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Decision Making Under Uncertainty

 Many environments have multiple
possible outcomes

 Some of these outcomes may be good;
others may be bad

« Some may be very likely; others
unlikely

« What’s a poor agent going to do??



Non-Deterministic
vs. Probabilistic Uncertainty

{a,b,c} {a(pa),b(pb),c(pc)}
- decision that is - decision that maximizes
best for worst case expected utility value
Non-deterministic model Probabilistic model

~ Adversarial search



Expected Utility

 Random variable X with n values x4,
...,X, and distribution (p4,...,p,)
E.g.: X is the state reached after
doing an action A under uncertainty

* Function U of X
E.g., U is the utility of a state

 The expected utility of A is



One State/One Action Example

SO

U(S0)=100x 0.2 +50x 0.7 + 70 x 0.1

=20+35+7
al = 62

S1 s20 s3

0.2 0.7 0.1

100 50 70



One State/Two Actions Example

- U1(S0) = 62
S0 - U2(S0) = 74
- U(S0) = max{U1(S0),U2(S0)}
=74
A1 A2
S1 S2 S3 S4
0.2 0.7 0.2 0.1 0.8

100 50 70 80



Introducing Action Costs

- U1(S0) = 62 — 5 = 57
» U2(S0) = 74 — 25 = 49

- U(S0) = max{U1(S0),U2(S0)}
= 57

SO

$1 S2 S3 S4
0.2 0.7 0.2 0.1 0.8

100 50 70 80
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Not quite...

Must have complete model of:
Actions
Utilities
States

Even if you have a complete model, it might be
computationally intractable

In fact, a truly rational agent takes into account the
utility of reasoning as well---bounded rationality

Nevertheless, great progress has been made in this
area recently, and we are able to solve much more
complex decision-theoretic problems than ever
before



we’ll look at

» Decision-Theoretic Planning
+ Simple decision making (ch. 16)
+ Sequential decision making (ch. 17)



Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p, A; (1 —p), B 1-p

Notation:

A-B A preferred to B
A~DB indifference between A and 5
AZB B not preferred to A

A and B can be lotteries again: Prizes are special lotteries: [1, X; 0, not X]



Rational preferences

Idea: preferences of a rational agent must obey constraints.
Rational preferences =
behavior describable as maximization of expected utility



Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give

away all its money

If B = C, then an agent who has A
would pay (say) 1 cent to get BB Ic Ic
If A~ B, then an agent who has 3
would pay (say) 1 cent to get A B C
W,
If "~ A, then an agent who has A \1_/
c

would pay (say) 1 cent to get ('



Axioms of Utility Theory

Orderability

+ (A>B) v (A<B) v (A~B)
Transitivity

* (A>B) A (B>C) = (A>0O)

Continuity

* A>B>C=13p [p,A; 1-p,C] ~ B
Substitutability

¢+ A~B = [p,A; 1-p,C]~[p,B; 1-p,C]
Monotonicity

* A>B= (pzq < [p,A; 1-p,B] >~ [q,A; 1-q,B])
Decomposability

* [p,A; 1-p, [q,B; 1-q, C]] ~ [p,A; (1-p)q, B; (1-p)(1-q), C]

Decomposability: There is no fun in gambling



And then there was utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

UA)>U(B) « AZB

U([p1,St; ... ; pnsSal) = 25 psU(S;)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe



Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” T with probability p
“worst possible catastrophe” | with probability (1 — p)
adjust lottery probability p until A ~ L,

0.999999 continue as before

pay $30 ~ L
-and-continue
-as-before

0.000001 instant death



Utility scales

Normalized utilities: wr = 1.0, u;y = 0.0 y(pay $30...) = 0.999999

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years

useful for medical decisions involving substantial risk
Note: behavior is invariant w.r.t. +ve linear transformation
Ulx) = kU(x)+ ky where ky >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes



Money

Money does not behave as a utility function

Given a lottery L with expected monetary value ENV (L),
usually U(L) < U(EMV(L)), i.e., people are risk-averse

Utility curve: for what probability p am | indifferent between a prize = and
a lottery [p.$M; (1 — p),9$0] for large NM7?
Typical empirical data, extrapolated with risk-prone behavior:

+U
A 0

I I
-150,000 800,000




Money Versus Utility

Money <> Utility

* More money is better, but not always in a
linear relationship to the amount of
money

Expected Monetary Value
Risk-averse - U(L) < USguv))
Risk-seeking - U(L) > U(Sgwv))
Risk-neutral - U(L) = U(Sgmvy)



Value Functions

» Provides a ranking of alternatives, but not a
meaningful metric scale

« Also known as an “ordinal utility function”

« Remember the expectiminimax example:

+ Sometimes, only relative judgments (value functions) are
necessary

+ At other times, absolute judgments (utility functions) are
required



Multiattribute Utility Theory

* A given state may have multiple
utilities
+ ...because of multiple evaluation criteria

+ ...because of multiple agents (interested
parties) with different utility functions



Strict dominance

Typically define attributes such that [ is monotonic in each

Strict dominance: choice /5 strictly dominates choice A iff

Vi Xi(B) > Xi(A) (and hence U(B) > U(A))

