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Jumping-off Point

•  Let us assume again 
that the agent lives 
in the 4x3 
environment

•  The agent knows 
the environment 
(e.g., finite horizon 
principle applies)

•  Agent has no or 
very unreliable 
sensors

•  It does not make 
sense to determine 
the optimal policy 
wrt. a single state

•  Π*(s) is not well 
defined



POMDP (Partially Observable Markov Decision Problem)

•  A sensing operation returns multiple 
  states, with a probability distribution 
 
•  Choosing the action that maximizes the 
  expected utility of this state distribution  
  assuming “state utilities” computed as 
  above is not good enough, and actually 
  does not make sense (is not rational) 



POMDP: Uncertainty

•  Uncertainty about the action outcome
•  Uncertainty about the world state due 

to imperfect (partial) information




Outline

•  POMDP agent
w  Constructing a new MDP in which the current probability 

distribution over states plays the role of the state variable

•  Decision-theoretic Agent Design for 
POMDP
w  A limited lookahead using the technology of decision 

networks



Example: Target Tracking

There is uncertainty 
in the robot’s and target’s  
positions; this uncertainty 
grows with further motion 

There is a risk that the target  
may escape behind the corner,  
requiring the robot to move  
appropriately 

But there is a positioning 
landmark nearby. Should 
the robot try to reduce its 
position uncertainty? 



Decision cycle of a POMDP agent 

•  Given the current belief state b, execute the 
action  


•  Receive observation o
•  Set the current belief state to SE(b,a,o) and repeat 

(SE = State Estimation)
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Belief state

•  b(s) is the probability 
assigned to the actual 
state s by belief state 
b.
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Belief MDP

•  A belief MDP is a tuple <B, A, ρ, P>:
B = infinite set of belief states
A = finite set of actions
ρ(b) = ∑s b(s)R(s)                   (reward function)

P(b’|b, a) =                      (transition function) (see SE(b,a,o))
 

   Where P(b’|b, a, o) = 1 if SE(b, a, o) = b’, P(b’|b, a, o) = 0 otherwise;
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Example Scenario



Detailed view

•  Probability of an observation e  
P(e|a,b) = ∑s’ P(e|a,s’,b) P(s’|a,b)  
         = ∑s’ P(e|s’) P(s’|a,b)  
              = ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)  


•  Probability of reaching b’ from b, given action a  
P(b’|b,a) = ∑e P(b’|e,a,b) P(e|a,b)  
               = ∑e P(b’|e,a,b)  ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)  
 Where P(b’|e,a,b) = 1 if SE(b, a, e) = b’  and  
    P(b’|b, a, o) = 0 otherwise

•  P(b’|b,a) and ρ(b) define an observable MDP on the space of 
belief states.

•  Solving a POMDP on a physical state space is reduced to 
solving an MDP on the corresponding belief-state space.



Conditional Plans

•  Example: Two state world 0,1
•  Example: Two actions: stay(p), go(p)

w  Actions achieve intended effect  
with some probability p

•  One-step plan [go], [stay]
•  Two-step plans are conditional

w  [a1, IF percept = 0 THEN a2 ELSE a3]
w  Shorthand notation: [a1, a2/a3]

•  n-step plan are trees with nodes attached 
with actions and edges attached with percepts



Value Iteration for POMDPS

•  Can not compute a single utility value for each state 
of all belief states.

•  Consider an optimal policy π* and its application in 
belief state b.

•  For this b the policy is a “conditional plan”
w  Let the utility of executing a fixed conditional plan p in s be 

up(s).  
Expected utility Up(b) = ∑s b(s) up(s)  
It varies linearly with b, a hyperplane in a belief space

w  At any b, the optimal policy will choose the conditional plan 
with the highest expected utility  
U(b) = U π* (b) π* = argmaxp b*up (summation as dot-prod.)

