Ecommerce:

Agents and Rational Behavior Lecture 11: Social Choice (Preference Aggregation)

Ralf Möller Hamburg University of Technology

Acknowledgement

Material from CS 886 Advanced Topics in Al Electronic Market Design Kate Larson

Waterloo Univ.

Social choice theory

- Study of decision problems in which a group has to make the decision
- The decision affects all members of the group
 - Their opinions! should count
- Applications:
 - Political elections
 - Other elections
 - Note that outcomes can be vectors
 - Allocation of money among agents, allocation of goods, tasks, resources...
- CS applications:
 - Multiagent planning [Ephrati&Rosenschein]
 - Computerized elections [Cranor&Cytron]
 - Note: this is not the same as electronic voting
 - Accepting a joint project, rating Web articles [Avery,Resnick&Zeckhauser]
 - Rating CDs...

Assumptions

1. Agents have preferences over alternatives

- Agents can rank order the outcomes
 - a>b>c=d is read as "a is preferred to b which is preferred to c which is equivalent to d"
- 2. Voters are sincere
 - They truthfully tell the center their preferences
- 3. Outcome is enforced on all agents

The problem

- Majority decision:
 - If more agents prefer a to b, then a should be chosen
- Two outcome setting is easy
 Choose outcome with more votes!
- What happens if you have 3 or more possible outcomes?

Case 1: Agents specify their top preference

Election System

- Plurality Voting
 - One name is ticked on a ballot
 - One round of voting
 - One candidate is chosen

What do we mean by good?

Example: Plurality

- 3 candidates
 Lib, NDP, C
- 21 voters with the preferences
 - 10 Lib>NDP>C
 - 6 NDP>C>Lib
 - 5 C>NDP>Lib
- Result: Lib 10, NDP 6, C 5

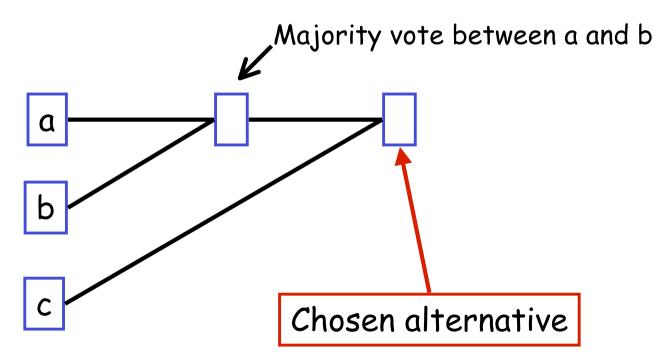
 But a majority of voters (11) prefer all other parties more than the Libs!

What can we do?

- Majority system
 - Works well when there are 2 alternatives
 - Not great when there are more than 2 choices
- Proposal:
 - Organize a series of votes between 2 alternatives at a time
 - How this is organized is called an agenda
 - Or a cup (often in sports)

