bayesian Networks

 Learning requires the full smoothing inference,
rather than filtering, because it provides better
estimates of the state of the process.

* Learning the parameters of a BN is done using
Expectation - Maximization (EM) Algorithms.
Iterative optimization method to estimate
some unknowns parameters.

DBN - Special Cases

e Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process

is described by a single discrete random variable. (The simplest
kind of DBN)

« Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations
over time. Also known as linear dynamical systems (LDSs).

Hidden Markov Models

X is a single, discrete variable (usually E; is too)

Domain of X, is {1..... S}

Transition matrix T';; = P(X,=j|X1=1), eg., (0-" 0-3)

0.3 0.7

Sensor matrix O; for each time step, diagonal elements P(e;|X; =)

e.g., with Uy =true, O = (0(')9 OO,,))

Forward and backward messages as column vectors:

-
f1:zf,+1 = O'Ot+1T f1.¢
brr1t = TOp1bryoy

Forward-backward algorithm needs time O(5%) and space O(St)

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:r+1 = <1'Ot+1TTf1:t
Ot—-f-llflzt-kl = O'TTflzt
a'(TT)_lO;llfl:tH = f14

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1.041 = “’Ot+1TTf1:t
Ot_-f-llflzf—f—l = “TTfl:t
(1"(TT)_1O;+11f1:f+1 = fi

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:z‘+1 - “Ot+1TTf1:t
Ot__+11 f1:z‘+1 — (1'TTf1:t
(I'I(TT)_IO;_llfl:f—i—l = fi4

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fl:f—i—l = (-IOZ‘.—HTTfl:t
Ot_+11f1:f+1 = aTTflzt
o/ (T 'O fresr = Fu

Algorithm: forward pass computes f;, backward pass does f;, b,

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:f+1 = a'Ot-i—lTTflzt
Ot_+11 fl:f-i—l — (I'TTflzt
(1"(TT)_1O;+11f1:f+1 = fi4

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘+1 = aOH—lTTfl:t
Ot__+11f1:f+1 = “’TTfl:t
(il",(TT)_lot:Lll f1441 = fi

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fl:f+1 - ﬂOt+lTTf1:t
Ot_+11f1:f+1 = Q'TTfl:t
(il-'(TT)_lO;+11f1;t+1 = fi

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fl:t+1 = <‘1'Ot+1TTf1:t
Ot_-{-llfl:t-kl — (ITTflzt
(1-'(TT)_1O;+11f1:t+1 = f14

Algorithm: forward pass computes f;, backward pass does f;, b;

Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘—+—1 - aOt—i—lTTfl:t
Ot_+11f1:1‘+1 — (TITTfl:t
(1',(TT)_1O;_+_11f1:t+1 = fi4

Algorithm: forward pass computes f;, backward pass does f;, b;

Kalman Filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = X. Y. Z. X. Y. Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian Distributions

Prediction step: if P(X;|ei) is Gaussian, then prediction
P(Xit1lens) = /X (X1 xe) P(x¢|ers) dx;

is Gaussian. If P(X,|e;) is Gaussian, then the updated distribution
P(Xtiilertr1) = aP(eq1]Xer1) P(Xit1er)

is Gaussian

Hence P(X,|ey;) is multivariate Gaussian N(p,, 23;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — ~

Simple 1-D Example

Gaussian random walk on X'-axis, s.d. o, sensor s.d. 0.

2 2\ ., 2 5 o\ 9
I o (Ut + (71.),:.“_1 -+ T bt o (O-t 4 0'1,)(7:
t+1 = 2 = .
it ozt o; o2+ 02+ o2
0.45 T I T T T T -

04 r 1

0.35 ‘ 1

03 F | P(x11z1=2.5)

g 0.25 P(x0) / \ i

A 02 + .:.\‘..‘ 1

0.1 P(xl) ./ | ‘-.:\;\ |

0.05 r / | \ _

0 R _— 1 . | ;l o SR SO
-8 6 4 2 0) 4 6 3
X position

s.d. = sacrum diis

General Kalman Update

Transition and sensor models:

P(xpp1lxe) = N(Fxy, Xp)(x¢41)
P(z:|x;) = N(Hxy, X.)(z)