This region >
dominates A A

Deterministic attributes Uncertain attributes



Stochastic dominance

12 1
1 0.8
: 08 = os
L L
. 2 | 2o
02 02
0 - 0

1
o

6 55 5 45 4 -35 -3 -25 6 55 -5 45 4 35 -3 25 -2
Negative cost Negative cost

Distribution D1 stochastically dominates distribution po iff
vt /  pi(z)dz </  po(t)dt Vx. P >=x)>=P(X,>=x)

If [/ is monotonic in x, then A; with outcome distribution p,
stochastically dominates A, with outcome distribution p»:
[22 pi(@)U(z)dz > [7 po(2)U(z)dx

Multiattribute case: stochastlc dominance on all attributes = optimal



Stochastic Dominance

First order stochastic
*dominance, example

Product P Product Q
Profit Profit
($m) Prob. ($m) Prob.
0 to under 5 0.2 0 to under 5 0
5 to under 10 0.3 5 to under 10 0.1
10tounder 15 0.4 10tounder 15 0.5
15 tounder 20 0.1 15tounder 20 0.3

20tounder 25 0.1



Stochastic Dominance

First order stochastic
| dominance, illustration
1 '

e

Product P

o
o
I

Cumulative probability
o o
B O
R

Product Q
0.3+
0.2+
0.1+
0 | | | |
0 5 10 15 20 25

Profit ($millions)



Stochastic Dominance

First order stochastic
idominance, remarks

= First order stochastic dominance does not
imply that every possible return of the
superior distribution is larger than every
possible return of the inferior distribution

= If F(.) first order stochastically dominates
G(.), the expected value of F(.) is higher than
the expected value of G(.)

= The reverse is not necessarily true




Stochastic dominance contd.

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
51 is closer to the city than S5
— 5 stochastically dominates .55 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X =V (X positively influences Y') means that
For every value z of Y''s other parents Z

Vo, o w1 > 19 = P(Y |21, z) stochastically dominates P (Y | x5, z)
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Preference structure: Deterministic

X1 and X preferentially independent of X5 iff
preference between (x1, zo, x3) and (). 2. x3)
does not depend on 3

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.l. of its com-
plement, then every subset of attributes is P.I of its complement: mutual

Pl.
Theorem (Debreu, 1960): mutual P.I. = = additive value function:
V(S) = SV(X(S)

Hence assess 7 single-attribute functions; often a good approximation

mpm - mortality prediction model



Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff

preferences over lotteries in X do not depend on vy

Mutual U.l.: each subset is U.l of its complement
— = multiplicative utility function:
U= kU + kU + k3Us
+ k1koUUs + koksUsUs + k3kUsUy
+ kl ]\“.2 k 3 L’rl I:T2 (?3

Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions



Decision Networks

Extend BNs to handle actions and
utilities

Also called influence diagrams
Use BN inference methods to solve

Perform Value of Information
calculations



Decision Networks cont.

D Chance nodes: random variables, as
in BNs

' Decision nodes: actions that decision
maker can take

Utility/value nodes: the utility of the
outcome state.




R&N example




Umbrella Network

take/don’t take

P(rain) = 0.4

umbrella

P(havel|take) = 1.0
P(~have|~take)=1.0

f W p(flw)
U(have,rain) = -25 sunny rain | 0.3
U(have,~rain) = 0 rainy rain | 0.7
U(~have, rain) = -100 sunny norain| 0.8
U(~have, ~rain) = 100 rainy norain| 0.2



Evaluating Decision Networks

 Set the evidence variables for current state

* For each possible value of the decision node:
+ Set decision node to that value

+ Calculate the posterior probability of the parent nodes of
the utility node, using BN inference

+ Calculate the resulting utility for action
* Return the action with the highest utility



Decision Making: Umbrella Network

Should | take my umbrella??

take/don’t take

P(rain) = 0.4

umbrella

have umbrella

P(havel|take) = 1.0
P(~have|~take)=1.0

f W p(flw)
U(have,rain) = -25 sunny rain | 0.3
U(have,~rain) = 0 rainy rain | 0.7
U(~have, rain) = -100 sunny norain| 0.8
U(~have, ~rain) = 100 rainy norain| 0.2



Value of information

ldea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is //2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A" or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of "buy A" given “oil in A"
+ 0.5 x value of “buy B" given “no oil in A"]
-0
= (05xk/2)+ (05 x k/2)—0=Fk/2



General formula

Current evidence E', current best action o
Possible action outcomes 5, potential new evidence £

EU(a|E) = max 2; U(S;) P(Si|E, a)
Suppose we knew ;= ¢, then we would choose Qe S.t.
EL‘Y(O‘G].JE, EJ — e-jk) — II](%L‘-( Z, UT(S,) P(S,|E a. EJ — ij)

E; is a random variable whose value is currently unknown
—  must compute expected gain over all possible values:

VPIg(E;j) = (E P(Ej=ej|E)EU(ac,|E, Ej=ej)) — EU(a|E)

(VPI = value of perfect information)



Properties of VPI

Nonnegative—in expectation, not post hoc
Vi, E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £ twice
VPIg(E;, Ey) # VPIg(E;) + VPIg(Ey)
Order-independent
VPIp(Ej, Ey) = VPIp(E;) +V Plg g(Ey) =V PIg(Ey) +V Plg g (L)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem



Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

P(UIE;) P(UIE;) P(UIE;) ﬂ

U: U1 I.;z LI).;[ Ug Ul
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