Intelligent Autonomous Agents: Agents and Rational Behavior Lecture 10: Multiple Agents and Game Theory

Ralf Möller Hamburg University of Technology

Literature

Stuart Russell • Peter Norvig Prentice Hall Series in Artificial Intelligence • Chapter 17

Presentations from CS 886 Advanced Topics in Al Electronic Market Design Kate Larson Waterloo Univ.

Full vs bounded rationality

Multiagent Systems: Criteria

- Social welfare: $\max_{outcome} \sum_i u_i(outcome)$
- Surplus: social welfare of outcome social welfare of status quo
 - Constant sum games have 0 surplus.
 - Markets are not constant sum
- Pareto efficiency: An outcome o is Pareto efficient if there exists no other outcome o' s.t. some agent has higher utility in o' than in o and no agent has lower
 - Implied by social welfare maximization
- Individual rationality: Participating in the negotiation (or individual deal) is no worse than not participating
- Stability: No agents can increase their utility by changing their strategies
- Symmetry: No agent should be inherently preferred, e.g. dictator

Game Theory: The Basics

- A game: Formal representation of a situation of strategic interdependence
 - Set of <u>agents</u>, I (|I|=n)
 - AKA players
 - Each agent, j, has a set of <u>actions</u>, A_i
 - AKA moves
 - Actions define <u>outcomes</u>
 - For each possible action there is an outcome.
 - Outcomes define <u>payoffs</u>
 - Agents' derive utility from different outcomes

Extensive form game (matching pennies)

Strategies (aka Policies)

- Strategy:
 - A strategy, s_j, is a complete contingency plan; defines actions agent j should take for all possible states of the world
- Strategy profile: s=(s₁,...,s_n)
 - $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$
- Utility function: u_i(s)
 - Note that the utility of an agent depends on the strategy profile, not just its own strategy
 - We assume agents are expected utility maximizers

*aka strategic form, matrix form

Extensive form game (matching pennies)

Extensive form game (matching pennies, seq moves)

Recall: A strategy is a contingency plan for all states of the game

Strategy for agent 1: T

Strategy for agent 2: H if 1 plays H, T if 1 plays T (H,T)

Strategy profile: (T,(H,T))

U1((T,(H,T)))=-1 U2((T,(H,T)))=1

Game Representation

Potential combinatorial explosion

Example: Ascending Auction

- State of the world is defined by (x,p)
 x∈{0,1} indicates if the agent has the
 - x={0,1} mulcates if the agent has tr object
 - p is the current next price
- Strategy s_i((x,p))

$$s_i((x,p)) = \begin{cases} p, \text{ if } v_i > = p \text{ and } x = 0 \\ No \text{ bid otherwise} \end{cases}$$

Dominant Strategies

- Recall that
 - Agents' utilities depend on what strategies other agents are playing
 - Agents' are expected utility maximizers
- Agents' will play best-response strategies

 s_i^* is a best response if $u_i(s_i^*,s_{-i}) \ge u_i(s_i',s_{-i})$ for all s_i'

- A dominant strategy is a best-response for all s_{-i}
 - They do not always exist
 - Inferior strategies are called dominated

Dominant Strategy Equilibrium

- A dominant strategy equilibrium is a strategy profile where the strategy for each player is dominant
 - \$ s*=(s1*,...,sn*)
 - $u_i(s_i^*,s_{-i}) \ge u_i(s_i^*,s_{-i})$ for all i, for all s_i^* , for all s_{-i}
- GOOD: Agents do not need to counterspeculate!

Example: Prisoner's Dilemma

 Two people are arrested for a crime. If neither suspect confesses, both are released. If both confess then they get sent to jail. If one confesses and the other does not, then the confessor gets a light sentence and the other gets a heavy sentence.

Example: Vickrey Auction (2nd price sealed bid)

- Each agent i has value v_i
- Strategy $b_i(v_i) \in [0,\infty)$

$$u_{i}(b_{i},b_{-i}) = \begin{cases} v_{i}-\max\{b_{j}\} \text{ where } j \neq i \text{ if } b_{i} > b_{j} \text{ for all } j \\ 0 \text{ otherwise} \end{cases}$$

Given value v_i , $b_i(v_i)=v_i$ is (weakly) dominant.

Let b'=max_{$j\neq i$}b_j. If b'<v_i then any bid b_i(v_i)>b' is optimal. If b'≥v_i, then any bid b_i(v_i)≤ v_i is optimal. Bid b_i(v_i)=v_i satisfies both constraints.

Example: Bach or Stravinsky

 A couple likes going to concerts together. One loves Bach but not Stravinsky. The other loves Stravinsky but not Bach. However, they prefer being together than being apart.

	В	5	
3	2,1	0,0	No dom. str. equil.
S	0,0	1,2	

Nash Equilibrium

- Sometimes an agent's best-response depends on the strategies other agents are playing
 - No dominant strategy equilibria
- A strategy profile is a **Nash equilibrium** if no player has incentive to deviate from his strategy given that others do not deviate:
 - for every agent i, $u_i(s_i^*, s_{-i}) \ge u_i(s_i^*, s_{-i})$ for all s_i^*

- Let Ri⊆Si be the set of removed strategies for agent i
- Initially Ri=Ø
- Choose agent i, and strategy s_i such that $s_i \!\!\in\!\! S_i \!\setminus\! R_i$ and there exists $s_i' \!\in\!\! S_i \!\setminus\! R_i$ such that

 $u_i(s_i',s_{-i})>u_i(s_i,s_{-i})$ for all $s_{-i} \in S_{-i} \setminus R_{-i}$

- Add s_i to R_i, continue
- Thm: (Soundness) If a unique strategy profile, s*, survives then it is a Nash Eq.
- Thm: (Completeness) If a profile, s*, is a Nash Eq then it must survive iterated elimination.