•  U(b) is the maximum of a collection of hyperplanes 
and will be piecewise linear and convex



Example

Utility of two one-step plans 
as a function of b(1) 

We can compute the utilities for conditional plans of 
depth-2 by considering each possible first action, each 
possible subsequent percept and then each way of choosing 
a depth-1 plan to execute for each percept 



Example

•  Two state world 0,1. R(0)=0, R(1)=1
•  Two actions: stay (0.9), go (0.9)
•  The sensor reports the correct state with prob. 0.6
•  Consider the one-step plans [stay] and [go]

w  u[stay](0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
w  u[stay] (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
w  u[go] (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
w  u[go] (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

•  This is just the direct reward function (taken into 
account the probabilistic transitions)



  u[stay,stay/stay](0)=R(0) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.6*1.9 + 0.4*1.9))=0.28
  u[stay,stay/stay](1)=R(1) + (0.9*(0.6*1.9 + 0.4*1.9) + 0.1*(0.6*0.1 + 0.4*0.1))=2.72  
 



  u[go,stay/stay](0)=R(0) + (0.9*(0.6*1.9 + 0.4*1.9) + 0.1*(0.6*0.1 + 0.4*0.1))=1.72
  u[go,stay/stay](1)=R(1) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.6*1.9 + 0.4*1.9))=1.28

                Example

8 distinct depth-2 plans.  
4 are suboptimal across the  
entire belief space (dashed lines). 

ustay(1) ustay(0) 



Example

Utility of four undominated  
two-step plans Utility function for optimal  

eight step plans 



General formula

•  Let p be a depth-d conditional plan whose initial action is a 
and whose depth-d-1 subplan for percept e is p.e, then 
 
up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)  
 


•  This give us a value iteration algorithm
•  The elimination of dominated plans is essential for reducing 

doubly exponential growth: the number of undominated plans 
with d=8 is just 144, otherwise 2255  (|A| O(|E|d-1))

•  For large POMDPs this approach is highly inefficient



Solutions for POMDP

•  Belief MDP has reduced POMDP to MDP, the MDP obtained 
has a multidimensional continuous state space. 

•  Methods based on value and policy iteration:
    A policy        can be represented as a set of regions of belief 

state space, each of which is associated with a particular 
optimal action. The value function associates a distinct linear 
function of b with each region. Each value or policy iteration 
step refines the boundaries of the regions and may 
introduce new regions.

)(bπ



Agent Design: Decision Theory

      = probability theory + utility theory
    

The fundamental idea of decision theory is 
that an agent is rational if and only if it 
chooses the action that yields the highest 
expected utility, averaged over all possible 
outcomes of the action. 



A Decision-Theoretic Agent

function DECISION-THEORETIC-AGENT(percept) returns action
  calculate updated probabilities for current state based on 

available evidence including current percept and previous 
action 

  calculate outcome probabilities for actions
     given action descriptions and probabilities of current states
  select action with highest expected utility
     given probabilities of outcomes and utility information
  return action
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Dynamic Bayesian Decision Networks

•  The decision problem involves calculating the value of      
that maximizes the agent’s expected utility over the 
remaining state sequence.
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Search Tree of the Lookahead DDN
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Search Tree: Exhaustive Enumeration

•  The search tree of DDN is very similar to 
the EXPECTIMINIMAX algorithm for game 
trees with chance nodes, expect that:

•  There can also be rewards at non-leaf 
states

•  The decision nodes correspond to belief 
states rather than actual states.

•  The time complexity:                         
      d is the depth, |D| is the number of 

available actions, |E| is the number of 
possible observations

)|||(| dd EDO •



Discussion of DDNs

•  DDNs provide a general, concise 
representation for large POMDPs

•  Agent systems moved from 
w  static, accessible, and simple environments to
w  dynamic, inaccessible, and complex 

environments that are closer to the real world
•  However, exact algorithms are exponential



Perspectives of DDNs to  
Reduce Complexity

•  Combined with a heuristic estimate for  
the utility of the remaining steps

•  Incremental pruning techniques
•  Many approximation techniques:

w  Using less detailed state variables for states in the 
distant future.

w  Using a greedy heuristic search through the space of 
decision sequences.

w  Assuming “most likely” values for future percept 
sequences rather than considering all possible values

…