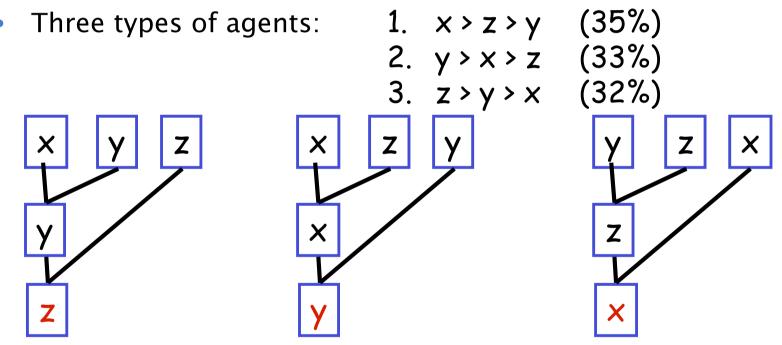
Agendas

- 3 alternatives {a,b,c}
- Agenda a,b,c



Agenda paradox

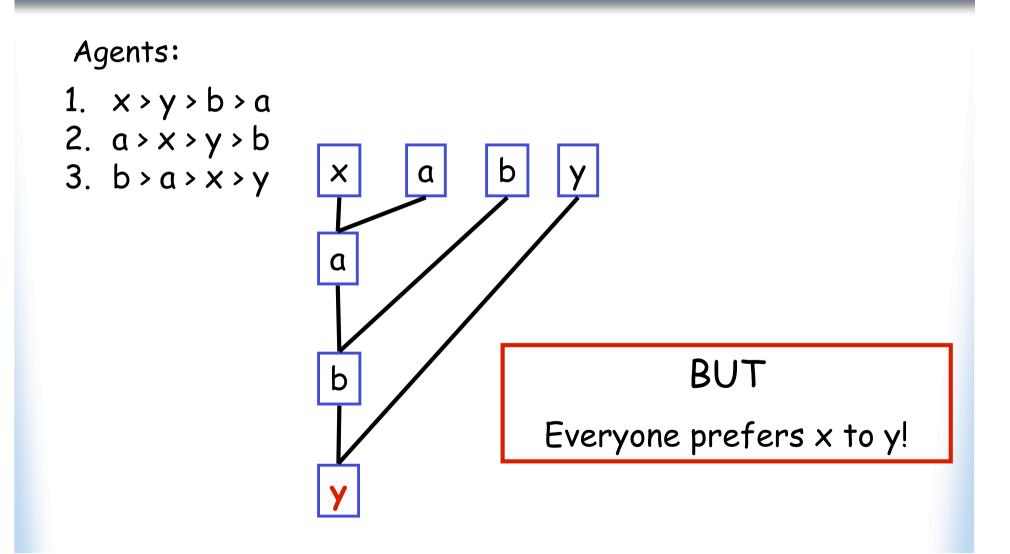
Binary protocol (majority rule) = cup



• Power of agenda setter (e.g. chairman)

• Vulnerable to irrelevant alternatives (z)

Another problem: Pareto dominated winner paradox



Case 2: Agents specify their complete preferences

Maybe the problem was with the ballots!

Ballot

X>Y>Z

Now have more information

Condorcet

- Proposed the following
 - Compare each pair of alternatives
 - Declare "a" is socially preferred to "b" if more voters strictly prefer a to b
- Condorcet Principle: If one alternative is preferred to <u>all other</u> candidates then it should be selected

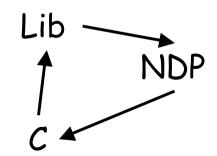
Example: Condorcet

- 3 candidates
 Lib, NDP, C
- 21 voters with the preferences
 - 10 Lib>NDP>C
 - 6 NDP>C>Lib
 - 5 C>NDP>Lib
- Result:
 - NDP win! (11/21 prefer them to Lib, 16/21 prefer them to C)

A Problem

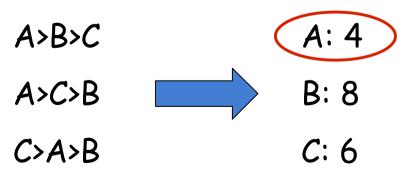
- 3 candidates
 - Lib, NDP, C
- 3 voters with the preferences
 - Lib>NDP>C
 - NDP>C>Lib
 - C>Lib>NDP
- Result:

No Condorcet Winner



Borda Count

- Each ballot is a list of ordered alternatives
- On each ballot compute the rank of each alternative
- Rank order alternatives based on decreasing sum of their ranks



Borda Count

- Simple
- Always a Borda Winner
- BUT does not always choose Condorcet winner!
- 3 voters
 - 2: b>a>c>d
 - 1: a>c>d>b

Borda scores:

a:5, b:6, c:8, d:11

Therefore a wins

BUT b is the Condorcet winner

- Borda rule with 4 alternatives
 - Each agent gives 1 points to best option, 2 to second best...
- Agents:
 1. x > c > b > a
 2. a > x > c > b
 3. b > a > x > c
 4. x > c > b > a
 5. a > x > c > b
 6. b > a > x > c
 7. x > c > b > a
- x=13, a=18, b=19, c=20
- Remove x: c=13, b=14, a=15

Borda rule vulnerable to irrelevant alternatives

• Three types of agents:

- Borda winner is x
- Remove z: Borda winner is y

Desirable properties for a voting protocol

• Universality

- It should work with any set of preferences
- Transitivity
 - It should produce an ordered list of alternatives
- Paretian (or unanimity)
 - If all all agents prefer x to y then in the outcome x should be preferred to y
- Independence
 - The comparison of two alternatives should depend only on their standings among agents' preferences, not on the ranking of other alternatives
- No dictators

Arrow's Theorem (1951)

 If there are 3 or more alternatives and a finite number of agents then there is <u>no</u> protocol which satisfies the 5 desired properties

Is there anything that can be done?