Example: Iterated Dominance

Nash Equilibrium

- Interpretations:
 - Focal points, self-enforcing agreements, stable social convention, consequence of rational inference..
- Criticisms
 - They may not be unique (Bach or Stravinsky)
 - Ways of overcoming this
 - Refinements of equilibrium concept, Mediation, Learning
 - Do not exist in all games (in the form defined above)
 - They may be hard to find
 - People don't always behave based on what equilibria would predict (ultimatum games and notions of fairness,...)

Example: Matching Pennies

So far we have talked only about **pure** strategy equilibria.

Not all games have pure strategy equilibria. Some equilibria are **mixed** strategy equilibria.

Mixed strategy equilibria

• Mixed strategy:

Let \sum_i be the set of probability distributions over S_i We write σ_i for an element of \sum_i

- Strategy profile: $\sigma = (\sigma_1, ..., \sigma_n)$
- Expected utility: $u_i(\sigma) = \sum_{s \in S_i} \sigma_i(s) u_i(s)$
- Nash Equilibrium:

• σ^* is a (mixed) Nash equilibrium if $u_i(\sigma^*_i, \sigma^*_{-i}) \ge u_i(\sigma_i, \sigma^*_{-i})$ for all $\sigma_i \in \sum_i$, for all i

Example: Matching Pennies

Want to play each strategy with a certain probability so that the competitor is indifferent between its own strategies.

q-(1-q)=-q+(1-q) q=1/2

Mixed Nash Equilibrium

- Thm (Nash 50):
 - Every game in which the strategy sets, S₁, ...,S_n have a finite number of elements has a mixed strategy equilibrium.
- Finding Nash Equil is another problem
 - "Together with prime factoring, the complexity of finding a Nash Eq is, in my opinion, the most important concrete open question on the boundary of P today" (Papadimitriou)

Bayesian-Nash Equil (Harsanyi 68)

- So far we have assumed that agents have complete information about each other (including payoffs)
 - Very strong assumption!
- Assume agent i has type θ_i∈Θ_i, which defines the payoff u_i(s, θ_i)
- Agents have common prior over distribution of types p(θ)
 - Conditional probability $p(\theta_{-i} | \theta_i)$ (obtained by Bayes Rule when possible)

Bayesian-Nash Equil

- Strategy: $\sigma_i(\theta_i)$ is the (mixed) strategy agent i plays if its type is θ_i
- Strategy profile: $\sigma = (\sigma_1, ..., \sigma_n)$
- Expected utility:
 - $U_i(\sigma_i(\theta_i), \sigma_{-i}(), \theta_i) = \sum_{\theta i} p(\theta_{-i} | \theta_i) u_i(\sigma_i(\theta_i), \sigma_{-i}(\theta_{-i}), \theta_i)$
- Bayesian Nash Eq: Strategy profile σ* is a Bayesian-Nash Eq if for all i, for all θ_i, U_i(σ*_i(θ_i),σ*_{-i}(),θ_i)≥ U_i(σ_i(θ_i),σ*_{-i}(),θ_i)

(best responding w.r.t. its beliefs about the types of the other agents, assuming they are also playing a best response)

Example: 1st price sealed-bid auction

2 agents (1 and 2) with values v_1, v_2 drawn uniformly from [0,1]. Utility of agent i if it bids b_i and wins the item is $u_i = v_i - b_i$.

Assume agent 2's bidding strategy is $b_2(v_2)=v_2/2$ How should 1 bid? (i.e. what is $b_1(v_1)=z$?)

$U_1 = \int_{z=0}^{2z} (v_1 - z) dz = (v_1 - z) 2z = 2zv_1 - 2z^2$

Note: given $b_2(v_2)=v_2/2$, 1 only wins if $v_2<2z$

Therefore, $Max_{z}[2zv_{1}-2z^{2}]$ when $z=b_{1}(v_{1})=v_{1}/2$

Similar argument for agent 2, assuming $b_1(v_1)=v_1/2$. We have an equilibrium

Extensive Form Games

Any finite game of perfect information has a pure strategy Nash equilibrium. It can be found by backward induction.

(1,2) (2,1) (2,1) (4,0)

Chess is a finite game of perfect information. Therefore it is a "trivial" game from a game theoretic point of view.

Subgame perfect equilibrium & credible threats

- Proper subgame = subtree (of the game tree) whose root is alone in its information set
- Subgame perfect equilibrium
 - Strategy profile that is in Nash equilibrium in every proper subgame (including the root), whether or not that subgame is reached along the equilibrium path of play

Example: Cuban Missile Crisis 100, - 100 Nuke Kennedy Arm Khrushchev Fold 10, -10 -1, 1 [Reinhard Selten 72] Retract

Pure strategy Nash equilibria: (Arm, Fold) and (Retract, Nuke)

Pure strategy subgame perfect equilibria: (Arm, Fold) Conclusion: Kennedy's Nuke threat was not credible.