Left for further studies

F' is the matrix for the transition; 22, the transition noise covariance
H is the matrix for the sensors; .. the sensor noise covariance

Filter computes the following update:

i1 = Fopg+Keq(ze — HF)
iy = (I— Kt+1)(FEtFT + 3;)

where Kio1 = (FX.FT + S, H (HFSF + 3, H + 3.)!

is the Kalman gain matrix

>.; and K; are independent of observation sequence, so compute offline

2-D Tracking: Filtering

2D filtering
12
true
observed
11k filtered
l‘/-\\ll
(|
10 S o
l| |I
./
> 9
8 -
7 -
6 1 1 1 1 1 1 1 1]
8 10 12 14 16 18 20 22 24 26

2-D Tracking: Smoothing

2D smoothing
12
—a— frue
+ observed
P smoothed
10
> 9fF
8l
N
7 | 'I I|
®
tlIn I|.
\4
1

Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Standard solution: switching Kalman filter

Dynamic Bayesian Networks

X;, E; contain arbitrarily many variables in a replicated Bayes net

BMeter

PRy Ry | P(Ry)

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

©
O TR

AY N L

e @ N /

Consider the transition model
Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each _
DBN has 20 x 2° =160 parameters, HMM has 22" x 22" ~ 10'?

L4l

DBNs vs. Kalman Filters

Every Kalman filter model is a DBN, but few DBNs are KFs;

real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

BMBroken.O BMBroken,

: EBateny]. 355505353,

B S e e S

4t E(Batteryl...5555000000..)
N l

E(Battery)

7L .

P(BMBrokenl...SSSSOOOOOO.h?

g O0O0O0O0O0DOO0O

048 @88 888688 P T TR TP S A |

P(BMBroken!...5555005555..))

-l 1 1 1 1
15 20 25 30

Time step

Exact Inference in DBNs

Naive method: unroll the network and run any exact algorithm

E_ = H_FE_FE_FE

Raix,,

Rain
[5 0 1 {u 1 y
HEa A B

<L :

Problem: inference cost for each update grows with #

Rollup filtering: add slice ¥ + 1, “sum out” slice using variable elimination

Likelihood Weighting

Set of weighted samples approximates the belief state

LW samples pay no attention to the evidence!
— fraction “agreeing” falls exponentially with #
— number of samples reqwred grows exponentially with 7

PEROARAT i ini)
P ’f.m(l .
L’Vs(!d);
08 4' g LW(1800) o~
’ I LW(IO(XX)) 4
p . - .
?6 i M1
: S
24t g
R Pt o
- ; o a '
0.2 g .;"" 'u.u' 0" °
,v- a Il._ . Sl
i un“ LI
0 nﬂl'

0 5 1015"0-53035404550
Time step

Particle Filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain, Rain, Rain, Rain,
trlle o00® 200 [#3
Ll 11 L 11} o
o [1] o0 o00e
false I o0 o0 YTy
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Particle Filtering (cntd.)

Assume consistent at time 7: N (x¢|ei) /N = P(x¢|ei+)
Propagate forward: populations of x;. are
N(Xt+1|el:t) = Extp(xtﬂ|Xt)*'\'r(xt|elrt)
Weight samples by their likelihood for e;. 1:
W(xty1lersr1) = Plepr[Xer1) N(Xey1lers)

Resample to obtain populations proportional to 117

N(xt1lert+1)/N = oW (xir1lerts1) = aP(es1[xe41) N(Xeq1]ers)
= aP(ep41]Xt41) 2, P (e 41 [x) N (x4le1)
o/ P(ep1|Xe41) 2, P(Xeg1[%e) P(x¢ | €1:4)

= P(Xt+1 |elzt+1)

Particle Filtering: Performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

Avg absolute error

1

0.8

0.6

04

LW(25) >ov
LW(100) + * 4 o
LW(000) = . g
i LW(].OO(X)) N 4 ++ o]
ER/SOF(25) - ’ i o

0 5 10 15 20

J NP B L S s
POV g™ ++J.4‘"' ﬂﬁ

b
1

25 30 35 40
Time step

45

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X, |X,_{)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n*) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