- Can we relax the properties?
- No dictator
 - Fundamental for a voting protocol
- Paretian
 - Also seems to be pretty desirable
- Transitivity
 - Maybe you only need to know the top ranked alternative
 - Stronger form of Arrow's theorem says that you are still in trouble
- Independence
- Universality
 - Some hope here (1 dimensional preferences, spacial preferences)

Take-home Message

- Despair?
 - No ideal voting method
 - That would be boring!
- A group is more complex than an individual
- Weigh the pro's and con's of each system and understand the setting they will be used in
- Do not believe anyone who says they have the best voting system out there!

Proof of Arrow's theorem (slide 1 of 3)

- Follows [Mas-Colell, Whinston & Green, 1995]
- Assuming G is Paretian and independent of irrelevant alternatives, we show that G is dictatorial
- **Def.** Set $S \subseteq A$ is decisive for x over y whenever
 - $x >_i y$ for all $i \in S$
 - x < y for all $i \in A-S$
 - ♦ => x > y
- Lemma 1. If S is decisive for x over y, then for any other candidate z, S is decisive for x over z and for z over y
- **Proof.** Let S be decisive for x over y. Consider: $x >_i y >_i z$ for all $i \in S$ and $y >_i z >_i x$ for all $i \in A-S$
 - Since S is decisive for x over y, we have x > y
 - Because $y >_i z$ for every agent, by the Pareto principle we have y > z
 - Then, by transitivity, x > z
 - By independence of irrelevant alternatives (y), x > z whenever every agent in S prefers x to z and every agent not in S prefers z to x. I.e., S is decisive for x over z
- To show that S is decisive for z over y, consider: $z >_i x >_i y$ for all $i \in S$ and $y >_i z >_i x$ for all $i \in A-S$
 - Then x > y since S is decisive for x over y
 - z > x from the Pareto principle and z > y from transitivity
 - Thus S is decisive for z over y Image with the second secon

Proof of Arrow's theorem (slide 2 of 3)

- Given that S is decisive for x over y, we deduced that S is decisive for x over z and z over y.
- Now reapply Lemma 1 with decision z over y as the hypothesis and conclude that
 - S is decisive for z over x
 - which implies (by Lemma 1) that S is decisive for y over x
 - which implies (by Lemma 1) that S is decisive for y over z
 - Thus: Lemma 2. If S is decisive for x over y, then for any candidates u and v, S is decisive for u over v (i.e., S is *decisive*)
- **Lemma 3.** For every $S \subseteq A$, either S or A–S is decisive (not both)
- **Proof.** Suppose $x >_i y$ for all $i \in S$ and $y >_i x$ for all $i \in A-S$ (only such cases need to be addressed, because otherwise the left side of the implication in the definition of decisiveness between candidates does not hold). Because either x > y or y > x, S is decisive or A-S is decisive

Proof of Arrow's theorem (slide 3 of 3)

- Lemma 4. If S is decisive and T is decisive, then $S \cap T$ is decisive
- Proof.
 - Let $S = \{i: z >_i y >_i x\} \cup \{i: x >_i z >_i y\}$
 - Let $T = \{i: y >_i x >_i z \} \cup \{i: x >_i z >_i y \}$
 - For $i \notin S \cup T$, let $y >_i z >_i x$
 - Now, since S is decisive, z > y
 - Since T is decisive, x > z
 - Then by transitivity, x > y
 - So, by independence of irrelevant alternatives (z), $S \cap T$ is decisive for x over y.
 - (Note that if $x >_i y$, then $i \in S \cap T$.)
 - Thus, by Lemma 2, S \cap T is decisive �
- Lemma 5. If $S = S_1 \cup S_2$ (where S_1 and S_2 are disjoint and exhaustive) is decisive, then S_1 is decisive or S_2 is decisive
- **Proof.** Suppose neither S_1 nor S_2^{\prime} is decisive. Then ~ S_1 and ~ S_2 are decisive. By Lemma 4, ~ $S_1 \cap ~ S_2 = ~S$ is decisive. But we assumed S is decisive. Contradiction

Proof of Arrow's theorem

 Clearly the set of all agents is decisive. By Lemma 5 we can keep splitting a decisive set into two subsets, at least one of which is decisive. Keep splitting the decisive set(s) further until only one agent remains in any decisive set. That agent is a dictator. QED

Stronger version of Arrow's theorem

- In Arrow's theorem, social choice functional G outputs a ranking of the outcomes
- The impossibility holds even if only the highest ranked outcome is sought:
- Thrm. Let $|O| \ge 3$. If a social choice *function* f: R -> outcomes is *monotonic* and *Paretian*, then f is dictatorial
 - f is monotonic if [x = f(R) and x maintains its position in R']
 => f(R') = x
 - x maintains its position whenever $x >_i y = x >_i' y$